2017年秋季学期新版新人教版八年级数学上学期整式的除法教案5

合集下载

人教版数学八年级上册15.3.2《整式的除法》教学设计

人教版数学八年级上册15.3.2《整式的除法》教学设计

人教版数学八年级上册15.3.2《整式的除法》教学设计一. 教材分析人教版数学八年级上册15.3.2《整式的除法》是整式除法部分的内容,主要介绍了整式除法的基本概念、方法和应用。

本节课的内容是在学生掌握了整式的加减乘法的基础上进行的,是进一步深化整式运算的重要内容,对于学生理解和掌握数学知识体系,提高解决问题的能力具有重要意义。

二. 学情分析学生在学习本节课之前,已经掌握了整式的加减乘法,对于整式的基本概念和运算规则有一定的了解。

但是,对于整式除法这一概念和方法,学生可能较为陌生,需要通过实例和练习来逐渐理解和掌握。

此外,学生的学习习惯和方法可能影响他们对整式除法的理解和应用。

三. 教学目标1.让学生理解和掌握整式除法的基本概念和运算方法。

2.培养学生运用整式除法解决实际问题的能力。

3.提高学生的数学思维能力和创新意识。

四. 教学重难点1.整式除法的基本概念和运算方法。

2.运用整式除法解决实际问题。

五. 教学方法采用问题驱动法、案例教学法、分组合作学习法等,激发学生的学习兴趣,引导学生主动探索,培养学生的数学思维能力和创新能力。

六. 教学准备1.教材、教学PPT、教学案例。

2.教学道具和辅助工具。

3.练习题和测试题。

七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何解决这个问题,从而引出整式除法这个概念。

2.呈现(10分钟)通过PPT或黑板,展示整式除法的基本概念和运算方法,让学生初步了解和认识整式除法。

3.操练(10分钟)让学生分组进行练习,运用整式除法解决实际问题,教师巡回指导,解答学生的疑问。

4.巩固(10分钟)通过一些典型的例题和练习题,让学生进一步巩固整式除法的概念和方法。

5.拓展(10分钟)引导学生思考如何将整式除法应用到更广泛的问题中,提高学生的应用能力和创新意识。

6.小结(5分钟)对本节课的内容进行总结,让学生明确学习目标,强化学习效果。

7.家庭作业(5分钟)布置一些相关的练习题,让学生课后巩固所学知识。

人教版数学八年级上册《第八课时15.3.2 整式除法》教学设计

人教版数学八年级上册《第八课时15.3.2 整式除法》教学设计

人教版数学八年级上册《第八课时15.3.2整式除法》教学设计一. 教材分析人教版数学八年级上册《第八课时15.3.2整式除法》是学生在掌握了多项式乘法、合并同类项、多项式与多项式的除法等知识的基础上,进一步学习多项式除以单项式的知识。

本节课的主要内容是引导学生掌握整式除法的基本概念、运算方法和步骤,培养学生运用整式除法解决问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了多项式乘法、合并同类项、多项式与多项式的除法等知识,具备一定的数学基础。

但部分学生对于整式除法的理解和运用还不够熟练,需要通过本节课的学习进一步巩固和提高。

三. 教学目标1.知识与技能:使学生掌握整式除法的基本概念、运算方法和步骤,能够运用整式除法解决问题。

2.过程与方法:通过自主学习、合作交流,培养学生运用数学知识解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心和克服困难的意志。

四. 教学重难点1.教学重点:整式除法的基本概念、运算方法和步骤。

2.教学难点:整式除法的运算方法和步骤,以及如何运用整式除法解决问题。

五. 教学方法1.情境教学法:通过生活实例引入整式除法,激发学生的学习兴趣。

2.自主学习法:引导学生独立思考,自主探究整式除法的运算方法和步骤。

3.合作交流法:学生进行小组讨论,共同解决问题,提高学生的合作能力。

4.巩固练习法:通过适量练习,巩固学生对整式除法的理解和运用。

六. 教学准备1.教学课件:制作课件,展示整式除法的运算方法和步骤。

2.练习题:准备适量练习题,用于巩固学生对整式除法的理解和运用。

3.教学道具:准备一些教学道具,如黑板、粉笔等,用于板书和讲解。

七. 教学过程1.导入(5分钟)利用生活实例引入整式除法,如“一块土地可以被分割成几块相同大小的小块?”引导学生思考和讨论,引出整式除法的概念。

2.呈现(10分钟)呈现整式除法的运算方法和步骤,通过讲解和示范,让学生理解和掌握整式除法的运算方法。

人教版八年级数学上册14.1.7整式的除法教学设计

人教版八年级数学上册14.1.7整式的除法教学设计
三、教学重难点和教学设想
(一)教学重难点
1.整式除法法则的理解与应用,特别是多项式除以多项式的运算步骤和技巧。
2.解决实际问题时,如何将问题抽象为整式除法运算,以及如何运用整式除法求解。
3.培养学生的运算速度和准确性,提高解题效率。
(二)教学设想
1.创设情境,导入新课
通过生活中常见的实际问题,如分配物品、计算平均速度等,引出整式除法的概念,激发学生的学习兴趣。
2.通过示例,教师演示整式除法的运算步骤,强调每一步的运算规律和技巧。
3.教师引导学生关注商与余数的关系,介绍带余除法的应用。
4.针对本节课的重难点,教师进行详细讲解,确保学生理解并掌握整式除法的运算方法。
(三)学生小组讨论,500字
1.教师将学生分成若干小组,每组选择一道具有代表性的整式除法题目进行讨论。
2.自主探究,合作交流
教师提供典型例题,引导学生自主探究整式除法的运算规律,鼓励学生之间相互交流、讨论,共同解决问题。
3.精讲精练,突破难点
针对整式除法法则和运算技巧,教师进行详细的讲解和示范,让学生通过反复练习,掌握解题方法,突破教学难点。
a.多项式除以单项式的运算,强调每一项都要除以除数,并合并同类项。
6.总结反思,巩固提高
课堂结束时,教师引导学生总结本节课所学内容,反思自己的学习过程和方法,巩固整式除法的知识。
7.布置作业,分层要求
根据学生的个体差异,布置不同难度的作业,使每个学生都能在课后得到有效的巩固和提高。
四、教学内容与过程
(一)导入新课,500字
1.教师通过展示一个与整式除法相关的实际问题,如“小明有一堆苹果,他想把这些苹果平均分给几个朋友,每人分得的苹果数量应该怎样计算?”引导学生思考。

人教版初中八年级数学上册《整式的除法》精品教案

人教版初中八年级数学上册《整式的除法》精品教案

第3课时整式的除法1.掌握同底数幂的除法法则与运用.(重点)2.掌握单项式除以单项式和多项式除以单项式的运算法则.(重点)3.熟练地进行整式除法的计算.(难点)一、情境导入1.教师提问:同底数幂的乘法法则是什么?2.多媒体展示问题:一种液体每升含有1012个有害细菌,为了试验某种杀菌剂的效果,科学家们进行了实验,发现1滴杀菌剂可以杀死109个此种细菌.要将1升液体中的有害细菌全部杀死,需要这种杀菌剂多少滴?学生认真分析后完成计算:需要滴数:1012÷109.3.教师讲解:以前我们只学过同底数幂的乘法的计算方法,那么像这种同底数幂的除法该怎样计算呢?二、合作探究探究点一:同底数幂的除法【类型一】直接用同底数幂的除法进行运算计算:(1)(-xy)13÷(-xy)8;(2)(x-2y)3÷(2y-x)2;(3)(a2+1)6÷(a2+1)4÷(a2+1)2.解析:利用同底数幂的除法法则即可进行计算,其中(1)应把(-xy)看作一个整体;(2)把(x -2y)看作一个整体,2y-x=-(x-2y);(3)注意(a2+1)0=1.解:(1)(-xy)13÷(-xy)8=(-xy)13-8=(-xy)5=-x5y5;(2)(x-2y)3÷(2y-x)2=(x-2y)3÷(x-2y)2=x-2y;(3)(a2+1)6÷(a2+1)4÷(a2+1)2=(a2+1)6-4-2=(a2+1)0=1.方法总结:计算同底数幂的除法时,先判断底数是否相同或变形为相同,再根据法则计算. 【类型二】 逆用同底数幂的除法进行计算已知a m =4,a n =2,a =3,求am -n -1的值. 解析:先逆用同底数幂的除法,对am -n -1进行变形,再代入数值进行计算. 解:∵a m =4,a n =2,a =3,∴a m -n -1=a m ÷a n ÷a =4÷2÷3=23. 方法总结:解此题的关键是逆用同底数幂的除法得出am -n -1=a m ÷a n÷a .【类型三】 已知整式除法的恒等式,求字母的值 若a (x m y 4)3÷(3x 2y n )2=4x 2y 2,求a 、m 、n 的值.解析:利用积的乘方的计算法则以及整式的除法运算得出即可.解:∵a (x m y 4)3÷(3x 2y n )2=4x 2y 2,∴ax 3m y 12÷9x 4y 2n =4x 2y 2,∴a ÷9=4,3m -4=2,12-2n =2,解得a =36,m =2,n =5.方法总结:熟练掌握积的乘方的计算法则以及整式的除法运算是解题关键.【类型四】 整式除法的实际应用一颗人造地球卫星的速度为2.88×107m/h ,一架喷气式飞机的速度为1.8×106m/h ,这颗人造地球卫星的速度是这架喷气式飞机的速度的多少倍?解析:求人造地球卫星的速度是这架喷气式飞机的速度的多少倍,用人造地球卫星的速度除以喷气式飞机的速度,列出式子:(2.88×107)÷(1.8×106),再利用同底数幂的除法计算.解:(2.88×107)÷(1.8×106)=(2.88÷1.8)×(107÷106)=1.6×10=16.则这颗人造地球卫星的速度是这架喷气式飞机的速度的16倍.方法总结:用科学记数法表示的数的运算可以利用单项式的相关运算法则计算.探究点二:零指数幂若(x -6)0=1成立,则x 的取值范围是( )A .x ≥6B .x ≤6C .x ≠6D .x =6解析:∵(x -6)0=1成立,∴x -6≠0,解得x ≠6.故选C.方法总结:本题考查的是0指数幂,非0数的0次幂等于1,注意0指数幂的底数不能为0.探究点三:单项式除以单项式计算.(1)(2a 2b 2c )4z ÷(-2ab 2c 2)2;(2)(3x 3y 3z )4÷(3x 3y 2z )2÷(12x 2y 6z ). 解析:先算乘方,再根据单项式除单项式的法则进行计算即可.解:(1)(2a 2b 2c )4z ÷(-2ab 2c 2)2=16a 8b 8c 4z ÷4a 2b 4c 4=4a 6b 4z ;(2)(3x 3y 3z )4÷(3x 3y 2z )2÷(12x 2y 6z )=81x 12y 12z 4÷9x 6y 4z 2÷12x 2y 6z =18x 4y 2z . 方法总结:掌握整式的除法的运算法则是解题的关键,有乘方的先算乘方,再算乘除.探究点四:多项式除以单项式【类型一】 直接利用多项式除以单项式进行计算计算:(72x 3y 4-36x 2y 3+9xy 2)÷(-9xy 2).解析:根据多项式除单项式,先用多项式的每一项分别除以这个单项式,然后再把所得的商相加.解:原式=72x 3y 4÷(-9xy 2)+(-36x 2y 3)÷(-9xy 2)+9xy 2÷(-9xy 2)=-8x 2y 2+4xy -1. 方法总结:多项式除以单项式,先把多项式的每一项都分别除以这个单项式,然后再把所得的商相加.【类型二】 被除式、商式和除式的关系已知一个多项式除以2x 2,所得的商是2x 2+1,余式是3x -2,请求出这个多项式.解析:根据被除式、除式、商式、余式之间的关系解答.解:根据题意得:2x 2(2x 2+1)+3x -2=4x 4+2x 2+3x -2,则这个多项式为4x 4+2x 2+3x -2. 方法总结:“被除式=商×除式+余式”是解题的关键.【类型三】 化简求值先化简,后求值:[2x (x 2y -xy 2)+xy (xy -x 2)]÷x 2y ,其中x =2015,y =2014.解析:利用去括号法则先去括号,再合并同类项,然后根据除法法则进行化简,最后把x 与y 的值代入计算,即可求出答案.解:[2x (x 2y -xy 2)+xy (xy -x 2)]÷x 2y =[2x 3y -2x 2y 2+x 2y 2-x 3y ]÷x 2y =x -y ,把x =2015,y =2014代入上式得:原式=x -y =2015-2014=1.方法总结:熟练掌握去括号,合并同类项,整式的除法的法则.三、板书设计同底数幂的除法1.同底数幂的除法法则:a m÷a n=a m-n(m,n为正整数,m>n,a≠0).2.同底数幂的除法法则逆用:a m-n=a m÷a n(m,n为正整数,m>n,a≠0).从计算具体的同底数幂的除法,逐步归纳出同底数幂除法的一般性质.讲课时要多举几个具体的例子,让学生计算出结果.最后,让学生自己归纳出同底数幂的除法法则.性质归纳出后,应注意:(1)要强调底数a不等于零,若a为零,则除数为零,除法就没有意义了;(2)本节不讲零指数与负指数的概念,所以性质中必须规定指数m、n都是正整数,并且,要让学生运用时予以注意.---------------------学习小技巧---------------小学生制定学习计划的好处小学生想要成绩特别的突出学习计划还是不能少的。

新人教版八年级上册初中数学 课时4 整式的除法 教案(教学设计)

新人教版八年级上册初中数学 课时4 整式的除法 教案(教学设计)

第十四章整式的乘法与因式分解14.1整式的乘法14.1.4 整式的乘法课时4 整式的除法【知识与技能】(1)掌握同底数幂的除法法则.(2)理解不等于0的数的0次幂的定义.(3)理解单项式除以单项式,多项式除以单项式的法则,并会进行简单的相关运算.【过程与方法】通过探索整式的除法的一般规律,能熟练地进行有关的计算.【情感态度与价值观】让学生自主探索整式的除法法则,体验通过转化构建新知识体系,培养学生大胆猜想、善于思考、归纳的数学思维品质和创新精神.整式的除法法则的运用.整式的除法法则的运用.多媒体课件.师生共同复习回顾:同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即a m·a n=a m+n(m,n都是正整数).教师接着出示问题:一张数码照片的文件大小是28 KB,一个存储量为26MB(1 MB=210 KB)的移动存储器能存储多少张这样的数码照片?学生先思考,再小组内讨论解决:移动存储器的存储量单位与文件大小的单位不一致,所以要先统一单位.移动存储器的容量为26×210=26 624(KB).所以它能存储这种数码照片的数量为(26 624÷28)张.教师:我们已经学习了整式的加法、减法、乘法运算.在整式的运算中,有时还会遇到两个整式相除的情况.由于除法是乘法的逆运算,因此我们可以利用整式的乘法来理解和学习整式的除法.(板书课题)探究1:同底数幂的除法教师让学生解决以下问题:1.用你熟悉的方法计算.2.概括.在学生讨论、计算的基础上,教师提问:你们能发现什么?由学生回答,教师板书,发现:你能根据除法的意义来说明这些运算结果是怎么得到的吗?3.分组讨论.各组选出一名代表来回答问题,师生达成共识,除法是乘法的逆运算,所以除法的问题实际上是“已知乘积和一个因数,去求另一个因数”的问题,于是上面的问题可以转化为乘法问题加以解决,即:师生共同总结:一般地,我们有a m÷a n=a m-n,并且m≥n,m,n为正整数,即同底数幂相除,底数不变,指数相减.(教师板书)4.利用除法的意义说明这个法则的算理.让学生仿照问题的解决过程,讲清算理,并请几名学生代表回答,教师加以评析.5.让学生互相讨论.当m=n时,a m÷a n的结果是多少?能总结出什么规律?师生共同总结:当m=n时,a m÷a n=a m-m=a0=1(a≠0),即任何不等于0的数的0次幂都等于1.探究2:单项式除以单项式与多项式除以多项式教师引入:利用同底数幂的除法法则,我们可以计算单项式与单项式的除法,进一步探究多项式与单项式的除法,下面我们先来探讨单项式与单项式的除法.教师出示问题:木星的质量约是1.90×1024吨,地球的质量约是5.98×1021吨.你知道木星的质量约为地球质量的多少倍吗?学生思考后回答:这是除法运算,木星的质量约为地球质量的[(1.90×1024)÷(5.98×1021)]倍.接着教师让学生解决以下问题:1.计算(1.90×1024)÷(5.98×1021),并说说你计算的根据是什么.2.你能利用1中的方法计算下列各式吗?3.你能根据2说说单项式除以单项式的运算法则吗?讨论结果展示:可以从两个思路考虑:(思路一)从乘法与除法互为逆运算的角度去考虑.1.我们可以想象5.98×1021×( )=1.90×1024.根据单项式与单项式相乘的运算法则可以继续联想:所求单项式的系数乘5.98等于1.90,所以所求单项式的系数为1.90÷5.98≈0.318,所求单项式的幂值部分应包含1024÷1021,即103,由此可知 5.98×1021×(0.318×103)≈1.90×1024.所以(1.90×1024)÷(5.98×1021)≈0.318×103.2.可以想象2a·( )=8a3,根据单项式与单项式相乘的运算法则,可以考虑:8÷2=4,a3÷a=a2,即2a·(4a2)=8a3.所以8a3÷2a=4a2.同样的道理可以得出所以(思路二)从除法的意义去考虑.上述两种算法有理有据,所以结果都正确.教师引导学生观察上述几个式子的运算过程,总结出它们的共同特征:(1)都是单项式除以单项式.(2)运算的结果都是把系数、同底数幂分别相除后作为商的因式;对于只在一个被除式中含有的字母,则连同它的指数一起作为商的一个因式.(3)单项式相除是在同底数幂的除法的基础上进行的.教师出示教材P103例7:学生自主解答.教师:那么对于多项式除以单项式,同学们可仿照上述的探究过程,自己尝试.学生小组讨论.师生共同总结:一般地,多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.教师出示教材P103例8:教师引导学生共同分析,教师板书(1),请2名学生代表上台板演(2)(3).接着教师让学生完成教材P104练习第1,2,3题.(学生独立完成之后,教师点评)多项式除以单项式的结果仍然是多项式.【正式作业】教材P105习题14.1第6题。

整式的除法教案

整式的除法教案

整式的除法教案一、知识点概述整式的除法是初中数学中的一个重要知识点,也是高中数学的基础。

整式的除法主要包括两种情况:一是整式除以单项式,二是整式除以整式。

在进行整式的除法运算时,需要掌握整式的基本运算法则和多项式长除法的步骤。

二、教学目标1.掌握整式除以单项式的基本运算法则;2.掌握整式除以整式的多项式长除法的步骤;3.能够熟练地进行整式的除法运算;4.能够应用整式的除法解决实际问题。

三、教学重点和难点1.整式除以单项式的基本运算法则;2.整式除以整式的多项式长除法的步骤。

四、教学过程1. 整式除以单项式的基本运算法则整式除以单项式的基本运算法则是:将整式中每一项的系数分别除以单项式的系数,并将单项式的指数减去每一项的指数,得到的商即为整式除以单项式的结果,余数为0。

例如,将3x2+6x除以3x,则:3x2+6x3x =3x23x+6x3x =x+2因此,3x2+6x除以3x的结果为x+2。

2. 整式除以整式的多项式长除法的步骤整式除以整式的多项式长除法的步骤如下:1.将被除式按照指数从高到低排列;2.将除式按照指数从高到低排列;3.将被除式中最高次项与除式中最高次项相除,得到商;4.将商乘以除式,得到一个新的多项式;5.将被除式减去新的多项式,得到一个新的被除式;6.重复以上步骤,直到新的被除式的次数小于除式的次数为止。

例如,将3x3+5x2−2x−1除以x−1,则:$$ \begin{array}{c|cccc} & 3x^3 & +5x^2 & -2x & -1 \\ \hline x-1 & 3x^2 &+8x & +6 & \\ & 3x^3 & -3x^2 & & \\ \hline & & 8x^2 & -2x & -1 \\ & & 8x^2 & -8x & \\ \hline & & & 6x & -1 \\ & & & 6x & -6 \\ \hline & & & & 5 \end{array} $$因此,3x3+5x2−2x−1除以x−1的结果为3x2+8x+6,余数为5。

人教版数学八年级上册 14.1:整式的除法教案(含答案)

人教版数学八年级上册 14.1:整式的除法教案(含答案)

人教版数学八年级上册14.1:整式的除法教案(含答案)课题:整式的除法1.理解并掌握单项式除以单项式、多项式除以单项式法则.2.让学生会运用法则,熟练进行整式的除法运算.重点:单项式除以单项式、多项式除以单项式的运算.难点:除式带有负号时,注意符号的变化.一、情景导入,感受新知问题提出:林宁今年刚刚3岁,是幼儿园最里聪明的孩子,李老师教他做算术,告诉他5×6=30后,他马上就知道30÷5=6,你说他是怎样计算的呢?二、自学互研,生成新知【自主探究】(一)阅读教材P103例7之后三段文字及例8(1)、(2),完成下面的内容:怎样计算-8a2b3÷6ab2呢?-8a2b3÷6ab2=(-8÷6)·a2-1·b(3-2)=-ab.归纳:一般地,单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.(二)阅读教材P103例8之前两段文字及例8(3),完成下面的内容:计算:(a4b7-a2b6)÷(-ab2)2;解:原式=6a2b3-b2.归纳:一般地,多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.①明了学情:学生自主学习,教师巡视全班.②差异指导:对于自学中遇到的问题适时点拨.③生生互助:先自学,对于困惑,同桌、小组交流.三、典例剖析,运用新知【合作探究】例1:计算:(1)-3a2b4c÷12ab3;解:原式=-abc;(2)6xy3z5÷2xyz2;解:原式=3y2z3;(3)(-a)10÷(-a)7;解:原式=(-a)10-7=-a3;(4)(a3)2÷(a3)2.解:原式=a6÷a6=1.例2:计算:(1)(12a3b3c3-6a2b+3ab)÷3ab;(2)[(a+b)5-(a+b)3]÷(a+b)3.【分析】本题利用多项式除以单项式法则计算;(2)题中,把(a+b)看成一个整体,那么此式也可以看作是多项式除以单项式.解:(1)(12a3b3c3-6a2b+3ab)÷3ab=12a3b3c3÷3ab-6a2b÷3ab+3ab÷3ab=4a2b2c3-2a+1.(2)[(a+b)5-(a+b)3]÷(a+b)3=(a+b)5÷(a+b)3-(a+b)3÷(a+b)3=(a+b)2-1=a2+2ab+b2-1.例3:已知一个多项式与单项式-7x2y3的积为21x4y6-28x7y4+14x6y6,试求这个多项式.解:设所求多项式为A,则A=(21x4y6-28x7y4+14x6y6)÷(-7x2y3)=-3x2y3+4x5y-2x4y3.①明了学情:学生自主学习,教师巡视全班.②差异指导:对于自学中遇到的问题适时点拨.③生生互助:先自学,对于困惑,同桌,小组交流.四、课堂小结,回顾新知单项式除以单项式运算时,要注意:1.系数相除与同底数的幂相除的区别:后者运算时是将指数相减,然而前者是有理数的除法.2.对于单项式除以单项式,仅仅考虑整除的情况.五、检测反馈、落实新知1.已知4x3ym÷36xny2=y2,则(A)A.m=4,n=3B.m=4,n=2C.m=1,n=3D.m=2,n=32.计算-5x6y3z÷15x4y3的结果是(C)A.3x2 B.-3x2zC.-x2z D.x2z3.化简求值:(28a3b2c+35a2b3-14a2b2)÷(-7ab),其中a=-1,b =-2,c=3.解:原式=-4a2bc-5ab2+2ab.当a=-1,b=-2,c=3时,原式=-4×(-1)2×(-2)×3-5×(-1)×(-2)2+2×(-1)×(-2)=24+20+4=48.六、课后作业:巩固新知(见学生用书)。

最新八年级数学上册‘整式的除法’教学说教课程教案设计.docx

最新八年级数学上册‘整式的除法’教学说教课程教案设计.docx

八年级数学上册‘整式的除法’教学说教课程教案设计教学目标1.知识与技能了解同底数幂的除法的运算性质,并会用其解决实际问题.2.过程与方法经历探究同底数幂的除法的运算性质的过程,进一步体会幂的意义,发展推理能力和有条件的表达能力.3.情感、态度与价值观感受数学法则、公式的简洁美、和谐美.重、难点与关关键1.重点:同底数幂的除法法则.2.难点:同底数幂的除法法则的推导.3.关键:采用数学类比的方法,引入幂的除法法则.教学方法采用“问题解决”教学方法.教学过程一、创设情境,导入新知【情境引入】教科书Pxxxx一种数码照片的文件大小是28K,一个存储量为26M(1M=210K)的移动存储器能存储多少张这样的数码照片?你是如何计算的?【教师活动】组织学生独立思考完成,然后先组内交流(4人小组),•接着再全班交流,鼓励学生积极探索,应用数学转化的思想化陌生为熟悉,鼓励学生算法多样化,同样强调算理的叙述.【学生活动】完成课本Pxxxx言,利用除法与乘法的互逆关系,求出216÷28=28=256.【继续探究】根据除法的意义填空,并观察计算结果,寻找规律:(1)77÷72=7( );(2)1012÷107=10( );(3)x7÷x3=x( ).【归纳法则】一般地,我们有a m÷a n=a m-n(a≠0,m,n都是正整数,m>n).文字叙述:同底数的幂相除,底数不变,指数相减.【教师活动】组织学生讨论为什么规定a≠0?二、范例学习,应用所学【例1】计算:(1)x9÷x3;(2)m7÷m;(3)(xy)7÷(xy)2;(4)(m-n)8÷(m-n)4.【特殊性质】探究课本P160“探究”题.根据除法的意义填空,并观察结果的规律:(1)72÷72=();(2)1005÷1005=()(3)a n÷a n=()(a≠0)【课堂活动】在学生完成上面的填空题之后,教师引导学生观察结论:(1)72÷72=72-2=70;(2)1005÷1005=1005-5=1000;(3)a n÷a n=a n-n=a0(a≠0)规定a0=1(a≠0),文字叙述如下:任何不等于0的数的0次幂都等于1.【法则拓展】一般,我们有a m÷a n=a m-n(a≠0,m,n都是正整数,并且m≥n),•即文字叙述为:同底数幂相除,底数不变,指数相减.三、随堂练习,巩固深化课本P160练习第1、2、3题.【探研时空】下列计算是否正确?如果不正确,应如何改正?(1)(-xy)6÷(-xy)2=-x4y4;(2)62m+1÷6m=63=216;(3)x10÷x2÷x=x10÷x=1010.四、课堂总结,发展潜能教师提问式总结:1.同底数幂的除法法则?2.a0=1(a≠0)意义?3.到目前为止,我们学习了哪些幂的运算法则?谈谈它们的异同点.五、布置作业,专题突破课本P164第1题.板书设计xxxx以单项式教学目标1.知识与技能会进行单项式除以单项式运算,理解整式除法运算的算理,发展有条理的思考及语言表达能力.2.过程与方法经历整式乘法的逆运算或约分的思想推理出单项式除以单项式的运算法则的过程,掌握整式除法运算.3.情感、态度与价值观培养学生探索的勇气和信念,增强挑战困难的勇气和信心.重、难点与关键1.重点:单项式除以单项式的运算法则.2.难点:理解单项式除以单项式的法则并应用其法则计算.3.•关键:运用类比数的运算方法切入到整式乘法的单项式乘以单项式运算法则的理解之中.教学方法采用“引导──发现”法进行教学.教学过程一、创设情境,导入新知【激趣引入】问题提出:林宁今年刚刚3岁,是幼儿园里最聪明的孩子,•李老师教他做算术,告诉他5×6=30后,他马就知道30÷5=6,你说他是怎样计算的呢?【学生活动】回答上述问题:林宁利用了除法是乘法的逆运算得出的结果.【教师活动】提出话题:我们前几天学习了整式的乘法,现在,不用老师讲解,你们能开始解决整式的除法运算吗?谁可以告诉我单项式与单项式相除的法则?【学生活动】思考回答:把它们的系数先相除,然后再把相同字母的幂相除,其他的字母连同它的指数不变,作为商的因式.【教师活动】引入课题,引导学生运用单项式除以单项式的法则计算下列几道题目.【课堂演练】计算:(1)(x5y)÷x3;(2)(16m2n2)÷(2m2n);(3)(x4y2z)÷(3x2y)【学生活动】开始计算,然后总结归纳,上台演示,引入课题.【归纳法则】单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.二、范例学习,应用所学【例】计算:(1)63x7y3÷7x3y2;(2)-25a6b4c÷10a4b.三、随堂练习,巩固深化课本P162练习第1、2题.【探研时空】已知10m=5,10n=4,求102m-3n的值.四、课堂总结,发展潜能单项式除以单项式运算时,要注意:1.系数相除与同底数的幂相除的区别:后者运算时是将指数相减,•然而前者是有理数的除法.2.对于单项式除以单项式,仅仅考虑整除的情况.五、布置作业,专题突破课本P164习题xxxx.xxxx以单项式教学目标1.知识与技能要求学生能够进行多项式除以单项式的运算,并且理解除法运算的算理,发展思维能力和表达能力.2.过程与方法利用整式除法的逆运算或者约分的方法推理出多项式除以单项式的运算法则,掌握整式除法的运算.3.情感、态度与价值观通过分组讨论学习,体会在解决具体问题的过程中与他人合作的重要性,培养学生的团结协作精神,使学生获得合作交流的学习方式.重、难点与关键1.重点:多项式除以单项式的运算法则的推导,以及法则的正确使用.2.难点:多项式除以单项式的运算法则的熟练应用.3.关键:从逆运算入手,•利用单项式与单项式相除的除法法则和分配律总结、归纳出多项式除以单项式的法则.教学方法采用“激趣──导学”的教学法.教学过程一、小组合作,激趣导学【课堂演练】1.(-4a 2b )2÷(2ab 2)2.-16(x 3y 4)3÷(-x 4y 5)2; 3.(2xy )2·(-x 5y 3z 2)÷(-2x 3y 2z )4; 4.xxxx )-4x 2y ÷(-2xy ).【教师提问】 “(6xy+8y )÷(2y )”如何计算?【学生活动】相互讨论,大多数学生没有找到计算思路.【教师活动】铺垫一道题目:计算(ad+bd )÷d ,计算:(1)(x 3y 2+4xy )÷x (2)(xy 3-2xy )÷(xy )【学生活动】分四人小组完成并讨论多项式除以单项式的法则:多项式与单项式相除可以用分配律将它转化为单项式与单项式相除,再利用单项式与单项式相除的法则进行计算.【师生共识】多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加.二、范例学习,应用所学【例】计算: 1215(1)(xxxx)÷2x(2)(36x4y3-xxxx2)÷(-7x2y)(3)[(m-n)2-n(2m+n)-8m]÷2m三、随堂练习,巩固深化课本P163练习题.【探研时空】下列计算是否正确?如不正确,应怎样改正?(1)-4ab2÷2ab=2b (2)(xxxx÷a=xxxx四、课堂总结,发展潜能多项式除以单项式时应注意运算中的问题:一是所除的商要写成省略括号的代数和,二是除式与被除式不能交换,还要注意运算顺序,应灵活地运用有关运算公式.五、布置作业,专题突破课本P164第3、5、6、8题.板书设计。

人教版数学八年级上册15.3.2《整式的除法》教案

人教版数学八年级上册15.3.2《整式的除法》教案

人教版数学八年级上册15.3.2《整式的除法》教案一. 教材分析《整式的除法》是人教版数学八年级上册第15章第三节的一部分,主要内容包括单项式除以单项式、多项式除以单项式以及多项式除以多项式的运算方法。

这一节内容在数学学习中占据重要地位,是学生进一步学习函数、不等式等数学知识的基础。

通过本节内容的学习,学生能够掌握整式除法的基本运算方法,提高运算能力,并为后续学习打下基础。

二. 学情分析学生在学习本节内容前,已经掌握了整式的加减、乘法等基本运算,具备一定的数学基础。

但学生在进行整式除法运算时,容易出错,对除法运算的理解不够深入。

因此,在教学过程中,需要关注学生的学习困难,通过具体例子引导学生理解整式除法的运算规律,提高学生的运算能力。

三. 教学目标1.知识与技能目标:使学生掌握整式除法的基本运算方法,能够熟练地进行整式除法运算。

2.过程与方法目标:通过自主探究、合作交流,培养学生解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自信心,使学生感受到数学学习的成就感。

四. 教学重难点1.重点:整式除法的基本运算方法。

2.难点:理解整式除法的运算规律,能够灵活运用整式除法解决实际问题。

五. 教学方法采用“引导探究法”和“合作交流法”,教师引导学生通过观察、分析、归纳等方法,发现整式除法的运算规律,培养学生的问题解决能力。

同时,鼓励学生进行合作交流,分享学习心得,提高学生的沟通能力。

六. 教学准备1.教师准备:教师需熟练掌握整式除法的运算方法,了解学生的学习情况,准备相关教学素材。

2.学生准备:学生需预习整式除法相关内容,了解基本概念,准备参与课堂讨论。

七. 教学过程1.导入(5分钟)教师通过一个简单的例子,引导学生回顾整式的加减、乘法运算,为新课的学习做好铺垫。

2.呈现(10分钟)教师展示整式除法的例子,引导学生观察、分析,发现整式除法的运算规律。

学生通过自主探究,总结整式除法的基本方法。

人教版数学八年级上册15.3.2《整式的除法》说课稿

人教版数学八年级上册15.3.2《整式的除法》说课稿

人教版数学八年级上册15.3.2《整式的除法》说课稿一. 教材分析《整式的除法》是人教版数学八年级上册第15章第三节的一部分,它是初中数学中重要的基础知识。

本节内容主要介绍整式除法的基本概念、运算方法和应用。

通过本节的学习,学生能够掌握整式除法的运算规则,并能运用整式除法解决实际问题。

二. 学情分析学生在学习本节内容前,已经掌握了整式的加减乘运算,具备一定的代数基础。

但学生在进行整式除法运算时,容易混淆运算规则,对除法运算的理解不够深入。

因此,在教学过程中,需要关注学生的学习情况,引导学生正确理解整式除法的概念和运算规则。

三. 说教学目标1.知识与技能目标:学生能够理解整式除法的基本概念,掌握整式除法的运算方法,能够熟练进行整式除法的计算。

2.过程与方法目标:通过自主学习、合作交流,培养学生运算能力和抽象思维能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自主学习能力。

四. 说教学重难点1.教学重点:整式除法的基本概念,整式除法的运算方法。

2.教学难点:整式除法运算中,如何正确处理多项式的除法运算。

五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、教师讲解相结合的教学方法。

2.教学手段:利用多媒体课件,进行直观演示和讲解,帮助学生理解整式除法的概念和运算方法。

六. 说教学过程1.导入新课:通过复习整式的加减乘运算,引出整式除法运算的概念。

2.自主学习:学生自主学习整式除法的基本概念和运算方法。

3.合作交流:学生分组讨论,总结整式除法的运算规则。

4.教师讲解:针对学生不易理解的地方,进行重点讲解和演示。

5.练习巩固:学生进行适量练习,巩固整式除法的运算方法。

6.拓展应用:引导学生运用整式除法解决实际问题。

七. 说板书设计板书设计如下:1.定义:已知两个整式A和B,若存在一个整式C,使得A = BC,则称B是A的除数,C是A除以B的商。

2.运算规则:(1)同底数幂相除,底数不变,指数相减。

最新人教版八年级数学上册 第十四章《整式的除法》教案

最新人教版八年级数学上册 第十四章《整式的除法》教案

《整式的除法》教案2教学设计说明:本节课我采用“自主探究性学习”.“自主探究性学习”是以学生自主探究为主的教学方式,本课的主要任务是完成单项式除以单项式法则的推导,继而将多项式除以单项式转化为单项式除以单项式,学生完全有能力通过探究,在原有的认知结构(熟悉分数的约分和幂的意义)基础上,建构整式的除法法则.同时,教师应重视引导,力求每个问题都是探索性的,引导他们自己发现,并且节奏紧凑,使学生的大脑一直处于兴奋状态,提高探究效率.单项式的除法法则的推导,应按从具体到一般的步骤进行.探究活动的安排,是使学生通过对具体的特例的计算,归纳出单项式的除法运算性质,并能运用乘除互逆的关系加以说明,也可类比分数的约分进行.在这些活动过程中,学生的化归、符号演算等代数推理能力和有条理的表达能力得到进一步发展.重视算理算法的渗透是新课标所强调的.(1)教材分析整式的除法包括单项式除以单项式和多项式除以单项式,是在学生学习了整式的加减、同底数幂的除法、整式的乘法基础上,对整式的除法运算进行探索和研究的一个重要课题,是学生完整、全面掌握整式运算的必备环节.在整式的除法的计算过程中,既要对两个单项式的系数进行运算,又要对两个单项式中同字母进行指数运算,同时对只在一个单项式中出现的字母及其指数加以注意,这对于刚刚接触整式除法的学生来讲,难免会出现照看不全的情况,以至于出现计算错误或漏算等问题.(2)学情分析学生的知识技能基础:学生在小学已经学习过整数除法,对整数除法的运算掌握较为熟练.在本章前面几节课中,又学习了同底数幂的除法\单项式乘以单项式的法则,并利用其解决了一些问题,这些知识储备为学生本节课的学习奠定了良好的知识技能基础.学生活动经验基础:在本章前面知识的学习过程中,学生已经经历了一些探索、发现的数学活动,积累了初步的数学活动经验,具备了一定的探究能力.同时在本章前面的数学学习中学生已经经历了探究整式加减以及乘法运算的过程,为探究整式除法运算打下了基础,并且经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力.教学目标1.经历探索整式除法运算法则的过程,会进行简单的整式除法运算;2.理解整式除法运算的算理,发展有条理的思考及表达能力.3.发展学生观察、归纳、猜测、验证的能力.培养学生解决问题的能力,从而也体现“数学是人人都可以学会的”,“数学好玩”,培养学生学习数学的兴趣.教学重点、难点根据本节课所学习的内容单项式除以单项式、多项式除以单项式,其中主要应用了以前所学习有关同底数幂的除法的相关知识和内容,因此本节课的重难点确定为:①重点:单项式的除法法则和多项式除以单项式的法则.②难点:单项式的除法法则和多项式除以单项式的法则的熟练运用.关键是引导学生理解计算过程中既要对系数进行计算,又要对相同字母进行指数计算,同时对只在一个单项式中出现的幂加以注意.课时设计两课时.教学策略本节课设计了八个教学环节:复习回顾、情境引入、探究新知、例题讲解、课堂练习、思维拓广、知识小结、布置作业.教学过程(一)创设情境,复习导入请同学们回答如下问题,看哪位同学回答得又快又准确.1.计算:(1)a9÷a5;(2)y4÷y;(3)105÷105;(4)y3÷y3.以上计算是什么运算?能否叙述这种运算的法则?法则的使用条件与结论各是什么?学生活动:学生回答上述问题.答案:同底数幂除法:a m÷a n=a m-n((a≠0,m,n为正整数,且m>n)(1)a4;(2)y3 ; (3)1;(4)1.【设计意图】利用练习复习巩固同底数幂除法法则.着重强调使用同底数幂除法法则的条件是被除式与除式一定要符合是同底幂的形式,且底数不能为0,结论(法则的内容)是“商的底数不变(与被除式与除式的底相同),商的指数是被除式的指数减去除式的指数的差”,这同时也是本节的学习基础.注意要指出零指数幂的意义.2.计算并回答问题:(1)(5x)·(2xy2 );(2)(-3mn)·(4n2 ).以上计算是什么运算?能否叙述这种运算的法则?答案:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式.(1)10x2y2;(2)-12mn3.【教法说明】通过实例引起学生回忆,复习单项式乘法法则.着重说明单项式与单项式的乘法是利用乘法交换律与结合律,转化为同底数幂的乘法来计算的.看来化“新”为“旧”是解决某些数学问题的重要思想方法.3.填空:()·3ab2=12a3b2x3 (学生回答结果)答案:4a2x3.(二)指出问题,探究新知活动1:这个问题就是让我们去求一个单项式,使它与3ab2相乘,积为12a3b2x3,这个过程能列出一个算式吗?由一个学生回答,教师板书.12a3b2x3÷3ab2这就是我们这节课要学习的单项式除以单项式运算(板书课题).师生活动:因为4a2x3·3ab2=12a3b2x3,所以12a3b2x3÷3ab2=4a2x3(在上述板书过程中填上所缺的项)由4a2x3·3ab2得到12a3b2x3,系数4和3,同底数幂a2、a及x3、b2分别是怎样计算的?(一个学生回答)那么由12a3b2x3÷3ab2得到4a2x3又是怎样计算的呢?结合引例,教师可以鼓励学生自己发现系数、同底数幂的底数和指数发生的变化,并运用自己的语言进行描述,教师板书.结论:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.如何运用呢?比如计算:-6a2b5c3÷ 3/5 b3c3=(-6÷ 3/5 )a2b5-3c3-3=-10a2b2学生活动:在教师引导下,根据法则回答问题(教师板书)【设计意图】教师根据乘、除法的运算关系,步步深入,引导学生总结得出单项式除以单项式的运算法则,教师给出-6a 2b 5c 3÷ 3/5 b 3c 3计算紧扣法则,在师生双边活动中,要充分发挥教师的主导作用和学生的主体作用,调动学生思维. 活动3:计算下列各题,说说你的理由.231(2)(3)(3)(2)ad bd d a b ab a xy xy xy +÷=+÷=-÷=()()()总结探究方法方法1:利用乘除法的互逆2223321(),;(2)(3)3,(3)3;(3)(2)2,(2) 2.a b d ad bd ad bd d a b ab b a a b ab a b ab a ab b y xy xy xy xy xy xy y +⋅=+∴+÷=++⋅=+∴+÷=+-⋅=-∴-÷=- ()()()方法2:类比有理数的除法类比得到 22332111(2)(3)(3)31(3)(2)(2)2ad bd d ad bd a b da b ab a a b ab ab b axy xy xy xy xy y xy +÷=+⋅=++÷=+⋅=+-÷=-⋅=-()()();;(). 总结多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.【设计意图】通过让学生经历观察、计算、推理、想象等探索过程,获得数学活动的经验;发散学生思维,让学生尽可能用多种方法来说明自己计算的正确性,培养学生合情说理的能力;并在这个过程中,培养学生总结归纳知识的能力.(三)尝试计算,熟悉法则例1 计算:(1)28x 4y 2÷7x 3y ; (2)-5a 5b 3c ÷15a 4b ;(3)-a 2x 4y 3÷(-56axy 3) (4)(6×108)÷(3×105) 学生活动:学生自己尝试完成计算题,同桌互相帮助,若有问题,进行改正. 答案:(1)4xy ;(2)-13ab 2c ;(3)65ax 3;(4)2×103.【设计意图】教师结合-6a2b5c3÷ 3/5 b3c3的演算,使学生对法则的运用有了初步认识;例题由学生自己去体会法则、掌握法则,印象更为深刻:也可能在解题过程中遇到一些困难,如准确性、计算顺序等,通过对照课本例题,让学生自己发现解题中存在的问题,有助于培养学生良好的思维习惯和主动参与学习的习惯.例2 计算:(1)(6a4﹣4a3﹣2a2)÷2a2;(2)(3a3b﹣9a2b2﹣21a2b3)÷3a2b.;(3)(14a3b2c+a2b3﹣28a2b2)÷(﹣7a2b).答案:(1)分析:根据多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加计算.解:(6a4﹣4a3﹣2a2)÷2a2=6a4÷2a2﹣4a3÷2a2﹣2a2÷2a2=3a2﹣2a﹣1.点评:本题考查多项式除以单项式.注意:多项式除以单项式实质就是转化为单项式除以单项式.多项式除以单项式的结果仍是一个多项式.(2)分析:本题是整式的除法,多项式除以单项式可以将多项式3a3b﹣9a2b2﹣21a2b3中的每一个项分别除以单项式3a2b即可.解:原式=3a3b÷3a2b﹣9a2b2÷3a2b﹣21a2b3÷3a2b=a﹣3b﹣7b2.点评:本题考查了整式的除法.整式的除法法则:多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.(3)解:原式=14a3b2c÷(﹣7a2b)+a2b3÷(﹣7a2b)+(﹣28a2b2)÷(﹣7a2b)=.【设计意图】通过学习,巩固多项式除以单项式法则,提高学生的计算能力.(四)强化学习,掌握法则练习一下列计算是否正确?如果不正确,指出错误原因并加以改正.(1)2x2y3÷(-3xy)=2/3 xy2;(2)10x3y3z÷2x2y=5xy2;(3)4x2y2÷ 1/2 xy2=2x;(4)15×108÷(-5×106)=-3×102.学生活动:学生细心观察思考后,分别找4个学生回答,其他学生对他们的回答进行肯定、否定或纠正.答案:(1)2x2y3÷(-3xy)=-23xy2;(2)10x3y3z÷2x2y=5xy2z;(3)4x2y2÷12xy2=8x;(4)正确.【设计意图】(1)、(2)、(3)小题中的错误,均是学生在计算时常出的错误,通过这组题的练习,可以使学生进一步巩固、理解法则,对可能出现的计算错误引起注意,从而培养学生解题细心的习惯;除此之外,还可以培养学生辨别是非的能力.练习二计算(1)28x4y2÷7x3y;(2)-5a5b3c÷15a4b;(3)(2x2y)3·(-7xy2)÷14x4y3;(4)5(2a+b)4÷(2a+b)2.分析:①运算顺序:先算乘方,在算乘除,最后算加减;如果有括号,先算括号里面的.②将 2a+b看作一个整体答案:解:(1)28x4y2÷7x3y=(28÷7)·x4-3·y2-1=4xy.(2)-5a5b3c÷15a4b=(-5÷15)a5-4b3-1c=-13ab2c.(3)(2x2y)3·(-7xy2)÷14x4y3 =8x6y3·(-7xy2)÷14x4y3=[8×(-7)]·x6+1y3+2÷14x4y3=(-56÷14)·x7-4·y5-3=-4x3y2.(4)5(2a+b)4÷(2a+b)2=(5÷1)(2a+b)4-2=5(2a+b)2=5(4a2+4ab+b2)=20a2+20ab+5b2.【设计意图】进一步巩固落实单项式除以单项式;提高学生解决实际问题的能力.计算题在保证正确率的前提下,应提高计算速度;应用题的解题过程力求准确规范;课堂练习应由学生独立完成.练习三计算:(1)(25x2﹣15x3y+20x4y2)÷(﹣5x2);(2)(x5+2x4+x3)÷(x)2;mn(4m2n﹣2m﹣)÷(﹣).(3)答案:(1)解:原式=﹣5+3x﹣4x2y2;(2)解:(x5+2x4+x3)÷(x)2=(x5+2x4+x3)÷x2=x5÷x2+2x4÷x2+x3÷x2=4x3+8x2+2x;(3)=﹣8m2n+4m+1.【设计意图】让学生进一步认识到在进行多项式除以单项式时应注意避免出现的错误.练习三第1题进一步巩固落实多项式除以单项式的运算.判断题不仅要会判断正误,还应让学生说出错误的原因;计算题在保证正确率的前提下,应提高计算速度.学生活动:学生在练习本上完成,3名学生板演,然后学生自评.(五)自我反思,归纳小结通过这节课的学习,你有哪些收获和体会?由学生完成本节课的归纳与总结,教师给予引导或补充.小结:本节课主要学习了单项式除以单项式的运算.在运用法则应注意以下几点: 1.系数相除与同底数幂相除的区别.2.符号问题.3.指数相同的同底数幂相除商为1而不是0.4.在混合运算中,要注意运算的顺序.【教法说明】课堂小结由学生来完成,这样即可以训练学生的归纳总结能力及口头表达能力,又可使学生对本节课的学习内容留下深刻印象.(六)布置作业一、选择题1.计算(4x2y2z)÷(-3xy2)的结果是()A .-34xyzB .-43x 2zC .-43xzD .-34xz 2.下列运算中正确的是( )A .(6x 6)÷(3x 3)=2x 2B .(8x 8)÷(4x 2)=2x 6C .(3xy )2÷(3x )=yD .(x 2y 2)÷(xy )2=xy3.计算[(a +b )2-(a -b )2]÷(4ab )的结果是( )A .4a b +B .4a b - C .1 D .2ab 4.如果(4a 2b -3ab 2)÷M =-4a +3b ,那么单项式M 等于( )A .abB .-abC .aD .-b5.下列计算结果正确的是( )A .-2x 2y 3·2xy =-2x 3y 4B .3x 2y -5xy 2=-2x 2yC .28x 4y 2÷7x 3y =4xyD .(-3a -2)(3a -2)=9a 2-4二、填空题6.(-ab )3÷(-ab )=______.7.若(-5a 2m -3b n +4)÷(3a m +2b 5)=-53a 4b 2,则m ÷n =_____. 8.若n 为正整数,且a 2n =3,则(3a 3n )2÷(27a 4n )的值为______.9.(8x n +2-6x n +1+2x n )÷(2x n -1)=______. 10.一个长方形的面积是(x 2-9)平方米,其长为(x +3)米,用含x 的整式表示它的宽为______米.三、解答题11.计算:(4x 2y 5)·(-12x 3y 2)3÷(-13x 2y 3)2÷(36x 5y 4).12.先化简,再求值.(3x 3y -x 2y 2+12x 2y )÷(-12x 2y ).其中x =-2,y =3.13.计算:(1)(25x 3y 2-7xy 2+23y 3)÷(23y 2);(2)[x2(x+y)2+2(x+y)2(x-y)-3(x+y)3]÷[-12(x+y)2].14.计算:[4(x-2)2+12(x+2)(x-2)-8(x-1)2·(x-2)]÷[4(x-2)].15.已知一个三角形的面积是(4a3b-6a2b2+12ab3),一边长为2ab,求该边上的高.参考答案一、1.C解析:按照单项式除以单项式的法则进行计算,(4x2y2z)÷(-3xy2)=(-4÷3)·x2-1·y2-2·z=-43xz,故选C.2.B解析:(6x6)÷(3x3)=(6÷3)·x6-3=2x3,所以A错误;(8x8)÷(4x2)=(8÷4)·x8-2=2x6,所以B正确;(3xy)2÷(3x)=(9x2y2)÷(3x)=3xy2,所以C错误;(x2y2)÷(xy)2=(x2y2)÷(x2y2)=1,所以D也错误,故选B.3.C解析:[(a+b)2-(a-b)2]÷(4ab)=[a2+2ab+b2-(a2-2ab+b2)]÷(4ab)=(a2+2ab+b2-a2+2ab-b2)÷(4ab)=(4ab)÷(4ab)=1,故选C.4.B解析:由(4a2b-3ab2)÷M=-4a+3b可得4a2b-3ab2=M·(-4a+3b),将四个选项分别代入进行验算,即可选出正确答案B.5.C解析:正确细心计算即可.二、6.a2b2解析:(-ab)3÷(-ab)=(-a3b3)÷(-ab)=a2b2.7.3 解析:(-5a2m-3b n+4)÷(3a m+2b5)=(-5÷3)·a(2m-3)-(m+2)·b n+4-5=-53a m-5b n-1=-53a4b2,所以m-5=4,n-1=2,所以m=9,n=3,所以m÷n=9÷3=3.8.1 解析:因为a2n=3,所以(3a3n)2÷(27a4n)=(9a6n)÷(27a4n)=13a2n=13×3=1.9.4x3-3x2+x解析:(8x n+2-6x n+1+2x n)÷(2x n-1)=(8x n+2)÷(2x n-1)-(6x n+1)÷(2x n-1)+(2x n)÷(2x n-1)=4x n+2-(n-1)-3x n+1-(n-1)+x n-(n-1)=4x3-3x2+x.10.(x-3)解析:长方形的宽为(x2-9)÷(x+3)=[(x+3)(x-3)]÷(x+3)=x-3(米).•注意多项式带单位时要加括号.三、11.【解】(4x2y5)·(-12x3y2)3÷(-13x2y3)2÷(36x5y4)=(4x2y5)·(-18x9y6)÷(19x4y6)÷(36x5y4)=(-12x11y11)•÷(19x4y6)÷(36x5y4)=(-92x7y5)÷(36x5y4)=-18x2y.12.【解】(3x3y-x2y2+12x2y)÷(-12x2y)=(3x3y)÷(-12x2y)-(x2y2)÷(-12x2y)+(12x2y)÷(-12x2y)=-6x+2y-1.当x=-2,y=3时,原式=-6×(-2)+2×3-1=12+6-1=17.13.【解】(1)(25x3y2-7xy2+23y3)÷(23y2)=(25x3y2)÷(23y2)-(7xy2)÷(23y2)+(23y3)÷(23y2)=35x3-212x+y.(2)[x2(x+y)2+2(x+y)2(x-y)-3(x+y)3]÷[-(12x+y)2]=[x2(x+y)2]÷[-12(x+y)2]+[2(x+y)2(x-y)]÷[-12(x+y)2]-[3(x+y)3]÷[-12(x+y)2]=-2x2-4(x-y)+6(x+y)=-2x2-4x+4y+6x+6y=-2x2+2x+10y.14.【解】设x-2=m,则原式=[4m2+12m(x+2)-8(x-1)2·m]÷(4m)=m+3(x+2)-2(x-1)2=•x-2+3x+6-2x2+4x-2=-2x2+8x+2.15.【解】2×(4a3b-6a2b2+12ab3)÷(2ab)=(8a3b-12a2b2+24ab3)÷(2ab)=4a2-6ab+12b2.答:该边上的高为(4a2-6ab+12b2).板书设计教学反思1.单项式相除,把系数、同底数幂分别相除,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.它的一般步骤:(1)系数相除,作为商的系数;(2)同底数幂相除作为商的因式;(3)对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式.(而同底数幂相除实质是单项式相除的特殊情况.)2.本节课中涉及了两个重要的数学思想和方法:(1)整体思想.例2中将(2a+b)看作了一个整体,从而利用本节课中所学的知识很容易的解决了 [9(2a+b)4] ÷ [ 3(2a+b)2] 这道题的计算.用好整体思想和方法,常常能使我们走出困境,走向成功.(2)转化思想.在单项式除以单项式的法则的探求过程中我们使用了观察、归纳的方法,再利用转化思想,把未知问题转化为已知问题,从而使复杂的问题简单化、陌生的问题熟悉化、抽象的问题具体化,达到了我们解决问题的目的.这是我们学习数学、发现规律的一种常用方法.纵观整节课,我始终以新课程为理论依据,以教材资源为中心,力求在学法和教法上有所突破,让学生成为学习的主人、学习的主体,在探索中有所得,体验成功与快乐.新课程倡导培养创新精神和实践能力.问起于疑,疑源于思,课堂上要为学生的质疑创造足够的时间和空间,但本节课在探索运算法则的关键时刻,我由于要急于完成教学内容、也缺乏足够的耐心,急于得出结论,致使个别同学理解不透.另外个别由于运算基础不够好,做题时还有个别同学有计算错误.在以后的教学中吸取教训,力求效果更好.。

人教版八年级数学上册14.1.5整式的除法优秀教学案例

人教版八年级数学上册14.1.5整式的除法优秀教学案例
二、教学目标
(一)知识与技能
1.让学生掌握整式除法的基本概念,理解整式除法的运算方法。
2.培养学生能够运用整式除法解决实际问题的能力,提高他们的数学应用意识。
3.通过对整式除法的学习,使学生能够进一步理解数学知识之间的联系,提高他们的数学素养。
(二)过程与方法
1.利用生动、直观的教学方法,引导学生通过自主学习、合作交流的方式,探索整式除法的运算规律。
2.鼓励学生自主完成作业,培养他们的自主学习能力。
3.教师及时批改作业,给予学生反馈,提高他们的学习效果。
五、案例亮点
1.生活情境导入:通过生动有趣的生活情境导入新课,让学生感受到整式除法的实际意义,激发学生的学习兴趣,提高他们的学习主动性。
2.问题导向:本节课以问题为导向,引导学生提出问题、思考问题、解决问题。这种教学方式有助于培养学生的独立思考能力和解决问题的能力。
5.作业小结:布置具有针对性的作业,让学生在课后巩固所学知识。同时,鼓励学生自主完成作业,培养他们的自主学习能力。教师及时批改作业,给予学生反馈,提高他们的学习效果。
本节课通过以上五个亮点,充分体现了以学生为主体的教学理念,注重培养学生的独立思考能力、解决问题的能力和团队合作意识。同时,教师以人性化的语言进行教学,关注学生的情感态度与价值观的培养,使学生在轻松愉快的氛围中学习,提高他们的数学素养。
1.讲解整式除法的定义和运算规则,让学生理解整式除法的基本概念。
2.通过示例,演示整式除法的运算过程,让学生直观地感受和理解。
3.引导学生总结整式除法的运算规律,培养他们的归纳能力。
(三)学生小组讨论
1.设计具有探究性的问题,让学生在小组内进行讨论。例如:“整式除法在实际生活中有哪些应用?”

专题14.1.4整式的除法(教案)-八年级上学期数学教材(人教版)

专题14.1.4整式的除法(教案)-八年级上学期数学教材(人教版)
在实践活动环节,我鼓励学生们分组讨论并解决实际问题。这个过程中,我观察到学生们积极参与,互相交流想法,这有助于他们更好地将理论知识应用到实际情境中。然而,我也注意到,在小组讨论中,有些学生较为内向,参与度不高。为了提高他们的参与度,我计划在未来的课程中更加注重个体差异,鼓励每个学生都能发表自己的观点。
在学生小组讨论环节,我尝试作为一个引导者,提出开放性的问题来启发学生的思考。我发现这种方法很有效,学生们能够从不同角度思考问题,并提出创造性的解决方案。但同时,我也意识到需要更多的时间来让学生们充分讨论和分享,以便他们能够更深入地理解整式除法的应用。
此外,我也在思考如何在课堂上更好地处理教学难点。在今天的课程中,长除法的步骤和余数的处理是学生们普遍感到困难的地方。为了克服这个难点,我计划在下一节课中使用更多的可视化工具和实物操作,让学生们能够直观地看到每一步的操作,从而加深理解。
最后,我认识到教学反思的重要性。通过今天的课堂实践,我了解到需要不断调整教学方法和策略,以满足不同学生的学习需求。我将在未来的教学中,更加注重课堂互动,提高学生的参与度,并及时收集学生的反馈,以便更好地调整教学进度和内容。
针对以上难点与重点,教师应通过以下方法帮助学生理解:
-使用具体例题,逐步演示整式除法的步骤,强调每一项的处理方法。
-利用图示和动画,帮助学生形象理解长除法的每一步操作。
-通过变式练习,让学生在不同类型的题目中应用整式除法,加强余数处理的能力。
-创设真实情境,引导学生将实际问题转化为整式除法问题,提高建模能力。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解整式除法的基本概念。整式除法是指将一个多项式除以另一个多项式的运算。它是代数运算中的基础,可以帮助我们解决许多实际问题。

人教版八年级数学上册14.1.4.4《整式的除法》教学设计

人教版八年级数学上册14.1.4.4《整式的除法》教学设计

人教版八年级数学上册14.1.4.4《整式的除法》教学设计一. 教材分析《人教版八年级数学上册》第14.1.4.4节《整式的除法》是初中数学中的一部分,主要介绍整式除法的基本概念和运算法则。

本节内容是在学生已经掌握了整式的加减、乘法运算的基础上进行学习的,对于培养学生的抽象思维能力和数学运算能力具有重要意义。

本节内容的教学设计应围绕整式除法的概念、运算法则和实际应用进行展开。

二. 学情分析学生在学习本节内容之前,已经掌握了整式的加减、乘法运算,具备一定的数学运算基础。

但学生在进行整式除法运算时,可能会对除法的概念和运算法则理解不深,导致运算错误。

因此,在教学过程中,教师需要通过实例讲解和练习,帮助学生理解和掌握整式除法的基本概念和运算法则。

三. 教学目标1.知识与技能:使学生理解整式除法的概念,掌握整式除法的运算法则,能熟练地进行整式除法的运算。

2.过程与方法:通过实例分析,培养学生的抽象思维能力和数学运算能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和克服困难的勇气。

四. 教学重难点1.重点:整式除法的概念和运算法则。

2.难点:整式除法运算的灵活应用。

五. 教学方法1.情境教学法:通过实例分析,引导学生理解整式除法的概念和运算法则。

2.小组合作学习:学生分组进行讨论和实践,培养学生的团队合作意识和沟通能力。

3.练习法:通过大量的练习,使学生熟练掌握整式除法的运算方法。

六. 教学准备1.教学课件:制作课件,展示整式除法的概念和运算法则。

2.练习题:准备一些有关整式除法的练习题,用于课堂练习和巩固知识。

七. 教学过程1.导入(5分钟)教师通过一个实际例子,引导学生思考如何进行整式除法的运算。

例如,给出一个多项式除以一个单项式的例子,让学生尝试进行计算。

2.呈现(10分钟)教师讲解整式除法的概念和运算法则,通过课件展示实例,使学生理解整式除法的运算方法。

3.操练(10分钟)学生分组进行练习,教师巡回指导。

人教版八年级数学上册《整式的除法》教学方案

人教版八年级数学上册《整式的除法》教学方案

第十四章整式的乘法与因式分解14.1 整式的乘法14.1.4 第5课时整式的除法一、教学目标1.掌握单项式除以单项式、多项式除以单项式的法则,理解除法运算的算理;2.能熟练运用单项式除以单项式、多项式除以单项式的法则计算,并能解决一些实际问题;3.经历探索整式除法运算法则的过程,进一步体会类比方法的作用,发展运算能力;4.让学生主动参与到探索过程中,发展有条理的思考及表达能力.二、教学重难点重点:单项式除以单项式、多项式除以单项式的法则及其应用.难点:单项式除以单项式、多项式除以单项式的法则及其应用.三、教学用具多媒体课件四、教学过程设计①相同的单项式相除,结果是1而不是0;②单项式除以单项式时,注意单项式的系数应包括它前面的符号;③不要遗漏只在被除式中出现的字母及字母的指数.【思考】问题1 一幅长方形油画的长为(a+b),宽为m,求它的面积.预设答案:(a+b)m问题2 若已知油画的面积为(am+bm),宽为m,求它的长.预设答案:(am+bm)÷m教师提出问题,如何计算(am+bm)÷m呢?仿照前面单项式除以单项式的思路,要计算(am+bm)÷m=( ),可转化为( )·m=am+bm不难得出括号里应填a+b.又因为am÷m+bm÷m=a+b所以(am+bm)÷m=am÷m+bm÷m引导学生发现,要计算多项式除以单项式,可以先转化为单项式除以单项式,再相加即可.【讨论】尝试归纳单项式除以单项式的运算法则.【小组活动】两人一组,交流思路,组织语言.小组代表发言,教师汇总并补充,师生共同得出单项式除以单项式的运算法则.多项式除以单项式多项式除以单项式,先把这个多项式的每一项思维导图的形式呈现本节课的主要内容:教科书第104页练习2、3题.。

最新人教版初中八年级上册数学《整式的除法》精品教案共24页

最新人教版初中八年级上册数学《整式的除法》精品教案共24页
最新人教版初中八年级上册数学《整 式的除法》精品教案
21、静念园林好,人间良可辞。 22、步步寻往迹,有处特依依。 23、望云惭高鸟,临木愧游鱼。 24、结庐在人境,而无车马喧;问君 何能尔 ?心远 地自偏 。 25、人生归有道,衣食固其端。
Hale Waihona Puke 21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
25、学习是劳动,是充满思想的劳动。——乌申斯基
谢谢!

八年级数学教案:整式的除法

八年级数学教案:整式的除法

八年级数学教案:整式的除法以下是查字典数学网为您引荐的整式的除法,希望本篇文章对您学习有所协助。

整式的除法教学目的①阅历探求整式除法运算法那么的进程,会停止复杂的整式除法运算(只需求单项式除以单项式,并且结果都是整式),培育先生独立思索、团体协作的才干.②了解整式除法的算理,开展有条理的思索及表达才干. 教学重点与难点重点:整式除法的运算法那么及其运用.难点:整式除法的运算法那么的推导和了解,尤其是单项式除以单项式的运算法那么.教学预备卡片及多媒体课件.教学设计情境引入教科书第161页效果:木星的质量约为1.901024吨,地球的质量约为5.981021吨,你知道木星的质量约为地球质量的多少倍吗?重点研讨算式(1.901024)(5.981021)怎样停止计算,目的是给出下面两个单项式相除的模型.注:教科书从实践效果引入单项式的除法运算,先生在探求这个效果的进程中,将自然地体会到学习单项式的除法运算的必要性,了解数学与理想世界的联络,同时再次阅历感受较大数据的进程.探求新知(1)计算(1.901024)(5.981021),说说你计算的依据是什么?(2)你能应用(1)中的方法计算以下各式吗?8a3 6x3y 12a3b2x33ab2.(3)你能依据(2)说说单项式除以单项式的运算法那么吗? 注:教员可以鼓舞先生自己发现系数、同底数幂的底数和指数发作的变化,并运用自己的言语停止描画.单项式的除法法那么的推导,应按从详细到普通的步骤停止.探求活动的布置,是使先生经过对详细的特例的计算,归结出单项式的除法运算性质,并能运用乘除互逆的关系加以说明,也可类比分数的约分停止.在这些活动进程中,先生的化归、符号演算等代数推理才干和有条理的表达才干失掉进一步开展.注重算理算法的浸透是新课标所强调的.归结法那么单项式相除,把系数与同底数幂区分相除作为商的因式,关于只在被除式里含有的字母,那么连同它的指数作为商的一个因式.注:经过总结法那么,培育先生的概括才干,养成用数学言语表达自己想法的数学学习习气.运用新知例2 计算:(1)28x4y27x3y;(2)-5a5b3c15a4b.首先指明28x4y2与7x3y区分是被除式与除式,在这儿省去了括号.对本例可以采用先生口述,教员板书的方式完成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.分析:同底数幂相除,底数没有改变,商的指数应该等于被除数的指数减去除数的指数.【5】
5.得到公式:同底数幂相 除,底数不变,指数相减.即:am÷an=am-n.( )【6】
6.提问:指数 之间是否有大小关系?【m,n都 是正整数,并且m>n】【7】
(三)巩固练习
例:(1)x8÷x2(2)a4÷a(3)(ab)5÷(ab)2
(一)加强训练
1.计算:
2.若 成立,则 满足什么条件?
3.若 ,则 等于?
4.若 无意义,且 ,求 的值
作业
板书设计
§15.3.1同底数幂的除法
一、am·an=am+n(m、 n是正整 数)
二、同底数幂的除法运算法则:
同底数幂相除,底数不变,指数相减.
即:am÷an=am-n(a≠0,m、n都是正整数且m≥n)
(二)学生动手,得到公式
1.计算:() ·28=216 (2))·53=55(3)()·105=107(4)()·a3=a6【3】
2.再计算:(1)216÷28=() (2)55÷53=()
(3)107÷105=( )(4)a6÷a3=()
3.提问: 上述运算能60练习1,2,3
设计意图
(四)提出问题:
1.提问:在公式要求m,n都是正整数,并且m>n,但如果m=n或m<nn呢?
2.实例研究:计算:32÷32 103÷103am÷am(a≠ 0)【1】
3.得到 结论:由除法可得:32÷32=1 103÷103=1 am÷am=1(a≠0)
利用am÷an=am-n的方法计算.
第十五章整式的乘除15.3.1同底数幂的除法
教学目标
同底数幂的除法的运算法则及其原理和应用,发展有条理的思考及表达能力。 培养探索讨论、归纳总结的 方法.
教学重点
准确熟练地运用同底数幂的除法运算法则进行计算.
课时分配
1课时
班级
教学过程
设计意图
(一)创设情境,感知新知
1.问题:一种 数码照片的文件大小是28K,一个存储量为26M(1M= 210K)的移动存储器能存储多少张这样的数码照片?
2.分析问题:移动器的存储量单位与文件大小的单位不一致,所以要先统一单位.移动存储器的容量为 26×210=216K.
所以它能存储这种数码照片的 数量为216÷28.【1】
3.问题迁移:由同底数幂相乘可得: ,所以根 据除法的意义
216÷28=28
4.感知新知:这 就是我们本节需要研究的内容:同底数幂的除法【2】
规定:a0=1(a≠ 0)
三.计算
教学反思
预习要点
32÷32 =32-2=30103÷103=103-3=100am÷am=am-m=a0(a≠0)
这样可以总结得a0=1(a≠0)【2】
于是规定:a0=1(a≠0)即:任何不等于0的数的0次幂都等于1.【3】
4.最终结论:同底数幂相除:am÷an=am-n(a≠0,m、n都是正整数,且m≥n).【4】
相关文档
最新文档