人教版七年级数学上册 期末试卷专题练习(解析版)
人教版七年级上册数学《期末测试卷》含答案解析
七年级上学期数学期末测试卷一、选择题1.2019的相反数是().A. 2019B. -2019C.1 2019D.12019-2.2018年10月23日,世界上最长的跨海大桥——港珠澳大桥正式开通,这座大桥集跨海大桥、人工岛、海底隧道于一身,全长约55000米,其中55000用科学记数法可表示为()A. 35.510⨯ B. 35510⨯ C. 45.510⨯ D. 4610⨯3.下列各组单项式中,不属于同类项的是()A. 3a2b与﹣ba2B. m3与43C. 312xy-与2xy3 D. 43与344.如图,如果用剪刀沿直线将一个正方形图片剪掉一部分,发现剩下部分的周长比原正方形图片的周长要小,能正确解释这一现象的数字知识是()A. 两点之间,直线最短B. 经过一点有无数条直线C. 经过两点,有且仅有一条直线D. 两点之间,线段最短5.下列说法:①﹣a一定是负数;②|﹣a|一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是1;⑤平方等于它本身的数是1.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个6.已知a=2b﹣1,下列式子:①a+2=2b+1;②12a+=b;③3a=6b﹣1;④a﹣2b﹣1=0,其中一定成立的有()A. ①②B. ①②③C. ①②④D. ①②③④7.如图,是一个正方体,它展开图是下列四个展开图中的()A. B.C. D.8.小明在做解方程作业时,不小心将方程中的一个常数污染得看不清楚,被污染的方程是:2y+12=12y ﹣.小明翻看了书后的答案,此方程的解是y=﹣53,则这个常数是( ) A. 1 B. 2 C. 3 D. 49.在如图的2016年6月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是( )A. 27B. 51C. 69D. 7210.一商家进行促销活动,某商品的优惠措施是“第二件商品半价”.现购买2件该商品,相当于这2件商品共打了( )A. 5折B. 5.5折C. 7折D. 7.5折 11.下列说法:①画一条长为6cm 的直线; ②若AC =BC ,则C 为线段AB 的中点;③线段AB 是点A 到点B 的距离;④OC ,OD 为∠AOB 的三等分线,则∠AOC =∠DOC .其中正确个数是( ) A. 0个 B. 1个C. 2个D. 3个12.如图,是由相同的花盆按一定的规律组成的形如正多边形的图案,其中第1个图形共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…,则第10个图形中花盆的个数为( )A. 110B. 120C. 132D. 140二、填空题13.写出一个关于x 的一元一次方程,使它的解为x=5: . 14.在灯塔O 处观测到轮船A 位于北偏西54︒的方向,同时轮船B 在南偏东15︒的方向,那么AOB ∠的大小为______.15.点,,A B C 在同一条数轴上,且点A 表示的数为-1,点B 表示的数为5.若2BC AC =,则点C 表示的数为____________.16.一般情况下2323m n m n ++=+不成立,但也有数可以使得它成立,例如:m =n =0.使得2323m n m n ++=+成立的一对数m 、n 我们称为“相伴数对”,记为(m ,n ).若(x ,1)是“相伴数对”,则x 的值为_____.三、解答题17.计算(1)﹣20+(﹣14)﹣(﹣18)﹣13(2)﹣22+|5﹣8|+24÷(﹣3)×13. 18.解下列方程:(1) 23(25)7x x --=; (2)2523136x x -+=-. 19.先化简,再求值:()()22222322x xy y x yx y +--+-,其中1,2x y =-=.20.如图,大正方形的边长为a ,小正方形的边长为b.(1)用代数式表示阴影部分的面积;(2)当a=20,b=12时,求阴影部分的面积.21.某检修小组从A 地出发,在东西方向的线路上检修线路,如果规定向东方向行驶为正,向西方向行驶为负,一天行驶记录如下(单位:km ):﹣4,+7,﹣9,+8,+5,﹣3,+1,﹣5.(1)求收工时的位置;(2)若每km 耗油量为0.5升,则从出发到收工共耗油多少升?22.如图,点C 、D 是线段AB 上两点,点C 分线段AD 为1:3两部分,点D 是线段CB 的中点,8AD =.(1)求线段AC 的长;(2)求线段AB 的长.23.公园门票价格规定如下:某校七年级(1)(2)两个班共104人去游园,其中(1)班有40多人,且不足50人,经估算,如果两个班都以班为单位进行购票,则一共应付1240元,问:(1)两个班各有多少个学生?(2)如果两班联合起来,作为一个团体票能省多少钱?如果七(1)班单独组织去游园,作为组织者的你如何购票才最省钱?24.如图(1),O 为直线AB 上点,过点O 作射线OC ,30AOC ∠=︒,将一直角三角尺(30M ∠=︒)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.(1)若将图(1)中的三角尺绕点O 以每秒5︒的速度,沿顺时针方向旋转t 秒,当OM 恰好平分BOC ∠时,如图(2).①求t 值; ②试说明此时ON 平分AOC ∠;(2)将图(1)中的三角尺绕点O 顺时针旋转,设AON α∠=,COM β∠=, 当ON 在AOC ∠内部时,试求α与β的数量关系;(3)若将图(1)中的三角尺绕点O 以每秒5︒的速度沿顺时针方向旋转的同时,射线OC 也绕点O 以每秒8︒的速度沿顺时针方向旋转,如图(3),那么经过多长时间,射线OC 第一次平分MON ∠?请说明理由.答案与解析一、选择题1.2019的相反数是( ).A. 2019B. -2019C. 12019D. 12019- 【答案】B【解析】【分析】根据相反数的定义,即可求解.【详解】2019的相反数是:-2019,故选B .【点睛】本题主要考查相反数的定义,掌握相反数的定义,是解题的关键.2.2018年10月23日,世界上最长的跨海大桥——港珠澳大桥正式开通,这座大桥集跨海大桥、人工岛、海底隧道于一身,全长约55000米,其中55000用科学记数法可表示为( )A. 35.510⨯B. 35510⨯C. 45.510⨯D. 4610⨯ 【答案】C【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n ,其中1≤|a|<10,n 为整数,据此判断即可. 【详解】解:55000=5.5×104. 故选:C .【点睛】本题主要考查了用科学记数法表示较大的数,一般形式为a×10n ,其中1≤|a|<10,确定a 与n 的值是解题的关键.3.下列各组单项式中,不属于同类项的是( )A. 3a 2b 与﹣ba 2B. m 3与43C. 312xy -与2xy 3D. 43与34【答案】B【解析】【分析】根据同类项定义对四个选项进行逐一分析即可.【详解】解:A 、3a 2b 与﹣b 2a 中所含字母相同,相同字母的指数相等,是同类项,不符合题意;B、m3与43中所含字母不同,不是同类项,符合题意;C、3m2n3与﹣n3m2中所含字母相同,相同字母的指数相等,是同类项,不符合题意;D、所有常数项都是同类项,不符合题意.故选:B.【点睛】本题主要考查同类项的概念,掌握同类项的概念是解题的关键.4.如图,如果用剪刀沿直线将一个正方形图片剪掉一部分,发现剩下部分的周长比原正方形图片的周长要小,能正确解释这一现象的数字知识是()A. 两点之间,直线最短B. 经过一点有无数条直线C. 经过两点,有且仅有一条直线D. 两点之间,线段最短【答案】D【解析】【分析】根据两点之间,线段最短解答即可.【详解】解:剪之前的图形周长= ED+EF+FB+AD+AC+BC,因为两点之间线段最短.剪完之后的图形周长=ED+EF+FB+AD+AB,AC+BC>AB,∴剩下部分的周长比原正方形图片的周长要小,故选:D.【点睛】本题考查的是线段的性质,掌握两点之间,线段最短是解题的关键.5.下列说法:①﹣a一定是负数;②|﹣a|一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是1;⑤平方等于它本身的数是1.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个【答案】A【解析】【详解】根据负数的概念,当a≤0时,-a≥0,故①不正确;|-a|≥0,是非负数,故②不正确;根据乘积为1的两数互为倒数,可知倒数是本身的数为±1,故③正确;根据绝对值的意义,一个正数的绝对值是本身,0的绝对值是0,负数的绝对值是其相反数,故④不正确;由平方的意义,1和0的平方均为她本身,故⑤不正确.故选A.【点睛】此题主要考查了有理数的相关概念,解题时要明确正负数,相反数,绝对值,倒数的意义及特点,然后从中判断即可.相反数:只有符号不同的两数互为相反数;绝对值:一个正数的绝对值是本身,0的绝对值是0,一个负数的绝对值是其相反数;倒数:乘积为1的两数互为倒数.6.已知a=2b﹣1,下列式子:①a+2=2b+1;②12a+=b;③3a=6b﹣1;④a﹣2b﹣1=0,其中一定成立的有()A. ①②B. ①②③C. ①②④D. ①②③④【答案】A【解析】【分析】根据等式的基本性质对四个小题进行逐一分析即可.【详解】解:①∵a=2b﹣1,∴a+2=2b﹣1+2,即a+2=2b+1,故此小题正确;②∵a=2b﹣1,∴a+1=2b,∴12a+=b,故此小题正确;③∵a=2b﹣1,∴3a=6b﹣3,故此小题错误;④∵a=2b﹣1,∴a﹣2b+1=0,故此小题错误.所以①②成立.故选:A.【点睛】本题主要考查等式的基本性质,掌握等式的基本性质是解题的关键.7.如图,是一个正方体,它的展开图是下列四个展开图中的()A. B.C. D.【答案】A【解析】【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:由原正方体的特征可知,含有4,6,8的数字的三个面一定相交于一点,而选项B、C、D中,经过折叠后与含有4,6,8的数字的三个面一定相交于一点不符.故选:A.【点睛】本题主要考查的是几何体的展开图,利用带有数的面的特点及位置解答是解题的关键8.小明在做解方程作业时,不小心将方程中的一个常数污染得看不清楚,被污染的方程是:2y+12=12y﹣.小明翻看了书后的答案,此方程的解是y=﹣53,则这个常数是()A. 1B. 2C. 3D. 4 【答案】B【解析】【分析】设常数为a,代入得出2y+12=12y﹣a,把y=﹣53代入求出2y+12=﹣176,即可得出方程12×(﹣53)﹣a=﹣176,求出方程的解即可.【详解】解:设常数为a,则2y+12=12y﹣a,把y=﹣53代入得:2y+12=﹣176,12×(﹣53)﹣a=﹣176,解得:a=2,故选B.考点:一元一次方程的解.9.在如图的2016年6月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是( )A. 27B. 51C. 69D. 72【答案】D【解析】设第一个数为x,则第二个数为x+7,第三个数为x+14.列出三个数的和的方程,再根据选项解出x,看是否存在.解:设第一个数为x,则第二个数为x+7,第三个数为x+14故三个数的和为x+x+7+x+14=3x+21当x=16时,3x+21=69;当x=10时,3x+21=51;当x=2时,3x+21=27.故任意圈出一竖列上相邻的三个数的和不可能是72.故选D.“点睛“此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.10.一商家进行促销活动,某商品的优惠措施是“第二件商品半价”.现购买2件该商品,相当于这2件商品共打了()A. 5折B. 5.5折C. 7折D. 7.5折【答案】D【解析】【分析】根据题意设第一件商品x元,买两件商品共打y折,利用价格列出方程即可求解.【详解】解:设第一件商品x 元,买两件商品共打了y 折,根据题意可得: x+0.5x=2x•10y ,解得:y=7.5 即相当于这两件商品共打了7.5折.故选D .【点睛】本题考查一元一次方程的应用,找到正确的等量关系是解题关键.11.下列说法:①画一条长为6cm 的直线;②若AC =BC ,则C 为线段AB 的中点;③线段AB 是点A 到点B 的距离;④OC ,OD 为∠AOB 的三等分线,则∠AOC =∠DOC .其中正确的个数是( )A. 0个B. 1个C. 2个D. 3个【答案】A【解析】【分析】根据直线的定义与性质、线段的中点的定义、线段长度的定义和角三等分线的定义逐一判断即可得.【详解】解:①直线没有长度,所以画一条长为6cm 的直线错误;②若AC =BC 且C 在线段AB 上,则C 为线段AB 的中点,此结论错误;③线段AB 的长度是点A 到点B 的距离,此结论错误;④OC ,OD 为∠AOB 的三等分线,则∠AOC =2∠DOC 或∠AOC =∠DOC ,此结论错误;故选:A .【点睛】本题主要考查直线的性质,线段中点的定义,线段的长度,角三等分线等,掌握线段和角的基本知识和性质是解题的关键.12.如图,是由相同的花盆按一定的规律组成的形如正多边形的图案,其中第1个图形共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…,则第10个图形中花盆的个数为( )A. 110B. 120C. 132D. 140 【答案】C【解析】【分析】设第n个图形一共有a n个花盆(n为正整数),观察图形,根据各图形中花盆数量的变化找出变化规律“a n=(n+2)2﹣(n+2)(n为正整数)(或者a n=(n+1)(n+2)亦可)”,依此规律即可得出结论.【详解】解:设第n个图形一共有a n个花盆(n为正整数),观察图形,可知:a1=6=32﹣3,a2=12=42﹣4,a3=20=52﹣5,…,∴a n=(n+2)2﹣(n+2)(n为正整数),∴a10=122﹣12=132.故选C.【点睛】考查了规律型:图形的变化类,根据各图形中花盆数量的变化找出变化规律“a n=(n+2)2﹣(n+2)(n为正整数)”是解题的关键.二、填空题13.写出一个关于x的一元一次方程,使它的解为x=5:.【答案】x+1=6.【解析】试题分析:由5+1=6,列出解为x=5的方程即可.解:根据题意得:x+1=6.故答案为x+1=6.考点:一元一次方程的解.∠的大小14.在灯塔O处观测到轮船A位于北偏西54︒的方向,同时轮船B在南偏东15︒的方向,那么AOB为______.【答案】141︒【解析】【分析】根据线与角的相关知识:具有公共点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的两条边,明确方位角,即可得解.【详解】根据题意可得:∠AOB=(90-54)+90+15=141°.故答案为141°.【点睛】此题主要考查角度的计算与方位,熟练掌握,即可解题.15.点,,A B C 在同一条数轴上,且点A 表示的数为-1,点B 表示的数为5.若2BC AC =,则点C 表示的数为____________.【答案】-7或1.【解析】【分析】AB=6,分点C 在A 左边和点C 在线段AB 上两种情况来解答.【详解】AB=5-(-1)=6,C 在A 左边时,∵BC=2AC ,∴AB+AC=2AC ,∴AC=6,此时点C 表示的数为-1-6=-7;C 在线段AB 上时,∵BC=2AC ,∴AB-AC=2AC ,∴AC=2,此时点C 表示的数为-1+2=1,故答案为-7或1.【点睛】本题考查了数轴及两点间的距离;本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.16.一般情况下2323m n m n ++=+不成立,但也有数可以使得它成立,例如:m =n =0.使得2323m n m n ++=+成立的一对数m 、n 我们称为“相伴数对”,记为(m ,n ).若(x ,1)是“相伴数对”,则x 的值为_____.【答案】﹣49. 【解析】【分析】利用新定义“相伴数对”列出方程,解方程即可求出x 的值.【详解】解:根据题意得:11235x x , 去分母得:15x+10=6x+6,移项合并得:9x =﹣4,解得:x =﹣49. 故答案为﹣49. 【点睛】本题考查解一元一次方程,正确理解“相伴数对”的定义是解本题的关键.三、解答题17.计算(1)﹣20+(﹣14)﹣(﹣18)﹣13(2)﹣22+|5﹣8|+24÷(﹣3)×13. 【答案】(1)﹣29;(2)113-. 【解析】【分析】(1)按照有理数的加减混合运算计算即可;(2)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.【详解】解:(1)﹣20+(﹣14)﹣(﹣18)﹣13=﹣20﹣14+18﹣13=﹣47+18=﹣29;(2)﹣22+|5﹣8|+24÷(﹣3)×13 =﹣4+3﹣8×13=﹣4+3﹣83 =﹣113. 【点睛】本题主要考查有理数的加减乘除混合运算,掌握有理数混合运算的顺序和法则是解题的关键. 18.解下列方程:(1) 23(25)7x x --=; (2) 2523136x x -+=-.【答案】(1)x=2;(2)x=136. 【解析】【分析】 (1)去括号、移项、合并同类项、系数化为1,依此即可求解;(2)去分母、去括号、移项、合并同类项、系数化为1,依此即可求解.【详解】(1)2x-3(2x-5)=7,2x-6x+15=7,2x-6x=7-15,-4x=-8,x=2;(2)2x 52x 3136-+=-, 2(2x-5)=6-(2x+3),4x-10=6-2x-3,4x+2x=6-3+10,6x=13, x=136. 【点睛】此题考查了解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a 形式转化.19.先化简,再求值:()()22222322x xy yx yx y +--+-,其中1,2x y =-=【答案】22x y -+; 3.【解析】【分析】先根据去括号、合并同类项化简,然后再把x 、y 的值代入求解.【详解】原式=222223224x xy y x xy y +---+=222222243x x xy xy y y -+-+-=22x y -+当1,2x y =-=时,原式=()2212143--+=-+=【点睛】本题考查了整式的化简求值.注意先化简,再进一步代入求得数值即可.20.如图,大正方形的边长为a ,小正方形的边长为b.(1)用代数式表示阴影部分的面积;(2)当a=20,b=12时,求阴影部分的面积.【答案】(1)S 阴影=12ab ;(2)S 阴影=120. 【解析】【分析】 (1)阴影部分分为两个三角形面积之和,表示出即可;(2)把a 与b 的值代入(1)中结果中计算即可.【详解】(1)根据题意得:S 阴12= b 212+b (a ﹣b )12=b 212+ab 12-b 212=ab ; (2)当a =20,b =12时,原式=120122⨯⨯=120. 【点睛】本题考查了代数式求值,以及列代数式,熟练掌握运算法则是解答本题的关键.21.某检修小组从A 地出发,在东西方向的线路上检修线路,如果规定向东方向行驶为正,向西方向行驶为负,一天行驶记录如下(单位:km ):﹣4,+7,﹣9,+8,+5,﹣3,+1,﹣5.(1)求收工时的位置;(2)若每km 耗油量为0.5升,则从出发到收工共耗油多少升?【答案】(1)收工时回到出发地A 地;(2)若从出发到收工共耗油21升.【解析】【分析】(1)利用正负数加法运算的法则,即可求出结论;(2)不管朝什么方向走,都要耗油,故耗油量只跟路程有关,即各数据绝对值之和.【详解】解:(1)﹣4+(+7)+(﹣9)+(+8)+(+5)+(﹣3)+(+1)+(﹣5)=﹣4+7﹣9+8+5﹣3+1﹣5=0km .答:收工时回到出发地A 地.(2)(|﹣4|+|+7|+|﹣9|+|+8|+|+5|+|﹣3|+|+1|+|﹣5|)×05=(4+7+9+8+5+3+1+5)×0.5=42×0.5=21(升).答:从出发到收工共耗油21升.【点睛】本题主要考查有理数加法运算的实际应用,掌握有理数的加法法则是解题的关键.AD .22.如图,点C、D是线段AB上两点,点C分线段AD为1:3两部分,点D是线段CB的中点,8(1)求线段AC的长;(2)求线段AB的长.【答案】(1)AC=2;(2)AB=14.【解析】【分析】(1)设AC长为x,可得CD=3x,BD=3x,则有x+3x=8;(2)AB=AC+CD+BD=x+3x+3x=7x=14.【详解】解:(1)设AC长为x,因为点C分线段AD为1:3,∴CD=3x,∵点D是线段CB的中点,∴BD=3x,∵AD=8,AC+CD=AD,即x+3x=8得x=2,∴AC=2;(2)AB=AC+CD+BD=x+3x+3x=7x=14,∴AB长为14.【点睛】本题考查线段两点间的距离;根据点的位置准确确定两点的距离是解题的关键.23.公园门票价格规定如下:某校七年级(1)(2)两个班共104人去游园,其中(1)班有40多人,且不足50人,经估算,如果两个班都以班为单位进行购票,则一共应付1240元,问:(1)两个班各有多少个学生?(2)如果两班联合起来,作为一个团体票能省多少钱?如果七(1)班单独组织去游园,作为组织者的你如何购票才最省钱?【答案】(1)七年级(1)班48人,(2)班56人;(2)如果两班联合起来,作为一个团体票能省304元;七(1)班单独组织去游园,直接购买51张票更省钱【解析】【分析】(1)根据题意设七年级(1)班x 人,可以列出相应的方程,从而可以解答本题;(2)根据题意和表格中的数据进行分析进而可以解答本题.【详解】解:(1)设七年级(1)班x 人,13x+11(104﹣x )=1240,解得,x=48,∴104﹣x=56,答:七年级(1)班48人,(2)班56人;(2)1240﹣104×9=1240﹣936=304(元),即如果两班联合起来,作为一个团体票能省304元;七(1)班单独组织去游园,如果按实际人数购票,需花费:48×13=624(元),若购买51张票,需花费:51×11=561(元),∵561<624,∴七(1)班单独组织去游园,直接购买51张票更省钱.【点睛】本题考查一元一次方程的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用方程的思想解答.24.如图(1),O 为直线AB 上点,过点O 作射线OC ,30AOC ∠=︒,将一直角三角尺(30M ∠=︒)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.(1)若将图(1)中的三角尺绕点O 以每秒5︒的速度,沿顺时针方向旋转t 秒,当OM 恰好平分BOC ∠时,如图(2).①求t 值; ②试说明此时ON 平分AOC ∠;(2)将图(1)中的三角尺绕点O 顺时针旋转,设AON α∠=,COM β∠=, 当ON 在AOC ∠内部时,试求α与β的数量关系;(3)若将图(1)中的三角尺绕点O 以每秒5︒的速度沿顺时针方向旋转的同时,射线OC 也绕点O 以每秒8︒的速度沿顺时针方向旋转,如图(3),那么经过多长时间,射线OC 第一次平分MON ∠?请说明理由. 【答案】(1)①t=3s ;②证明见解析;(2)β=α+60°;(3)经过5秒OC 平分∠MON .【解析】【分析】(1)①根据角平分线的定义计算即可;②求出∠AON ,∠CON 的值即可判断;(2)根据题意列方程即可得到结论;(3)设∠AON=5t ,∠AOC=30°+8t ,根据∠AOC-∠AON=∠CON ,构建方程即可解决问题. 【详解】解:(1)①如图2中,∵∠AOC=30°,∴∠BOC=180°-∠AOC=150°,∵OM 平分∠BOC ,∴∠COM=∠BOM=12∠BOC=75°, ∠AON=180°-90°-75°=15°,∴t=155︒=3s , ②当t=3时,∠AON=3t=15°,∠CON=30°-3t=15°,∴∠AON=∠CON ,∴ON 平分∠AOC ;(2)∵∠CON=30°-α=90°-β, ∴β=α+60°;(3)∵OC 平分∠MON ,∠MON=90°,∴∠CON=∠COM=45°,∵三角板绕点O 以每秒5°速度,射线OC 也绕O 点以每秒8°的速度沿顺时针方向旋转一周,∴设∠AON=5t,∠AOC=30°+8t,∵∠AOC-∠AON=∠CON,∴30°+8t-5t=45°,解得t=5,∴经过5秒OC平分∠MON.【点睛】本题考查角的计算、角平分线的定义、旋转变换等知识,解题的关键是理解题意.。
最新人教版数学七年级上学期《期末检测卷》带答案解析
七年级上学期数学期末测试卷一.选择题(每小题 4 分,共 32 分)1.-2018的倒数是( )A. -2018B. 2018C. 12018-D. 120182.单项式28x y -的次数与系数之和是( )A. -7B. -6C. -5D. 53.从左面看如图所示的几何体可得到的平面图形是( )A. B. C. D. 4.若 ()173m m x --=是关于 x 的一元一次方程,则 m 的值是( )A. 1B. -1C. ±1D. 25.下列运算中正确 的是( )A. (-5)-(-3)=-8B. -(-3)2=-6C. 3a 2b-3ab 2=0D. 5a 2-4a 2=1a 2 6.如图,将一副三角板如图放置,∠COD=28°,则∠AOB 的度数为( )A. 152°B. 148°C. 136°D. 144° 7.如图:点 C 是线段 AB 上的中点,点 D 在线段 CB 上,若AD=8,DB=3AD 4,则CD 的长为( )A. 4B. 3C. 2D. 18.某项工程甲单独完成需要 45 天,乙单独成需要 30 天,若乙先单独干 20 天,剩余的由甲单独完成,问甲、乙一共用几天全部工作.设甲、乙一共用 x 天可以完成全部工作,则符合题意的方程是( ) A. 202013045x ++= B. 202014530x -+= C. 202013045x -+= D. 202014530x ++= 二、填空题:(每小题 3 分,共 18 分)9.2017年5月18日,我国在南海北部神弧海域进行的可燃冰试开采成功,标志着我国成为全球第一个在海域可燃冰开采中获得连续稳定的国家.目前每日的天然气试开采量约为16000立方米,把16000立方米用科学记数法表示为______立方米.10.若5723m x y -与33n x y 是同类项,则mn 的值是__________11.已知∠a=53°17’,那么∠a 余角的度数________.12.一个长方形的长为12a+b ,它的周长为 3a+2b ,则它的宽为________. 13.已知船在静水中的速度是a 千米/小时,水流速是b 千米/小时,则顺流航行5小时比逆流航行 3小时多航行了_______千米.14.将图①中的正方形剪开得到图②.图②中共有 4 个正方形;将图②中一个正方形剪开得到图③;图③中共有7 个正方形;将图③中一个正方形剪开得到图④,图④中共有 10 个正方形如此下去,则第 2016 个图中共有正方形的个数为_________三.解答题(共 9 题,共 70 分,解答应写出必要的计算过程.推理步或文字说明) 15.计算:(1)104(2)(3)-----++ (2)2211(3)5(2)2-⎛⎫-+⨯-+ ⎪⎝⎭(3)4151(24)186⎛⎫---⨯-- ⎪⎝⎭16.先化简,再求值: 1-3(2ab+a )+[b-2(2a-3ab )],其中a=-1,b=217.解方程:(1)2(x-3)=2-3(x+1)(2)5731162x x x ---=- 18.某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数):(1)本周生产量最多的一天比生产量最少的一天多生产 辆;(2)本周总的生产量是多少辆?19.在沙坪坝住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图形如图所示) (1)用含m,n 的代数式表示该广场的面积S ;(2)若m,n 满足(m ﹣6)2+|n ﹣5|=0,求出该广场的面积.20.某工厂计划生产一种新型豆浆机,每台豆浆机需3个A 种零件和5个B 种零件正好配套。
人教版七年级上学期数学期末考试试卷(含答案解析)
人教版七年级上学期数学期末考试试卷考生注意:1.考试时间90分钟.题号一二三总分21 22 23 24 25 26 27 28分数一、选择题(本大题共10小题,每小题3分,共30分)1.武汉市江岸区某天的最高气温为5℃,最低气温为-3℃,这天的最高气温与最低气温的温差为()A.2℃B.-3℃C.5℃D.8℃2.美国、菲律宾等国不断在中国南海九段线内滋事,中国海军展现了维护中国领海主权的决心和信心,据悉,中国南海九段线以内的所有海域面积约为3120000平方千米,把数3120000用科学记数法表示为()A.3.12×510B.3.12×610C.31.2×510D.0.312×710 3.已知x2m﹣3+1=7是关于x的一元一次方程,则m的值是()A.﹣1 B.1 C.﹣2 D.24.一个点从数轴上表示﹣2的点开始,向右移动7个单位长度,再向左移动4个单位长度.则此时这个点表示的数是()A.0 B.2 C.l D.﹣15.下列等式的变形正确的是()A.如果s=vt,那么v=B.如果x=6,那么x=3C.如果﹣x﹣1=y﹣1,那么x=y D.如果a=b,那么a+2=2+b6.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,若设这件夹克衫的成本是x元,根据题意,可得到的方程是()A.(1+50%)x×80%=x﹣28 B.(1+50%)x×80%=x+28C.(1+50%x)×80%=x﹣28 D.(1+50%x)×80%=x+287.下列说法中正确的是()A.38.15°=38.9′B.两点之间,直线最短C.两条射线构成的图形叫做角 D.互余的两个角不可能相等8.已知a﹣2b的值是﹣2,则(a﹣2b)2+2(a﹣2b)的值是()A.﹣4 B.﹣1 C.0 D.29.已知线段AB=10cm,在直线AB上有一点C,且线段BC=4cm,点M是线段AC的中点,则AM的长为()A.3cm B.7cm C.6cm D.3cm和7cm10.如图,当过O点画不重合的2条射线时,共组成1个角;当过O点画不重合的3条射线时,共组成3个角;当过O点画不重合的4条射线时,共组成6个角;….根据以上规律,当过O点画不重合的10条射线时,共组成()个角.A.28 B.36 C.45 D.55二、填空题(本大题共5小题,每小题3分,共15分,把答案写在题中横线上)11.A看B的方向是北偏东21°,那么B看A的方向是.12.已知14x6y2与﹣31x3m y2是同类项,则12m﹣24=.13.对于任意有理数a.b,定义关于“⊗”的一种运算如下:a⊗b=2a﹣b,例如:5⊗2=2×5﹣2=8,(﹣3)⊗4=2×(﹣3)﹣4=﹣10.若(x﹣3)⊗x=2011,则x的值为.14.如图,∠AOB=30°,∠BOC=70°,OE是∠AOC的平分线,则∠BOE的度数为.15.有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车;若每辆客车乘43人,则最后一辆车有2个空位.给出下面五个等式:①40m+10=43m ﹣2;②40m﹣10=43m+2;③=;④=;⑤43m=n+2.其中正确的是(只填序号).。
人教版 数学七年级上册期末检测试卷 试卷1(解析版)
数学七年级上册期末检测试卷一、选择题(每小题只有一个正确的选项,每小题3分,共45分)1.4的相反数是()A.﹣4B.4C.D.2.方程2x+6=0的解是()A.3B.﹣3C.2D.03.毕节市七星关区三板桥体育场占地30万平方米,可容纳观众80012人.30万平方米用科学记数法表示为()平方米.A.3×105B.30×104C.3×106D.3×1044.化简﹣2(m﹣n)的结果为()A.﹣2m﹣n B.﹣2m+n C.2m﹣2n D.﹣2m+2n5.代数式﹣x2y的系数是()A.3B.0C.﹣1D.16.下列去括号正确的是()A.a+(b﹣c)=a+b+c B.a﹣(b﹣c)=a﹣b﹣cC.a﹣(b﹣c)=a﹣b+c D.a+(b﹣c)=a﹣b+c7.下列说法中,正确的是()A.相交的两条直线叫做垂直B.经过一点可以画两条直线C.平角是一条直线D.两点之间的所有连线中,线段最短8.把方程去分母,正确的是()A.10x﹣5(x﹣1)=1﹣2(x+2)B.10x﹣5(x﹣1)=10﹣2(x+2)C.10x﹣5(x﹣1)=10﹣(x+2)D.10x﹣(x﹣1)=10﹣(x+2)9.下列事件,你认为是必然事件的是()A.打开电视机,正在播广告B.今天星期二,明天星期三C.今年的正月初一,天气一定是晴天D.一个袋子里装有红球1个、白球9个,每个球除颜色外都相同,任意摸出一个球是白色的10.小明做了以下4道计算题:①(﹣1)2020=2020②0﹣(﹣1)=﹣1③④请你帮他检查一下,他一共做对了()A.1题B.2题C.3题D.4题11.如图所示,在数轴上点A表示的数可能是()A.1.5B.﹣1.5C.﹣2.6D.2.612.在立方体的六个面上,分别标上“我、爱、实、验、中、学”,如图是立方体的三种不同摆法,则三种摆法的左侧面上三个字分别是()A.爱、实、验B.中、学、验C.中、我、验D.爱、中、学13.从如图的两个统计图中,可看出女生人数较多的是()A.初一(一)班B.初一(二)班C.两班一样多D.不能确定14.某种细菌在营养过程中,细菌每半小时分裂一次(由一个分裂为两个),经过两小时,这种细菌由1个可分裂繁殖成()A.8个B.16个C.4个D.32个15.已知x=﹣2是方程2x+m﹣4=0的一个根,则m的值是()A.8B.﹣8C.0D.2二、填空题(每小题5分,共25分)16.如图,直线AB、CD相交于O,∠COE是直角,∠1=57°,则∠2=.17.建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙,你能说明其中的原理是.18.若3a m b2与是同类项,则=.19.初一(2)班共有学生44人,其中男生有30人,女生14人,若在此班上任意找一名学生,找到男生的可能性比找到女生的可能性(填“大”或“小”).20.观察下面一列数,按某种规律在横线上填上适当的数:1,,,,,,则第n个数为.三、解答题(7小题,共80分)21.计算:(1)4×(﹣2)﹣(﹣8)÷2(2)22.解方程:(1)6y+2=3y﹣4(2)23.先化简,再求值:(4a2﹣3a)﹣(1﹣4a+4a2),其中a=﹣2.24.如图,是由5个正方体组成的图案,请在方格纸中分别画出它的从正面看、从左面看、从上面看的形状图.25.如图,直线AB、CD交于O点,且∠BOC=80°,OE平分∠BOC,OF为OE的反向延长线.(1)求∠2和∠3的度数;(2)OF平分∠AOD吗?为什么?26.中国男子国家足球队冲击2010年南非世界杯失利后,某新闻机构就中国足球环境问题随机调查了400人,其结果如下:意见非常不满意不满意有一点满意满意人数200160328百分比(1)计算出每一种意见人数占总调查人数的百分比(填在以上空格中);(2)请画出反映此调查结果的扇形统计图;(3)从统计图中你能得出什么结论?说说你的理由.27.在如图所示的2020年8月份日历中,(1)用一个长方形的方框圈出任意3×3个数,如果从左下角到右上角的“对角线”上的3个数字的和为39,那么这9个数的和为多少?(2)这个长方形的方框圈出的9个数的和能为216吗?(3)如果任意选择如上的阴影部分,那么其中的四个数a、b、c、d又有什么规律呢?请用含a、b、c、d的等式表示.(其中a、b、c、d四个数之间的大小关系是a<b<c<d,a、b、c、d为整数)参考答案一、选择题(每小题只有一个正确的选项,每小题3分,共45分)1.4的相反数是()A.﹣4B.4C.D.【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.解:根据相反数的含义,可得4的相反数是:﹣4.故选:A.2.方程2x+6=0的解是()A.3B.﹣3C.2D.0【分析】方程移项后,将x系数化为1,即可求出解.解:方程2x+6=0,移项得:2x=﹣6,解得:x=﹣3.故选:B.3.毕节市七星关区三板桥体育场占地30万平方米,可容纳观众80012人.30万平方米用科学记数法表示为()平方米.A.3×105B.30×104C.3×106D.3×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.解:30万=300000=3×105.故选:A.4.化简﹣2(m﹣n)的结果为()A.﹣2m﹣n B.﹣2m+n C.2m﹣2n D.﹣2m+2n【分析】利用分配律把括号内的2乘到括号内,然后利用去括号法则求解.解:﹣2(m﹣n)=﹣(2m﹣2n)=﹣2m+2n.故选:D.5.代数式﹣x2y的系数是()A.3B.0C.﹣1D.1【分析】根据单项式系数的定义进行解答即可.解:∵代数式﹣x2y的数字因数是﹣1,∴此单项式的系数是﹣1.故选:C.6.下列去括号正确的是()A.a+(b﹣c)=a+b+c B.a﹣(b﹣c)=a﹣b﹣cC.a﹣(b﹣c)=a﹣b+c D.a+(b﹣c)=a﹣b+c【分析】利用去括号添括号法则,逐项判断即可得出正确答案.解:A、D、a+(b﹣c)=a+b﹣c,故A和D都错误;B、C、a﹣(b﹣c)=a﹣b+c,故B错误,C正确;故选:C.7.下列说法中,正确的是()A.相交的两条直线叫做垂直B.经过一点可以画两条直线C.平角是一条直线D.两点之间的所有连线中,线段最短【分析】本题涉及直线,相交线的有关概念和性质.当两条直线相交所成的四个角中,有一个角是直角时,两条直线互相垂直.解:A、只有当相交的两条直线有一个角是直角时,才能叫做垂直,错误;B、经过一点可以画无数条直线,错误;C、平角和直线是两种不同的概念,说平角是一条直线,错误;D、两点之间的所有连线中,线段最短,是公理,正确.故选:D.8.把方程去分母,正确的是()A.10x﹣5(x﹣1)=1﹣2(x+2)B.10x﹣5(x﹣1)=10﹣2(x+2)C.10x﹣5(x﹣1)=10﹣(x+2)D.10x﹣(x﹣1)=10﹣(x+2)【分析】把方程的两边同时乘以10即可.解:方程的两边同时乘以10得,10x﹣5(x﹣1)=10﹣2(x+2).故选:B.9.下列事件,你认为是必然事件的是()A.打开电视机,正在播广告B.今天星期二,明天星期三C.今年的正月初一,天气一定是晴天D.一个袋子里装有红球1个、白球9个,每个球除颜色外都相同,任意摸出一个球是白色的【分析】必然事件就是一定发生的事件,依据定义即可作出判断.解:A、是随机事件,选项错误;B、是必然事件,选项正确;C、是随机事件,选项错误;D、是随机事件,选项错误.故选:B.10.小明做了以下4道计算题:①(﹣1)2020=2020②0﹣(﹣1)=﹣1③④请你帮他检查一下,他一共做对了()A.1题B.2题C.3题D.4题【分析】根据有理数的乘方可以判断①,根据有理数的加减法可以判断②③,根据有理数的除法可以判断④.解:(﹣1)2020=1,故①错误,不符合题意;0﹣(﹣1)=0+1=1,故②错误,不符合题意;﹣=﹣,故③正确,符合题意;÷(﹣)=﹣1,故④正确,符合题意;故选:B.11.如图所示,在数轴上点A表示的数可能是()A.1.5B.﹣1.5C.﹣2.6D.2.6【分析】根据点A位于﹣3和﹣2之间求解.解:∵点A位于﹣3和﹣2之间,∴点A表示的实数大于﹣3,小于﹣2.故选:C.12.在立方体的六个面上,分别标上“我、爱、实、验、中、学”,如图是立方体的三种不同摆法,则三种摆法的左侧面上三个字分别是()A.爱、实、验B.中、学、验C.中、我、验D.爱、中、学【分析】从3个图形看,和我相邻的有爱、验、中、学,那么和我相对的就是实,和爱相对的就是验,和中相对的就是学.依此答题即可.解:根据三个图形的汉字,可推断出来,和我相对的就是实,和爱相对的就是验,和中相对的就是学,∴三种摆法的左侧面上三个字分别是爱、中、学.故选:D.13.从如图的两个统计图中,可看出女生人数较多的是()A.初一(一)班B.初一(二)班C.两班一样多D.不能确定【分析】扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.解:因为没有男女生总数,只看所占百分比无法确定哪个班女生人数较多.故选:D.14.某种细菌在营养过程中,细菌每半小时分裂一次(由一个分裂为两个),经过两小时,这种细菌由1个可分裂繁殖成()A.8个B.16个C.4个D.32个【分析】本题考查有理数的乘方运算,细菌每半小时分裂一次(由一个分裂为两个),经过两小时,进行4次分裂,即24,计算出结果即可.解:2×2×2×2=24=16.故选:B.15.已知x=﹣2是方程2x+m﹣4=0的一个根,则m的值是()A.8B.﹣8C.0D.2【分析】虽然是关于x的方程,但是含有两个未知数,其实质是知道一个未知数的值求另一个未知数的值.解:把x=﹣2代入2x+m﹣4=0得:2×(﹣2)+m﹣4=0解得:m=8.故选:A.二、填空题(每小题5分,共25分)16.如图,直线AB、CD相交于O,∠COE是直角,∠1=57°,则∠2=33°.【分析】根据∠2=180°﹣∠COE﹣∠1,可得出答案.解:由题意得:∠2=180°﹣∠COE﹣∠1=180°﹣90°﹣57°=33°.故答案为:33°.17.建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙,你能说明其中的原理是两点确定一条直线.【分析】根据公理“两点确定一条直线”,来解答即可.解:∵两点确定一条直线,∴建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.故答案为:两点确定一条直线.18.若3a m b2与是同类项,则=0.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程求出n,m 的值,再代入代数式计算即可.解:∵3a m b2与是同类项,∴n=2,m=1,∴m﹣n=0故答案为:0.19.初一(2)班共有学生44人,其中男生有30人,女生14人,若在此班上任意找一名学生,找到男生的可能性比找到女生的可能性大(填“大”或“小”).【分析】分别求得找到男生和找到女生的概率即可比较出可能性的大小.解:∵初一(2)班共有学生44人,其中男生有30人,女生14人,∴找到男生的概率为:=,找到女生的概率为:=∴找到男生的可能性大,故答案为:大20.观察下面一列数,按某种规律在横线上填上适当的数:1,,,,,,则第n个数为.【分析】根据数据的规律可知,分子的规律是连续的奇数即2n﹣1,分母是12,22,32,42,52,…n2,所以第5个数是,第6个数是第n个数为.解:通过数据的规律可知,分子的规律是连续的奇数即2n﹣1,分母是12,22,32,42,52,…n2,第n个数为,那么第5项为:=,第6项的个数为:=.三、解答题(7小题,共80分)21.计算:(1)4×(﹣2)﹣(﹣8)÷2(2)【分析】(1)依据同号相乘得正,异号相乘得负计算;(2)运用乘法分配律计算比较简便.解:(1)4×(﹣2)﹣(﹣8)÷2,=﹣8+4,=﹣4;(2)原式=(﹣3)2×()+(﹣3)2×(﹣),=3﹣4=﹣1.22.解方程:(1)6y+2=3y﹣4(2)【分析】(1)此题为整式方程,只需移项,化系数为1,即可得到方程的解.(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而解出方程.解:(1)移项,得:6y﹣3y=﹣4﹣2;合并同类项,得:3y=﹣6;方程两边同除于3,得:y=﹣2;(2)去分母,得:2(x+1)﹣6=5x﹣1;去括号,得:2x+2﹣6=5x﹣1;移项、合并同类项,得:﹣3x=3;方程两边同除以﹣3,得:x=﹣1.23.先化简,再求值:(4a2﹣3a)﹣(1﹣4a+4a2),其中a=﹣2.【分析】本题应对代数式进行去括号,合并同类项,将代数式化为最简式,然后把a的值代入即可.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.解:(4a2﹣3a)﹣(1﹣4a+4a2)=4a2﹣3a﹣1+4a﹣4a2=a﹣1,当a=﹣2时,a﹣1=﹣2﹣1=﹣3.24.如图,是由5个正方体组成的图案,请在方格纸中分别画出它的从正面看、从左面看、从上面看的形状图.【分析】从正面看有2排,左边3层,右边2层;从左面看1排,3层;从上面看2排,每排1层.解:如图所示:25.如图,直线AB、CD交于O点,且∠BOC=80°,OE平分∠BOC,OF为OE的反向延长线.(1)求∠2和∠3的度数;(2)OF平分∠AOD吗?为什么?【分析】(1)根据邻补角的定义,即可求得∠2的度数,根据角平分线的定义和平角的定义即可求得∠3的度数;(2)根据OF分∠AOD的两部分角的度数即可说明.解:(1)∵∠BOC+∠2=180°,∠BOC=80°,∴∠2=180°﹣80°=100°;∵OE是∠BOC的角平分线,∴∠1=40°.∵∠1+∠2+∠3=180°,∴∠3=180°﹣∠1﹣∠2=180°﹣40°﹣100°=40°.(2)平分理由:∵∠2+∠3+∠AOF=180°,∴∠AOF=180°﹣∠2﹣∠3=180°﹣100°﹣40°=40°.∴∠AOF=∠3=40°,∴OF平分∠AOD.26.中国男子国家足球队冲击2010年南非世界杯失利后,某新闻机构就中国足球环境问题随机调查了400人,其结果如下:意见非常不满意不满意有一点满意满意人数200160328百分比(1)计算出每一种意见人数占总调查人数的百分比(填在以上空格中);(2)请画出反映此调查结果的扇形统计图;(3)从统计图中你能得出什么结论?说说你的理由.【分析】(1)由每个的人数除以总人数.再乘以100%,即可求得;(2)由各自的百分数乘以360°,即可得到每个小扇形的圆心角的度数,然后作扇形图即可;(3)扇形图能反映各种情况的百分比,根据扇形图即可得到答案.解:(1)∵×100%=50%,×100%=40%,×100%=8%,×100%=2%,(2)∵50%×360°=180°,40%×360°=144°,8%×360°=28.8°,2%×360°=7.2°,∴(3)人民对国家足球队非常不满意的人数占到一半.绝大部分人对中国足球环境问题不满意.27.在如图所示的2020年8月份日历中,(1)用一个长方形的方框圈出任意3×3个数,如果从左下角到右上角的“对角线”上的3个数字的和为39,那么这9个数的和为多少?(2)这个长方形的方框圈出的9个数的和能为216吗?(3)如果任意选择如上的阴影部分,那么其中的四个数a、b、c、d又有什么规律呢?请用含a、b、c、d的等式表示.(其中a、b、c、d四个数之间的大小关系是a<b<c<d,a、b、c、d为整数)【分析】(1)求出中间一个数,即可得答案;(2)设中间的数为y,列出代数式比较得出结果;(3)观察可得四个数的关系.解:(1)设对角线中间一个数为x,那么左下角的数为x+6,右上角的数为x﹣6,x+x+6+x﹣6=39 解得x=13,这9个数的和为5+6+7+12+13+14+19+20+21=162;(2)不能.设中间的数为y,则9y=216,解得y=24,那么矩形右下角的数为24+8=32,这是不可能的,∴不能;(3)a=b﹣1=c﹣6=d﹣7或b=a+1=c﹣5=d﹣6或c=a+6=b+7=d﹣1或d=a+7=b+6=c+1.。
七年级数学上学期期末考试真题汇编(人教版)探究与表达规律(八个考点) 专题讲练(解析版)
专题04 探究与表达规律(八个考点)专题讲练1、知识储备考点1. 数列的规律考点2. 数表的规律考点3..算式的规律考点4. 图形的规律(一次类)考点5 图形的规律(二次类)考点6. 图形的规律(指数类)考点7. 程序框图考点8. 新定义运算2、经典基础题3、优选提升题1. 解题思维过程:从简单、局部或特殊情况入手,经过提炼、归纳和猜想,探索规律,获得结论.有时候还需要通过类比联想才能找到隐含条件.一般有下列几个类型:1)数列的规律:把握常见几类数的排列规律及每个数与排列序号n之间的关系.2)等式的规律:用含有字母的代数式总结规律,注意此代数式与序号n之间的关系.3)图形(图表)规律:观察前几个图形,确定每个图形中图形的个数或图形总数与序号n之间的关系.4)图形变换的规律:找准循环周期内图形变换的特点,然后用图形变换总次数除以一个循环变换周期,进而观察商和余数.5)数形结合的规律:观察前n项(一般前3项)及利用题中的已知条件,归纳猜想一般性结论.2. 常见的数列规律:1)1,3,5,7,9,… ,21n-(n为正整数).2)2,4,6,8,10,…,2n(n为正整数).3)2,4,8,16,32,…,2n(n为正整数).4)2,6,12,20,…,(1)n n+(n为正整数).5)x-,x+,x-,x+,x-,x+,…,(1)n x-(n为正整数).6)特殊数列:①三角形数:1,3,6,10,15,21,…,(1)2n n+.②斐波那契数列:1,1,2,3,5,8,13,…,从第三个数开始每一个数等于与它相邻的前两个数的和.考点1. 数列的规律 【解题技巧】①符号规律:通常是正负间或出现的规律,常表示为(1)n -或1(1)n --或1(1)n +-;②数字规律:数字规律需要视题目而确定;○3字母规律:通常字母规律是呈指数变换,常表示为:n a 等形式。
例1.(2022·黑龙江牡丹江·七年级期末)按顺序观察下列五个数-1,5,-7,17,-31……,找出以上数据依次出现的规律,则第n 个数是_____________. 【答案】(2)1n -+【分析】所给的数可转化为:-1=1-21,5=1+22,-7=1-23,17=1+24,-31=1-25,…据此即可得第n 个数,从而可求解.【详解】解:∵-1=1-21,5=1+22,-7=1-23,17=1+24,-31=1-25,…,∵第奇数个数为:1-2n ;第偶数个数为:1+2n ;∵第n 个数为:()21n-+.故答案为:()21n-+. 【点睛】本题主要考查数字的变化规律,解答的关键是由所给的数字分析出存在的规律. 变式1.(2022·云南红河·八年级期末)一组按规律排列的单项式3a 、5a 2、7a 3、9a 4……,依这个规律用含字母n (n 为正整数,且n ≥1)的式子表示第n 个单项式为_______ 【答案】(21)n n a +【分析】找出前3项的规律,然后通过后面几项验证,找出规律得到答案. 【详解】解:3a =(2×1+1)a 1,5a 2=(2×2+1)a 2,7a 3=(2×3+1)a 3,… 第n 个单项式是:(2n +1)an .故答案为:(2n +1)an .【点睛】本题主要考查数字的变化规律,解题的关键是找出前几项的规律,然后验证,最后得到规律.变式2.(2022·山东烟台·七年级期末)按一定规律排列的单项式:3x ,5x -,7x ,9x -,11x ,……,第n 个单项式是( ) A .()211nn x -- B .()1211n n x -+-C .()1211n n x ---D .()211nn x +-【答案】B【分析】先观察系数与指数的规律,再根据规律定出第n 个单项式即可. 【详解】解:∵3x ,5x -,7x ,9x -,11x ,……,∵系数是奇数项为-1,偶数项为1,即系数的规律是(-1)n -1,指数的规律为2n +1,∵第n 个单项式为()1211n n x -+-,故选:B .【点睛】本题考查数式的变化规律,通过观察单项式的系数和指数,找到它们的规律是解题的关键.考点2. 数表的规律 【解题技巧】例1. (2022•绵阳市七年级期中)将正奇数按下表排成5列:第1列 第2列 第3列 第4列 第5列 第1行 1 3 5 7 第2行 15 13 11 9 第3行 17 19 21 23 ………2725若2021在第m 行第n 列,则m +n =( ) A .256B .257C .510D .511【分析】观察图表,每一行都有四个数,且奇数行排在第2﹣5列,偶数行排在第1﹣4列,根据2021在正奇数中的位置来推算m ,n .【解答】解:首先,从图表观察,每一行都有四个数,且奇数行排在第2﹣5列,偶数行排在第1﹣4列,其次,奇数可以用2x ﹣1表示,当x =1011时,2x ﹣1=2021,即2021是排在第1011个位置.在上表中,因为每行有4个数,且1011÷4=252•••••••3,因此2021应该在第253行,第4列,即m =253,n =4.∴m +n =257,故选:B .变式1.(2022·山东济南·七年级期末)将正整数按如图所示的规律排列,若用有序数对(a ,b )表示第a 行,从左至右第b 个数,例如(4,3)表示的数是9,则(15,10)表示的数是( )A .115B .114C .113D .112【答案】A【分析】观察图形可知,每一行的第一个数字都等于前面数字的个数再加1,即可得出(15,得出a,b的值分别为()A.9,10B.9,91C.10,91D.10,110【解题技巧】算式规律这一类没有固定的套路,主要依靠学生对已知算式的观察、总结、逻辑推理,发现期中的规律。
期末检测卷05(解析版) -2020-2021学年七年级数学上册期末综合复习专题提优训练(人教版)
2020-2021学年七年级数学上册期末综合复习专题提优训练(人教版)期末检测卷05一、选择题(本题共计6小题,每题3分,共计18分)1.(2020·安徽淮南市·七年级期中)李白出生于公元701年,我们记作701+,那么秦始皇出生于公元前256年,可记作( ) A .256- B .256 C .957- D .445【答案】A2.(2020·徐州树德中学七年级月考)下列运算中,结果正确的是( )A .224347a a a +=B .222426m n mn m n +=C .13222x x x -= D .2222a a -= 【答案】C3.(2020·安徽淮南市·七年级期中)下列说法正确的是( )A .22πx 的次数是3B .32xy 的系数是3C .x 的系数是0D .1是单项式【答案】D4.(2020·重庆沙坪坝区·七年级期末)按如图所示的运算程序,若输入m 的值是2,则输出的结果是( )A .﹣1B .1C .2D .3【答案】D5.(2020·平顶山市第五十五中学七年级月考)已知关于x 的一元一次方程()320a x x a --+-=的解是13的倒数,则a的值为( )A .-2B .-1C .1D .2【答案】D6.(2020·重庆沙坪坝区·七年级期末)如图,点O 在直线AB 上,OD 平分∠AOC ,OE ⊥OC .若∠BOC :∠COD =4:3,则∠DOE 度数是( )A .30°B .36°C .40°D .54°【答案】B二、填空题(本题共计6小题,每题3分,共计18分)7.(2020·上海松江区·七年级期末)设某数为x ,用含x 的代数式表示“比某数的2倍多3的数”:______.【答案】23x +8.(2020·安徽淮南市·七年级期中)2020年国庆、中秋恰逢同一天,据文化和旅游部数据中心统计,国庆中秋8天长假期间,全国共接待国内游客6.37亿人次.其中6.37亿用科学记数法表示为______.【答案】86.3710⨯9.(2020·安徽淮南市·七年级期中)若23234x a b -与32y ab --的和为单项式,则x y +=______. 【答案】310.(2021·全国七年级)如图是一个正方体的表面沿着某些棱剪开后展成的一个平面图形,若这个正方体的每两个相对面上的数字的和都是8,则x +y ﹣z =_____.【答案】-211.(2021·辽宁抚顺市·七年级期末)将一根长为12cm 的铁丝围成一个长与宽之比为2:1的长方形,则此长方形的面积为___________2cm .【答案】812.(2020·宜春市第八中学七年级月考)己知线段AB 长为6,点C 为射线AB 上一点,若线段AB 与BC 其中一条线段是另外一条线段长的2倍,则AC =____________.【答案】3或9或18三、(本题共计5小题,每小题6分,共计30分)13.(2021·辽宁抚顺市·七年级期末)解方程(1)()532x x =+; (2)42123x x ++-=. 【答案】(1)解:去括号得:563x x =+,移项合并得:26x =,解得:3x =;(2)解:去分母得:3(4)2(2)6x x +-+=去括号得:312246x x +--=,移项合并得:2x =-.【点睛】本题考查解一元一次方程,涉及去分母、去括号、移项、合并同类项、化系数为1等步骤,是基础考点,难度较易,掌握相关知识是解题关键.14.(2021·沈阳市第一三四中学七年级期末)先化简再求值:()()22231x y xy x y xy +---,其中2x =-,1y =. 【答案】解:原式2222233353x y xy x y xy x y xy =+-++=-++当2x =-,1y =时,原式()()221521311=--⨯+⨯-⨯+=-.【点睛】本题考查的是整式的加减,化简求值,掌握以上知识是解题的关键.15.(2021·二连浩特市第二中学七年级期末)计算:(1)2314(3)13()42⨯--+---; (2)21293()12323-÷+-⨯+. 【答案】解:(1)原式=14913()642⨯-+-- =13613()642-+-- =136(13)()(64)2+-+-+- =136(77)2+-=1412-; (2)原式=123(1212)923-+⨯-⨯+ =3(68)9-+-+=3(2)9-+-+=4.【点睛】本题考查有理数的混合运算.熟记有理数的混合运算的运算顺序和每一步的运算法则是解题关键.注意运算律的应用. 16.(2021·辽宁大连市·七年级期末)有10袋小麦,每袋以90kg 为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下表:(1)请通过计算说明这10袋小麦总计超过多少kg 或不足多少kg ?(2)若每千克小麦2.5元,求10袋小麦一共可以卖多少元?【答案】解:(1)()()()()()11 1.51 1.2++++++-++()()()()()1.3 1.3 1.2 1.8 1.1+++-+-++++5.4=答:这10袋小麦总计超过5.4kg .(2)9010 5.4 2.5()⨯+⨯2263.5=答:10袋小麦一共可以卖2263.5元.【点睛】本题考查了正数与负数,有理数的运算在实际中的应用.理解题意,正确列出算式是解决问题的关键.17.(2020·浙江衢州市·七年级期中)阅读下面解题过程:计算: ()13153632⎛⎫-÷--⨯ ⎪⎝⎭解:原式=25(15)()66-÷-⨯(第①步) = ()251566⎛⎫-÷-⨯ ⎪⎝⎭(第②步) =(-15)÷(-25)(第③步)= 35(第④步) (1)上面解题过程中有错误的步骤是________.(填序号)(2)请写出正确的解题过程.【答案】解:(1)②乘法和除法的混合运算,要依次计算,计算步骤不能颠倒,④负数和负数相除结果为正数,因此②④错误, 故填:②④;(2)原式 =()251566⎛⎫-÷-⨯ ⎪⎝⎭= ()615625⎛⎫-⨯-⨯ ⎪⎝⎭=186 5⨯=108 5.【点睛】本题考查有理数的乘除法混合运算,熟练掌握运算法则是关键.四、(本题共计3小题,每小题8分,共计24分)18.(2021·辽宁锦州市·七年级期末)如图,已知四点A,B,C,D,请用直尺按要求完成作图.(1)作射线AD;(2)作直线BC;(3)连接BD,请在BD上确定点P,使AP CP+的值最小,并说明理由.【答案】解:(1)如图所示:射线AD为所求;(2)如图所示:直线BC为所求;(3)如图所示:连接AC 、BD 相交于点P ,点P 为所求.理由:∵两点之间,线段最短,且点P 在AC 上,∴点P 使AP +CP 的值最小.【点睛】本题考查了直线、射线与线段的作图,掌握两点之间,线段最短是解题的关键.19.(2019·陕西咸阳市·七年级期末)火车站和飞机场都为旅客提供“打包”服务,如果长、宽、高分别为a 、b 、c 米的箱子按如图所示的方式“打包”,(其中黑色粗线为“打包”带)(1)至少需要多少米的“打包”带?(用含a 、b 、c 的代数式表示)(2)若按照这样的“打包”方法,要给一个里面装满书的箱子“打包”,箱子的长为60厘米,宽为40厘米,高为35厘米,则需要多少米的“打包”带?【答案】(1)根据题意,结合图形可知,箱子上下底面的绳长为:24b c +;箱子左右面的绳长为:2a ;箱子前后面的绳长为:4a,24+24624b c a a a b c ++=++,∴打包带的长至少为624a b c ++米(2)将b =60、c =40、a =35代入上式,得:635260440490 4.9cm m ⨯+⨯+⨯==∴需要4.9米的“打包”带.【点睛】此题是关于合并同类项在实际生活中的应用,在解答此类问题时,只需用所给未知数表示出打包带的长即可;本题中直接求打包带的长度比较困难,所以要把箱子分成6个面,分别求出箱子各个面上绳子的长度,然后再求和就可以了;需要注意的是要不重不漏,合并同类时要彻底.20.(2021·日照市东港区南湖镇中心初级中学七年级期末)已知关于a 的方程2(a -2)=a +4的解也是关于x 的方程2(x ﹣3)﹣b =7的解.(1)求a 、b 的值;(2)若线段AB =a ,在直线AB 上取一点P ,恰好使AP PB =b ,点Q 为PB 的中点,请画出图形并求出线段AQ 的长.(注:AP PB=b 是指AP 的长与PB 的长的比值为b ) 【答案】解:(1)()224a a -=+244a a -=+8a =,∵两个方程的解相同,∴把8x =代入()237x b --=,得()2837b ⨯--=107b -=3b =,(2)根据(1)8AB =,3AP PB =,即3AP PB ,①如图所示:364AP AB ==,124PB AB ==, ∵Q 是BP 中点, ∴112PQ PB ==, ∴617AQ AP PQ =+=+=;②如图所示:142BP AB ==, ∵Q 是BP 中点, ∴122BQ BP ==, ∴8210AQ AB BQ =+=+=;综上:AQ 的长为7或10.【点睛】本题考查解一元一次方程和与线段有关的计算,解题的关键是掌握一元一次方程的解法和线段和差问题的计算方法,第二问需要注意分类讨论.五、(本题共计2小题,每小题9分,共计18分)21.(2021·沈阳市第一三四中学七年级期末)列一元一次方程解决下面的问题新隆嘉水果店第一次用800元从水果批发市场购进甲、乙两种不同品种的苹果,其中甲种苹果的重量比乙种苹果重量的2倍多20千克,甲、乙两种苹果的进价和售价如下表:(1)惠民水果店第一次购进的甲、乙两种苹果各多少千克?(2)惠民水果店第二次以第一次的进价又购进甲、乙两种苹果,其中甲种苹果的重量不变,乙种苹果的重量是第一次的3倍;甲种苹果按原价销售,乙种苹果打折销售.第二次甲、乙两种苹果都售完后获得的总利润为820元,求第二次乙种苹果按原价打几折销售?【答案】(1)解:设第一次购进乙种苹果x 千克,则购进甲种苹果(220x +)千克.根据题意,得()104220800x x ++=,解得:40x =,24020100⨯+=;答:第一次购进甲种苹果100千克,购进乙种苹果40千克.(2)解:第二次购进乙苹果403120⨯=千克,总进价=4100101201600⨯+⨯=元,设第二次乙种苹果按原价y 折销售,根据题意,得810015120160082010y ⨯+⨯⨯-=,解得9y =; 答:第二次乙种苹果按原价9折出售.【点睛】本题考查了一元一次方程的应用,正确理解题意、找准相等关系是解题的关键.22.(2021·辽宁大连市·七年级期末)已知,70AOB ∠=︒,OC 是AOB ∠内部的一条射线.(1)如图1,当OC 是AOB ∠的角平分线,求AOC ∠的度数;(2)如图2,当30BOC∠=︒时,AOD ∠是AOB ∠的余角,OE 是COD ∠的角平分线,请补全图形,并求AOE∠的度数; (3)若把“70AOB ∠=︒,30BOC ∠=︒”改为“AOB ∠是锐角,且AOB n ∠=︒,25BOC n ∠=︒”,(2)中的其余条件不变,请直接写出AOE ∠的度数_____________________.(用含n 的式子表示)【答案】解:(1)当70AOB ∠=︒时,OC 是AOB ∠的角平分线,11703522AOC AOB ∴∠=∠=⨯︒=︒. (2)70AOB ∠=︒,30BOC ∠=︒,∴∠AOC =∠AOB -∠BOC =40°.70AOB ∠=︒,AOD ∠是AOB ∠的余角,9020AOD AOB ∴∠=︒-∠=︒.如图,当AOD ∠在AOB ∠内部时,20COD AOC AOD ∠=∠-∠=︒,OE 是COD ∠的角平分线,11201022COE COD ∴∠=∠=⨯︒=︒. 30AOE AOC COE ∴∠=∠-∠=︒.如图,当AOD ∠在AOB ∠外部时,60COD AOC AOD ∠=∠+∠=︒,OE 是COD ∠的角平分线,11603022COE COD ∴∠=∠=⨯︒=︒. 10AOE AOC COE ∴∠=∠-∠=︒.综上,∠AOE 的度数为10°或30°(3)AOB n ∠=︒,25BOC n ∠=︒,∴∠AOC =∠AOB -∠BOC =35n ︒. AOB n ∠=︒,AOD ∠是AOB ∠的余角,(90)AOD n ∴∠=-︒.如图,当AOD ∠在AOB ∠内部时,38909055COD AOC AOD n n n ⎛⎫∠=∠-∠=-+=- ⎪⎝⎭,OE 是COD ∠的角平分线,118490452255COE COD n n ⎛⎫⎛⎫∴∠=∠=⨯-︒=-︒ ⎪ ⎪⎝⎭⎝⎭. 3414545555AOE AOC COE n n n ⎛⎫⎛⎫∴∠=∠-∠=--=-︒ ⎪ ⎪⎝⎭⎝⎭ 如图,当AOD ∠在AOB ∠外部时,()32909055COD AOC AOD n n n ⎛⎫∠=∠+∠=+-=-︒ ⎪⎝⎭, ∵OE 是COD ∠的角平分线,112190452255COE COD n n ⎛⎫⎛⎫∴∠=∠=⨯-︒=-︒ ⎪ ⎪⎝⎭⎝⎭. 3144545555AOE AOC COE n n n ⎛⎫⎛⎫∴∠=∠-∠=--=-︒ ⎪ ⎪⎝⎭⎝⎭. 或13445(45)555AOE COE AOC n n n ∴∠=∠-∠=--=-︒ 综上,∠AOE 的度数为1(45)5n -︒或4(45)5n -︒或4(45)5n -︒. 【点睛】本题考查角平分线的定义,余角的概念及角度的数量关系计算,结合图形进行分类讨论解题是关键.六、(本题共计1小题,每小题12分,共计12分)23.(2021·沈阳市第一三四中学七年级期末)如图,在数轴上点A 为表示的有理数为-8,点B 表示的有理数为12,点P 从点A 出发分别以每秒4个单位长度的速度在数轴上沿由A 到B 方向运动,当点P 到达点B 后立即返回,仍然以每秒4个单位长度的速度运动至点A 停止运动.设运动时间为t (单位:秒).(1)当1t =时,点P 表示的有理数是______;(2)当点P 与点B 重合时,t=______; (3)①在点P 由点A 到点B 的运动过程中,点P 与点A 的距离是______,点P 表示的有理数是______(用含t 的代数式表示);②在点P 由点B 到点A 的运动过程中,点P 与点A 的距离是______(用含代数式表示); (4)当t =______时,12AP =.【答案】解:(1)当1t =时,点P 移动的距离是4×1=4个单位长度,点P 表示的有理数是﹣8+4=﹣4;故答案为:﹣4;(2)当点P 与点B 重合时,点P 移动的距离是12-(﹣8)=20,20÷4=5秒,故答案为:5;(3)①在点P 由点A 到点B 的运动过程中,点P 与点A 的距离是4t ,点P 表示的有理数是84t -+;故答案为:4t ;84t -+;②由2AB 的长减去点P 移动的距离即为点P 与点A 的距离,AB =12-(﹣8)=20,在点P 由点B 到点A 的运动过程中,点P 与点A 的距离是()4045t t ->;故答案为:()4045t t ->;(4)当点P 由点A 到点B 运动时,4t =12,解得t =3;当点P 由点B 到点A 运动时,40-4t =12,解得t =7; 综上,当t =3或7时,AP =12.【点睛】本题以数轴为载体,主要考查了数轴上两点间的距离和一元一次方程的应用,属于常考题型,正确理解题意、灵活应用数形结合思想是解题的关键.。
人教版七年级上学期数学《期末考试卷》带答案解析
人 教 版 数 学 七 年 级 上 学 期期 末 测 试 卷总分120分 时间90分钟一、单项选择题(本大题共8个小题,每小题4分,共32分)1.下列说法中错误的是( )A .一个正数的前面加上负号就是负数B .不是正数的数一定是负数C .0既不是正数也不是负数D .正负数可用来表示具有相反意义的量2.﹣1是1的( )A .倒数B .相反数C .绝对值D .立方根3.(2019•黄石)化简(9x ﹣3)﹣2(x +1)的结果是( )A .2x ﹣2B .x +1C .5x +3D .x ﹣34.(2018江苏无锡)林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地占林地面积的20%,设把x 公顷旱地改为林地,则可列方程( )A. 5420%108x -=⨯B. ()5420%108x x -=⨯+C. 5420%162x +=⨯D. ()10820%54x x -=+5.把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理正确的是( )A . 两点确定一条直线B .垂线段最短C . 两点之间线段最短D .三角形两边之和大于第三边6.如图所示,用量角器度量∠AOB ,可以读出∠AOB 的度数为( )A.45° B.55° C.125°D.135°【7.(2019•山东省济宁市)如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是()A B C D8.x=2是下列哪个方程的解()A.2x-3=7B.2x+3=7C.2x+3=-7D.2x-3=-7二、填空题(本大题共6个小题,每小题4分,共24分)9. (2019黑龙江绥化)某年一月份,哈尔滨市的平均气温约为-20℃,绥化市的平均气温约为-23℃,则两地的温差为________℃.10.计算:|﹣2020|= .11.将一列整式按某种规律排成x,-2x2,4x3,-8x4,16x5,…,则排在第六个位置的整式为 .12.某校球类联赛期间买回排球和足球共16个,花去900元钱.已知排球每个42元,足球每个80元,则排球买了_________个.13.位于我国东海的台湾岛是我国第一大岛,面积约36000平方千米,数36000用科学记数法表示为.14.已知x=5是方程2x+a=3-x的解,则a=______.三、解答题(本大题有6小题,共64分)15.(8分)(2019•山东省聊城市)计算:(﹣﹣)÷.16.(10分)已知∠A=65°,求∠A的补角和余角.的值.115°,25°17.(10分)已知m是6的相反数,n比m的相反数小2,求m n18.(10分)求x/2-2(x-y2/3)+(-3x/2+y2/3)的值,其中x=-2,y=2/319.(10分)解方程2x-(x+10)=5x+2(x-1)20.(16分)(2019安徽)为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?答案与解析一、单项选择题(本大题共8个小题,每小题4分,共32分)1.下列说法中错误的是( )A .一个正数的前面加上负号就是负数B .不是正数的数一定是负数C .0既不是正数也不是负数D .正负数可用来表示具有相反意义的量【答案】B【解析】A .一个正数的前面加上负号就是负数,说法正确;B .不是正数的数一定是负数,说法错误,因为0不是正数,但也不是负数;C .0既不是正数也不是负数,说法正确;D .正负数可用来表示具有相反意义的量,说法正确.2.﹣1是1的( )A .倒数B .相反数C .绝对值D .立方根【答案】B .【解析】根据相反数的定义:只有绝对值相等,符号不同的两个数叫互为相反数.即a 的相反数是﹣a . ﹣1是1的相反数.3.(2019•黄石)化简(9x ﹣3)﹣2(x +1)的结果是( )A .2x ﹣2B .x +1C .5x +3D .x ﹣3【答案】D .【解析】原式=3x ﹣1﹣2x ﹣2=x ﹣34.(2018江苏无锡)林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地占林地面积的20%,设把x 公顷旱地改为林地,则可列方程( )A. 5420%108x -=⨯B. ()5420%108x x -=⨯+C. 5420%162x +=⨯D. ()10820%54x x -=+【答案】B.【解析】根据题意,旱地改为林地后,旱地面积为54x -公顷,林地面积为108x +公顷,等量关系为“旱地占林地面积的20%”,即()5420%108x x -=⨯+. 故选B.5.把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理正确的是()A.两点确定一条直线 B.垂线段最短C.两点之间线段最短 D.三角形两边之和大于第三边【答案】C.【解析】此题为数学知识应用,由题意把一条弯曲的公路改成直道,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理.要想缩短两地之间的里程,就尽量是两地在一条直线上,因为两点间线段最短.6.如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为()A.45° B.55° C.125°D.135°【答案】B.【解析】本题主要考查了角的度量,量角器的使用方法,正确使用量角器是解题的关键.由图形所示,∠AOB的度数为55°7.(2019•山东省济宁市)如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是()A B C D【答案】B.【解析】考点是几何体的展开图.由平面图形的折叠及几何体的展开图解题,注意带图案的一个面不是底面.本题主要考查了几何体的展开图.解题时勿忘记正四棱柱的特征及正方体展开图的各种情形.注意做题时可亲自动手操作一下,增强空间想象能力.选项A和C带图案的一个面是底面,不能折叠成原几何体的形式;选项B能折叠成原几何体的形式;选项D折叠后下面带三角形的面与原几何体中的位置不同.8.x=2是下列哪个方程的解()A.2x-3=7B.2x+3=7C.2x+3=-7D.2x-3=-7【答案】B【解析】能使方程左右两边相等的未知数的值就是这个方程的解.将x=2分别代入上述方程,发现2×2+3=7,所以x=2是方程2x+3=7的解.二、填空题(本大题共6个小题,每小题4分,共24分)9. (2019黑龙江绥化)某年一月份,哈尔滨市的平均气温约为-20℃,绥化市的平均气温约为-23℃,则两地的温差为________℃.【答案】3【解析】-20-(-23)=310.计算:|﹣2020|= .【答案】2020.【解析】直接利用绝对值的性质得出答案.|﹣2020|=2020.11.将一列整式按某种规律排成x,-2x2,4x3,-8x4,16x5,…,则排在第六个位置的整式为 . 【答案】-32x6【解析】观察各项单项式特点发现,奇数项系数为正,偶数项系数为负,这列数后一项系数是前一项系数的2倍,这样可以确定第六项系数为-32;单项式次数后一项大于前一项1.所以排在第六个位置的整式为-32x6.12.某校球类联赛期间买回排球和足球共16个,花去900元钱.已知排球每个42元,足球每个80元,则排球买了_________个.【答案】10【解析】如果设买回排球x个,则足球个数为16-x,由此得方程42x+80(16-x)=900,解这个方程得x=10.13.位于我国东海的台湾岛是我国第一大岛,面积约36000平方千米,数36000用科学记数法表示为.【答案】3.6×104.【解析】首先统一单位,再利用科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.用科学记数法表示为3.6×104.14.已知x=5是方程2x+a=3-x的解,则a=______.【答案】a=-12【解析】由于x=5是方程2x+a=3-x的解,所以2×5+a=3-5,即10+a=-2,解得a=-12.三、解答题(本大题有6小题,共64分)15.(8分)(2019•山东省聊城市)计算:(﹣﹣)÷.【答案】﹣.【解析】有理数的混合运算 .先计算括号内的减法,同时将除法转化为乘法,再约分即可得.原式=(﹣)×=﹣16.(10分)已知∠A=65°,求∠A的补角和余角.【答案】115°,25°【解析】设∠A的补角为∠B ,则∠A+∠B=180°则∠B=180°-∠A=180°-65°=115°设∠A的补角为∠C ,则∠A+∠C=90°则∠C=90°-∠A=90°-65°=25°-的值.17.(10分)已知m是6的相反数,n比m的相反数小2,求m n【答案】-10【解析】m是6的相反数,m=-6n比m的相反数小2,n=- m-2=6-2=4-=-6-4=-10则m n18.(10分)求x/2-2(x-y2/3)+(-3x/2+y2/3)的值,其中x=-2,y=2/3【答案】58/9【解析】先化简,再代入数值进行计算比较简单.x/2-2(x-y2/3)+(-3x/2+y2/3)=x/2-2x+2y2/3-3x/2+y2/3=-3x+y2当x=-2,y=2/3时,原式=(-3)x(-2)+(2/3)2=6+4/9=58/919.(10分)解方程2x-(x+10)=5x+2(x-1)【答案】x=-4/3【解析】(1)去括号,得2x-x-10=5x+2x-2移项,得2x-x-5x-2x=-2+10合并同类项,得-6x=8系数化为1,得x=-4/320.(16分)(2019安徽)为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?【答案】甲乙两个工程队还需联合工作10天.【解析】设甲工程队每天掘进x米,则乙工程队每天掘进(x﹣2)米.根据“甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米”列出方程,然后求工作时间.由题意,得2x+(x+x﹣2)=26,解得x=7,所以乙工程队每天掘进5米,(天)所以甲乙两个工程队还需联合工作10天.。
人教版七年级数学上册 期末试卷测试卷(解析版)
人教版七年级数学上册期末试卷测试卷(解析版)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知点C在线段AB上,AC=2BC,点D、E在直线AB上,点D在点E的左侧(1)若AB=18,DE=8,线段DE在线段AB上移动①如图1,当E为BC中点时,求AD的长;②点F(异于A,B,C点)在线段AB上,AF=3AD,CE+EF=3,求AD的长;(2)若AB=2DE,线段DE在直线AB上移动,且满足关系式,则________.【答案】(1)解:①又 E为BC中点;②设,因点F(异于A、B、C点)在线段AB上,可知:,和当时,此时可画图如图2所示,代入得:解得:,即AD的长为3当时,此时可画图如图3所示,代入得:解得:,即AD的长为5综上,所求的AD的长为3或5;(2) .【解析】【解答】(2)①若DE在如图4的位置设,则又(不符题设,舍去)②如DE在如图5的位置设,则又代入得:解得:则 .【分析】(1)①根据AB的长和可求出AC和BC,根据中点的定义可得CE,再由可得CD,最后根据计算即可得;②设,因点F(异于A、B、C点)在线段AB上,可知,和,所以需分2种情况进行讨论:和,如图2、3(见解析),先根据已知条件判断点E、F位置,再将EF和CE用含x的式子表示出来,最后代入求解即可;(2)设,先判断出DE在AB上的位置,再根据得出x和y 满足的等式,然后将其代入化简即可得.2.已知数轴上两点A、B所表示的数分别为a和b,且满足|a+3|+(b-9)2018=0,O为原点(1)试求a和b的值(2)点C从O点出发向右运动,经过3秒后点C到A点的距离是点C到B点距离的3倍,求点C的运动速度?(3)点D以1个单位每秒的速度从点O向右运动,同时点P从点A出发以5个单位每秒的速度向左运动,点Q从点B出发,以20个单位每秒的速度向右运动.在运动过程中,M、N分别为PD、OQ的中点,问的值是否发生变化,请说明理由.【答案】(1)解:a=-3,b=9(2)解:设3秒后,点C对应的数为x则CA=|x+3|,CB=|x-9|∵CA=3CB∴|x+3|=3|x-9|=|3x-27|当x+3=3x-27,解得x=15,此时点C的速度为当x+3+3x-27=0,解得x=6,此时点C的速度为(3)解:设运动的时间为t点D对应的数为:t点P对应的数为:-3-5t点Q对应的数为:9+20t点M对应的数为:-1.5-2t点N对应的数为:4.5+10t则PQ=25t+12,OD=t,MN=12t+6∴为定值.【解析】【分析】(1)根据几个非负数之和为0,则每一个数都是0,建立关于a、b的方程,求出a、b的值,就可得出点A、B所表示的数。
新人教版七年级数学上册期末测试卷(及参考答案)
新人教版七年级数学上册期末测试卷(及参考答案)班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. 计算+ + + + +……+ 的值为()A. B. C. D.2.如图, 函数和的图象相交于A(m, 3),则不等式的解集为()A. B. C. D.3.某车间有26名工人, 每人每天可以生产800个螺钉或1000个螺母, 1个螺钉需要配2个螺母, 为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉, 则下面所列方程正确的是()A. 2×1000(26﹣x)=800xB. 1000(13﹣x)=800xC. 1000(26﹣x)=2×800xD. 1000(26﹣x)=800x4.一副三角板按如图方式摆放, 且∠1的度数比∠2的度数大50°, 若设∠1=x°, ∠2=y°, 则可得到方程组为A. B. C. D.5.已知点C在线段AB上, 则下列条件中, 不能确定点C是线段AB中点的是()A. AC=BCB. AB=2ACC. AC+BC=ABD.6.如图, 四个有理数在数轴上的对应点M, P, N, Q, 若点M, N表示的有理数互为相反数, 则图中表示绝对值最小的数的点是()A. 点MB. 点NC. 点PD. 点Q7.如图, 由5个完全相同的小正方体组合成一个立体图形, 它的左视图是()A. B. C. D.8.若长度分别为的三条线段能组成一个三角形, 则a的值可以是()A. 1 B. 2 C. 3 D. 89.如图, 在△ABC中, AB=AC, ∠A=30°, E为BC延长线上一点, ∠ABC与∠ACE的平分线相交于点D, 则∠D的度数为()A. 15°B. 17.5°C. 20°D. 22.5°10.实数a、b、c在数轴上的位置如图所示, 则代数式|c﹣a|﹣|a+b|的值等于()A. c+bB. b﹣cC. c﹣2a+bD. c﹣2a﹣b二、填空题(本大题共6小题, 每小题3分, 共18分)1. 因式分解: x3﹣4x=________.2.如图, 将三个同样的正方形的一个顶点重合放置, 那么的度数为__________.3. 正五边形的内角和等于______度.4. 同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y=x+32.若某一温度的摄氏度数值与华氏度数值恰好相等, 则此温度的摄氏度数为__ ______℃.5. 如图, AD∥BC, ∠D=100°, CA平分∠BCD, 则∠DAC=________度.6. 如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=10,DH=4,平移距离为6,则阴影部分面积是________.........三、解答题(本大题共6小题, 共72分)1. 解方程:2. 马虎同学在解方程时, 不小心把等式左边m前面的“﹣”当做“+”进行求解, 得到的结果为x=1, 求代数式m2﹣2m+1的值.3. 如图, 在四边形OBCA中, OA∥BC, ∠B=90°, OA=3, OB=4.(1)若S四边形AOBC=18, 求BC的长;(2)如图1, 设D为边OB上一个动点, 当AD⊥AC时, 过点A的直线PF与∠ODA的角平分线交于点P, ∠APD=90°, 问AF平分∠CAE吗?并说明理由;(3)如图2, 当点D在线段OB上运动时, ∠ADM=100°, M在线段BC上, ∠DAO和∠BMD的平分线交于H点, 则点D在运动过程中, ∠H的大小是否变化?若不变, 求出其值;若变化, 说明理由.4. 如图, 已知∠1, ∠2互为补角, 且∠3=∠B,(1)求证: ∠AFE=∠ACB(2)若CE平分∠ACB,且∠1=80°,∠3=45°,求∠AFE的度数.5. 为弘扬中华传统文化, 我市某中学决定根据学生的兴趣爱好组建课外兴趣小组, 因此学校随机抽取了部分同学的兴趣爱好进行调查, 将收集的数据整理并绘制成下列两幅统计图, 请根据图中的信息, 完成下列问题:(1)学校这次调查共抽取了名学生;(2)补全条形统计图;(3)在扇形统计图中, “戏曲”所在扇形的圆心角度数为;(4)设该校共有学生2000名, 请你估计该校有多少名学生喜欢书法?6. 某青春党支部在精准扶贫活动中, 给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种. 已知乙种树苗的价格比甲种树苗贵10元, 用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中, 他们决定再次购买甲、乙两种树苗共50棵, 此时, 甲种树苗的售价比第一次购买时降低了10%, 乙种树苗的售价不变, 如果再次购买两种树苗的总费用不超过1500元, 那么他们最多可购买多少棵乙种树苗?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、B2、C3、C4、C5、C6、C7、B8、C9、A10、A二、填空题(本大题共6小题, 每小题3分, 共18分)1.x(x+2)(x﹣2)2.20°.3.5404.-405.40°6、48三、解答题(本大题共6小题, 共72分)1、154x.2、0.3.(1)6;(2)略;(3)略.4.(1)详略;(2)70°.5、(1)100;(2)补全图形见解析;(3)36°;(4)估计该校喜欢书法的学生人数为500人.6、(1)甲种树苗每棵的价格是30元, 乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.。
【人教版】七年级上册期末数学试卷(含答案)
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!七年级上学期期末数学试卷一、选择题:本题共12小题,每小题3分,共36分.每小题有四个选项,其中只有一个是正确的.1.6的相反数是( )A.6B.﹣6C.D.﹣2.如图所示的几何体是由一些小立方块搭成的,则这个几何体的左视图是( )A.B.C.D.3.在2015年深圳高交会上展出了现实版“钢铁侠”战衣﹣﹣马丁飞行喷射包,可连续飞行30分钟,载重120公斤,其网上预售价为160万元,数据160万元用科学记数法表示为( )A.1.6×104元B.1.6×105元C.1.6×106元D.0.16×107元4.如图,现实生活中有部分行人选择横穿马路而不走天桥或斑马线,用数学知识解释这一现象的原因,可以为( )A.过一点有无数条直线B.两点之间线段的长度,叫做这两点之间的距离C.两点确定一条直线D.两点之间,线段最短5.小明每个月收集废电池a个,小亮比小明多收集20%,则小亮每个月收集的废电池数为( )A.(a+20%)个B.a(1+20%)个C.个D.个6.当前,“低头族”已成为热门话题之一,小颖为了解路边行人步行边低头看手机的情况,她应采用的收集数据的方式是( )A.对学校的同学发放问卷进行调查B.对在路边行走的学生随机发放问卷进行调查C.对在路边行走的行人随机发放问卷进行调查D.对在图书馆里看书的人发放问卷进行调查7.如图,下列表示角的方法中,不正确的是( )A.∠A B.∠E C.∠αD.∠18.若x=3是方程ax+2x=14﹣a的解,则a的值为( )A.10B.5C.4D.29.小亮为表示出2015年他们家在“生活开支”项目的变化情况,他应该采用的统计图是( )A.折线统计图B.条形统计图C.扇形统计图D.以上均可以10.当x的值变大时,代数式﹣2x+3的值( )A.变小B.不变C.变大D.无法确定11.下列各式一定成立的是( )A.﹣B.|﹣a|=a C.(﹣a)3=a3D.(﹣a)2=a212.把一副三角尺ABC与BDE按如图所示那样拼在一起,其中A、B、D三点在同一直线上,BM为∠CBE的平分线,BN为∠DBE的平分线,则∠MBN的度数是( )A.60°B.67.5°C.75°D.85°二、填空题:每小题3分,共12分.请把答案填在答题卷相应的表格里.13.如果节约20元记作+20元,那么浪费10元记作 元.14.若3a m+3b n+2与﹣2a5b是同类项,则mn= .15.一个正方体的每个面都有一个汉字,其平面展开图如图所示,那么在该正方体中与“价”字相对的字是 .16.如图是用小棒按一定规律摆成的一组图案,第1个图案中有5根小棒,第2个图案中有9个小棒,…,若第n个图案中有65根小棒,则n的值为 .三、解答题:本题7题,共52分.17.计算:(1)﹣14﹣(﹣22)+(﹣36).(2)﹣22+|﹣36|×().18.(1)化简:﹣3(x2+2xy)+6(x2﹣xy)(2)先化简,再求代数式的值:2(x2y+xy2)﹣2(x2y﹣2)﹣(xy2+2),其中x=2015,y=﹣1.19.(1)解方程:5x+12=2x﹣9(2)解方程:.20.2015年,深圳市人居环境委通报了2014年深圳市大气PM2.5来源研究成果.报告显示主要来源有,A:机动车尾气,B:工业VOC转化及其他工业过程,C:扬尘,D:远洋船,E:电厂,F:其它.某教学学习小组根据这些数据绘制出了如下两幅尚不完整的统计图(图1,图2).请你根据统计图中所提供的信息解答下列问题:(1)图2的扇形统计图中,x的值是 ;(2)请补全图1中的条形统计图;(3)图2的扇形统计图中,“A:机动车尾气”所在扇形的圆心角度数为 度. 21.如图,平面上有射线AP和点B、点C,按下列语句要求画图:(1)连接AB;(2)用尺规在射线AP上截取AD=AB;(3)连接BC,并延长BC到E,使CE=BC;(4)连接DE.列方程解应用题:本题共3小题,第(1)小题4分,第(2)小题5分,共9分。
2023-2024学年全国初中七年级上数学人教版期末试卷(含答案解析)
20232024学年全国初中七年级上数学人教版期末试卷一、选择题(每题3分,共30分)1. 下列数中,最小的数是()A. 0B. 2C. 3D. 1/22. 下列四个数中,最大的数是()A. 1B. 0C. 1/2D. 3/43. 若a > b,则下列不等式中正确的是()A. a + 3 > b + 3B. a 3 > b 3C. a/3 > b/3D. 3a > 3b4. 下列等式中,正确的是()A. 2x + 3 = 5x 7B. 3x 4 = 2x + 4C. 4x + 5 = 6x 1D. 5x 6 = 7x + 25. 下列函数中,y随x的增大而增大的是()A. y = 2x + 1B. y = 3x 2C. y = x + 3D. y = 4 2x6. 下列图形中,是轴对称图形的是()A. 矩形B. 梯形C. 圆D. 正方形7. 下列关于角的说法,正确的是()A. 直角是90度B. 钝角是大于90度小于180度的角C. 锐角是小于90度的角D. 平角是180度8. 下列关于三角形的说法,正确的是()边 C. 三角形的任意两边之差小于第三边 D. 三角形的任意两边之和等于第三边9. 下列关于平行线的说法,正确的是()A. 平行线在同一平面内,永不相交B. 平行线可以在同一平面内相交C. 平行线不在同一平面内,也可以相交D. 平行线不在同一平面内,一定不相交10. 下列关于四边形的说法,正确的是()A. 四边形的内角和是360度B. 四边形的任意两边之和大于第三边C. 四边形的任意两边之差小于第三边D. 四边形的任意两边之和等于第三边二、填空题(每题3分,共30分)1. 若a = 2,b = 3,则a + b = _______。
2. 若a = 5,b = 7,则a b = _______。
3. 若a = 4,b = 3,则a b = _______。
4. 若a = 6,b = 2,则a / b = _______。
人教版七年级数学上册 期末试卷测试与练习(word解析版)
人教版七年级数学上册期末试卷测试与练习(word解析版)一、初一数学上学期期末试卷解答题压轴题精选(难)1.数轴上A, B, C, D四点表示的有理数分别为1, 3, -5, -8(1)计算以下各点之间的距离:①A、B两点, ②B、C两点,③C、D两点,(2)若点M、N两点所表示的有理数分别为m、n,求M、N两点之间的距离.【答案】(1)AB=3-1=2;BC=3-(-5)=8;CD=-5-(-8)=-5+8=3.(2)MN=【解析】【分析】(1)数轴上两点间的距离等于数值较大的数减去数值较小的数,据此计算即可;(2)因为m、n的大小未知,则M、N两点间的距离为它们所表示的有理数之差的绝对值.2.如图,数轴上点 A、B 到表示-2 的点的距离都为 6,P 为线段 AB 上任一点,C,D 两点分别从 P,B 同时向 A 点移动,且 C 点运动速度为每秒 2 个单位长度,D 点运动速度为每秒 3 个单位长度,运动时间为 t 秒.(1)A 点表示数为________,B 点表示的数为________,AB=________.(2)若 P 点表示的数是 0,①运动 1 秒后,求 CD 的长度;②当 D 在 BP 上运动时,求线段 AC、CD 之间的数量关系式.(3)若 t=2 秒时,CD=1,请直接写出 P 点表示的数.【答案】(1)-8;4;12(2)解:①运动一秒后,C点为-2,D点为1,所以CD=3;②当点D在BP上运动时, ,此时C在线段AP上,AC=8-2t,CD=2t+4-3t=4-t,所以AC=2CD(3)解:若 t=2秒时,D点为-2,若 CD=1,则 C=-3 或-1,①当 C=-3 时,CP=4,此时 P=1;②当 C=-1 时,P=3.【解析】【解答】解:⑴故答案为:-8;4;12;【分析】(1)由已知数轴上点 A、B 到表示-2 的点的距离都为 6 ,且点A在点B的左边,就可求出点A和点B表示的数,再利用两点间的距离公式求出AB的长。
人教版七年级上册数学 期末试卷测试卷(解析版)
人教版七年级上册数学期末试卷测试卷(解析版)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图,线段AB=20cm.(1)点P沿线段AB自A点向B点以2cm/秒运动,同时点Q沿线段BA自B点向A点以3cm/秒运动,几秒后,点P、Q两点相遇?(2)如图,AO=PO=2cm,∠POQ=60°,现点P绕着点O以30°/秒的速度顺时针旋转一周后停止,同时点Q沿直线BA自B点向A点运动,若P、Q两点也能相遇,求点Q运动的速度.【答案】(1)解:设x秒点P、Q两点相遇根据题意得:2x+3x=20,解得x=4答:4秒后,点P、Q两点相遇。
(2)解:①当点P.Q在OB与圆的交点处相遇时:P点运动所用的时间为:① (秒),P点的运动速度为:(20-4)÷2=8cm/秒②当点P,Q在A点处相遇时:P点运动所用的时间为:②(60+180)÷30=8(秒),P点运动的速度为:20÷8-2.5cm/秒【解析】【分析】(1)此题是一道相遇问题,根据相遇的时候,P点所走的路程+Q点运动的路程等于AB两地之间的距离,列出方程,求解即可;(2)分①当点P.Q在OB与圆的交点处相遇时,②当点P,Q在A点处相遇时两类讨论,分别根据路程除以速度等于时间算出P点运动的时间,即Q点运动的时间,再根据路程除以时间等于速度即可算出Q点的运动速度。
2.如图,O是直线AB上一点,OD平分∠AOC.(1)若∠AOC=60°,请求出∠AOD和∠BOC的度数.(2)若∠AOD和∠DOE互余,且∠AOD= ∠AOE,请求出∠AOD和∠COE的度数.【答案】(1)解:∠AOD= ×∠AOC= ×60°=30°,∠BOC=180°﹣∠AOC=180°﹣60°=120°(2)解:∵∠AOD和∠DOE互余,∴∠AOE=∠AOD+∠DOE=90°,∴∠AOD= ∠AOE= ×90°=30°,∴∠AOC=2∠AOD=60°,∴∠COE=90°﹣∠AOC=30°【解析】【分析】(1)①由角平分线的定义可得:∠AOD=∠COD= ∠AOC即可求解;②由邻补角的定义可得:∠BOC+∠AOC= 180°,所以∠BOC= 180° -∠AOC即可求解;(2)①由互为余角的定义和图形可得∠AOE=∠AOD+∠DOE= 90°,所以∠AOD= ∠AOE 可求解;②由①可得∠AOD的度数,由角平分线的定义可得∠AOC=2∠AOD,所以∠COE=∠AOE-∠AOC,把∠AOE和∠AOC的度数代入计算即可求解。
人教版数学七年级上册 期末试卷测试卷(解析版)
人教版数学七年级上册期末试卷测试卷(解析版)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图 1,CE 平分∠ACD,AE 平分∠BAC,且∠EAC+∠ACE=90°.(1)请判断 AB 与 CD 的位置关系,并说明理由;(2)如图2,若∠E=90°且AB 与CD 的位置关系保持不变,当直角顶点E 移动时,写出∠BAE 与∠ECD 的数量关系,并说明理由;(3)如图 3,P 为线段 AC 上一定点,点 Q 为直线 CD 上一动点,且 AB 与 CD 的位置关系保持不变,当点 Q 在射线 CD 上运动时(不与点 C 重合),∠PQD,∠APQ 与∠ BAC 有何数量关系?写出结论,并说明理由.【答案】(1),理由如下:CE 平分,AE 平分,;(2),理由如下:如图,延长AE交CD于点F,则由三角形的外角性质得:;(3),理由如下:,即由三角形的外角性质得:又,即即.【解析】【分析】(1)根据角平分线的定义、平行线的判定即可得;(2)根据平行线的性质(两直线平行,内错角相等)、三角形的外角性质即可得;(3)根据平行线的性质(两直线平行,同旁内角互补)、三角形的外角性质、邻补角的定义即可得.2.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数________ ,点P表示的数________(用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(4)若点D是数轴上一点,点D表示的数是x,请你探索式子|x+6|+|x﹣8|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.【答案】(1)点B表示的数是﹣6;点P表示的数是8﹣5t(2)解:设点P运动x秒时,在点C处追上点Q (如图)则AC=5x,BC=3x,∵AC﹣BC=AB∴5x﹣3x=14…解得:x=7,∴点P运动7秒时,在点C处追上点Q(3)解:没有变化.分两种情况:①当点P在点A.B两点之间运动时:MN=MP+NP= AP+ BP= (AP+BP)= AB=7…②当点P运动到点B的左侧时:MN=MP﹣NP= AP﹣ BP= (AP﹣BP)= AB=7…综上所述,线段MN的长度不发生变化,其值为7…(4)解:式子|x+6|+|x﹣8|有最小值,最小值为14.…【解析】【分析】(1)由于A点表示的数是8,故OA=8,又AB=14,从而得出OB=AB-OA=6,由于点B表示的数在原点的左边,故B点表示的数是-6,根据路程等于速度乘以时间得出AP=5t,从而得出P点表示的数是8-5t;(2)设点P运动x秒时,在点C处追上点Q (如图)格努路程定于速度乘以时间得出AC=5x,BC=3x,然后由AC﹣BC=AB列出方程求解即可得出x的值;(3)没有变化.根据线段中点的定义得出PM=AP,NP=BP,分两种情况:①当点P在点A.B两点之间运动时,由MN=MP+NP= AP+ BP= (AP+BP)= AB得出答案;②当点P运动到点B的左侧时:MN=MP-NP= AP- BP= (AP-BP)= AB得出答案,综上所述即可得出答案;(4)式子|x+6|+|x﹣8|有最小值,最小值为14,点D是数轴上一点,点D表示的数是x,那么|x+6|表示点D,B两点间的距离,|x﹣8|表示点D,A两点间的距离,要|x+6|+|x﹣8|其实质就是DB+AD的和,要DB+AD的和最小,只有在D为线段AB上的时候,DB+AD的和最小=AB,即可得出答案。
人教版七年级数学上册 期末试卷测试与练习(word解析版)
人教版七年级数学上册期末试卷测试与练习(word解析版)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知:线段AB=30cm.(1)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,同时点Q沿线段BA自B点向A点以4厘米/秒运动,经过几秒,点P、Q两点能相遇?(2)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,点P出发3秒后,点Q沿线段BA自B点向A点以4厘米/秒运动,问再经过几秒后点P、Q两点相距6cm?(3)如图2,AO=4cm,PO=2cm,∠POB=60°,点P绕着点O以60度/秒的速度逆时针旋转一周停止,同时点Q沿直线BA自B点向A点运动,假若P、Q两点能相遇,直接写出点Q运动的速度.【答案】(1)解:30÷(2+4)=5(秒),答:经过5秒,点P、Q两点能相遇.(2)解:设再经过x秒后点P、Q两点相距6cm.当点P在点Q左边时,2(x+3)+4x+6=30解得x=3;当点P在点Q右边时,2(x+3)+4x-6=30解得x=5,所以再经过3或5秒后点P、Q两点相距6cm;(3)解:设点Q运动的速度为每秒xcm.当P、Q两点在点O左边相遇时,120÷60x=30-2,解得x=14;当P、Q两点在点O右边相遇时,240÷60x=30-6,解得x=6,所以若P、Q两点能相遇点Q运动的速度为每秒14cm或6cm.【解析】【分析】(1)根据点P、Q运动路程和等于AB求解;(2)分点P在点Q左右两边两种可能来解答;(3)分情况讨论,P、Q在点O左右两边相遇来解答.2.将一副三角板中的两块直角三角尺的直角顶点 O 按如图方式叠放在一起.(1)如图 1 ,若∠BOD=35°,则∠AOC=________;若∠AOC=135°,则∠BOD=________;(2)如图2,若∠AOC=140°,则∠BOD=________;(3)猜想∠AOC 与∠BOD 的大小关系,并结合图1说明理由.(4)三角尺 AOB 不动,将三角尺 COD 的 OD 边与 OA 边重合,然后绕点 O 按顺时针或逆时针方向任意转动一个角度,当∠A OD(0°<∠AOD<90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AOD 角度所有可能的值,不用说明理由.【答案】(1)145°;45°(2)40°(3)解:∠AOC 与∠BOD 互补.∵∠AOD+∠BOD+∠BOD+∠BOC=180°.∵∠AOD+∠BOD+∠BOC=∠AOC,∴∠AOC+∠BOD=180°,即∠AOC 与∠BOD 互补(4)解:OD⊥AB 时,∠AOD=30°,CD⊥OB 时,∠AOD=45°,CD⊥AB 时,∠AOD=75°,OC⊥AB 时,∠AOD=60°,即∠AOD 角度所有可能的值为:30°、45°、60°、75°【解析】【解答】解:(1)若∠BOD=35°,∵∠AOB=∠COD=90°,∴∠AOC=∠AOB+∠COD﹣∠BOD=90°+90°﹣35°=145°,若∠AOC=135°,则∠BOD=∠AOB+∠COD﹣∠AOC=90°+90°﹣135°=45°;( 2 )如图 2,若∠AOC=140°,则∠BOD=360°﹣∠AOC﹣∠AOB﹣∠COD=40°;故答案为:(1)145°,45°;(2)40°.【分析】(1)根据∠AOC=∠AOB+∠COD﹣∠BOD,就可求出∠AOC的度数;再由∠BOD=∠AOB+∠COD﹣∠AOC,可求出∠BOD的度数。
人教版七年级数学上册 期末试卷测试与练习(word解析版)
人教版七年级数学上册期末试卷测试与练习(word解析版)一、初一数学上学期期末试卷解答题压轴题精选(难)1.(1)问题发现:如图 1,已知点 F,G 分别在直线 AB,CD 上,且 AB∥CD,若∠BFE=40°,∠CGE=130°,则∠GEF 的度数为________;(2)拓展探究:∠GEF,∠BFE,∠CGE 之间有怎样的数量关系?写出结论并给出证明;答:∠GEF=▲ .证明:过点 E 作 EH∥AB,∴∠FEH=∠BFE(▲),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(▲),∴∠HEG=180°-∠CGE(▲),∴∠FEG=∠HFG+∠FEH=▲ .(3)深入探究:如图 2,∠BFE 的平分线 FQ 所在直线与∠CGE 的平分线相交于点 P,试探究∠GPQ 与∠GEF 之间的数量关系,请直接写出你的结论.【答案】(1)90°(2)解:∠GEF=∠BFE+180°−∠CGE,证明:过点 E 作 EH∥AB,∴∠FEH=∠BFE(两直线平行,内错角相等),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(平行线的迁移性),∴∠HEG=180°-∠CGE(两直线平行,同旁内角互补),∴∠FEG=∠HFG+∠FEH=∠BFE+180°−∠CGE ,故答案为:∠BFE+180°−∠CGE;两直线平行,内错角相等;平行线的迁移性;两直线平行,同旁内角互补;∠BFE+180°−∠CGE;(3)解:∠GPQ+∠GEF=90°,理由是:如图2,∵FQ平分∠BFE,GP平分∠CGE,∴∠BFQ=∠BFE,∠CGP=∠CGE,在△PMF中,∠GPQ=∠GMF−∠PFM=∠CGP−∠BFQ,∴∠GPQ+∠GEF=∠CGE− ∠BFE+∠GEF= ×180°=90°.即∠GPQ+∠GEF=90°.【解析】【解答】(1)解:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠HEF=∠BFE=40°,∠HEG+∠CGE=180°,∵∠CGE=130°,∴∠HEG=50°,∴∠GEF=∠HEF+∠HEG=40°+50°=90°;故答案为:90°;【分析】(1)如图1,过E作EH∥AB,根据平行线的性质可得∠HEF=∠BFE=40 ,∠HEG=50 ,相加可得结论;(2)由①知:∠HEF=∠BFE,∠HEG+∠CGE=180°,则∠HEG=180°−∠CGE,两式相加可得∠GEF=∠BFE+180°−∠CGE;(3)如图2,根据角平分线的定义得:∠BFQ=∠BFE,∠CGP=∠CGE,由三角形的外角的性质得:∠GPQ=∠GMF−∠PFM=∠CGP−∠BFQ,计算∠GPQ+∠GEF并结合②的结论可得结果.2.如图在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a、b满足|2a+4|+|b-6|=0(1)求A,B两点之间的距离;(2)若在数轴上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一个挡板,一个小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动:设运动的时间为(秒).①分别表示甲、乙两小球到原点的距离(用t表示);②求甲、乙两小球到原点的距离相等时经历的时间【答案】(1)解:因为,所以2a+4=0,b-6=0,所以a=−2,b=6;所以AB的距离=|b−a|=8;(2)解:设数轴上点C表示的数为c.因为AC=2BC,所以|c−a|=2|c−b|,即|c+2|=2|c−6|.因为AC=2BC>BC,所以点C不可能在BA的延长线上,则C点可能在线段AB上和线段AB的延长线上.①当C点在线段AB上时,则有−2<c<6,得c+2=2(6−c),解得c= ;②当C点在线段AB的延长线上时,则有c>6,得c+2=2(c−6),解得c=14.故当AC=2BC时,c= 或c=14;(3)解:①因为甲球运动的路程为:1×t=t,OA=2,所以甲球与原点的距离为:t+2;乙球到原点的距离分两种情况:(Ⅰ)当0⩽t⩽3时,乙球从点B处开始向左运动,一直到原点O,因为OB=6,乙球运动的路程为:2×t=2t,所以乙球到原点的距离为:6−2t;(Ⅱ)当t>3时,乙球从原点O处开始一直向右运动,此时乙球到原点的距离为:2t−6;②当0<t⩽3时,得t+2=6−2t,解得t= ;当t>3时,得t+2=2t−6,解得t=8.故当t= 秒或t=8秒时,甲乙两小球到原点的距离相等.【解析】【分析】(1)先根据非负数的性质求出a、b的值,再根据两点间的距离公式即可求得A、B两点之间的距离;(2)分C点在线段AB上和线段AB的延长线上两种情况讨论即可求解;(3)①甲球到原点的距离=甲球运动的路程+OA的长,乙球到原点的距离分两种情况:(Ⅰ)当0<t≤3时,乙球从点B处开始向左运动,一直到原点O,此时OB的长度-乙球运动的路程即为乙球到原点的距离;(Ⅱ)当t>3时,乙球从原点O处开始向右运动,此时乙球运动的路程-OB的长度即为乙球到原点的距离;②分两种情况:(Ⅰ)0≤t≤3,(Ⅱ)t>3,根据甲、乙两小球到原点的距离相等列出关于t的方程,解方程即可.3.如图,以直线AB上一点O为端点作射线OC,使∠BOC=70°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)(1)如图①,若直角三角板DOE的一边OD放在射线OB上,则∠COE=________°;(2)如图②,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OC恰好平分∠BOE,求∠COD的度数;(3)如图③,将直角三角板DOE绕点O转动,如果OD始终在∠BOC的内部,试猜想∠BOD和∠COE有怎样的数量关系?并说明理由.【答案】(1)20(2)解:如图②,∵OC平分∠EOB,∠BOC=70°,∴∠EOB=2∠BOC=140°,∵∠DOE=90°,∴∠BOD=∠BOE-∠DOE=50°,∵∠BOC=70°,∴∠COD=∠BOC-∠BOD=20°(3)解:∠COE-∠BOD=20°,理由是:如图③,∵∠BOD+∠COD=∠BOC=70°,∠COE+∠COD=∠DOE=90°,∴(∠COE+∠COD)-(∠BOD+∠COD)=∠COE+∠COD-∠BOD-∠COD=∠COE-∠BOD=90°-70°=20°,即∠COE-∠BOD=20°【解析】【解答】⑴如图①,∠COE=∠DOE-∠BOC=90°-70°=20°;【分析】(1)根据角度的换算可知∠COE和∠BOC互余,那么根据∠COB=70°可得∠COE=20°;(2)根据角平分线和∠BOC可得∠BOE=140°,∠COE=∠BOC=90°,所以它的余角∠COD=20°;(3)一个是直角∠EOD,,一个是70°∠BOC,这两个角里都包含了同一个角∠COD,那么大家都减去这个∠COD的度数,剩下的两角差与原两角差是一致的,所以可得出结论∠COE-∠BOD=20°。
人教版七年级数学上册期末真题答案及详解
人教版七年级数学上册期末真题答案及详解真题一:1. 解:已知a = 3,b = 5,c = 7,代入令式可得:20 × a + 10 × b - 2 × c = 20 × 3 + 10 × 5 - 2 × 7= 60 + 50 - 14= 96所以,20 × a + 10 × b - 2 × c = 96。
2. 解:已知:a = 4,b = 2,c = 9,代入令式可得:0.5 × a + (a + b) × 2 - c ÷ 3 = 0.5 × 4 + (4 + 2) × 2 - 9 ÷ 3 = 2 + 12 - 3= 11所以,0.5 × a + (a + b) × 2 - c ÷ 3 = 11。
3. 解:已知:a = 9,b = 6,c = 3,代入令式可得:b ÷ a +c × 2 = 6 ÷ 9 + 3 × 2= 0.67 + 6= 6.67所以,b ÷ a + c × 2 = 6.67。
真题二:1. 解:由课文:一个数的3倍与它的36的和等于41,求这个数。
设这个数为x,则根据题意可以列出方程:3x + 36 = 41解方程得:x = 5所以,这个数为5。
2. 解:由课文:一个数与它的7倍的和等于150,求这个数。
设这个数为x,则根据题意可以列出方程:x + 7x = 150解方程得:8x = 150x = 18.75所以,这个数为18.75。
真题三:解:由课文,一圆形的周长C和直径d之间的关系为C = π × d。
已知直径为5cm,代入公式得:C = π × 5= 3.14 × 5= 15.7所以,圆形的周长C为15.7cm。
人教版七年级上册数学 期末试卷专题练习(解析版)
人教版七年级上册数学期末试卷专题练习(解析版)一、初一数学上学期期末试卷解答题压轴题精选(难)1.把一副三角板放成如图所示.(1)当OD平分∠AOB时,求∠COB;(2)若摆成如图2,OB、OD重合,OM平分∠AOD,ON平分∠AOC,求∠MON;(3)将三角板OCD绕O点旋转,把OD旋转到∠AOB的内部或外部,(2)中的条件不变,试问∠MON的角度是否变化?若不变,求出它的值,并说理由.【答案】(1)解:∵OD平分∠AOB,∠AOB=90°∴∠DOB=∠AOB=45°∵∠DOC=30°∴∠COB=∠DOB-∠DOC=45°-30°=15°(2)解:如图,∵OM平分∠AOD,ON平分∠AOC∴∠MOA=∠AOD=45°∠AON=∠AOC=(90°+30°)=60°∴∠MON=∠AON-∠AOM=60°-45°=15°(3)解:把OD旋转到∠AOB的内部时,如图,∵OM平分∠AOD,ON平分∠AOC∴∠MOA=∠AOD=(90°-∠BOD)=45°-∠BOD∠AON=∠AOC=(∠AOB+∠COD-∠BOD)=60°-∠BOD∴∠MON=∠AON-∠MOA=15°把OD旋转到∠AOB的外部时,如图,设∠AOC=α,则∠AOD=360°-30°-α=330°-α∵OM平分∠AOD,ON平分∠AOC∴∠MOA=∠AOD=(330°-α)=165°-α∠AON=∠AOC=α∠MON=∠MOA+∠AON=165°-α+α=165°∴∠MON=15°或∠MON=165°【解析】【分析】(1)利用角平分线的定义求出∠DOB的度数,再根据∠COB=∠DOB-∠DOC,就可求出结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级数学上册期末试卷专题练习(解析版)一、初一数学上学期期末试卷解答题压轴题精选(难)1.(1)如图①,已知:Rt△ABC中,AB=AC,直线m经过点A,BD⊥m于D,CE⊥m于E,求证:DE=BD+CE;(2)如图②,将(1)中的条件改为:△ABC中,AB=AC,并且∠BDA=∠AEC=∠BAC=α,α为任意锐角或钝角,请问结论DE=BD+CE是否成立?如成立,请证明;若不成立,请说明理由;(3)应用:如图③,在△ABC中,∠BAC是钝角,AB=AC,∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,直线m与BC的延长线交于点F,若BC=2CF,△ABC的面积是12,求△ABD与△CEF的面积之和.【答案】(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)解:结论DE=BD+CE成立;理由如下:∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α,∴∠CAE=∠ABD,在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(3)解:∵∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,∴∠CAE=∠ABD,在△ABD和△CEA中,∴△ABD≌△CEA(AAS),∴S△ABD=S△CEA,设△ABC的底边BC上的高为h,则△ACF的底边CF上的高为h,∴S△ABC= BC•h=12,S△ACF= CF•h,∵BC=2CF,∴S△ACF=6,∵S△ACF=S△CEF+S△CEA=S△CEF+S△ABD=6,∴△ABD与△CEF的面积之和为6.【解析】【分析】(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,由AAS证得△ADB≌△CEA,则AE=BD,AD=CE,即可得出结论;(2)由∠BDA=∠BAC=α,则∠DBA+∠BAD=∠BAD+∠CAE=180°-α,得出∠CAE=∠ABD,由AAS证得△ADB≌△CEA即可得出答案;(3)由∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,∴∠CAE=∠ABD,得出∠CAE=∠ABD,由AAS证得△ADB≌△CEA,得出S△ABD=S△CEA,再由不同底等高的两个三角形的面积之比等于底的比,得出S△ACF即可得出结果.2.已知点O是直线AB上的一点,∠COE=120°,射线OF是∠AOE的一条三等分线,且∠AOF= ∠AOE.(本题所涉及的角指小于平角的角)(1)如图,当射线OC、OE、OF在直线AB的同侧,∠BOE=15°,求∠COF的度数;(2)如图,当射线OC、OE、OF在直线AB的同侧,∠FOE比∠BOE的余角大40°,求∠COF的度数;(3)当射线OE、OF在直线AB上方,射线OC在直线AB下方,∠AOF<30°,其余条件不变,请同学们自己画出符合题意的图形,探究∠FOC与∠BOE确定的数量关系式,请直接给出你的结论.【答案】(1)解:∵∠AOE+∠BOE=180°,∠BOE=15°,∴∠AOE=180°-15°=165°∴∠AOF= ∠AOE=×165°=55°∵∠AOC=∠AOE-∠COE=165°-120°=45°∴∠COF=∠AOF-∠AOC=55°-45°=10°答:∠COF的度数为10°.(2)解:设∠BOE=x,则∠BOE的余角为90°-x.∵∠FOE比∠BOE的余角大40°,∴∠FOE=130°-x∵∠COE=120°,则∠COF=x-10°,∠AOC=60°-x,∴∠AOF=∠AOC+∠COF=50°∵∠AOF= ∠AOE∴∠AOE=150°∴∠BOE=x=180°-150°=30°∴∠COF=x-10°=30°-10°=20°答:∠COF的度数为20°(3)解:∠FOC=∠BOE如图,设∠AOF=x∵∠AOF=∠AOE∴∠AOE=3x∴∠EOF=2x,∠BOE=180°-3x=3(60°-x)∵∠COE=120°∴∠AOC=120°-3x∴∠COF=∠AOC+∠AOF=120°-3x+x=2(60°-x)∴∴∠FOC=∠BOE【解析】【分析】(1)利用邻补角的定义及已知求出∠AOE、∠AOF的度数,再利用∠AOC=∠AOE-∠COE,求出∠AOC的度数,然后根据∠COF=∠AOF-∠AOC,可求得结果。
(2)设∠BOE=x,利用余角的定义及∠FOE比∠BOE的余角大40°,用含x代数式表示出∠FOE、∠COF、∠AOC,再求出∠AOF的度数,即可得出∠AOE的度数,然后求出x的值,即可得出答案。
(3)根据题意画出图形,设∠AOF=x,利用已知分别用含x代数式表示出∠AOE、∠EOF、∠BOE,再用含x的代数式表示出∠FOC,然后就可得出∠FOC与∠BOE确定的数量关系式。
3.如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°,将有一30度角的直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(图中∠OMN=30°,∠NOM=90°)(1)将图1中的三角板绕点O逆时针旋转至图2,使OM在∠BOC的内部,且恰好平分∠BOC,问直线ON是否平分∠AOC?请说明理由;(2)将图1中的三角板绕点O按每秒6°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,求t;(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究:∠AOM与∠NOC之间的数量关系,并说明理由.【答案】(1)解:直线ON平分∠AOC;理由:设ON的反向延长线为OD,∵OM平分∠BOC,∴∠MOC=∠MOB=60°,又∵OM⊥ON,∴∠MON=90°,∴∠BON=30°,∴∠CON=120°+30°=150°,∴∠COD=30°,∴OD平分∠AOC,即直线ON平分∠AOC(2)解:由(1)可知∠BON=30°,∠DON=180°因此ON旋转60°或240°时直线ON平分∠AOC,由题意得,6t=60°或240°,∴t=10或40(3)解:∵∠MON=90°,∠AOC=60°,∴∠AOM=90°﹣∠AON、∠NOC=60°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°【解析】【分析】(1)由角的平分线的定义和等角的余角相等求解;(2)由∠BOC=120°可得∠AOC=60°,则∠AON=30°或∠NOR=30°,即顺时针旋转300°或120°时ON平分∠AOC,据此求解;(3)因为∠MON=90°,∠AOC=60°,所以∠AOM=90°﹣∠AON、∠NOC=60°﹣∠AON,然后作差即可.4.如图 1,射线 OC在∠AOB的内部,图中共有 3个角:∠AOB、∠AOC 和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线 OC是∠AOB的奇妙线.(1)一个角的角平分线________这个角的奇妙线.(填是或不是);(2)如图 2,若∠MPN=60°,射线 PQ绕点 P从 PN位置开始,以每秒 10°的速度逆时针旋转,当∠QPN首次等于 180°时停止旋转,设旋转的时间为 t(s).①当 t为何值时,射线 PM是∠QPN 的奇妙线?②若射线 PM 同时绕点 P以每秒 5°的速度逆时针旋转,并与 PQ同时停止旋转.请求出当射线 PQ是∠MPN的奇妙线时 t的值.【答案】(1)是(2)解:①∠MPN=60,∠QPM=10t-60,∠QPN=10t(最大角),当∠MPN=2∠QPM时,60=2(10t-60),解得t=9;当∠QPN=2∠MPN时,10t =2×60,解得t=12;当∠QPM=2∠MPN时,10t-60=2×60,解得t=18;综上,当t的值是9或12或18时,射线 PM是∠QPN 的奇妙线.②∠QPN=10t,∠QPM=60-10t+5t=60-5t,∠MPN=60+5t(最大角),当∠QPM=2∠QPN时, 60-5t =2×10t ,解得t= ;当∠MPN=2∠QPN时,60+5t =2×10t,解得t=4;当∠QPN=2∠QPM时,10t =2×(60-5t),解得t=6;综上,当射线 PQ是∠MPN的奇妙线时 t的值为或4或6.故答案为:(1)是;(2) ①当t的值是9或12或18时,射线PM是∠QPN 的奇妙线;②当射线 PQ是∠MPN的奇妙线时 t的值为或4或6.【解析】【分析】(1)根据奇妙线定义即可求解;(2)①分3种情况,根据奇妙线定义列方程求解即可;②分3种情况,根据奇妙线定义列方程求解即可.5.课题学习:平行线的“等角转化功能.(1)问题情景:如图1,已知点是外一点,连接、,求的度数.天天同学看过图形后立即想出:,请你补全他的推理过程.解:(1)如图1,过点作,∴ ________, ________.又∵,∴ .解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”功能,将,,“凑”在一起,得出角之间的关系,使问题得以解决.(2)问题迁移:如图2,,求的度数.(3)方法运用:如图3,,点在的右侧,,点在的左侧,,平分,平分,、所在的直线交于点,点在与两条平行线之间,求的度数.【答案】(1)∠EAB;∠DAC(2)解:过C作CF∥AB,∵AB∥DE,∴CF∥DE∥AB,∴∠D=∠FCD,∠B=∠BCF,∵∠BCF+∠BCD+∠DCF=360°,∴∠B+∠BCD+∠D=360°,(3)解:如图3,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,∴∠ABE= ∠ABC=30°,∠CDE= ∠ADC=35°∴∠BED=∠BEF+∠DEF=30°+35°=65°.【解析】【解答】解:(1)根据平行线性质可得:因为,所以∠EAB,∠DAC;【分析】(1)根据平行线性质“两直线平行,内错角相等”可得∠B+∠BCD+∠D∠BCF+∠BCD+∠DCF;(2)过C作CF∥AB,根据平行线性质可得;(3)如图3,过点E作EF∥AB,根据平行线性质和角平分线定义可得∠ABE= ∠ABC=30°,∠CDE= ∠ADC=35°,故∠BED=∠BEF+∠DEF.6.请阅读小明同学在学习平行线这章知识点时的一段笔记,然后解决问题.小明:老师说在解决有关平行线的问题时,如果无法直接得到角的关系,就需要借助辅助线来帮助解答,今天老师介绍了一个“美味”的模型一“猪蹄模型”.即已知:如图1,,为、之间一点,连接,得到 .求证:小明笔记上写出的证明过程如下:证明:过点作,∴∵,∴∴ .∵∴请你利用“猪蹄模型”得到的结论或解题方法,完成下面的两个问题.(1)如图,若,,则 ________.(2)如图,,平分,平分,,则________.【答案】(1)240°(2)51°【解析】【解答】(1)解:作EM∥AB,FN∥CD,如图,AB∥CD,∴AB∥EM∥FN∥CD,∴∠B=∠1,∠2=∠3,∠4+∠C=180°,∴∠B+∠CFE+∠C=∠1+∠3+∠4+∠C=∠BEF+∠4+∠C=∠BEF +180°,∵,∴∠B+∠CFE+∠C=60°+180°=240°;(2)解:如图,分别过G、H作AB的平行线MN和RS,∵平分,平分,∴∠ABE= ∠ABG,∠SHC=∠DCF= ∠DCG,∵AB∥CD,∴AB∥CD∥RS∥MN,∴∠RHB=∠ABE= ∠ABG,∠SHC=∠DCF= ∠DCG,∠NGB+∠ABG=∠MGC+∠DCG=180°,∴∠BHC=180°-∠RHB-∠SHC=180°- (∠ABG+∠DCG),∠BGC=180°-∠NGB-∠MGC=180°-(180°-∠ABG)-(180°-∠DCG)=∠ABG+∠DCG-180°,∴∠BGC=360°-2∠BHC-180°=180°-2∠BHC,又∵∠BGC=∠BHC+27°,∴180°-2∠BHC=∠BHC+27°,∴∠BHC =51°.【分析】(1)作EM∥AB,FN∥CD,如图,根据平行线的性质得AB∥EM∥FN∥CD,所以∠B=∠1,∠2=∠3,∠4+∠C=180°,然后利用等量代换计算∠B+∠F+∠C;(2)分别过G、H作AB的平行线MN和RS,根据平行线的性质和角平分线的性质可用∠ABG和∠DCG 分别表示出∠H和∠G,从而可找到∠H和∠G的关系,结合条件可求得∠H.7.如图所示,O为一个模拟钟面圆心,M、O、N 在一条直线上,指针OA、OB 分别从OM、ON 出发绕点 O 转动,OA 运动速度为每秒 30 ,OB 运动速度为每秒10 ,当一根指针与起始位置重合时,运动停止,设转动的时间为 t 秒,试解决下列问题:(1)如图①,若OA顺时针转动,OB逆时针转动, =________秒时,OA与OB第一次重合;(2)如图②,若OA、OB同时顺时针转动,①当 =3秒时,∠AOB=________ ;②当为何值时,三条射线OA、OB、ON其中一条射线是另两条射线夹角的角平分线?________【答案】(1)4.5(2);解:由题意知,∴∠BON=10t ,∠AON=180-30t (0≤t≤6),∠AON=30t-180(6<t≤12).当ON为∠AOB的角平分线时,有180-30t =10t ,解得:t =4.5;当OA为∠BON的角平分线时,10t =2(30t -180),解得:t =7.2;当OB为∠AON的角平分线时,30t -180=2×10t ,解得:t =18(舍去);∴经过4.5,7.2秒时,射线OA、OB、ON其中一条射线是另外两条射线夹角的平分线【解析】【解答】(1)解:若OA顺时针转动,OB逆时针转动,∴∠AOM+∠BON=180 ,∴,解得:;∴秒,OA与OB第一次重合;故答案为:4.52)解:①若OA、OB同时顺时针转动,∴,,∴;故答案为:120;【分析】(1)设t秒后第一次重合.根据题意,列出方程,解方程即可;(2)①利用180 减去OA转动的角度,加上OB转动的角度,即可得到答案;②先用t的代数式表示∠BON和∠AON,然后分为三种情况进行讨论:当ON、OA、OB为角平分线时,分别求出t的值,即可得到答案.8.如图,E是直线AC上一点,EF是∠AEB的平分线.(1)如图1,若EG是∠BEC的平分线,求∠GEF的度数;(2)如图2,若GE在∠BEC内,且∠CEG=3∠BEG,∠GEF=75°,求∠BEG的度数.(3)如图3,若GE在∠BEC内,且∠CEG=n∠BEG,∠GEF=α,求∠BEG(用含n、α的代数式表示).【答案】(1)解:∵EF是∠AEB的平分线,∴∠BEF= ∠AEB,∵EG是∠BEC的平分线,∴∠BEG= ∠BEC,∴∠GEF=∠BEF+∠BEG= (∠AEB+∠BEC)=90°(2)解:∵∠GEF=75°,∴∠BEF=75°-∠BEG,∵EF是∠AEB的平分线,∴∠AEB=2∠BEF=150°-2∠BEG,∵∠CEG=3∠BEG,∴∠BEG+3∠BEG+150°-2∠BEG=180°,∴∠BEG=15°(3)解:∵∠GEF=α,∴∠BEF=α-∠BEG,∵EF是∠AEB的平分线,∴∠AEB=2∠BEF=2α-2∠BEG,∵∠CEG=n∠BEG,∴∠BEG+n∠BEG+2α-2∠BEG=180°,∴∠BEG=【解析】【分析】(1)由角平分线的性质可得∠BEF=∠AEB;∠BEG=∠BEC;然后结合图形得∠GEF=∠BEF+∠BEG=(∠AEB+∠BEC),根据平角的意义即可求解;(2)由角的构成可得∠BEF=∠GEF-∠BEG,由角平分线的性质可得∠AEB=2∠BEF=2(∠GEF-∠BEG),由平角的意义可得∠CEG+∠BEG+∠AEB=180°,于是把∠CEG、∠BEG、∠AEB代入等式可得关于∠BEG的方程,解方程即可求解;(3)用(2)的方法可求解。