2023年中考数学专题《 函数中的新定义问题》原卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点1 一次函数新定义问题
【例1】.定义:我们把一次函数y =kx +b (k ≠0)与正比例函数y =x 的交点称为一次函数y =kx +b (k ≠0)的“不动点”.例如求y =2x ﹣1的“不动点”:联立方程,解得
,则y =2x ﹣1的“不动
点”为(1,1).
(1)由定义可知,一次函数y =3x +2
的“不动点”为 ; (2)若一次函数y =mx +n 的“不动点”为(2,n ﹣1),求m 、n 的值;
(3)若直线y =kx ﹣3(k ≠0)与x 轴交于点A ,与y 轴交于点B ,且直线y =kx ﹣3上没有“不动点”,若P 点为x 轴上一个动点,使得S △ABP =3S △ABO ,求满足条件的P 点坐标.
例题精讲
➢变式训练
【变1-1】.在初中阶段的函数学习中,我们经历了“确定函数的表达式一一利用函数图象研究其性质一一运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义.
结合上面经历的学习过程,现在来解决下面的问题:
在函数y=|kx﹣3|+b中,当x=2时,y=﹣4;当x=0时,y=﹣1.
(1)求这个函数的表达式;
(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象,并写出这个函数的一条性质;
(3)已知函数的图象如图所示,结合你所画的函数图象,直接写出不等式
的解集.
(4)若方程|x2﹣6x|﹣a=0有四个不相等的实数根,则实数a的取值范围是.
考点2 反比例函数新定义问题
【例2】.探究函数性质时,我们经历了列表、描点、连线画函数图象,观察分析图象特征,概括函数性质的过程,以下是我们研究函数y=x+|﹣2x+6|+m性质及其应用的部分过程,请按要求完成下列各小题.x…﹣2﹣1012345…
y…654a21b7…
(1)写出函数关系式中m及表格中a,b的值;m=,a=,b=;
(2)根据表格中的数据在所给的平面直角坐标系中画出该函数的图象;
(3)已知函数y=﹣(x﹣2)2+8的图象如图所示,结合你所画的函数图象,不等式x+|﹣2x+6|+m>﹣(x﹣2)2+8的解集为.
➢变式训练
【定义】在平面内,把一个图形上任意一点与另一个图形上任意一点之间的距离的最小值,称为这两个图形之间的距离,即A,B分别是图形M和图形N上任意一点,当AB的长最小时,称这个最小值为图形M 与图形N之间的距离.
例如,如图1,AB⊥l1,线段AB的长度称为点A与直线l1之间的距离,当l2∥l1时,线段AB的长度也是l1与l2之间的距离.
【应用】
(1)如图2,在等腰Rt△BAC中,∠A=90°,AB=AC,点D为AB边上一点,过点D作DE∥BC交AC 于点E.若AB=6,AD=4,则DE与BC之间的距离是;
(2)如图3,已知直线l3:y=﹣x+4与双曲线C1:y=(x>0)交于A(1,m)与B两点,点A与点B 之间的距离是,点O与双曲线C1之间的距离是;
【拓展】
(3)按规定,住宅小区的外延到高速路的距离不超过80m时,需要在高速路旁修建与高速路相同走向的隔音屏障(如图4).有一条“东南﹣西北”走向的笔直高速路,路旁某住宅小区建筑外延呈双曲线的形状,它们之间的距离小于80m.现以高速路上某一合适位置为坐标原点,建立如图5所示的直角坐标系,此时高速路所在直线l4的函数表达式为y=﹣x,小区外延所在双曲线C2的函数表达式为y=(x>0),那么需要在高速路旁修建隔音屏障的长度是多少?
考点3 二次函数新定义问题
【例3】.小爱同学学习二次函数后,对函数y=﹣(|x|﹣1)2进行了探究.在经历列表、描点、连线步骤后,得到如图的函数图象.请根据函数图象,回答下列问题:
(1)观察探究:
①写出该函数的一条性质:;
②方程﹣(|x|﹣1)2=﹣1的解为:;
③若方程﹣(|x|﹣1)2=m有四个实数根,则m的取值范围是.
(2)延伸思考:
将函数y=﹣(|x|﹣1)2的图象经过怎样的平移可得到函数y1=﹣(|x﹣1|﹣1)2+2的图象?写出平移过程,并直接写出当1<y1≤2时,自变量x的取值范围.
➢变式训练
【变3-1】.我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,b2﹣4ac>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|ax2+bx+c|的图象(如图所示),下列结论正确的是()
A.图象具有对称性,对称轴是直线x=1.5
B.有且只有﹣1≤x≤1时,函数值y随x值的增大而增大
C.若a<0,则8a+c>0
D.若a<0,则a+b≥m(am+b)(m为任意实数)
【变3-2】.已知抛物线y=ax2+c过点A(﹣2,0)和D(﹣1,3)两点,交x轴于另一点B.(1)求抛物线解析式;
(2)如图1,点P是BD上方抛物线上一点,连接AD,BD,PD,当BD平分∠ADP时,求P点坐标;
(3)将抛物线图象绕原点O顺时针旋转90°形成如图2的“心形”图案,其中点M,N分别是旋转前后抛物线的顶点,点E、F是旋转前后抛物线的交点.
①直线EF的解析式是;
②点G、H是“心形”图案上两点且关于EF对称,则线段GH的最大值是.
1.对于实数a,b,定义符号max|a,b|,其意义为:当a≥b时,max|a,b|=a,当a<b时,max|a,b|=b.例如max|2,﹣1|=2,若关于x的函数y=max|2x﹣1,﹣x+5|,则该函数的最小值为()
A.B.1C.D.3
2.在平面直角坐标系xOy中,对于点P(a,b),若点P′的坐标为(ka+b,a+)(其中k为常数且k≠0),则称点P′为点P的“k关联点”.已知点A在反比例函数y=的图象上运动,且点A是点B的“关联点”,当线段OB最短时,点B的坐标为.
3.定义:由a,b构造的二次函数y=ax2+(a+b)x+b叫做一次函数y=ax+b的“滋生函数”,一次函数y =ax+b叫做二次函数y=ax2+(a+b)x+b的“本源函数”(a,b为常数,且a≠0).若一次函数y=ax+b 的“滋生函数”是y=ax2﹣3x+a+1,那么二次函数y=ax2﹣3x+a+1的“本源函数”是y=﹣2x﹣1.
4.在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“不动点”.例如(﹣3,﹣3)、(1,1)、(2023,2023)都是“不动点”.已知双曲线.
(1)下列说法不正确的是.