最新人教版高中数学必修三课件PPT
合集下载
人教版高中数学必修三3.随机事件的概率PPT课件(共30)
八、知识迁移:
例、 为了估计水库中的鱼的尾数, 先从水库中捕出2 000尾鱼,给每尾鱼作 上记号(不影响其存活),然后放回水 库.经过适当的时间,让其和水库中其 余的鱼充分混合,再从水库中捕出500尾 鱼,其中有记号的鱼有40尾,试根据上 述数据,估计这个水库里鱼的尾数.
课堂感悟
概率是一门研究现实世界中广泛存在的 随机现象的科学,正确理解概率的意义是认识 、理解现实生活中有关概率的实例的关键,学 习过程中应有意识形成概率意识,并用这种意 识来理解现实世界,主动参与对事件发生的概 率的感受和探索。
课堂小结
1.随机事件发生的不确定性及频率的稳定性. (对立统一)
2.随机事件的概率的统计定义:随机事件在相 同的条件下进行大量的试验时,呈现规律性, 且频率总是接近于常数P(A),称P(A)为事件的 概率.
3.随机事件概率的性质:0≤P(A)≤1.
作业:教材P123页T2,T3.
频率与概率的区别与联系:
√(2)明天本地下雨的机会是70%.
又例如生活中,我们经常听到这样的议论 :“天气预报说昨天降水概率为90%,结果根 本一点雨都没下,天气预报也太不准确了。” 学了概率后,你能给出解释吗?
解:天气预报的“降水”是一个随机事 件,概率为90%指明了“降水”这个随机事 件发生的概率,我们知道:在一次试验中, 概率为90%的事件也可能不出现,因此,“ 昨天没有下雨”并不说明“昨天的降水概率 为90%”的天气预报是错误的。
值. (2)频率本身是随机的,在试验前不能确定.
做同样次数的重复试验得到事件的频率会不同,比如全班每人做 了10次掷硬币的试验,但得到正面朝上的频率可以是不同的.
(3)概率是一个确定的数,是客观存在的,与 每次试验无关. 比如,如果一个硬币是质地均匀的,则掷硬币
人教版高中数学必修三第一章-算法初步第一节《算法的概念》教学课件3(共21张PPT)
趣味益智游戏
一人带着一只狼、一只羊和一箱蔬菜要过河,但只 有一条小船.乘船时,每次只能带狼、羊和蔬菜中的一 种.当有人在场时,狼、羊、蔬菜都相安无事.一旦人 不在,狼会吃羊,羊会吃菜.请设计一个方案,安全地将狼、 羊和蔬菜带过河.
过河游戏
如何发电子邮件?
假如你的朋友不会发电子邮件,你能教会他么? 发邮件的方法很多,下面就是其中一种的操作步骤:
第四步, 用5除35,得到余数0.因为余数为0, 所以5能整除35.因此,35不是质数.
变式: “判断53是否质数”的算法如下:
第1步,用2除53得余数为1,余数不为0,所以2不能整除53;
第2步,用3除53得余数为2,余数不为0,所以3不能整除53;
……
第52步,用52除53得余数为1,余数不为0,故52不能整除53;
第二步, 给定区间[a,b],满足f(a) ·f(b)<0.
第三步,
取中间点
m
a
2
b.
第四步, 若f(a) ·f(m) < 0,则含零点的区间为
[a,m];否则,含零点的区间b].
第五步,判断f(m)是否等于0或者[a,b]的长 度是否小于d,若是,则m是方程的近似解;否 则,返回第三步.
|a-b| 1
0.5 0.25 0.125 0.062 5 0.031 25 0.015 625 0.007 812 5 0.003 906 25
y=x2-2
1 1.25 1.5
1.375
2
于是,开区间(1.4140625,1.41796875)中 的实数都是当精确度为0.005时的原方程的近 似解.
判断“整数n(n>2)是否是质数”的算法 自然语言描述
第一步 给定大于2的整数n. 第二步 令i=2. 第三步 用i除n,得到余数r. 第四步 判断“r=0”是否成立.若是,则n不是质
一人带着一只狼、一只羊和一箱蔬菜要过河,但只 有一条小船.乘船时,每次只能带狼、羊和蔬菜中的一 种.当有人在场时,狼、羊、蔬菜都相安无事.一旦人 不在,狼会吃羊,羊会吃菜.请设计一个方案,安全地将狼、 羊和蔬菜带过河.
过河游戏
如何发电子邮件?
假如你的朋友不会发电子邮件,你能教会他么? 发邮件的方法很多,下面就是其中一种的操作步骤:
第四步, 用5除35,得到余数0.因为余数为0, 所以5能整除35.因此,35不是质数.
变式: “判断53是否质数”的算法如下:
第1步,用2除53得余数为1,余数不为0,所以2不能整除53;
第2步,用3除53得余数为2,余数不为0,所以3不能整除53;
……
第52步,用52除53得余数为1,余数不为0,故52不能整除53;
第二步, 给定区间[a,b],满足f(a) ·f(b)<0.
第三步,
取中间点
m
a
2
b.
第四步, 若f(a) ·f(m) < 0,则含零点的区间为
[a,m];否则,含零点的区间b].
第五步,判断f(m)是否等于0或者[a,b]的长 度是否小于d,若是,则m是方程的近似解;否 则,返回第三步.
|a-b| 1
0.5 0.25 0.125 0.062 5 0.031 25 0.015 625 0.007 812 5 0.003 906 25
y=x2-2
1 1.25 1.5
1.375
2
于是,开区间(1.4140625,1.41796875)中 的实数都是当精确度为0.005时的原方程的近 似解.
判断“整数n(n>2)是否是质数”的算法 自然语言描述
第一步 给定大于2的整数n. 第二步 令i=2. 第三步 用i除n,得到余数r. 第四步 判断“r=0”是否成立.若是,则n不是质
人教版高中数学必修三第一章第1节 1.1.1 算法的概念 课件(共65张PPT)
1.写出求方程 x 2 + bx + c = 0 的解的 一个算法 ,并画出算法流程图。
开始
计算△=b2 – 4 c
N
△≥0?
Y
输出无解
输出 x b
2a
结束
四、练习
2.任意给定3个正实数,设计一个算法,判断以这3个数为三 边边长的三角形是否存在.画出这个算法的程序框图.
算法步骤如下:
第一步:输入3个正实数 a,b,c;
计算机的问世可谓是20 世纪最伟大的科学 技术发明。它把人类社会带进了信息技术时代。 计算机是对人脑的模拟,它强化了人的思维智能;
21世纪信息社会的两个主要特征: “计算机无处不在” “数学无处不在”
21世纪信息社会对科技人才的要 求: --会“用数学”解决实际问题 --会用计算机进行科学计算
现算法代的研科究和学应用研正是究本课的程的三主题大!支柱
算法(2) 第一步,用2除35,得到余数1。因为余数 不为0,所以2不能整除35。
第二步,用3除35,得到余数2。因为余数 不为0,所以3不能整除35。
第三步,用4除35,得到余数3。因为余数 不为0,所以4不能整除35。
第四步,用5除35,得到余数0。因为余数 为0,所以5能整除35。因此,35不是质数
语句A
左图中,语句A和语句B是依次执 行的,只有在执行完语句A指定的
操作后,才能接着执行语句B所指
语句B
定的操作.
四、练习 2.设计一个求任意数的绝对值的算法,并画出程序框图。
2. 算法:
框图:
第一步:输入x的值;
第二步:若x≥0,则输出x; 若否,则输出-x;
开始 输入x
x≥0?
是
输出x
新教材人教B版高中数学必修第三册全册精品教学课件(共762页)
对于α2、α3的判定还有另一种方法——八卦图法.
第2课时 诱导公式(二) P204
7.3 三角函数的性质与图像
7.3.1 正弦函数的性质与图像 P230 7.3.2 正弦型函数的性质与图像 P270
7.3函数的性质与图像 P376
7.3.5 已知三角函数值求角 P411
7.4 数学建模活动:周期现象的描述 P443
2.象限角 (1)使角的顶点与坐标原点重合,角的始边落在 x 轴的正半轴 上,角的终边在第几象限,把这个角称为第几象限角. 如果终边在 坐标轴 上,就认为这个角不属于任何象限.
(2)①象限角的集合 第一象限角的集合{α|k·360°<α<90°+k·360°,k∈Z}={α|α= β+k·360°,0°<β<90°,k∈Z}. 第二象限角的集合 {α|90°+k·360°<α<180°+k·360°,k∈Z} ={α|α=β+k·360°,90°<β<180°,k∈Z}. 第三象限角的集合{α|180°+k·360°<α<270°+k·360°,k∈Z} ={α|α=β+k·360°,180°<β<270°,k∈Z}. 第四象限角的集合 {α|270°+k·360°<α<360°+k·360°,k∈Z} ={α|α=β+k·360°,270°<β<360°,k∈Z}.
②终边落在坐标轴上的角的集合 终边落在 x 轴正半轴上的角的集合为{α|α=k·360°,k∈Z}. 终边落在 x 轴负半轴上的角的集合为
{α|α=k·360°+180°,k∈Z} . 终边落在 x 轴上的角的集合为{α|α=k·180°,k∈Z}. 终边落在 y 轴正半轴上的角的集合为{α|α=k·360°+90°,k ∈Z}. 终边落在 y 轴负半轴上的角的集合为
第2课时 诱导公式(二) P204
7.3 三角函数的性质与图像
7.3.1 正弦函数的性质与图像 P230 7.3.2 正弦型函数的性质与图像 P270
7.3函数的性质与图像 P376
7.3.5 已知三角函数值求角 P411
7.4 数学建模活动:周期现象的描述 P443
2.象限角 (1)使角的顶点与坐标原点重合,角的始边落在 x 轴的正半轴 上,角的终边在第几象限,把这个角称为第几象限角. 如果终边在 坐标轴 上,就认为这个角不属于任何象限.
(2)①象限角的集合 第一象限角的集合{α|k·360°<α<90°+k·360°,k∈Z}={α|α= β+k·360°,0°<β<90°,k∈Z}. 第二象限角的集合 {α|90°+k·360°<α<180°+k·360°,k∈Z} ={α|α=β+k·360°,90°<β<180°,k∈Z}. 第三象限角的集合{α|180°+k·360°<α<270°+k·360°,k∈Z} ={α|α=β+k·360°,180°<β<270°,k∈Z}. 第四象限角的集合 {α|270°+k·360°<α<360°+k·360°,k∈Z} ={α|α=β+k·360°,270°<β<360°,k∈Z}.
②终边落在坐标轴上的角的集合 终边落在 x 轴正半轴上的角的集合为{α|α=k·360°,k∈Z}. 终边落在 x 轴负半轴上的角的集合为
{α|α=k·360°+180°,k∈Z} . 终边落在 x 轴上的角的集合为{α|α=k·180°,k∈Z}. 终边落在 y 轴正半轴上的角的集合为{α|α=k·360°+90°,k ∈Z}. 终边落在 y 轴负半轴上的角的集合为
人教版高中数学选择性必修3《正态分布》PPT课件
P(μ-2σ≤X≤μ+2σ)≈0.954 5,
P(μ-3σ≤X≤μ+3σ)≈0.997 3.
2.3σ原则
在实际应用中,通常认为服从于正态分布N(μ,σ2)的随机变量X只取[μ3σ,μ+3σ]中的值,这在统计学中称为3σ原则.
名师点析 对于正态分布N(μ,σ2)而言,随机变量X在[μ-3σ,μ+3σ]之外取值几
第七章
7.5 正态分布
内
容
索
引
01
课前篇 自主预习
02
课堂篇 探究学习
课标阐释
1.利用实际问题的直方图,了解正态分
布密度曲线的特点及曲线所表示的意
义.(直观想象)
2.了解变量落在区间[μ-σ,μ+σ],[μ2σ,μ+2σ],[μ-3σ,μ+3σ]的概率大小.(数学
运算)
3.会用正态分布去解决实际问题.(逻辑
变量X的分布比较集中;当σ较大时,峰值低,曲线“矮胖”,表示随机变量X的分
布比较分散,如图②.
微练习
(多选)已知三个正态密度函数φi(x)=
所示,则下列结论正确的是(
A.σ1=σ2 B.μ1>μ3
C.μ1=μ2 D.σ2<σ3
)
1
2π
(- )2
2
e 2
(x∈R,i=1,2,3)的图象如图
乎不可能发生,它在产品检查、质量检验中起着重要的作用.
微练习
设X~N(1,22),试求:
(1)P(-1≤X≤3);
(2)P(3≤X≤5);
(3)P(X≥5).
解 ∵X~N(1,22),
∴μ=1,σ=2.
(1)P(-1≤X≤3)=P(1-2≤X≤1+2)≈0.682 7.
人教版高中数学必修三第三章第3节 3.3.1 几何概型 课件(共17张PPT)
【变式2】:圆O是边长为2的正方
形的内切圆 , 向这个正方形中随机
地投一点M,设M落在正方形中任一
点的可能性是相同的,试求点M落圆
O中的概率.
O
4
•M
知识探究(二):几何概型的概率
【变式3】一只小虫在一个棱长为20cm盛满 水的正方体容器中游动, 假设小虫出现在容 器中的任意一个位置均为等可能的, 记“它 所在的位置距离正方体中心不超过10cm”为 事件A, 那么事件A发生的概率是多少?
B
N
N
B
B
N
BB
N
N
B
知识探究(一):几何概型的概念
思考 3:上述每个扇形区域对应的圆弧的长度(或 扇形的面积)和它所在位置都是可以变化的,从 结论来看,甲获胜的概率与字母 B 所在扇形区域 的哪个因素有关?
B
N
N
B
B
N
BB
N
N
B
与扇形的弧长(或面积)有关.
知识探究(一):几何概型的概念 思考 4:如果每个事件发生的概率只与构成该事 件区域的长度(面积或体积)成比例,则称这样 的概率模型为几何概型. 参照古典概型的特性, 几何概型有哪两个基本特征?
所有基本事件构成 的区域是什么?
事件A构成的区域 是什么?
在线段AB上任取一
3m
点
A
B
3m
取到线段AB上某一点 A
B
3m
线段AB(除两端外) A
B
线段CD
1m
AC DB
知识探究(二):几何概型的概率
【变式1】:在等腰直角三角形 ABC中,在斜边AB上任取一点M,
求AM的长大于AC的长的概率.
知识探究(二):几何概型的概率
高中数学人教版必修三《程序框图更新》课件
表示一个算法的起始和结束
• 二级
• 三级
• 四级 • 五级
输入、输出框
处理框 (执行框)
表示一个算法输入和 输出的信息
赋值、计算
判断某一条件是否成立,成立
判断框
时在出口处标明“是”或“Y”;
不成立时标明“否”或“N”.
连接点
连接程序框图的两部分
720/2233//270/233
流程线
连结程序框
5
单击1此.流处程图编的辑功能母是:版……标……题…样……式..( D ).
第一• 四步级,输入a,b,c的值;
• 五级
第二步,计算
p
a
b
c
;
开始
2
输入a,b,c
第三步,计算S p( p a)( p b)( p c) ;
p abc
2
第四步,输出三角形的面积S
S p( p a)( p b)( p c)
输出S
结束
720/2233//270/233
114
单1画击.试出此描算述法处求的编点程(序x辑0框, y母图0).到版直标线A题x+B样y+C式=0的距离开始的算法,并
• 五级
步骤n
步骤n+1
720/2233//270/233
113
单击例此1.已处知一编个辑三角母形版的三标边题边长样分别式为a,b,c利用海伦-
秦九韶公式( S p( p a)( p b)( p c) • 单击计此处编辑母版文本样式
p,
a
b
2
c
)设
算法•:二一•级三个级算法,求出它的面积,并画出算法的程序框图。
• 五级
否
i>n-1或r=0?
最新人教版高中数学必修三课件PPT
C.流程线无论什么方向,总要按箭头的指向执行
D.流程线是带有箭头的线,它可以画成折线
【2】具有判断条件是否成立的程序框是( C )
2021/10/31
画程序框图时应注意:
用框图表示算法比较直观、形象,容易理解,通常说
“一图胜万言”,所以用程序框图能更清楚地展现算法
的逻辑结构,在画程序框图时必须注意:
则,返回第三步.
2021/10/31
当d=0.005时,按照以上算法,可得下面表和图.
a
b
|a-b|
1
2
1
1
1.5
0.5
1.25
1.5
0.25
1.375
1.5
0.125
1.375
1.437 5
0.062 5
1.406 25
1.437 5
0.031 25
1.406 25
1.421 875
0.015 625
- 5)两点连线的方程可
先求MN的斜率,再利用点斜式方程求得。
A.1个
2021/10/31
B.2个
C.3个
D.0个
例题剖析1
设计一个算法判断7是否为质数.
第一步, 用2除7,得到余数1.因为余数不为0,
所以2不能整除7.
第二步, 用3除7,得到余数1.因为余数不为0,
所以3不能整除7.
第三步, 用4除7,得到余数3.因为余数不为0,
算法步骤:
第一步,输入三角形三条边的边长 a,b,c.
a+b+c
第二步,计算 p= 2 .
第三步,计算 S= p(pa)(pb.)(pc)
第四步,输出S.
2021/10/31
新课探究
D.流程线是带有箭头的线,它可以画成折线
【2】具有判断条件是否成立的程序框是( C )
2021/10/31
画程序框图时应注意:
用框图表示算法比较直观、形象,容易理解,通常说
“一图胜万言”,所以用程序框图能更清楚地展现算法
的逻辑结构,在画程序框图时必须注意:
则,返回第三步.
2021/10/31
当d=0.005时,按照以上算法,可得下面表和图.
a
b
|a-b|
1
2
1
1
1.5
0.5
1.25
1.5
0.25
1.375
1.5
0.125
1.375
1.437 5
0.062 5
1.406 25
1.437 5
0.031 25
1.406 25
1.421 875
0.015 625
- 5)两点连线的方程可
先求MN的斜率,再利用点斜式方程求得。
A.1个
2021/10/31
B.2个
C.3个
D.0个
例题剖析1
设计一个算法判断7是否为质数.
第一步, 用2除7,得到余数1.因为余数不为0,
所以2不能整除7.
第二步, 用3除7,得到余数1.因为余数不为0,
所以3不能整除7.
第三步, 用4除7,得到余数3.因为余数不为0,
算法步骤:
第一步,输入三角形三条边的边长 a,b,c.
a+b+c
第二步,计算 p= 2 .
第三步,计算 S= p(pa)(pb.)(pc)
第四步,输出S.
2021/10/31
新课探究
高中数学必修三ppt课件
指数函数图像
指数函数的图像是单调递 增或递减的,随着x的增大 ,y的值无限趋近于0或无 穷大。
对数函数
对数函数定义
对数函数是指数函数的反函数, 形式为y=logₐx(a>0且a≠1)。
对数函数性质
对数函数具有连续性、单调性、奇 偶性等性质,其定义域为(0,∞), 值域为R。
对数函数图像
对数函数的图像是单调递增或递减 的,随着x的增大,y的值趋近于正 无穷或负无穷。
学中,概率被用于预测市场行为和制定投资策略;在政治学中,概率被
用于预测选举结果和民意调查。
THANK YOU
总结词
掌握用描述法表示集合的方法和步骤
详细描述
用描述法表示集合时,需要先明确集合中元素的共同特征 ,然后使用大括号{}将特征和条件括起来。例如,表示所 有偶数的集合可以表示为{x | x是偶数}。
总结词
能够运用数轴、韦恩图等工具表示集合
详细描述
数轴是一种常用的表示集合的工具,可以将数轴上的任意 一段区间表示为一个集合。韦恩图则是一种更为直观的表 示集合的工具,可以通过圆圈的交、并、补等运算来表示 集合的运算。
象限角和第四象限角。
三角函数的定义
正弦函数
定义为直角三角形中锐角的对边与斜边的比值。
余弦函数
定义为直角三角形中锐角的邻边与斜边的比值。
正切函数
定义为直角三角形中锐角的对边与邻边的比值。
三角函数的性质和图像
周期性
三角函数具有周期性,即正弦函数、余弦函数和正切函数的值会 按照一定的规律重复。
奇偶性
正弦函数和正切函数是奇函数,余弦函数是偶函数,具有特定的对 称性。
集合的运算
总结词
掌握集合的基本运算
人教版高中数学必修三第三章第1节 3.1.1 随机事件的概率 课件(共25张PPT)
3.抛掷一枚硬币出现正面朝上的概率是 0.5, 所以将一枚硬币投掷10000次,出现正面 朝上的次数很有可能接近于5000次。
事件“甲乙两人进行‘石头剪刀布’的 游戏,结果甲获胜”是哪一类事件?
为了估计上述随机事件发生的概率,我 们可以采用何种方法?
知识小结
1.随机事件的概念
在一定条件下可能发生也可能不发生的 事件,叫做随机事件. 2.随机事件的概率的统计定义
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0
25
10 70 130 310 700 1500 2000 3000 试验次数
结论:当试验的油菜籽的粒数很多时,油菜籽发 芽的频率 m 接近于常数0.9,在它附近摆动。
n
思考:
1.事件A发生的频率 fn(A) 是不是不变的? 2.事件A的概率P(A)是不是不变的? 3.它们之间有什么区别与联系?
优等品的频率 1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0 50
100
200
500
1000 2000 试验次数
结频论率:m 当接抽近查于的常球数数0.很95多,时在,它抽附到近优摆等动品。的
n
某种油菜籽在相同条件下的发芽试验结果表:
某种油菜籽在相同条件下的发芽试验结果表:
发芽的频率
随机事件的概率
1. 引言
在一些人看来,总觉得数学都是研究现实世界中确定性 现象的数量规律,其实不然。大家知道,任何事物的发展 是既有偶然性又有必然性,为了研究一些无法确定的现象 的规律,早在十七世纪数学的重要分支概率统计便应运而 生,最初是欧洲保险业的发展促成这门学科的诞生,经过 几百年的发展和应用概率统计已遍布所有的领域,你比如 利用概率统计,二战中美军破译日军的电报密码,;利用概 率统计我国数学家得出《红楼梦》的前八十回与后四十回 出自两位作家的手笔,解决了红学家长期争论不休的问题; 还是利用概率统计使我们对变化莫测的天气的预报越来越 准……,总之,概率统计这门古老又十分有用的学科,如今 它已经渗透到生活的方方面面。
事件“甲乙两人进行‘石头剪刀布’的 游戏,结果甲获胜”是哪一类事件?
为了估计上述随机事件发生的概率,我 们可以采用何种方法?
知识小结
1.随机事件的概念
在一定条件下可能发生也可能不发生的 事件,叫做随机事件. 2.随机事件的概率的统计定义
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0
25
10 70 130 310 700 1500 2000 3000 试验次数
结论:当试验的油菜籽的粒数很多时,油菜籽发 芽的频率 m 接近于常数0.9,在它附近摆动。
n
思考:
1.事件A发生的频率 fn(A) 是不是不变的? 2.事件A的概率P(A)是不是不变的? 3.它们之间有什么区别与联系?
优等品的频率 1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0 50
100
200
500
1000 2000 试验次数
结频论率:m 当接抽近查于的常球数数0.很95多,时在,它抽附到近优摆等动品。的
n
某种油菜籽在相同条件下的发芽试验结果表:
某种油菜籽在相同条件下的发芽试验结果表:
发芽的频率
随机事件的概率
1. 引言
在一些人看来,总觉得数学都是研究现实世界中确定性 现象的数量规律,其实不然。大家知道,任何事物的发展 是既有偶然性又有必然性,为了研究一些无法确定的现象 的规律,早在十七世纪数学的重要分支概率统计便应运而 生,最初是欧洲保险业的发展促成这门学科的诞生,经过 几百年的发展和应用概率统计已遍布所有的领域,你比如 利用概率统计,二战中美军破译日军的电报密码,;利用概 率统计我国数学家得出《红楼梦》的前八十回与后四十回 出自两位作家的手笔,解决了红学家长期争论不休的问题; 还是利用概率统计使我们对变化莫测的天气的预报越来越 准……,总之,概率统计这门古老又十分有用的学科,如今 它已经渗透到生活的方方面面。
高中数学人教版必修三《1.3.1辗转相除法与更相减损术》课件
•
Байду номын сангаас
二级 •为三主级,更相减损术以减法为主,运算次数上辗转相除法运算
次数• 相四级对较少,特别当两个数比较大时更合适用辗转相除法。
• 五级
(2)从结果体现情势来看,辗转相除法体现结果是以相除
余数为0而得到,而更相减损术则以减数与差相等而得到的。
2023/9/15
16
单击此处编辑母版标题样式
1.3.1 • 单击此处编辑母版文本样式 • 二级 • 三级
• 二级
结• 论三:级8251和6105的公约数就是6105和2146的公约数,求8251和 6105•的四最级大公约数,只要求出6105和2146的公约数就可以了。
• 五级 (8251 , 6105 )=(6105 , 2146 )
第二步 对6105和2146重复第一步的做法 6105=2146×2 + 1813
(答案:12)
2023/9/15
11
单击〖此辗转处相编除法辑与母更相版减损标术题的区样分式〗
• 单击(此1处)编都是辑求母最版大文公本约样数的式方法,运算上辗转相除法以除法
• 二•为次级三主数级,相更对相 较减少损,术特以别减当法两为个主数,比运较算大次时数更上合辗适转用相辗除转法相运除算法。
• 四级
2023/9/15
148=37×4+0
7
单击此处编辑母版标题样式
• 单击此处编辑母版文本样式
• 二级课后必做作业: • 三级 请同• 四学级们课后阅读教材,理解并掌控辗转相除法的程序设计 • 五级
2023/9/15
9
单击此〖更处相减编损辑术〗母版标题样式
我国早期也有解决求最大公约数问题的算法,就是更相减损术。
人教版高中数学选择性必修3《排列》PPT课件
不同的选法?
上午
下午 相应的排法
上午 甲 乙 丙
下午
乙 丙
甲 丙 甲 乙
相应的排法
上午 甲 乙 丙
下午
乙 丙
甲 丙 甲 乙
相应的排法 甲乙 甲丙
乙甲 乙丙
丙甲 丙乙
上午 甲 乙 丙
下午
乙 丙
甲 丙 甲 乙
相应的排法 甲乙 甲丙
乙甲 乙丙
丙甲 丙乙
上午 3种
下午 2种
上午 3种
下午 2种
【问题2】从1,2,3,4这4个数字中,每次 取出三个排成一个三位数,一共可得到多少个 不同的三位数?
百位
十位
个位
1~9
被选到 A21 A92
0?
未被选到 A93
A93
【例题】用0到9这10个数字,可以组成多少个 没有重复数字的三位数?
法2:A21 A92 A93 2 98 98 7 648
【例题】用0到9这10个数字,可以组成多少个 没有重复数字的三位数?
百位 1~9
十位
个位
【例题】用0到9这10个数字,可以组成多少个 没有重复数字的三位数?
练习:判断下列问题是否为排列问题:
(4)选10人组成一个学习小组; (5)选3个人分别担任班长、学习委员、生活委员; (6)某班40名学生在假期相互通信.
练习:判断下列问题是否为排列问题:
(4)选10人组成一个学习小组; 不是 (5)选3个人分别担任班长、学习委员、生活委员; (6)某班40名学生在假期相互通信.
练习2 从甲地到乙地有2种走法,从乙地到丙地有4种 走法,从甲地不经过乙地到丙地有3种走法,则从甲 地到丙地有多少种不同的走法?
甲
乙
上午
下午 相应的排法
上午 甲 乙 丙
下午
乙 丙
甲 丙 甲 乙
相应的排法
上午 甲 乙 丙
下午
乙 丙
甲 丙 甲 乙
相应的排法 甲乙 甲丙
乙甲 乙丙
丙甲 丙乙
上午 甲 乙 丙
下午
乙 丙
甲 丙 甲 乙
相应的排法 甲乙 甲丙
乙甲 乙丙
丙甲 丙乙
上午 3种
下午 2种
上午 3种
下午 2种
【问题2】从1,2,3,4这4个数字中,每次 取出三个排成一个三位数,一共可得到多少个 不同的三位数?
百位
十位
个位
1~9
被选到 A21 A92
0?
未被选到 A93
A93
【例题】用0到9这10个数字,可以组成多少个 没有重复数字的三位数?
法2:A21 A92 A93 2 98 98 7 648
【例题】用0到9这10个数字,可以组成多少个 没有重复数字的三位数?
百位 1~9
十位
个位
【例题】用0到9这10个数字,可以组成多少个 没有重复数字的三位数?
练习:判断下列问题是否为排列问题:
(4)选10人组成一个学习小组; (5)选3个人分别担任班长、学习委员、生活委员; (6)某班40名学生在假期相互通信.
练习:判断下列问题是否为排列问题:
(4)选10人组成一个学习小组; 不是 (5)选3个人分别担任班长、学习委员、生活委员; (6)某班40名学生在假期相互通信.
练习2 从甲地到乙地有2种走法,从乙地到丙地有4种 走法,从甲地不经过乙地到丙地有3种走法,则从甲 地到丙地有多少种不同的走法?
甲
乙
人教版高中数学必修三2.简单随机抽样PPT课件
在相同条件S下重复n次试验,观察
某一事件A是否出现,称n次试验中事
件A出现的次数nA为事件A出现的频数,
称事件A出现的比例 出现的频率。
fn
( A)
nA n
为事件A
人 教 版 高 中 数学必 修三2. 简单随 机抽样 PPT课件
人 教 版 高 中 数学必 修三2. 简单随 机抽样 PPT课件
概率的定义:
环节三:试验
做抛掷一枚硬币的试验,观察它落地时 哪一个面朝上 第一步: 每人各取一枚同样的硬币,做10次掷硬币试 验,记录正面向上的次数和比例,填入下表中:
姓名
试验总次数 正面朝上总次数
正面朝上的比例
第二步 :试验结果与其他同学比较,你的结果和他们 一致吗?为什么?
第三步: 由组长把本小组同学的试验结果统计一下, 填入下表:
1061 2048 6019 12012 14984 36124
人 教 版 高 中 数学必 修三2. 简单随 机抽样 PPT课件
频率(m) n
0.5181 0.5069 0.5016 05005 0.4996 0.5011
人 教 版 高 中 数学必 修三2. 简单随 机抽样 PPT课件
频数,频率的定义:
人 教 版 高 中 数学必 修三2. 简单随 机抽样 PPT课件
概率与频率的区别与联系:
(1)频率本身是随机的,在试验前不能确定 。(2)概率是一个确定的数,是客观存在的, 与每次试验无关。
(3)随着试验次数的增加,频率会越来越接 近概率。概率是频率的稳定值.
人 教 版 高 中 数学必 修三2. 简单随 机抽样 PPT课件
人 教 版 高 中 数学必 修三2. 简单随 机抽样 PPT课件
新人教版高中数学必修第三册-7-5 正态分布【课件】
(6)当 σ 一定时,曲线随着 μ 的变化而沿 x 轴平移,如图 1 所示.
(7)当 μ 一定时,曲线的形状由 σ 确定.σ 越小,曲线越“瘦高”,表示随机变 量 X 的分布越集中;σ 越大,曲线越“矮胖”,表示随机变量 X 的分布越分散,如 图 2 所示.
4.3σ 原则 (1)正态分布在三个特殊区间内取值的概率: P(μ-σ≤X≤μ+σ)≈____0_._6_8_2_7________, P(μ-2σ≤X≤μ+2σ)≈___0_._9_5_4_5_________, P(μ-3σ≤X≤μ+3σ)≈____0_._9_9_7_3________. (2)通常认为服从于正态分布 N(μ,σ2)的随机变量 X 只取[μ-3σ,μ+3σ]之间的 值,这在统计学中称为 3σ 原则.
__μ_=__0___,标准差为 σ= 2π.
4.如图是当 σ 取三个不同值 σ1,σ2,σ3 时的三种正态曲线,那么 σ1,σ2,σ3 的 大小关系是什么?
提示:0<σ1<σ2=1<σ3.
二、练一练 1.设 X~N(μ,σ2),则众数,中位数,平均数满足( D ) A.众数=σ2,中位数=平均数=μ B.平均数=μ,众数=中位数=σ2 C.中位数=μ,众数=平均数=σ2 D.众数=中位数=平均数=μ 解析:利用众数、中位数、平均数的定义同频率分布直方图的关系.
第七章 随机变量及其分布
7.5 正态分布
[课标解读]1.通过误差模型,了解服从正态分布的随机变量.2.通过具体实例、 借助频率分布直方图的几何直观,了解正态分布的特征.3.了解正态分布的均值、方 差及其含义.
[素养目标] 水平一:利用实际问题的直方图,了解正态曲线的特征和正态曲 线所表示的意义.(逻辑推理)
,x∈R,则称随机变
(7)当 μ 一定时,曲线的形状由 σ 确定.σ 越小,曲线越“瘦高”,表示随机变 量 X 的分布越集中;σ 越大,曲线越“矮胖”,表示随机变量 X 的分布越分散,如 图 2 所示.
4.3σ 原则 (1)正态分布在三个特殊区间内取值的概率: P(μ-σ≤X≤μ+σ)≈____0_._6_8_2_7________, P(μ-2σ≤X≤μ+2σ)≈___0_._9_5_4_5_________, P(μ-3σ≤X≤μ+3σ)≈____0_._9_9_7_3________. (2)通常认为服从于正态分布 N(μ,σ2)的随机变量 X 只取[μ-3σ,μ+3σ]之间的 值,这在统计学中称为 3σ 原则.
__μ_=__0___,标准差为 σ= 2π.
4.如图是当 σ 取三个不同值 σ1,σ2,σ3 时的三种正态曲线,那么 σ1,σ2,σ3 的 大小关系是什么?
提示:0<σ1<σ2=1<σ3.
二、练一练 1.设 X~N(μ,σ2),则众数,中位数,平均数满足( D ) A.众数=σ2,中位数=平均数=μ B.平均数=μ,众数=中位数=σ2 C.中位数=μ,众数=平均数=σ2 D.众数=中位数=平均数=μ 解析:利用众数、中位数、平均数的定义同频率分布直方图的关系.
第七章 随机变量及其分布
7.5 正态分布
[课标解读]1.通过误差模型,了解服从正态分布的随机变量.2.通过具体实例、 借助频率分布直方图的几何直观,了解正态分布的特征.3.了解正态分布的均值、方 差及其含义.
[素养目标] 水平一:利用实际问题的直方图,了解正态曲线的特征和正态曲 线所表示的意义.(逻辑推理)
,x∈R,则称随机变