2019春八年级数学下册第十九章《一次函数》检测卷习题课件(新版)新人教版
新人教版八年级数学下册《十九章 一次函数 测试》课件_1
知识要点
1.一次函数的概念
一般地,解析式形如y=___k_x_+__b_____(k、b为常数,且 K__≠_0_____)的函数叫做一次函数。
特别地,当b__=_0__时,函数y=_k_x__(k_≠_0__)叫做正 比例函数。
值得注意的是:
⑴解析式中自变量x的次数一定是_1__次,
⑵系数 k_≠_0___。
C.第三象限
D.第四象限
4.下列图象中,以方程 y-x-1=0 的解为坐标的点组成
的图象是( A )
5.一次函数 y=(4m-8)x+5 中,y 随 x 的增大而减小,则 m 的取值范围是___m__<_2__.
6.星期天,小明从家里出发到图书馆去看书,再回到家. 他离家的距离 y(千米)与时间 t(分钟)的关系如图 2.根据图象回答 下列问题:
(1) 小明家离图书馆的距离是_____3____ 千米;
(2)小明在图书馆看书的时间为____1____
小时;
图2
(3)小明去图书馆时的速度是_____1_5_千米/时.
7. 已知:函数 y = (m+1) x + 2 m﹣6
(1)若函数图象过(﹣1 ,2),求此函数的解析式。
(2)若函数图象与直线 y = 2 x + 5 平行,求其函数的解析式。
提供了两种上网收费方式:
方式 1 :按上网时间以每分钟 0.1 元计费;
方式 2 :月租费 20 元,再按上网时间 以每分钟 0.05 元计费。
请同学们帮老师选择:以何种方式上网更合算?
解:设上网时间为 x 分,若按方式 1 则收 y1=0.1x元;
若按方式 2 则收 y2=0.05x+20 元。
人教版八年级数学下册《第十九章一次函数》章节测试卷-带答案
人教版八年级数学下册《第十九章一次函数》章节测试卷-带答案一、单选题(共10小题,满分40分)1.将直线y = 2x+5沿尤轴向左平移3个单位得到直线则直线&的解析式是()A. y=2x+2B. y=2x+8C. y=2x~lD. y=2x+ll 2.一次函数的图像经过点(1, 2)和(一3, -1),则它的表达式为()A 3 5 4 4A. y= —x — — B. y= —x ——J 4 4 ) 3 53 4C. y= —x+ — )4 53 5D. y= —x+ — '4 43.已知点(-2,叫),(-1见),(1,为)都在直线y=-5x+/?上,则/,力,为的大小关系是( )A. >3<>2<>1B. >1<>2<>34. D.为<乂<力C. >2<>1<>3如果函数y^~2x + m 的图象经过第二、三、四象限,那么农应满足的条件是()A. m>0B. m< 0C. m>0D. m<05.某快递公司每天上午8:00-9:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y (件)与时间工(分)之间的函数图象如图所示,那么当两仓库快递件C. 8:20D. 8:256.如图,直线y = -x + b 和"奴-3交于点尸,根据图象可知kx-3<-x+b 的解集为( )7.关于变量x, C. 0<x<l D. —y 有如下关系:①x-y=5;②y2=2x ; (3): y=|x|;④y=3x 4.其中y 是x 函数的是()A.①②③B.①②③④C.①③D.①③④8.已知两点M (4, 2), N (1, 1),点P 是x 轴上一动点,若使PM+PN 最短,则点P 为()A. (2, 0)B. (2.5, 0)C. (3, 0)D. (4, 0)9.如图是我市某一天内的气温变化图,根据图象,下列说法中错误的是()奇间时A. 这一天中最高气温是26°CB. 这一天中最高气温与最低气温的差为16°CC. 这一天中2时至14时之间的气温在逐渐升高D. 这一天中14时至24时之间的气温在逐渐降低10.已知一次函数y = kx+b (k, 8为常数,5)的图象如图所示,下列说法正确的是( )C.尤 >0 时 yv —2024 B. '随工的增大而减小D.方程kx+b = 0的解是x = 2024二、填空题(共8小题,满分32分)11. 若y 是'的一次函数,且不经过第三象限,请你写出一个符合条件的函数解析式.12. 李红爸爸到加油站加油,他应付的金额随加油量的变化而变化,在这个变化过程中,自变量是y = mx + n,13.如图,直线y^mx+n 与直线y = kx+b 的交点为A,则关于工,了的方程组( z 7的解是[y = kx +b14.已知直线l i:y=-2x+a和/2:>='+人图象上部分点的横坐标和纵坐标如下表所示,则关于X的方程—2x+a=x+Z?的解是-1012y——2x+a852-1y-x+b012315.一个弹簧秤不挂重物时长12cm,挂上重物后伸长的长度与所挂重物的质量成正比.如果挂上1kg的物体后,弹簧伸长3cm,则弹簧总长了(单位:cm)与所挂重物质量尤(单位:kg)的函数解析式是.16.一次函数y--5x+b的图象经过和热(1况),则>1,%的大小关系是.2117.若直线AB:y=-x+4与工轴、V轴分别交于点8和点A,直线CD:y=-尹+2与工轴、了轴分别交于点。
人教新版八年级下册数学《第19章 一次函数》单元测试卷和答案详解(PDF可打印)
人教新版八年级下册《第19章一次函数》单元测试卷(1)一、选择题1.下列各图表示的函数中y是x的函数的()A.B.C.D.2.若一次函数y=﹣3mx﹣4(m≠0),当x的值增大时,y的值也增大,则m的取值范围为()A.m>0B.m<0C.0<m<3D.无法确定3.正比例函数y=mx的图象经过点(﹣1,2),那么这个函数的解析式为()A.B.y=﹣x C.y=2x D.y=﹣2x4.P1(x1,y1),P2(x2,y2)是正比例函数y=﹣x图象上的两点,则下列判断正确的是()A.y1>y2B.y1<y2C.当x1<x2时,y1>y2D.当x1<x2时,y1<y25.如图(1),在Rt△ABC中,∠ACB=90°,D是斜边AB的中点,动点P从B点出发,=y,点P运动的路程为x,若y与x之间的函数图象如图(2)沿B→C→A运动,设S△DPB所示,则△ABC的面积为()A.4B.6C.12D.146.如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()A.B.C.D.7.关于函数y=﹣2x+1,下列结论正确的是()A.图象必经过点(﹣2,1)B.图象经过第一、二、三象限C.当x>时,y<0D.y随x的增大而增大8.直线y=﹣x﹣2与直线y=x+3的交点为()A.(,)B.(﹣,)C.(0,﹣2)D.(0,3)9.若P点为y轴上一点,且点P到点A(3,4)、B(2,﹣1)的距离之和最小,则P点的坐标为()A.(0,)B.(0,1)C.(0,)D.(0,0)10.某游客为爬上3千米高的山顶看日出,先用1小时爬了2千米,休息0.5小时后,再用1小时爬上山顶.游客爬山所用时间t与山高h间的函数关系用图形表示是()A.B.C.D.二、填空题11.若y=(m+1)是正比例函数,则m的值为.12.在一次函数y=2x﹣2的图象上,和x轴的距离等于1的点的坐标是.13.平行四边形的周长为240,两邻边长为x、y,则y与x之间的关系是.14.已知,一次函数y=kx+b,当x增加3时,y减少2,则k的值是.15.函数中,自变量x的取值范围是.16.若一次函数y=(m﹣3)x+m2﹣9是正比例函数,则m的值为.17.已知一次函数y=kx+b的图象经过点P(2,﹣1)与点Q(﹣1,5),则当y的值增加4时,x的值将发生的变化是.18.在一次函数y=x+的图象上,和x轴的距离等于1的点的坐标是.19.已知方程组的解为,则一次函数y=2x﹣3与y=﹣x+3的交点P的坐标是.20.如图,某电信公司提供了A,B两种方案的移动通讯费用(元)与通话时间x(分)之间的关系,(1)若通话时间少于120分,则A方案比B方案便宜元.(2)若通讯费用为60元,则B方案比A方案的通话时间(填“多”或“少”).(3)若通话时间超过200分,则B方案比A方案便宜元.(4)若两种方案通讯费用相差10元,则通话时间是分.三、解答题21.已知一条直线经过A(0,4)、点B(2,0),如图.将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC.求直线CD的函数解析式.22.正比例函数y=kx和一次函数y=ax+b的图象都经过点A(1,2),且一次函数的图象交x轴于点B(4,0).求正比例函数和一次函数的表达式.23.某电视厂要印刷产品宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收1000元制版费,乙厂提出:每份材料收2元印刷费,不收制版费.(1)分别写出两厂的收费y(元)与印制数量x(份)之间的函数解析式;(2)电视机厂拟拿出3000元用于印刷宣传材料,找哪家印刷厂印刷的宣传材料能多一些?(3)印刷数量在什么范围时,在甲厂印刷合算?24.如图,点A的坐标为(4,0).点P是直线y=x+3在第一象限内的点,过P作PM ⊥x轴于点M,O是原点.(1)设点P的坐标为(x,y),试用它的纵坐标y表示△OPA的面积S;(2)S与y是怎样的函数关系?它的自变量y的取值范围是什么?(3)如果用P的坐标表示△OPA的面积S,S与x是怎样的函数关系?它的自变量的取值范围是什么?(4)在直线y=x+3上求一点Q,使△QOA是以OA为底的等腰三角形.人教新版八年级下册《第19章一次函数》单元测试卷(1)参考答案与试题解析一、选择题1.下列各图表示的函数中y是x的函数的()A.B.C.D.【考点】函数的图象.【分析】找到对于x的一个值,y都有唯一的值与其对应的图象即可.【解答】解:A、B、C、中,对于x的一个值,y都有2个值与其对应,所以y不是x的函数.故选:D.2.若一次函数y=﹣3mx﹣4(m≠0),当x的值增大时,y的值也增大,则m的取值范围为()A.m>0B.m<0C.0<m<3D.无法确定【考点】一次函数图象与系数的关系.【分析】由题意y=﹣3mx﹣4(m≠0),y随x的增大而增大,可得自变量系数大于0,进而可得出m的范围.【解答】解:∵y=﹣3mx﹣4(m≠0),y随x的增大而增大,∴﹣3m>0,∴m<0.故选:B.3.正比例函数y=mx的图象经过点(﹣1,2),那么这个函数的解析式为()A.B.y=﹣x C.y=2x D.y=﹣2x【考点】待定系数法求正比例函数解析式.【分析】把点(﹣1,2)代入y=mx,即可求得m的值,则函数的解析式即可求得.【解答】解:把点(﹣1,2)代入y=mx得:﹣m=2,解得:m=﹣2,则函数的解析式是:y=﹣2x.故选:D.4.P1(x1,y1),P2(x2,y2)是正比例函数y=﹣x图象上的两点,则下列判断正确的是()A.y1>y2B.y1<y2C.当x1<x2时,y1>y2D.当x1<x2时,y1<y2【考点】正比例函数的性质.【分析】根据正比例函数图象的性质可知.【解答】解:根据k<0,得y随x的增大而减小.①当x1<x2时,y1>y2,②当x1>x2时,y1<y2.故选:C.5.如图(1),在Rt△ABC中,∠ACB=90°,D是斜边AB的中点,动点P从B点出发,=y,点P运动的路程为x,若y与x之间的函数图象如图(2)沿B→C→A运动,设S△DPB所示,则△ABC的面积为()A.4B.6C.12D.14【考点】动点问题的函数图象.【分析】根据函数的图象知BC=4,AC=3,根据直角三角形的面积的求法即可求得其面积.【解答】解:∵D是斜边AB的中点,∴根据函数的图象知BC=4,AC=3,∵∠ACB=90°,=AC•BC=×3×4=6.∴S△ABC故选:B.6.如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()A.B.C.D.【考点】一次函数的图象;根据实际问题列一次函数关系式.【分析】先求出一次函数的关系式,再根据函数图象与坐标轴的交点及函数图象的性质解答即可.【解答】解:由题意知,函数关系为一次函数y=﹣2x+4,由k=﹣2<0可知,y随x的增大而减小,且当x=0时,y=4,当y=0时,x=2.故选:D.7.关于函数y=﹣2x+1,下列结论正确的是()A.图象必经过点(﹣2,1)B.图象经过第一、二、三象限C.当x>时,y<0D.y随x的增大而增大【考点】一次函数的性质.【分析】根据凡是函数图象经过的点比能使解析式左右相等,故A错误;根据k、b的值进行分析可得B错误;根据解析式y=﹣2x+1可得x=﹣,再由x>可得﹣,再解不等式即可得到C正确;根据一次函数的性质可得D错误.【解答】解:A、当x=﹣2时,y=﹣2×(﹣2)+1=5≠1,故图象不经过点(﹣2,1),故此选项错误;B、k=﹣2<0,b=1经过第一、二、四象限,故此选项错误;C、由y=﹣2x+1可得x=﹣,当x>时,y<0,故此选项正确;D、y随x的增大而减小,故此选项错误;故选:C.8.直线y=﹣x﹣2与直线y=x+3的交点为()A.(,)B.(﹣,)C.(0,﹣2)D.(0,3)【考点】两条直线相交或平行问题.【分析】直接联立两个函数解析式组成方程组,再解方程组即可得到两函数图象的交点.【解答】解:联立两个函数解析式得,解得则两个函数图象的交点为(﹣,),故选:B.9.若P点为y轴上一点,且点P到点A(3,4)、B(2,﹣1)的距离之和最小,则P点的坐标为()A.(0,)B.(0,1)C.(0,)D.(0,0)【考点】轴对称﹣最短路线问题;坐标与图形性质.【分析】先求出点A关于y轴的对称点A′的坐标,再用待定系数法求出直线A′B的解析式,求出直线与y轴的交点即可.【解答】解:∵A(3,4),∴点A关于y轴的对称点A′的坐标为(﹣3,4),设直线A′B的解析式为y=kx+b(k≠0),则,解得,∴直线A′B的解析式为y=﹣x+1,∴P(0,1).故选:B.10.某游客为爬上3千米高的山顶看日出,先用1小时爬了2千米,休息0.5小时后,再用1小时爬上山顶.游客爬山所用时间t与山高h间的函数关系用图形表示是()A.B.C.D.【考点】函数的图象.【分析】根据题意,第1小时高度上升至2千米,1到1.5小时,高度不变,应为平行于t轴的线段,1.5小时之后1小时到达山顶,时间为2.5小时,高度为3千米.所以图象应是三条线段,结合图象选取即可.【解答】解:根据题意,先用1小时爬了2千米,是经过(0,0)到(1,1)的线段,休息0.5小时,高度不变,是平行于t轴的线段,用3小时爬上山顶,是经过(1.5,1),(2.5,3)的线段.只有D选项符合.故选:D.二、填空题11.若y=(m+1)是正比例函数,则m的值为1.【考点】正比例函数的定义.【分析】根据正比例函数的定义列式求解即可.一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.【解答】解:由题意得,2﹣m2=1且m+1≠0,解得m=±1且m≠﹣1,所以,m=1.故答案为:1.12.在一次函数y=2x﹣2的图象上,和x轴的距离等于1的点的坐标是(1.5,1)(0.5,﹣1).【考点】一次函数图象上点的坐标特征.【分析】与x轴的距离等于1,那么点的纵坐标为±1,代入一次函数可得其横坐标.【解答】解:和x轴的距离等于1的点的纵坐标为±1,当y=1时,x=1.5;当y=﹣1时,x=0.5,故答案为:(1.5,1)(0.5,﹣1).13.平行四边形的周长为240,两邻边长为x、y,则y与x之间的关系是y=120﹣x.【考点】平行四边形的性质.【分析】由平行四边形的性质可直接求解.【解答】解:∵平行四边形的周长为240,两邻边长为x、y,∴2(x+y)=240,∴y=120﹣x,故答案为:y=120﹣x.14.已知,一次函数y=kx+b,当x增加3时,y减少2,则k的值是﹣.【考点】待定系数法求一次函数解析式.【分析】将x+3代入函数解析式可得出对应的y2值,根据题意y2﹣y=﹣2可得出k的值.【解答】解:将x+3代入得:y2=k(x+3)+b,y2﹣y=k(x+3)+b﹣kx﹣b=﹣2,解得:k=﹣.故填﹣.15.函数中,自变量x的取值范围是x≥1.【考点】函数自变量的取值范围.【分析】根据二次根式的被开方数是非负数列出不等式,解不等式得到答案.【解答】解:由题意得:x﹣1≥0,解得:x≥1,故答案为:x≥1.16.若一次函数y=(m﹣3)x+m2﹣9是正比例函数,则m的值为﹣3.【考点】正比例函数的定义.【分析】根据一次函数和正比例函数的定义,可得出m的值.【解答】解:∵y=(m﹣3)x+m2﹣9是正比例函数,∴.解得m=﹣3.17.已知一次函数y=kx+b的图象经过点P(2,﹣1)与点Q(﹣1,5),则当y的值增加4时,x的值将发生的变化是减小2.【考点】一次函数图象上点的坐标特征;一次函数的性质.【分析】先待定系数法求函数解析式,根据k的值即可确定变化率以及增减性,即可确定答案.【解答】解:将点P(2,﹣1)与点Q(﹣1,5)代入y=kx+b,得,解得,∴y=﹣2x+3,可知每当x增加1,y的值将减小2,∴当y的值增加4时,x的值减小2.故答案为:减小2.18.在一次函数y=x+的图象上,和x轴的距离等于1的点的坐标是(1,1)和(﹣3,﹣1).【考点】一次函数图象上点的坐标特征.【分析】分别代入y=1及y=﹣1求出x的值,进而可得出符合题意的点的坐标.【解答】解:当y=1时,x+=1,解得:x=1,∴点(1,1)符合题意;当y=﹣1时,x+=﹣1,解得:x=﹣3,∴点(﹣3,﹣1)符合题意.故答案为:(1,1)和(﹣3,﹣1).19.已知方程组的解为,则一次函数y=2x﹣3与y=﹣x+3的交点P 的坐标是(,1).【考点】一次函数与二元一次方程(组).【分析】利用函数图象交点坐标为两函数解析式组成的方程组的解进行回答.【解答】解:∵方程组的解为,∴一次函数y=2x﹣3与y=﹣x+3的交点P的坐标为(,1).故答案为(,1).20.如图,某电信公司提供了A,B两种方案的移动通讯费用(元)与通话时间x(分)之间的关系,(1)若通话时间少于120分,则A方案比B方案便宜20元.(2)若通讯费用为60元,则B方案比A方案的通话时间多(填“多”或“少”).(3)若通话时间超过200分,则B方案比A方案便宜12元.(4)若两种方案通讯费用相差10元,则通话时间是145或195分.【考点】函数的图象.【分析】(1)通话时间少于120分,A方案费用30元,B方案费用50元;(2)费用为60元时,对应的时间从图中(绿线)两个交点位置可以比较;(3)【解答】解:(1)通话时间少于120分,A方案费用30元,B方案费用50元,所以A 方案比B方案便宜20元.故答案为:20;(2)从图中绿线可以看出,当通讯费用为60元,那么A方案比B方案的通话时间多.故答案为:多;(3)当x>120,y A=30+(x﹣120)×[(50﹣30)÷(170﹣120)]=0.4x﹣18;当x>200,y B=50+[(70﹣50)÷(250﹣200)](x﹣200)=0.4x﹣30,∴当x≥200时,B方案比A方案便宜12元,故答案为:12;(4)当B方案为50元,A方案是40元或者60元时,两种方案通讯费用相差10元,将y A=40或60代入,得x=145分或195分,故答案为:145或195.三、解答题21.已知一条直线经过A(0,4)、点B(2,0),如图.将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC.求直线CD的函数解析式.【考点】待定系数法求一次函数解析式;一次函数图象与几何变换.【分析】先求出直线AB的解析式,再根据平移的性质求直线CD的解析式.【解答】解:设直线AB的解析式为y=kx+b,把A(0,4)、点B(2,0)代入得,解得,故直线AB的解析式为y=﹣2x+4;将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC时,因为平移后的图形与原图形平行,故平移以后的函数解析式为:y=﹣2x﹣4.22.正比例函数y=kx和一次函数y=ax+b的图象都经过点A(1,2),且一次函数的图象交x轴于点B(4,0).求正比例函数和一次函数的表达式.【考点】待定系数法求一次函数解析式.【分析】由题意正比例函数y=kx过点A(1,2),代入正比例函数求出k值,从而求出正比例函数的解析式,由题意y=ax+b的图象都经过点A(1,2)、B(4,0),把此两点代入一次函数根据待定系数法求出一次函数的解析式.【解答】解:由正比例函数y=kx的图象过点(1,2),得:k=2,所以正比例函数的表达式为y=2x;由一次函数y=ax+b的图象经过点(1,2)和(4,0)得解得:a=,b=,∴一次函数的表达式为y=x+.23.某电视厂要印刷产品宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收1000元制版费,乙厂提出:每份材料收2元印刷费,不收制版费.(1)分别写出两厂的收费y(元)与印制数量x(份)之间的函数解析式;(2)电视机厂拟拿出3000元用于印刷宣传材料,找哪家印刷厂印刷的宣传材料能多一些?(3)印刷数量在什么范围时,在甲厂印刷合算?【考点】一元一次不等式的应用;根据实际问题列一次函数关系式;一元一次方程的应用.【分析】(1)直接根据题意列出函数解析式即可;(2)把y=3000分别代入(1)中所求的函数关系式中求出x的值,比较大小即可;(3)根据“甲厂的费用<乙厂的费用”列出不等式x+1000<2x求解即可.【解答】解:(1)甲厂的收费y(元)与印刷数量x(份)之间的函数解析式为:y=x+1000;乙厂的收费y(元)与印刷数量x(份)之间的函数解析式为:y=2x;(2)根据题意可知,若找甲厂印刷,设可以印制x份,则:3000=x+1000,解得:x=2000;若找乙厂印刷,设可以印制x份,则:3000=2x,解得:x=1500.所以,甲厂印制的宣传材料多一些;(3)设印刷x份时,在甲厂印刷合算.根据题意可得:x+1000<2x,解得:x>1000.∴当印制数量大于1000份时,在甲厂印刷合算.24.如图,点A的坐标为(4,0).点P是直线y=x+3在第一象限内的点,过P作PM ⊥x轴于点M,O是原点.(1)设点P的坐标为(x,y),试用它的纵坐标y表示△OPA的面积S;(2)S与y是怎样的函数关系?它的自变量y的取值范围是什么?(3)如果用P的坐标表示△OPA的面积S,S与x是怎样的函数关系?它的自变量的取值范围是什么?(4)在直线y=x+3上求一点Q,使△QOA是以OA为底的等腰三角形.【考点】一次函数综合题.【分析】(1)根据直线解析式确定出B坐标,设P(x,y),以OA为底,P的纵坐标为高表示出S与y的关系式即可;(2)判断出S与y的函数关系式,并求出y的范围即可;(3)以OA为底,PM为高列出S与x的函数解析式,求出x的范围即可;(4)△QOA是以OA为底的等腰三角形,可得出点Q在OA的中垂线上,求出Q坐标即可.【解答】解:(1)直线y=﹣x+3与y轴的交点为B(0,3),设点P(x,y),∵点P在第一象限,x>0,y>0,∴S=OA•PM=×y×4=2y;(2)S是y的正比例函数,自变量y的取值范围是0<y<3;(3)S=2y=2(﹣x+3)=﹣x+6,S是x的一次函数,自变量的取值范围是0<x<6.(4)∵△QOA是以OA为底的等腰三角形,∴点Q在OA的中垂线上,设Q(x0,y0),则有,解得:,则点Q的坐标为(2,2).。
人教版八年级数学下册《第十九章一次函数》检测卷-附带答案
人教版八年级数学下册《第十九章一次函数》检测卷-附带答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.一次函数的图象不经过...()A.第一象限B.第二象限C.第三象限D.第四象限2.函数图象向右平移个单位后,对应函数为()A.B.C.D.3.已知直线经过一、二、四象限,则直线的图象只能是()A.B.C.D.4.一次函数的函数值随的增大而减小,则的值为()A.2 B.3 C.4 D.55.一次函数的图象经过两个点和,则,的大小关系是()A. B. C.当时, D.当时,6.网语期印,李明同学在老家学习生活,为缓解线上学习疲劳,在某个周末和爸爸进行登山锻炼,登山过程中,两人距地面的高度y(米)与登山时间x(分钟)之间的函数图象如图所示(甲为爸爸,乙为李明),李明提速后,李明的登山速度是原来速度的2倍,并先到达山顶.根据图象所提供的信息,下列说法情误的是()A.甲登山的速度是每分钟米B.乙在A地时距地面的高度b为米C.乙登山分钟时追上甲D.登山时间为5分钟、8分钟、分钟时,甲、乙两人距地面的高度差为米7.如图,直线分别与轴、轴交于点和点,直线分别与轴、轴交于点和点,点是内部(包括边上)的一点,则的最大值与最小值之差为()A.1 B.2 C.4 D.68.如图,正方形ABCD的边长为4,P为正方形边上一动点,沿A→D→C→B→A 的路径匀速移动,设P点经过的路径长为x,△APD的面积是y,则下列图象能大致反映y与x的函数关系的是()A.B.C.D.二、填空题9.在函数y= 中,自变量x的取值范围是.10.若点在函数的图象上,则代数式的值为。
11.已知一次函数与(k是常数,)的图像的交点坐标是,则方程组的解是.12.汽车由北京驶往相距120千米的天津,它的平均速度是30千米/时,则汽车距天津的路程s(千米)与行驶时间t(小时)的函数关系及自变量的取值范围是13.如图,某电信公司提供了A、B两种方案的移动通讯费用y(元)与通话时间x(元)之间的关系.如果通讯费用为60元,那么A方案与B方案的通话时间相差分钟.三、解答题14.已知一次函数(,为常数,)的图象经过点和.(1)求该一次函数的解析式;(2)当时,求该一次函数的函数值的取值范围.15.如图,一次函数的图象与轴交于点B,与正比例函数的图象交于点.(1)求的面积;(2)利用函数图象直接写出当时,x的取值范围.16.油炸冰激凌是以面包、鸡蛋、冰激凌为材料制作的一种西式小吃,某油炸冰激凌专卖店每天固定制作甲、乙两个款型的油炸冰激凌共1000个,且所有产品当天全部售出,原料成本、销售单价及店员生产提成如表所示:设该店每天制作甲款型的油炸冰激凌x个,每天获得的总利润为y元(1)求出y与x之间的函数关系式;(2)若该店每天投入总成本不超过10750元,应怎样安排甲、乙两种款型的制作量,可使该店这一天所获得的利润最大?并求出最大利润(总成本=原料成本+生产提成,利润=销售收入﹣投入总成本)17.甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示,根据图象信息解答下列问题:(1)乙车比甲车晚出发多少时间?(2)乙车出发后多少时间追上甲车?(3)求乙车出发多少时间,两车相距50千米?18.为提升学生的文学素养,培养学生的阅读兴趣,某校准备购进A ,B 两种图书.经调查,购进A 种图书费用y 元与购进A 种图书本数x 之间的函数关系如图所示,B 种图书每本20元. (1)当和时,求y 与x 之间的函数关系式;(2)现学校准备购进300本图书,其中购进A 种图书x 本,设购进两种图书的总费用为w 元. ①当时,求出w 与x 间的函数表达式;②若购进A 种图书不少于60本,且不超过B 种图书本数的2倍,那么应该怎样分配购买A ,B 两种图书才能使总费用最少?最少总费用多少元?19.如图,直线124l y x =-+:分别与x 轴、y 轴交于A ,B 两点,直线2l 与1l 交于点()2P a ,,与x 轴交于点()30C -,,点M 在线段AB 上,直线ME x ⊥轴于点E ,与2l 交于点N . (1)求直线2l 的表达式; (2)设点M 的横坐标为m . ①当32m =时,求线段MN 的长; ②若点M ,N ,E 三点中,其中两点恰好关于第三点对称,直接写出此时m 的值参考答案:1.D2.D3.B4.A5.A6.C7.B8.B9.x≠﹣110.1111.12.13.3014.(1)解:∵点,在该一次函数的图象上∴解得∴该一次函数的解析式为.(2)解:∵∴该一次函数的函数值随的增大而减小.当时;当时.∴当时,该一次函数的函数值的取值范围是.15.(1)解:∵一次函数的图象过点∴∴∴一次函数的表达式为 .当时∴∴ .(2)当时,的取值范围为16.(1)解:设该店每天制作甲款型的油炸冰激凌x个,每天获得的总利润为y元可得:y=(20﹣10﹣2) x+(16﹣8﹣1.5) (1000﹣x)=1.5x+6500;(2)设安排甲型产品x件,则乙型产品(1000-x)件,根据题意得到不等式,解不等式即可得到结论.由题意,12x+9.5(1000﹣x)≤10750,解得x≤500∵y=1.5x+6500,1.5>0∴x=500时,y有最大值=1.5×500+6500=7250答:该店每天制作甲、乙款型的油炸冰激凌各500个,可使该店这一天所获得的利润最大,最大利润7250元.17.(1)解:由图象可知乙车比甲车晚出发1个小时(2)解:设甲的函数解析式为y=kx,把点(5,300)代入得到k=60,故y=60x设乙的函数解析式为y=k′x+b,把点(1,0)和点(4,300)代入得到解得故y=100x﹣100由得= =1.5所以乙车出发后1.5小时追上甲车.(3)解:由题意:60x﹣(100x﹣100)=50或100x﹣100﹣60x=50解得到x= 或因为﹣1= ,﹣1=所以求乙车出发或小时,两车相距50千米.18.(1)解:当时,设将代入解析式,得解得当时,设将、分别代入解析式得解得综上, (2)解:①当时;②此时随x 的增大而减小 当时,w 最小,最小值为: 故购买A 种200本,B 种100本时总费用最少,最少总费用为5800元19.18.(1)解:将点()2P a ,代入124l y x =-+:,得224a =-+ 解得1a = 设2l y kx b =+:∴203k bk b =+⎧⎨=-+⎩解得1232k b ⎧=⎪⎪⎨⎪=⎪⎩∴2l 的表达式为1322y x =+ (2)解:①根据题意3931242N M ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,∴95144MN =-=. ②m 的值为139 13。
人教版初中数学八年级下册 第十九章《一次函数》检测题(含答案)
第十九章《一次函数》测试题一、选择题(每小题只有一个正确答案)1.下列函数中是正比例函数的是( )A .8y x =B .28y =C .2(1)y x =-D .y = 2.下列说法中的两个变量成正比例的是( )A .少年儿童的身高与年龄B .圆柱体的体积与它的高C .长方形的面积一定时,它的长与宽D .圆的周长C 与它的半径r3.下列说法中错误的是( )A .一次函数是正比例函数B .正比例函数是一次函数C .函数y =|x |+3不是一次函数D .在y =kx +b (k 、b 都是不为零的常数)中, y -b 与x 成正比例4.一次函数y =-x -1的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限5.函数y =kx -2中,y 随x 的增大而减小,则它的图象可以是( )6.如图1,一次函数的图象经过A 、B 两点,则这个一次函数的解析式为( )A .322y x =-B .122y x =-C .122y x =+D .322y x =+7.若函数y =kx +b (k 、b 都是不为零的常数)的图象如图2所示,那么当y >0时,x 的取值范围为( )A .x >1B .x >2C .x <1D .x <28.已知一次函数y =kx -k ,若y 随x 的增大而减小,则该函数的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限二、填空题9.正比例函数12y x =-中,y 值随x 的增大而 .10.已知y=(k-1)x+k2-1是正比例函数,则k=11.若y+3与x成正比例,且x=2时,y=5,则x=5时,y= .12.直线y=7x+5,过点(,0),(0,).13.已知直线y=ax-2经过点(-3,-8)和12b⎛⎫⎪⎝⎭,两点,那么a= ,b= .14.写出经过点(1,2)的一次函数的解析式为(写出一个即可).15.在同一坐标系内函数112y x=+,112y x=-,12y x=的图象有什么特点.16.下表中,y是x三、简答题17.某函数具有下列两条性质:(1)它的图象是经过原点(0,0)的一条直线;(2)y的值随x的值增大而减小.请你写出一个满足上述两个条件的函数解析式.18.已知一次函数y=kx+b的图象经过A(2,4)、B(0,2)两点,且与x轴相交于C点.(1)求直线的解析式.(2)求△AOC的面积.19、已知一个正比例函数和一个一次函数的图象交于点P(-2,2),且一次函数的图象与y轴相交于点Q(0,4).(1)求这两个函数的解析式.(2)在同一坐标系内,分别画出这两个函数的图象.(3)求出△POQ的面积.20、如图3,在边长为2的正方形ABCD 的一边BC 上的点P 从B 点运动到C 点,设PB =x ,梯形APCD 的面积为S .(1)写出S 与x 的函数关系式;(2)求自变量x 的取值范围;(3)画出函数图象.21、小芳同学在暑期社会实践活动中,以每千克0.8元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图4所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额y (元)与售出西瓜x (千克)之间的函数关系式.(2)小芳从批发市场共购进多少千克西瓜?(3)小芳这次卖瓜赚了多少钱?参考答案:一、1.D 2.D3.A 4.A 5.D 6.A 7.D 8.B二、9.减小 10.1-11.17 12.57-,5 13.2,1- 14.略(答案不惟一) 15.三条直线互相平行16.22y x =+,表格从左到右依次填2-,0,4三、17.y x =-(答案不惟一)18.(1)2y x =+(2)419.(1)正比例函数的解析式为y x =-.一次函数的解析式为4y x =+(2)图略;(3)420.(1)4S x =-;(2)02x <<;(3)图略21.(1)8(040)5y x x =≤≤; (2)50千克;(3)36元。
新人教版八年级数学下册《十九章 一次函数 测试》课件_17
A 路 程 x 之 间 形 成 的 函 数 关 系 图 象 大 致 是 (
)
A.
B.
C.
D.
数形结合能力不强,二次 函数与一次函数混淆
6题没有将函数关系式转化 为一般形式就判断
14题关系式不化简
6. 已知一次函数 y=kx+b﹣x 的图象与 x 轴的正半轴相交,且函数值 14.从甲地向乙地打长途电话,按时间收费,3 分钟内收费 2.4 元,每加 1 分钟
2、卷面典型问题汇总
卷面书写不工整, 杂乱无章,产生很 多非知识性问题
书写规范 卷面整洁
10. 如 图 , 在 正 方 形 AB CD 中 , 点 P 从 点 A 出 发 , 沿 着 正 方 形
的 边 顺 时 针 方 向 运 动 一 周 , 则 △APC 的 面 积 y 与 点 P 运 动 的
题号
16
17
18 ①②
①
19 ②
③
①
20 ②
③
21 ①②
22 ①②
23 ①②
正确人数 62 49 60 53 66 57 38 61 50 54 69 59 35 44 31 22
错误人数 10 23 12 19 6 15 34 11 22 18 3 13 37 28 41 50 得分率 0.86 0.68 0.83 0.74 0.92 0.79 0.53 0.85 0.69 0.75 0.96 0.82 0.49 0.61 0.43 0.31
加收 1 元,若时间 t≥3(分)时,电话费 y(元)与 t 之间的函数关系式是
-___6______. 解题策略:注意自变量取值范围内对应函数关系式,注意化简
三、解决问题,互助提高
19.(8)小明同学骑自行车去郊外春游,下图表示他离家的距离 y(千米)与所用的时间 x(小
新版人教版八年级数学下册第十九章-一次函数测试卷(含答案)
24t/天S/t八年级第十九章测试题姓名 班级一、选择题1.下列变量之间的关系中,一个变量是另一个变量的正比例函数的是( ) A.正方形的面积S 随着边长x 的变化而变化.B.正方形的周长C 随着边长x 的变化而变化C.水箱以0.5L/min 的流量往外放水,水箱中的剩水量V L 随着放水时间t min 的变化而变化D.面积为20的三角形的一边a 随着这边上的高h 的变化而变化 2.如果某函数的图象如图所示,那么y 随x 的增大而( ) A.增大 B.减小 C.不变 D.有时增大有时减小 3.一次函数y=kx+b 中,y 随x 的正大而减小,b <0, 则这个函数的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限 4.如果P (2,m ),A (1,1),B (4,0)三点在同一直线上,则m 的值为( ) A.2 B.32-C.32D.15.某油箱容量为50L 的汽车,加满汽油后开了200km 时,油箱中的汽油大约消耗了41.如果加满汽油后汽车行驶的路程为xkm ,油箱中的剩油量为yL ,则y 与x 之间的函数关系式和自变量取值范围分别是( ) A.x y 0625.0=,x >0 B.x y 0625.050-=,x >0 C. x y 0625.0=,8000≤≤x D. x y 0625.050-=,8000≤≤x6.食用油沸点的温度远高于水的沸点温度(1000C ).小明为了用刻度不超过1000C 的温度计测量出某种食用油沸点的温度,在锅中倒入一些食用油,用煤气灶均匀加热,并每隔10s 测量一次A.2000CB.2300CC.2600CD.2900C 二、填空题(每小题5分,共20分)7.某电梯从1层(地面)直达3层用了20s ,若电梯运行时匀速的,则乘坐该电梯从2层直达8层所需要的时间是___________________s8.直线62-=x y 与y 轴的交点坐标为__________,与x 轴的交点坐标是_____________9.函数kx y =与x y -=6的图象如图所示,则=k ________________10.春耕期间,某农资门市部连续8天调进一批化肥进行销售,在开始调进化肥的第7天开始销售.若进货期间每天调入化肥的吨数与销售期间每天销售化肥的吨数保持不变,这个门市部的化肥存量S (单位:t )与时间t (单位:天)之间的函数关系如图所示,则该门市部这次化肥销售活动(从开始进货到销售完毕)所用时间是_______________三、解答题(第11,12题每题10分,第13题14分,第14题16分,共50分) 11.一次函数图象经过(-2,1)和(1,3)两点. (1)求这个一次函数的解析式;(2)当x=3时,求y 的值.12.如图是小明散步过程中所走的路程S (单位:m )与步行时间t (单位:min )的函数图象. (1)小明在散步过程中停留了多少时间?(2)求小明散步过程步行的平均速度.(3)在哪一时间段,小明是匀速步行的?在这一时间段,他步行的速度是多少?13.直线a:和直线b:相交于点A,分别与x轴相交于点B和点C,与y轴相交于点D和点E. (1)求△ABC的面积;(2)求四边形ADOC的面积14.某景点的门票销售分两类:一类为散客门票,价格为40元/张;另一类为团体门票(一次性购买门票10张及以上),每张门票价格在散客门票价格的基础上打8折.某班部分同学要去该景点旅游,设参加旅游x人,购买门票需要y元.(1)如果每人分别买门票,求y与x之间的函数关系式;(2)如果买团体票,求y与x之间的函数关系式,并写出自变量的取值范围;(3)请根据人数变化设计一种比较省钱的购票方案.。
2019版八年级数学下册 第十九章《一次函数》检测题 (新版)新人教版
2019版八年级数学下册 第十九章《一次函数》检测题 (新版)新人教版一、选择题:(本大题共12个小题,每小题4分,共48分)1.若一次函数(13)y k x k =--的图像不经过第二象限,则k 的取值范围是( )A 、k <13B 、0<k <13C 、0≤k <13D 、k <0或k >132.一次函数y 1=x +4的图象与一次函数y 2=-x +b 的图象的交点不可能...在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3. 如图,观察,判断下列说法错误的是( )A .方程组的解是B .不等式的解集是x ≥3C . 不等式的解集是x <3D .方程的解是x =34. 函数y =ax +b 与y =bx +a 的图象在同一坐标系内的大致位置正确的是( )5.若实数a 、b 、c 满足a+b+c=0,且a <b <c ,则函数y=ax+c 的图象可能是( )A .B .C .D .6.在平面直角坐标系中,点0为原点,直线y=kx+b 交x 轴于点A (﹣2,0),交y 轴于点B .若△AOB 的面积为4,则k 的值为( )A 、4 B 、3 C 、3或-3 D 、4或﹣47一次函数m x y +=3与n x y +-=21图象如图所示,可以得出不等式组⎩⎨⎧>+->+05.003n x m x 的解集是( )A 、31<x B 、031<<-x C 、20<<x D 、231<<-x8、一根蜡烛长30cm ,点燃后每小时燃烧5cm ,燃烧时蜡烛剩余的长度h (cm )1 2131-xy10 30O24S (吨) t(时)和燃烧时间t (小时)之间的函数关系用图像可以表示为图中的( ).DCBAhtO306htO306htO306630Oth9、如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( ) A .3x 2<B .x 3<C .3x 2> D .x 3> 10、直线1+=mx y 与12-=x y 的图像交于x 轴上一点,则m 为( ) A .2 B .2- C .21D .21-11.如图,有一个装有进、出水管的容器,单位时间内进、出的水量都是一定的,已知容器的容积为600L ,又知单开进水管10min 可以把容器注满,若同时打开进、出水管,20min 可以把满容器的水放完,现已知水池内有水200L ,先打开进水管5min ,再打开出水管,两管同时开放,直到把容器中的水放完,则正确反映这一过程中容器的水量Q (L )随时间t (min )变化的图像是:( )A .B .C .D . 12.我区某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资S (吨)与时间t (小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是( ) A .4小时 B .4.4小时 C .4.8小时 D .5小时二、填空题:(本大题共6个小题,每小题4分,共24分)13.关于x 的一次函数)2()73(-+-=a x a y 的图像与y 轴的交点在x 轴的上方,则y 随x 的增大而减小,则a 的取值范围是 。