基因重组杂交育种
高考生物:杂交育种与诱变育种
高考生物:杂交育种与诱变育种
一、杂交育种
1.概念:是将两个或多个种类的优秀性状经过交配集中一同,再经过选择和培育,取得新种类的方法。
2.原理:基因重组。
经过基因重组发生新的基因型,从而发生新的优秀性状。
3.优点:可以将两个或多个优秀性状集中在一同。
4.缺陷:不会发生新基因,且杂交后代会出现性状分别,育种进程缓慢,进程复杂。
二、诱变育种
1.概念:指应用物理或化学因历来处置生物,使生物发生基因突变,应用这些变异育成新种类的方法。
2.诱变原理:基因突变
3.诱变要素:(1)物理:X射线,紫外线,γ射线(2)化学:亚硝酸,硫酸二乙酯等。
4.优点:可以在较短时间内取得更多的优秀性状。
5.缺陷:由于基因突变具有不定向性且有利的突变很少,所以诱变育种具有一定自觉性,所以应用理化要素出来生物提高突变率,且需求处置少量的生物资料,再停止选择培育。
三、四种育种方法的比拟
杂交育种
诱变育种
多倍体育种
单倍体育种
原理
基因重组
基因突变
染色体变异
染色体变异
方法
杂交
激光、射线或化学药品处置秋水仙素处置萌生种子或幼苗花药离体培育后加倍
优点
可集中优秀性状
时间短
器官大和营养物质含量高
延长育种年限
缺陷
育种年限长
自觉性及突变频率较低
植物中难以展开
成活率低,只适用
于植物
举例
高杆抗病与矮杆感病杂交取得矮杆抗病种类高产青霉菌株的育成
三倍体西瓜
抗病植株的育成。
常见的七种育种方法和原理
常见的七种育种方法和原理作者:来源:《学生导报·高中版》2016年第08期1、诱变育种原理:基因突变方法:用物理因素(如X射线、γ射线、紫外线、中子、激光、电离辐射等)或化学因素(如亚硝酸、碱基类似物、硫酸二乙酯、秋水仙素等各种化学药剂)或空间诱变育种(用宇宙强辐射、微重力等条件)来处理生物。
发生时期:有丝分裂间期或减数分裂第一次分裂间期。
优点:能提高变异频率,加速育种进程,可大幅度改良某些性状,创造人类需要的变异类型,从中选择培育出优良的生物品种;变异范围广。
缺点:有利变异少,须大量处理材料;诱变的方向和性质不能控制。
改良数量性状效果较差,具有盲目性。
举例:青霉素高产菌株、太空椒、高产小麦、“彩色小麦”等。
2、杂交育种原理:基因重组。
方法:连续自交,不断选种。
(不同个体间杂交产生后代,然后连续自交,筛选所需纯合子)发生时期:有性生殖的减数分裂第一次分裂后期或四分体时期优点:使同种生物的不同优良性状集中于同一个个体,具有预见性。
缺点:育种年限长,需连续自交才能选育出需要的优良性状。
举例:矮茎抗锈病小麦等3、多倍体育种原理:染色体变异方法:秋水仙素处理萌发的种子或幼苗。
优点:可培育出自然界中没有的新品种,且培育出的植物器官大,产量高,营养丰富。
缺点:结实率低,发育延迟。
举例:三倍体无子西瓜、八倍体小黑麦4、单倍体育种原理:染色体变异方法:花药离体培养获得单倍体植株,再人工诱导染色体数目加倍。
优点:自交后代不发生性状分离,能明显缩短育种年限,加速育种进程。
缺点:技术相当复杂,需与杂交育种结合,其中的花药离体培养过程需要组织培养技术手段的支持,多限于植物。
举例:“京花一号”小麦5、基因工程育种(转基因育种)原理:基因重组方法:基因操作(目的基因的获取→基因表达载体的构建→将目的基因导入受体细胞→目的基因的检测与鉴定)优点:目的性强,可以按照人们的意愿定向改造生物;育种周期短。
缺点:可能会引起生态危机、必须考虑转基因生物的安全性、技术难度大。
《基因重组杂交育种》课件
生物制药
抗体药物研发
疫苗研发
基因重组杂交育种可以帮助生物制药 领域快速筛选和开发出具有疗效的抗 体药物,用于治疗癌症、自身免疫性 疾病等重大疾病。
基因重组杂交育种可以帮助生物制药 领域研发出新型疫苗,用于预防和治 疗传染病,提高人类健康水平。
蛋白质药物研发
基因重组杂交育种可以帮助生物制药 领域研发出具有特定功能的蛋白质药 物,用于治疗遗传性疾病、代谢性疾 病等。
基因重组杂交育种的挑战与前
04
景
技术挑战与解决方案
技术难题
基因重组杂交育种技术涉及到复杂的生物分子结构和功能,目前仍存在许多技 术难题,如基因定位、重组和表达调控等。
ห้องสมุดไป่ตู้解决方案
针对这些技术难题,科研人员正在不断探索新的技术和方法,如基因编辑技术 、基因组学和蛋白质组学技术等,以提高基因重组杂交育种的成功率和效率。
《基因重组杂交育种 》PPT课件
目录
• 基因重组杂交育种概述 • 基因重组杂交育种技术 • 基因重组杂交育种的应用 • 基因重组杂交育种的挑战与前景 • 案例分析
01 基因重组杂交育种概述
定义与重要性
定义
基因重组杂交育种是指通过基因重组技术,将不同品种或种 质的优良性状集中于一个品种中,以创造新品种的育种方法 。
社会伦理问题与解决方案
社会伦理问题
基因重组杂交育种技术涉及到人类 和动物的基因改造,引发了广泛的社 会伦理关注,如安全性、隐私权和生 物多样性等问题。
解决方案
为解决这些社会伦理问题,需要制定 和完善相关法律法规和伦理准则,加 强监管和公众参与,同时加强科研人 员的伦理意识和责任感。
未来发展前景与展望
抗除草剂玉米
微生物 10-4、5、6第十章 微生物的遗传变异和育种
工程菌的稳定性问题
由工程菌产生的珍稀药物如:胰岛素、干扰素、 人生长激素、乙肝表面抗原、人促红细胞生成 素、重组链激酶等都已先后供应市场,不仅保 证了这些药物的来源,而且使成本大大降低。 但工程菌在发酵生产和保存过程中表现出不稳 定性,具体表现为:质粒的丢失;重组质粒发 生DNA片断脱落;表达产物不稳定。 工程菌的稳定与否,与重组质粒本身的分子组 成、宿主细胞生理和遗传性以及环境条件等因 素有关。
性状稳定的菌种是微生物学工作最重要的基本要求,否 则生产或科研都无法正常进行。 影响微生物菌种稳定性的因素:a)变异;b)污染; c )死亡。
一、菌种的衰退与复壮
衰退:菌种出现或表现出负变性状
菌种衰退的原因: ①大量群体中的自发突变
自发突变
纯菌种
不纯菌种
传代增殖
衰退菌种
原始个体
突变个体 菌种衰退的原因: ②分离现象。 菌种衰退的原因: ③培养条件与传代。
准性杂交育种
第五节 分子育种(基因工程育种)
一、基因工程 定义:在基因水平上,改造遗传物质,从而使 物种发生变异,创建出具有某种稳定新性状的 生物新品系。
特点:可设计性、稳定性、远缘性、风险性
二、基因工程的基本操作 获得目的基因
选择基因载体
体外重组 外源基因导入 筛选和鉴定
应用
通过基因工程改变后的菌株被称为“工程菌”, 工程菌已逐渐应用于药物的微生物发酵生产中, 主要有以下几个方面:①增加生物合成基因量而 增加抗生素产量;②导入强启动子或抗性基因而 增加抗生素产量;③把两种不同的生物合成基因 在体外重组后再导入受体而产生杂交抗生素;④ 激活沉默基因,以其产生新的生物活性物质或提 高抗生素产量;⑤把异源基因克隆到宿主中表达, 以期彻底改变生产工艺。
基因重组和杂交育种
1951年,Joshua Lederberg和Norton Zinder为证实除大肠杆菌以外
用“U”型管进行同样的 实验时,在供体和受体细胞 不接触的情况下,同样出现 原养型细菌!
沙门氏菌LT22A(trp-)是携带P22噬菌体的溶源性细菌 另一株LT2(his-)是非溶源性细菌
基因的传递很可能是由可透过“U”型管滤板的 P22噬菌体介导的(在接种LT22A的一端出现了原养型)
转化因子:来自供体菌的DNA片段
转化子:transformant,将转化因子重组进入自身染色 体组的重组子
2、转化发生的条件 1)感受态细胞(competent cell) :具有摄取外源 DNA能力的细胞。
感受态:是指受体细胞最易接受外源DNA片段并能实现转化 的一种生理状态。。 出现时间:只在细菌生长的某一时期出现;不同菌种的感受态出 现在不同生长时期。
为了减少所培养 的结果是回复突变 的机会,采用了双 重或三重营养缺陷 型。
中间平板上长出的原养型菌落 是两菌株之间发生了遗传交换 和重组所致!
证实接合过程需要细胞间的直接接触的 “U”型管实验( Bernard Davis,1950 )
细菌的接合作用需要具备什么 条件?
F因子的存在方式及相互关系
国内外菌种保藏机构
菌种保藏机构的任务:广泛收集科研和
生产菌种、菌株,并加以妥善保管,使之达到 不死、不衰、不乱以及便于研究、交换和使用 的目的。
菌种保藏机构
中国微生物菌种保藏委员会(CCCCM) 美国的典型菌种保藏中心(ATCC) 英国国家典型菌种保藏所(NCTC) 法国里昂巴斯德研究所(IPL)
原核生物的基因重组类型 4种形式:1)转化 2)转导 3)接合 4)原生质体融合
常规育种方法
一、诱变育种:诱变育种是指利用人工诱变的方法获得生物新品种的育种方法原理:基因突变方法:辐射诱变,激光、化学物质诱变,太空(辐射、失重)诱发变异→选择育成新品种优点:能提高变异频率,加速育种过程,可大幅度改良某些性状;变异范围广。
缺点:有利变异少,须大量处理材料;诱变的方向和性质不能控制。
改良数量性状效果较差。
二、杂交育种:杂交育种是指利用具有不同基因组成的同种(或不同种)生物个体进行杂交,获得所需要的表现型类型的育种方法。
其原理是基因重组。
方法:杂交→自交→选优优点:能根据人的预见把位于两个生物体上的优良性状集于一身。
缺点:时间长,需及时发现优良性状。
三、单倍体育种:单倍体育种是利用花药离体培养技术获得单倍体植株,再诱导其染色体加倍,从而获得所需要的纯系植株的育种方法。
(主要是考虑到结合中学课本,经查阅相关资料无误。
)其原理是染色体变异。
优点是可大大缩短育种时间。
原理:染色体变异,组织培养方法:选择亲本→有性杂交→F1产生的花粉离体培养获得单倍体植株→诱导染色体加倍获得可育纯合子→选择所需要的类型。
优点:明显缩短育种年限,加速育种进程。
缺点:技术较复杂,需与杂交育种结合,多限于植物。
四、多倍体育种:原理:染色体变异(染色体加倍)方法:秋水仙素处理萌发的种子或幼苗。
优点:可培育出自然界中没有的新品种,且培育出的植物器官大,产量高,营养丰富。
缺点:只适于植物,结实率低。
五、细胞工程育种:细胞工程育种是指用细胞融合的方法获得杂种细胞,利用细胞的全能性,用组织培养的方法培育杂种植株的方法。
原理:细胞的全能性方法:(1)植物:去细胞壁→细胞融合→组织培养(2)动物克隆:核移植→胚胎移植优点:能克服远缘杂交的不亲和性,有目的地培育优良品种。
动物体细胞克隆,可用于保存濒危物种、保持优良品种、挽救濒危动物、利用克隆动物相同的基因背景进行生物医学研究等。
缺点:技术复杂,难度大;它将对生物多样性提出挑战,有性繁殖是形成生物多样性的重要基础,而“克隆动物”则会导致生物品系减少,个体生存能力下降。
1.杂交育种的原理、过程、优点和缺点
一、杂交育种
1.原理:基因重组 2.过程: 杂交→自交→选优 自交 3.优点:使位于不同个体上的多个优良
性状集中于一个个体上,即“集优”,能产 生新的基因型。
4.缺陷:育种所需时间较长,只能进行
本物种或亲缘关系较近的物种杂交,杂交后 代易出现性状分离,不能克服远缘杂交不亲 合的障碍。
5.应用:矮杆抗病小麦的培育
二、染色体变异育种
1.单倍体育种:
(1)原理:染色体变异
(2)方法:花药离体培养
(3)过程:
减 AB
AABB×aabb
杂交
AaBb
数 分
Ab aB
F1Βιβλιοθήκη 裂 ab幼苗 秋幼苗 水 幼苗 仙 幼苗 素
AABB AAbb aaBB aabb
花药
(4)优点:缩短育种年限(2年)
(5)缺陷:技术水平要求高
2.多倍体育种: (1)原理:染色体变异 (2)方法:秋水仙素处理萌发的种子 或幼苗 (3)优点:茎杆粗壮、果实和种 子大 (4)缺点:结实率低、发育延迟。 (5)应用:三倍体无籽西瓜、八倍体
(1)用①和②培育⑤所采用的D和F步骤分别是 杂交 和 自交 。其应用的遗传学原理是 基因重组 。
(2)用③培育⑤所采用的E和H步骤分别是
和
。其应用的遗传学原理是 染色体变异 。
(3)用③培育⑥所采用的G步骤是
(单倍体育种)
__秋_水__仙_素_处__理_幼_苗____ 。
其遗传学原理是_染__色_体__变__异_(__多_倍__体。育种)
小黑麦 无籽原因:同源染色体联会紊乱,
无法正常完成减数分裂,没有配子,所以 就没有种子。
例题2 :下图是用某种作物的两个品种①和②分别培育出④、⑤、 ⑥品种的示意图,试分析回答:
几种育种方法原理及优缺点
几种育种方法原理及优缺点
育种是一种人工选择和控制的方法,通过对某种生物进行有计划地繁殖,以达到改良或创造新的品种或种类的目的。
育种方法有很多种,每种都有其独特的原理及优缺点。
以下是几种常见的育种方法。
1. 选择育种法
选择育种法是利用人工选择的方法,通过挑选出具有良好性状的个体进行繁殖,逐步提高种群的性状。
此方法在农业、家禽、家畜等领域应用广泛。
优点在于可大幅度改善品种的性状,缺点则是需要长时间的育种过程和大量的资源投入。
2. 杂交育种法
杂交育种法是将不同品种的父本和母本进行人工配对,通过杂交后代的基因重组,达到增强某种性状或产生新品种的目的。
此方法在农业、花卉、牛奶等领域应用广泛。
优点在于可快速产生新品种,缺点则是需要保持亲本的纯度、控制杂交过程,较为复杂。
3. 突变育种法
突变育种法是通过诱变剂或放射线等手段,使生物的基因发生突变,从而形成新的性状或品种。
此方法在植物育种领域应用较多。
优点在于可快速产生新品种,缺点则是突变率低,基因不稳定,难以掌控。
4. 基因工程育种法
基因工程育种法是通过改变或插入生物的基因,改变其性状或产生新品种。
此方法在动物、植物、微生物等领域应用广泛。
优点在于
能够精准调节生物的性状,缺点则是技术难度较大,风险较高。
总之,不同的育种方法各有优缺点,应根据具体情况选择最适合的方法来进行育种。
杂交育种基因重组
第5章 基因突变及其他变异 第6章 从杂交育种到基因工程
知识内容
要
求
2-4 生物的变异 (1)基因重组及其意义 (2)基因突变的特征和原因 (3)染色体结构变异和数目 变异 (4)生物变异在育种上应用 (5)转基因Ⅱ
所给予的相对简单的 情境中识别和使用它
意义
基因重组能够产生多样化的基因 组合的子代,其中可能有一些子代会含 有适应某种变化的、生存所必需的基 因组合中。所以说,基因重组也是生 物变导的来源之一,对于生物进化具 有十分重要的意义.
思考:人的体细胞中有23对染色体,请你 计算,一位父亲可能产生多少种染色体不 同的精子,一位母亲可能产生多少种染色 体组成不同的卵细胞?
(2)虽然正常基因和致病基因转录出的 mRNA 长度是一样的, 但致病基因控制合成的异常多肽链较正常多肽链短,请根据图 示推测其原因是 基因中碱基发生替换,使对应的密码子变为终止密码子 __________________________________________________
(3)图中所揭示的基因控制性状的方式是
二、基因突变的特征和原因
1、基因突变的概念:
概念:DNA分子中发生碱基对的替换、增添和缺失, 而引起基因的内部结构发生改变
实质? (基因的碱基对排列顺序的改变)
┯┯┯┯ ATGC TACG ┷┷┷┷ ┯┯┯┯┯ ATAGC TATCG ┷┷┷┷┷ ┯┯┯┯ ATGC TACG ┷┷┷┷ ┯┯┯ AGC TCG ┷┷┷ ┯┯┯┯ ATGC TACG ┷┷┷┷
男性 。 ②该孩子的性别是________
③这对夫妇再生一个只患一种病的孩子的概率是
1/2 。 ________
基因检测 ④如果该女性再度怀孕,医生会建议她进行 ____________
杂交育种的过程,杂交育种和诱变育种有什么区别
杂交育种的过程,杂交育种和诱变育种有什么区别首先选择父母本,父母本的选择取决于育种目标和目的,亲本植物必须从当地挑选,而且要适合当地条件。
去雄是植物杂交的第二个步骤,自交系材料在正常条件下生长,需要去雄。
套袋是植物杂交的第3个步骤,去雄的雌花或花序要立即套袋,以避免任何外来花粉对其进行授粉。
一、杂交育种的过程1、首先选择父母本,父母本的选择主要取决于育种目标和目的,亲本植物必须从当地进行挑选,而且一定要适合当地条件。
第二步是去雄,如果自交系材料在正常条件下生长就需要去雄,去雄就是将雌亲本雄蕊在开裂散落之前去除。
单性生殖植物基本上不需要去雄,但双性生殖或自花授粉植物需要去雄。
2、套袋是植物杂交的第3步,去雄的雌花或花序一定要立即套袋,避免外来花粉对其进行授粉。
套袋的制作材料非常广泛,可以选择普通的纸、牛油纸、玻璃纸或细布,最常用的是牛油纸。
3、去雄后的花朵还要在套袋后贴上标签。
一般使用3厘米的圆形标签或约3×2厘米的矩形标签,然后将其用线系在花或花序的基部即可。
标签上的内容要简洁但必须涵盖以下内容:去雄日期、杂交日期、母本名称后加叉号,父本名称等。
例如,C×D表示C是母本,D 是父本。
4、杂交后的果荚或穗子一定要及时收获,并在完全干燥后进行脱粒,然后将获得的种子跟原始标签一起保存。
在下一个季节来临时,可以将储存的种子进行播种,这就是F1代植物。
F1代植物是杂交种子的后代,也就是杂种。
二、杂交育种和诱变育种有什么区别1、操作不同杂交育种是将两个或多个品种的优良性状通过交配全部集中在一起,然后再经过选择和培育,获得一个新品种。
诱变育种是利用物理或化学因素处理生物,使生物产生基因突变,利用这些变异培育成新品种。
2、原理不同杂交育种的原理主要是基因重组,通过基因重组然后产生新的基因型,从而培育新的优良性状。
诱变育种的原理是基因突变。
3、优点不同杂交育种的优点就是可以将两个或多个品种的优良性状集中诱变育种。
基因重组和杂交育种
(二)准性生殖
定义 通过同一物种两个不同菌株的体细胞发生融合,不 经过减数分裂而经有丝分裂导致低频率基因重组并 产生重组子。
存在范围:常见于一些真菌尤其是半知菌中,为半知 菌育种提供了一个重要手段。
Penicillum urticae 的准性杂交步骤
准性杂交:
选择亲本:以来自不同菌株的合适的营养缺陷型为亲本
肺炎链球菌 转化 过程
(二)转导
通过缺陷噬菌体为媒介,把供体细胞的小片段DNA携 带到受体细胞中,通过交换与整合,使后者获得前者部 分遗传性状的现象,称为转导。
由转导作用而获得部分新性状的重组细胞,称为转导子
普遍转导 转导的种类
局限转导
转导的特点
需要噬菌体做媒介,不需要细胞间直接接触。
普遍性转导 噬菌体可以转导供体染色体的任何部分到受体 细胞中。 局限性转导 噬菌体总是携带同样的片段到受体细胞中。
3. 转化过程
能进行转化的细胞必须是感受态细胞
感受态:
指受体细胞最易接受外源DNA片段并能实现转化的 一种生理状态。
一般微生物的感受态出现在生长的指数期后期,有 的出现在指数期末和稳定期
可人为利用环腺苷酸(cAMP)及Ca2+ 等提高 感受态水平,环腺苷酸可提高1000倍、Ca2+能 促使细胞进入感受致生物科学发生深刻变化,主要表现在: 第一,引发了生物科学中技术上的创新和迅猛发展。 第二,技术上的重大突破,促使生物科学获得前所末有的高速
度发展,开辟了新的研究领域,进入了新的研究深度。 第三,为改造生物提供强有力的手段,使生物学进入创造性的
新时期。 基因工程是否具有潜在的危害性,特别是转移至人体的基因是
强制异合:将两菌亲株的分生孢子混合涂基本培养基[-]平板, 并做各单亲本对照, [-]平板上长出的菌落是异核体或杂合二 倍体
杂交育种的原理,杂交育种的优缺点
杂交育种的原理,杂交育种的优缺点
杂交育种原理:基因重组,将父本和母本的优良性状综合到一起;基因互作,产生新的性状;基因累加,将控制同一性状的不同微效的基因积累起来,产生超亲性状。
定义:通过同一物种内不同品种的相互杂交,然后对后代进行筛选,最终获得具有父本和母本的优良性状,而又不包含父本和母本不良性状的优良个体。
一、杂交育种的原理
1、杂交育种的定义
杂交育种是指利用同一物种内具有不同遗传性的品种相互杂交,形成不同的遗传多样性,然后对杂交出来的后代进行筛选,最终获得具有父本和母本优良性状,而又不包含父本和母本不良性状的优良个体。
2、杂交育种的原理
(1)基因重组,将父本和母本的优良性状综合到一起。
(2)基因互作,产生新的性状。
(3)基因累加,将控制同一性状的不同微效的基因积累起来,
产生超亲性状。
3、亲本选配原则
(1)亲本优点多,需求的主要性状突出,缺点少而又容易克服,并且父本和母本之间的优缺点能够互补,不能有相同的缺点。
(2)父本和母本之间最好有一个是当地的优良品种,这样可以快速适应当地的环境。
(3)父本和母本在生态型和系统来源上应当有所不同,这样才能更容易选择出优良品种。
(4)父本和母本之间应当具有较好的配合力。
二、杂交育种的优缺点
1、杂交育种的优点
(1)可以将物种内的两个或者两个以上的优良形状综合到一个新的品种内。
(2)可以产生杂种优势,获得某一性状比亲本更加优秀的品种。
2、杂交育种的缺点
(1)杂交育种会出现性状分离,并且育种时间较长,过程复杂。
(2)杂交育种只能在同一个物种或者是关系比较近的物种之间进行,无法跨越物种进行。
杂交育种的原理和步骤
杂交育种的原理和步骤在农业生产中,杂交育种是一种非常重要的技术手段,它能够将不同品种或品系之间的优良性状进行组合和优化,培育出具有优良性状的新品种,提高农作物的产量和品质。
杂交育种的原理和步骤是农业生产中的重要知识,通过了解杂交育种的原理和步骤,我们可以更好地理解农业生产中的育种技术和农作物改良方法。
本篇科普资料将介绍杂交育种的原理、步骤以及应用等方面,的优良性状得以集中,并克服亲本品种的某些缺陷,以实现品种的改良和优化。
二、杂交育种的步骤选择亲本:选择具有不同优良性状的品种或品系作为亲本,要求这些亲本之间具有较好的遗传差异,以保证后代能够产生丰富的变异。
杂交:将选定的亲本进行杂交,以产生杂种后代。
根据育种目标的不同,可以选择不同的杂交方式,如单交、复交、回交等。
选种:从杂种后代中筛选出具有优良性状的个体,淘汰具有不良性状的个体。
选种时需要考虑目标性状、产量、品质、抗逆性等因素。
自交和繁育:对选出的优良个体进行自交,以产生自交后代。
自交后代会再次发生性状分离,需要进一步筛选和繁育,以获得稳定的新品种。
品系鉴定和品种审定:经过多代自交和繁育后,对获得的稳定新品种进行品系鉴定和品种审定,以确定其是否具有推广价值。
三、杂交育种的应用杂交育种在农业生产中得到了广泛应用,如水稻、小麦、玉米、棉花等主要农作物都经过了杂交育种的改良。
通过杂交育种,可以培育出具有高产、优质、抗病、抗逆等优良性状的新品种,提高农作物的产量和品质,促进农业生产的可持续发展。
四、杂交育种的优缺点优点:(1)能够利用不同品种之间的基因重组和性状互补,培育出具有优良性状的新品种,提高农作物的产量和品质。
(2)能够克服亲本品种的某些缺陷,使品种更加适应环境和市场需求。
(3)方法简单易行,适用范围广,可以在不同作物和不同生态条件下进行育种。
缺点:(1)杂交育种过程中需要经过多代自交和繁育,周期较长,需要耐心等待。
(2)杂交育种过程中需要进行多次筛选和繁育,工作量大,需要投入大量的人力物力。
几种育种方式比较
下面的几种育种方式各有其独特价值,优势互补。
1.选择育种仅靠单纯的人工选择,利用自然发生的可遗传变异(后面的育种方式利用的不过是人工诱发或创造的可遗传变异罢了,本质并没有什么多大的区别)。
可利用的变异少,是最古老的育种方式。
但杂交育种、单倍体育种、诱变育种、多倍体育种过程都是离不开人工选择的。
2.杂交育种通过杂交实现基因重组,集中不同品种的优良性状。
缺点是往往需要人工选择多代,才能得到纯种,烦琐耗时;远缘杂交不亲合;只能获得现有品种的性状新组合,而不能获得前所未有的新性状。
只是品种的改良。
3.单倍体育种获得单倍体并不是育种目标,而是手段。
先通过杂交获得F1代,取F1代花粉离体培养,获得各型单倍体幼苗,经(秋水仙素)诱导染色体加倍,获得可育植株,因为都是纯合,依表型直接选择留种即可。
从亲本到育种完成,可望二年实现,相较于杂交育种,进程大为加快,最大的意义就是缩短育种的年限。
花药离体培养和人工诱导染色体加倍,在技术上比杂交育种复杂。
从遗传变异的角度说,单倍体育种利用的是染色体变异(数目减少)原理;从生物发育的角度说,还利用了组织培养的细胞全能性原理。
4.诱变育种通过诱发基因突变,获得高突变率,短时间产生大量变异新类型,使生物获得新性状,通过选择培育,形成生物新种。
这种育种方式相对于杂交育种对品种的改良,可以说具有革命性的意义。
突变不定向,有利变异少,处理材料多。
5.基因工程用在育种上,既能克服诱变育种的盲目性,定向改造生物的遗传性状,基因的体外重组又跨越了杂交育种的物种间障碍,为寻找优良基因拓宽了选择范围。
6.多倍体育种通过人工诱导染色体加倍获得性状优于亲本的多倍体是育种的目标。
往往要结合杂交手段,如三倍体无子西瓜的培育。
7.细胞工程关键技术环节是体细胞杂交和组织培养。
克服有性生殖远缘杂交不亲合的障碍,拓展用于杂交的亲本组合范围。
常见的育种方式有杂交育种、诱变育种、单倍体育种、多倍体育种,基因工程育种,细胞工程育种等杂交育种:1.原理:基因重组2.常用方法:杂交—自交-筛选-自交3.优点:是位于不同个体上的优良性状集中于一个个体上4.缺点:育种时间长,过程繁琐5.实例:杂交水稻,中国荷斯坦牛诱变育种:1.原理:基因突变2.常用方法:物理方法:X射线、γ射线、紫外线、激光等化学方法:亚硝酸、硫酸二乙酯、秋水仙素等3.优点:提高突变频率,短时间内获得优良的品种4.缺点:有利突变少,必须处理掉大量材料5.实例:诱变大豆,青霉素高产菌株的培育,太空小麦、太空椒多倍体育种1.原理:染色体变异2.常用方法:秋水仙素处理萌发的种子或幼苗3.优点:果实、种子大,营养丰富4.缺点:发育迟缓;在动物中难以展开5.实例:三倍体无籽西瓜单倍体育种:1.原理:染色体变异2.常用方法:花药离体培养形成单倍体,然后用秋水仙素处理3.优点:明显缩短育种年限4.缺点:方法复杂,存活率低5.实例:小麦花药离体培养基因工程育种原理:基因重组(或异源DNA重组)。
基因重组和杂交育种培训课程
基因重组和杂交育种培训课程1. 引言基因重组和杂交育种是现代农业中重要的技术手段,通过重组和组合优良基因,可以改良作物的性状和品质,提高产量和抗病虫害能力。
因此,对于农业从业者来说,掌握基因重组和杂交育种的知识和技能是至关重要的。
本文档旨在介绍基因重组和杂交育种培训课程的内容和学习方法,帮助学员更好地理解和应用这一技术。
2. 课程目标本培训课程的目标是使学员能够掌握基因重组和杂交育种的基本概念、原理和方法,能够将这些知识应用于实际育种工作中,有效提高作物的品质和产量。
具体的课程目标如下:1.理解基因重组和杂交育种的基本概念和原理;2.掌握基因重组和杂交育种的技术方法;3.学习如何利用基因重组和杂交育种提高作物的产量和抗性;4.熟悉基因重组和杂交育种在实际育种工作中的应用;5.培养学员的实践能力,能够独立设计和开展基因重组和杂交育种实验。
3. 课程内容本培训课程包括以下几个模块:3.1 基因重组的基本概念和原理•DNA结构和功能;•基因的遗传信息传递方式;•基因重组的定义和意义;•基因重组的原理和方法。
3.2 基因重组技术的应用•基因克隆技术和载体构建;•基因转化技术和转基因技术;•基因编辑和CRISPR技术;•基因组学和功能基因研究。
3.3 杂交育种的基本概念和原理•自交和杂交的概念;•杂交育种的意义和原则;•杂交育种的方法和步骤。
3.4 杂交育种技术的应用•杂交种子的选育和鉴定;•杂交组合的优选和搭配;•杂交种的生产和推广;•杂交种的田间管理和品质控制。
4. 学习方法本培训课程将采用以下学习方法:1.理论讲授:通过课堂讲授的方式,介绍基因重组和杂交育种的基本概念、原理和技术方法。
2.实验操作:学员将参与实验操作,进行基因重组和杂交育种技术的实践训练,提高实践能力。
3.讨论和案例分析:通过讨论和案例分析,引导学员深入理解基因重组和杂交育种的应用和实际问题解决。
4.实地考察:组织学员进行农业生产基地的实地考察,了解基因重组和杂交育种在实际育种工作中的应用。
几种重要的育种方式对比表格(详细)
几种重要的育种方式杂交育种诱变育种单倍体育种多倍体育种原理特可产生新的基因点型可产生新的基因、新的性状明显缩短育种年限基因重组基因突变染色体变异染色体变异获得植株器官大,营养丰富常杂交→自交→选用优→自交方法育甲×乙种↓程F1序↓○转基因育种基因重组使生物获得外源基因辐射诱变,激光诱变,作物空间技术育种花药离体培养用秋水仙素理萌发的种子或幼苗转基因(DNA重组)技术,把目的基因引入生物体内,培育新品种【1】提取目的基因【2】目的基因与运【3】目的基因导入受体细胞达、检测和鉴定原品种↓多种变异类型↓↓新品种原品种↓花药离↓体培养单倍体植株↓秋水仙↓素处理纯合可育个体原品种(秋水仙↓染色体加素处理)载体结合F2×↓○Fn性状能稳定遗传的新品种育种的目的性较倍的个体【4】目的基因的表能够提高变异的频率,产生多种多样的新类型;使后代性状稳定,加速育种良某些形状,增强抗逆性自交后代不发生性状分离,可以明显缩短育种年限器官较大,营养物质含量高目的性强,定向改变生物的性状,克服远缘杂交的不亲和性优强,能使不同个点体的优良性状集中到一个个体中进程;大幅度改杂交后代会出现性状分离,育种有利变异少,需要大量处理试验材料;突变具有不确技术复杂,且需与杂交育种配合发育迟缓,结实率低;在动物发面难以开展技术要求高,成功率比较低,有可能引起生态危机缺周期长,育种筛点选过程复杂;不能创造新的基因定性,盲目性大青霉素高产菌种,太空椒单倍体育种获得的矮杆抗锈病小麦三倍体无籽西瓜,八倍体小黑麦培育生产人胰岛素的大肠杆菌,抗虫棉实矮杆抗锈病小麦例品种的培养。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、转化过程
以革兰氏阳性的肺炎双球菌为材料,转 化过程大体是:
– A、双链DNA片段与感受态受体菌的细胞表 面特定位点结合。
– B、在位点上的DNA发生酶促分解,形成平 均分子量为(4~5) x 106D的DNA片段。
转化全过程
转化的分子机理
3、感受态
是指细胞最易接受外源DNA片段并能实现转化的 一种生理状态。只有处于感受态的细菌才能接受转 化因子,从出现到消失约为40分钟(对数期的中 期)
感觉态出现原因
细菌失去部分细胞壁的结果 细菌在细胞表面产生某种E引起
4、转化因子
转化是游离的DNA片断的转移和重组 游离的DAN片断叫转化因子 转化因子由供体提供 自然情况下可由细菌细胞自行裂解产生,
二、真核微生物的基因重组
1、有性杂交 2、准性杂交
真核微生物的基因重组 1、有性杂交
(Sexual Hybridization)
有性杂交,一般指性细胞间的 接合和随之发生的染色体重组,并 产生新遗传型后代的一种育种技术。
2、准性杂交
(Parasexual hybridization)
准性生殖是一种类似于有性生殖, 但更为原始的一种生殖方式,它可使同 种生物两个不同菌株的体细胞发生融合, 且不以减数分裂的方式而导致低频率的 基因重组并产生 重组子。
实验室里通过提取获得
(二)转导(Transduction)
通过缺陷噬菌体的媒介,把供体细胞的 DNA片段携带到受体细胞中,通过交换和整 合,使后者获得前者部分遗传性状的现象, 称转导。
转导又分为: 普遍性转导 局限性转导,两类。
1、普遍性转导
(Generalized transduction)
第三节
基因重组杂交育种
基因重组
凡把两个不同性状个体内的遗传
基因转移在一起重新组合,形成新 遗传型个体的方式,称基因重组
一、原核微生物的基因重组
(一)转化(Transformation) (二)转导(Transduction) (三)接合(Conjugation) (四)原生质体融合
( 一)转化(Transformation)
能形成极少数转导子,故称低频转导。
正常
λ λ
gal
bio 整合 gal
宿主基因组
正常切离 bio
不正常切离 (10-4—10-6)
低频转导(LFT)裂解物的形成 λ dgal
λ dbio
高频转导
正常
λ
λ dgal
UV
高频转导裂解物
双重溶源菌
4、溶源转变
温和噬菌体的基因整合到宿主核基因组上的现象
F因子的分子量为5 x 107Da 。
F因子和接合
F- 菌株 (雌株)
雄性菌株
F+ 菌株 Hfr菌株 F ́́ 菌株
接合过程
F因子转移和复制的细节
原核生物三种基因重组方式的比较
接合过程
转化
转导
(四)原生质体融合(Cytoplasmic fusion)
通过人为方法,使遗传性状不 同的两个细胞的原生质体发生融 合,并发生重组子的过程,称为原 生质体融合或细融合。
准性杂交的步骤
1) 菌丝联结(amastomosis): 发生在形状相同而遗传性有异的同一
完全普遍性转导 (co供m体 pietetransduction)
A-B+
A+B多数受体
形成溶源菌 鼠伤寒沙门氏菌
A-B+ A+B少数受体
A+B+
经重组形成转导子
2)流产普遍转导(Abortive transduction)
由于转导噬菌体所引入的野生型基因 并没有整合到受体菌的染色体上,因而不 能复制,当受体菌分裂为两个时,只有一 个细菌获得了这一基因,而另一个细菌未 获得,从而还是营养缺陷型细菌。
温和噬菌体并不携带外源供体菌的基因 这种温和噬菌体是完整的,而不是缺陷的 获得新性状的是溶源化的宿主细胞,而不是转导子 获得的性状可随噬菌体的消失而同时消失
(三)接合(Conjugation)
通过供体菌和受体菌完整细胞间的 直接接触而传递大段DNA的过程,称为 接合。
在细菌中,接合现象研究得最清楚 的是大肠杆菌。发现大肠杆菌有性别分 化, 决定它们性别的因子称为F因子 (致育因子 )。
噬菌体可误包供体菌中的任何基因, 并使受体菌实现各种性状的转导,称为 普遍性转导。
分两种:
1)完全转导
2)流产转导
1)完全普遍转导(Complete transduction)
在鼠伤寒沙门氏菌的完全转导实验中转导媒介 P22噬菌体在野生型菌株供体菌内发育时,极少数 (10-6~10-8)噬菌体将与噬菌体头部DNA芯子相仿 的供体菌DNA片段误包入其中,因此形成了完全不 含噬菌体本身DNA的假噬菌体,当假噬菌体将外源 DNA片段导入营养缺陷型菌株受体菌内时,由于导 入的供体DNA片段可与受体染色体组上的同源区段 配对,再通过双交换而重组到受体菌染色体上,形 成了遗传性稳定的转导子。
表现为基本培养基上除了正常大小的 菌落外,还有一些微小菌落。
流产转导
2、局限转导
(Restricted transduction)
局限转导: 通过某些部分缺陷的温和噬菌体把
供体菌的少数特定基因转移到受体菌中 的转导现象。
据转导频率的高低分为低频转导和 高频转导。
低频转导:指通过一般溶源菌释放的噬菌体所进行的转导,因其只
– C、 DNA双链中的一条单链逐步降解,同时, 另一条单链逐步进入细胞。
– D、 转化DNA单链与受体菌染色体组上的同源 区段配对,接着受体染色体组的相应单链片段 被切除,并被外来的单链DNA所交换和取代, 于是形成了杂种DNA区段。
– E、受体菌染色体组进行复制,杂合区段分离 成两个,其中之一类似供体菌,另一类似受体 菌。当细胞分裂后,此染色体分离形成了一个 转化子。
段通 D过 N细 A胞 的间 转的 移直 的接 过接 程触 ,能 叫进 接行 合大
接合及其发现
A+B+C-D-
维甲缺陷型
+
A-B-C+D+
苏缺赖陷型
A+B+C+D+
F 因 子(Fertility factor)
一种在染色体外的小型独立的环状 DNA,一般呈超螺旋状,具有自主的与 染色体进行同步复制和转移到其他细胞 中去的能力,此外,其中还带有一些对 其生命活动关系较小的基因。