单片机与pc串口通信资料分享

合集下载

(完整word版)51单片机与PC机通信资料

(完整word版)51单片机与PC机通信资料

《专业综合实习报告》专业:电子信息工程年级:2013级指导教师:学生:目录一:实验项目名称二:前言三:项目内容及要求四:串口通信原理五:设计思路5.1虚拟串口的设置5.2下位机电路和程序设计5.3串口通信仿真六:电路原理框图七:相关硬件及配套软件7.1 AT89C51器件简介7.2 COMPIN简介7.3 MAX232器件简介7.4友善串口调试助手7.5 虚拟串口软件Virtual Serial Port Driver 6.9八:程序设计九:proteus仿真调试十:总结十一:参考文献一:实验项目名称:基于51单片机的单片机与PC机通信二:前言在国内外,以PC机作为上位机,单片机作为下位机的控制系统中,PC机通常以软件界面进行人机交互,以串行通信方式与单片机进行积极交互,而单片机系统根据被控对象配置相应的前向,后向信息通道,工作时作为主控机测对象,作为被控机接受PC机监督,指挥,定期或受命向上位机提供对象及本身的工作状态信息。

目前,随着集成电路集成度的增加,电子计算机向微型化和超微型化方向发展,微型计算机已成为导弹,智能机器人,人类宇宙和太空和太空奥妙复杂系统不可缺少的智能部件。

在一些工业控制中,经常需要以多台单片机作为下位机执行对被控对象的直接控制,以一台PC机为上位机完成复杂的数据处理,组成一种以集中管理、分散控制为特点的集散控制系统。

为了提高系统管理的先进性和安全性,计算机工业自动控制和监测系统越来越多地采用集总分算系统。

较为常见的形式是由一台做管理用的上位主计算机(主机)和一台直接参与控制检测的下位机(单片机)构成的主从式系统,主机和从机之间以通讯的方式来协调工作。

主机的作用一是要向从机发送各种命令及参数:二是要及时收集、整理和分析从机发回的数据,供进一步的决策和报表。

从机被动地接受、执行主机发来的命令,并且根据主机的要求向主机回传相应烦人实时数据,报告其运行状态。

用串行总线技术可以使系统的硬件设计大大简化、系统的体积减小、可靠性提高。

pc机和单片机之间的通信

pc机和单片机之间的通信

pc机和单片机之间的通信在当今信息化社会中,计算机技术得到了广泛应用和发展,而PC 机和单片机作为计算机的两个重要组成部分,对于信息传输和通信起着至关重要的作用。

本文将重点探讨PC机和单片机之间的通信方式以及相互之间的优缺点。

一、串口通信串口通信是PC机和单片机之间最常见的通信方式之一。

通过串口通信,PC机和单片机可以进行双向数据传输。

串口通信主要通过串行接口来实现,传输速度相对较慢,但稳定可靠,适用于数据量较小且对实时性要求不高的应用场景。

同时,串口通信具有成本低、易于实现的优点,因此在一些简单的嵌入式系统中得到了广泛应用。

二、并口通信并口通信是PC机和单片机之间另一种常见的通信方式。

并口通信通过并行接口来实现,传输速度相对较快,适用于数据量较大且对实时性要求较高的应用场景。

并口通信相对于串口通信而言,不仅传输速度更快,而且还可以一次传输多个数据位,提高了数据传输效率。

但与之相对的是,并口通信所需引脚较多,设计和布线相对复杂,因此在一些对硬件成本和实现难度要求较高的场景下使用较少。

三、USB通信USB通信作为一种常见的通信方式,具有较高的传输速度和较强的兼容性。

对于PC机和单片机之间的通信而言,通过USB接口连接PC机和单片机,可以实现双向数据传输。

USB通信支持热插拔和即插即用的特性,因此使用非常方便。

同时,USB接口还支持供电功能,可以为单片机提供电源。

但需要注意的是,USB通信相对于串口和并口通信而言,实现难度较大,需要借助专门的USB芯片或模块。

四、网络通信随着互联网的快速发展,PC机和单片机之间的网络通信越来越常见。

通过网络通信,PC机和单片机能够实现远程数据传输和控制。

网络通信可以基于以太网、Wi-Fi等多种网络协议进行,其传输速度和稳定性相对较高。

但与之相对应的是,网络通信的实现相对较为复杂,需要考虑网络协议、安全性等诸多因素,同时还需要保证网络的可靠性和稳定性。

五、无线通信无线通信作为一种便捷的通信方式,得到了广泛应用。

PC 机与单片机通信(RS232 协议)

PC 机与单片机通信(RS232 协议)

PC 机与单片机通信(RS232 协议)目录:1、单片机串口通信的应用2、PC控制单片机IO口输出3、单片机控制实训指导及综合应用实例4、单片机给计算机发送数据:[实验任务]单片机串口通信的应用,通过串口,我们的个人电脑和单片机系统进行通信。

个人电脑作为上位机,向下位机单片机系统发送十六进制或者ASCLL码,单片机系统接收后,用LED显示接收到的数据和向上位机发回原样数据。

[硬件电路图][实验原理]RS-232是美国电子工业协会正式公布的串行总线标准,也是目前最常用的串行接口标准,用来实现计算机与计算机之间、计算机与外设之间的数据通讯。

RS-232串行接口总线适用于:设备之间的通讯距离不大于15m,传输速率最大为20kBps。

RS-232协议以-5V-15V表示逻辑1;以+5V-15V 表示逻辑0。

我们是用MAX232芯片将RS232电平转换为TTL电平的。

一个完整的RS-232接口有22 根线,采用标准的25芯插头座。

我们在这里使用的是简化的9芯插头座。

注意我们在这里使用的晶振是11.0592M的,而不是12M。

因为波特率的设置需要11.0592M的。

“串口调试助手V2.1.exe”软件的使用很简单,只要将串口选择‘CMO1’波特率设置为‘9600’数据位为8 位。

打开串口(如果关闭)。

然后在发送区里输入要发送的数据,单击手动发送就将数据发送出去了。

注意,如果选中‘十六进制发送’那么发送的数据是十六进制的,必须输入两位数据。

如果没有选中,则发送的是ASCLL码,那么单片机控制的数码管将显示ASCLL码值。

[C语言源程序]#include "reg52.h" //包函8051 内部资源的定义unsigned char dat; //用于存储单片机接收发送缓冲寄存器SBUF里面的内容sbit gewei=P2^4; //个位选通定义sbit shiwei=P2^5; //十位选通定义sbit baiwei=P2^6; //百位选通定义unsigned char code table[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,}; //1~10 void Delay(unsigned int tc) //延时程序{while( tc != 0 ){unsigned int i;for(i=0; i<100; i++);tc--;}}void LED() //LED显示接收到的数据(十进制){gewei=0; P0=table[dat%10]; Delay(10); gewei=1;shiwei=0; P0=table[dat/10]; Delay(10); shiwei=1;baiwei=0; P0=table[dat/100]; Delay(10); baiwei=1;}///////功能:串口初始化,波特率9600,方式1/////////void Init_Com(void){TMOD = 0x20;PCON = 0x00;SCON = 0x50;TH1 = 0xFd;TL1 = 0xFd;TR1 = 1;}/////主程序功能:实现接收数据并把接收到的数据原样发送回去///////void main(){Init_Com();//串口初始化while(1){if ( RI ) //扫描判断是否接收到数据,{dat = SBUF; //接收数据SBUF赋与datRI=0; //RI 清零。

单片机MSP430与PC机串口通讯设计

单片机MSP430与PC机串口通讯设计

单片机MSP430与PC机串口通讯设计一、引言串口通信是指通过串行通信接口进行数据传输的一种通信方式。

单片机MSP430和PC机的串口通信设计可以实现二者之间的数据传输和通信交互。

本文将从串口介绍、硬件设计和软件实现等方面详细介绍该设计。

二、串口介绍串口是一种串行通信接口,常用的有RS232和RS485等。

RS232是一种使用较为广泛的串口通信协议。

RS232接口有三根线,分别为发送线Tx、接收线Rx和地线GND。

该协议规定,发送端与接收端之间的电平差为±3至±15V,其中正电平表示逻辑0,负电平表示逻辑1三、硬件设计1.MSP430硬件设计MSP430是一种低功耗的专用于嵌入式应用的16位RISC微控制器。

它具有丰富的外设资源,包括多个通用输入输出引脚(GPIO)和两个USART (UART)接口。

其中一个USART接口用于将MSP430与PC机连接。

2.PC机硬件设计PC机通过串口连接到MSP430。

首先,需要将PC机的串口RS232转换为TTL电平,即RS232转TTL电平转换器。

其次,将转换后的TTL电平通过杜邦线连接至MSP430的USART接口的Tx和Rx引脚。

四、软件实现1.MSP430软件设计(1)串口初始化:设置数据位长度、停止位、奇偶校验等。

(2)发送数据:将要发送的数据存入发送缓冲区,并使能发送中断。

(3)接收数据:开启接收中断,并将接收到的数据存入接收缓冲区。

(4)中断处理:发送中断和接收中断时,分别从发送缓冲区和接收缓冲区读取数据并发送/接收。

2.PC机软件设计(1)打开串口:设置串口参数,如波特率、数据位长度等。

(2)发送数据:向串口发送数据,可以通过打开的串口进行写入。

(3)接收数据:使用轮询或中断方式读取串口接收到的数据。

五、总结与展望本文详细介绍了单片机MSP430与PC机串口通信设计,主要包括了串口介绍、硬件设计和软件实现。

通过串口通信,MSP430和PC机可以实现数据传输和通信交互,从而满足各种嵌入式应用的需求。

单片机与pc机通信

单片机与pc机通信

单片机与PC机通信1. 引言随着物联网的发展,单片机在各个领域中的应用越来越广泛。

在许多场景中,单片机与PC机的通信是必不可少的。

本文将介绍单片机与PC机通信的原理、常用的通信方式,以及如何实现单片机与PC机的通信。

2. 通信原理单片机与PC机通信的原理是通过串行通信实现的。

串行通信是一种逐位传输数据的通信方式,数据的传输速率较低,但占用的引脚少,适合单片机与PC机之间的通信。

3. 通信方式单片机与PC机之间的通信方式有多种,常见的方式包括:- 串口通信:使用串口通信可以方便地实现单片机与PC机之间的数据传输。

串口通信需要通过串口线连接单片机和PC机,单片机通过串口发送数据,PC机通过串口接收数据。

- USB通信:通过USB接口连接单片机和PC机,可以实现高速的数据传输。

USB通信需要使用USB转串口模块或者USB转串口芯片来实现。

- 以太网通信:通过以太网接口连接单片机和PC机,可以实现远程的数据传输。

以太网通信需要使用以太网模块或者以太网芯片来实现。

4. 实现单片机与PC机通信的步骤下面将介绍如何实现单片机与PC机的通信。

以串口通信为例,步骤如下:4.1. 硬件连接首先,需要通过串口线连接单片机和PC机。

单片机的串口引脚连接到串口线的发送端和接收端,PC机的串口引脚连接到串口线的接收端和发送端。

确保连接正确可靠。

4.2. 单片机程序编写在单片机上编写程序,使其能够通过串口发送数据给PC机。

根据单片机的型号和开发平台,选择相应的串口通信库或者使用底层的串口驱动程序来实现串口通信功能。

4.3. PC机程序编写在PC机上编写程序,使其能够通过串口接收来自单片机的数据。

根据PC机的操作系统和编程语言,选择相应的串口通信库或者使用底层的串口驱动程序来实现串口通信功能。

4.4. 通信测试与调试编写完成的单片机程序和PC机程序可以进行通信测试与调试。

首先确保单片机和PC机之间的连接没有问题,然后运行单片机程序和PC机程序,观察数据的发送和接收情况。

单片机与pc串口通信(二)2024

单片机与pc串口通信(二)2024

单片机与pc串口通信(二)引言概述:本文将继续介绍关于单片机与PC串口通信的知识,本文主要探讨了在单片机通信程序中如何处理接收和发送数据。

在前一篇文章中,我们已经介绍了单片机与PC之间串口通信的基本原理和通信流程。

接下来,我们将进一步深入探讨如何通过单片机实现数据的接收和发送。

正文内容:1. 数据接收1.1 设定串口参数:设置波特率、数据位数、停止位等参数。

1.2 串口接收中断:使用中断机制来处理接收到的数据,避免阻塞主程序。

1.3 缓存空间:使用缓存空间来存储接收到的数据,以便后续处理。

1.4 数据处理:对接收到的数据进行处理,例如解析数据帧、提取需要的信息等。

1.5 错误处理:处理接收数据时可能出现的错误,例如校验错误、帧格式错误等。

2. 数据发送2.1 设定串口参数:设置波特率、数据位数、停止位等参数。

2.2 数据缓存:使用缓存空间来存储待发送的数据。

2.3 串口发送中断:使用中断机制来处理发送数据,避免阻塞主程序。

2.4 发送数据处理:对发送的数据进行处理,例如封装成数据帧、添加校验码等。

2.5 错误处理:处理发送数据时可能出现的错误,例如发送缓冲溢出等。

3. 常见问题与解决方法3.1 数据丢失:如何防止数据在传输过程中丢失。

3.2 数据粘包与分包:解决因数据传输速度不同而导致的数据粘连或分散问题。

3.3 数据校验:如何使用校验码来验证数据的完整性。

3.4 超时处理:处理接收或发送数据时可能出现的超时情况,避免死锁等问题。

3.5 应用实例:通过实际案例来展示单片机与PC串口通信的应用。

4. 调试与测试技巧4.1 使用调试工具:介绍常用的串口调试工具,用于验证通信是否正常。

4.2 日志记录:使用日志记录调试信息,以便分析问题。

4.3 基础问题排查:介绍常见问题的排查方式,例如检查硬件连接、确认代码逻辑等。

4.4 问题定位与修复:介绍如何定位并修复通信问题。

5. 总结本文从数据接收和发送两个方面详细介绍了单片机与PC串口通信的实现方法。

单片机与PC机串行通信

单片机与PC机串行通信

单片机与PC机串行通信一、实验要求单片机的串行口经MAX232(实际使用MAX202,二者功能兼容)电平转换后,与PC 串口相连,实现单片机和PC的通信。

二、实验目的1、掌握单片机串行口软件编程和硬件使用方法;2、了解Proteus虚拟终端的使用;3、了解PC超级终端(串口调试助手)和RS232的使用。

三、实验电路及连线硬件连接表注意事项:(1)实验箱上各模块是独立供电,实验时需要用到的模块都要给它提供电源,即+5V接口都要接到电源模块的+ 5V电源接口,GND接口可以不用接(默认实验箱上的GND网络都接在一起了),千万不要把+5V接口接到GND接口上,短路烧坏保险管。

(2)硬件连接表都是按照C语言编写的仿真工程连接硬件,适用于AT89S52、ATmega16单片机, PIC16F877A单片机请参照仿真工程接线,若做实验时用到汇编工程,请参照汇编工程里面的仿真电路连接硬件。

(3)RS232接口通过串口线与PC相连,打开串口调试助手,真确设置波特率,在串口调试助手界面观看实验现象。

四、实验说明1、主要知识点概述:本实验用到的主要知识点是:MAX232工作原理和Proteus虚拟终端使用。

(1)在简单的应用中,最常用的是MAX232电路。

它只需要有3条线即可完成通信,分别是第二脚RXD , 第3脚TXD ,第5脚GND。

串行通信与单片机之间的接口:RS-232C采用负逻辑规定逻辑电平,-5V—-15V为逻辑“1”电平,5V—+15V为“0”电平。

由于串行通信的电平逻辑定义是+15V(低电平0),-15V(高电平1) 而单片机中分别用5V ,0V 来表示1,0 它们之间必须通过电平转换才可以完成通信。

(2)此设计中将两个虚拟终端按图示挂于电路中,属性分别设置如下:VT1:VT2:2、实验效果说明:MCU不停向PC机发送数据,在屏幕上显示公司网站!等信息。

不同的单片机实验效果不同,具体请参照仿真的实验现象。

RS-232实现单片机与PC间的串行通信

RS-232实现单片机与PC间的串行通信

RS-232实现单片机与PC间的串行通信串行通信是计算机与外设之间数据传输的一种方式。

RS-232是一种经典的串行通信标准,它被广泛应用于单片机与PC之间的通信。

什么是RS-232协议RS-232是一种串行通信接口标准,它定义了单片机与外设之间信号的电气特性、传输协议和机械连接方式。

RS-232标准的发展可以追溯到20世纪60年代,在数十年的时间里,它成为了计算机与外设之间最常见的传输方式之一。

RS-232标准规定了单片机与PC之间使用的物理连接、数据传输的时序和控制信号等方面的细节。

它定义了一组信号电平和电气特性,用于在两个设备之间传输数据。

RS-232标准的物理层使用了DB-9或DB-25连接器,其中DB-9连接器是最常见的。

在RS-232协议中,数据被分割成小的数据包进行传输。

每个数据包由一个起始位、数据位、奇偶校验位和一个或多个停止位组成。

这些位用于将数据解释为字符并将其传输到目的地设备。

如何使用RS-232实现单片机与PC间的串行通信要使用RS-232实现单片机与PC间的串行通信,需要实现以下几个方面:1.物理连接:使用RS-232标准定义的连接器,将单片机和PC连接起来。

2.电气特性:保证单片机和PC之间的电气特性匹配。

3.传输协议:使用RS-232标准定义的数据传输协议,将数据从单片机发送到PC,或者从PC发送到单片机。

4.数据编码:将数据编码为RS-232标准定义的数据格式。

以上所有方面都需要实现正确,才能使单片机与PC间的串行通信正常进行。

RS-232实现单片机与PC间的串行通信的优缺点RS-232协议是单片机与PC间串行通信的经典标准,它具有以下优缺点:优点:1.稳定性高:RS-232协议信号电平的质量非常高,能够保证数据传输的稳定性和可靠性。

2.延迟低:RS-232协议传输速度相对较慢,但延迟非常低,能够及时传输数据。

3.成本低:RS-232协议使用简单、成本低廉,适合开发者在项目中广泛使用。

PC机与单片机进行串口通信

PC机与单片机进行串口通信

单片机与PC机串口通信电路1.概述部分在当今社会中信息数据的传输越来越重要,其中单片机与PC机串口通信也用的越来越广泛,故设计了单片机与PC机串口通信电路,采用AT89C51单片机为主控芯片,借助于MAX232芯片,实现单片机与PC机实现串口通信,可以在pc机上用串口调试助手发送和接收数据,电路中可以通过拨码开关设置数据,通过LED数码管显示接收的数据的功能。

2.系统组成部分2.1.系统组成框图图1 系统组成框图本系统采用AT89C51单片机为主控芯片,通过232接口来实现PC机与单片机之间进行通信,PC机上用串口可以发送接收数据,也可以通过拨码开关进行数据的设置,通过LED数码管(两位)显示接收的数据的功能。

2.2 系统的单元电路2.2.1系统的供电电路图2 系统的供电电路本电路采用+5V供电,采用电源抽头的形式,经过一大一小两个电容分别滤除低频和高频杂波。

2.2.2 系统的主控制器电路图3 系统的主控制器电路2.2.3 232接口电路MAX232实现TTL(CMOS)电平与RS232电平转换的功能。

它有两大优势:1.单电源5V供电,它内部有倍压电路,将5V可以转换成+12V和—12V,而MAX其它系列的芯片需要接双电源,如MAX231,MAX239等。

2.MAX232可以完成两路数据的输入和输出。

另外不同的芯片外接的电容值不一样,MAX232接的是0.1uf。

2.2.4数码管显示电路显示电路采用的是两个共阳极数码管的形式,采用的是74HC595的驱动形式3.软件控制流程单片机上电后,电源指示灯亮,在设置好端口和波特率后,采用字头(A5)+字长(数据的长度)+数据+校验(采用总和校验的方式)的通信协议的方式,进行数据的发送和接收,若数据的字头不是A5,则被认为是干扰数据,这组数据放弃接收,继续接收下一组数据,若数据的字长不在规定的范围内或接收的数据发生数据中断,可以采取没30US查询一次的方式,连续查询100次,查询100次后若数据仍然没有接到,则认为数据错误,每次将发送的数据通过串口显示在PC上,通过拨码开关来调节数据也可以发送数据,将数据显示在数码管上。

单片机与pc机串口通信

单片机与pc机串口通信

单片机与pc机串口通信单片机与 PC 机串口通信在现代电子技术领域,单片机与 PC 机之间的串口通信是一项非常重要的技术。

它为各种应用场景提供了便捷的数据传输方式,使得单片机系统能够与强大的 PC 机进行有效的信息交互。

首先,让我们来了解一下什么是单片机。

单片机,也被称为微控制器(MCU),是一种集成了 CPU、内存、I/O 接口等多种功能于一体的小型芯片。

它在各种电子设备中扮演着“大脑”的角色,负责控制和协调设备的运行。

而 PC 机,作为功能强大的通用计算机,拥有丰富的资源和强大的处理能力。

那么,为什么要实现单片机与 PC 机的串口通信呢?原因有很多。

一方面,通过串口通信,PC 机可以向单片机发送控制指令,实现对单片机所控制设备的远程操作。

另一方面,单片机可以将其采集到的数据实时传输给 PC 机,以便在 PC 机上进行进一步的处理、分析和存储。

串口通信的原理其实并不复杂。

它是一种基于串行数据传输的通信方式,通过发送和接收一系列的二进制位来实现信息的传递。

在串口通信中,数据以一位一位的顺序依次传输,相比于并行通信,虽然速度较慢,但具有线路简单、成本低、可靠性高等优点。

要实现单片机与 PC 机的串口通信,需要一些硬件和软件的支持。

在硬件方面,通常需要一个串口转换芯片,将单片机的 TTL 电平(通常为 0 5V)转换为 PC 机所使用的 RS232 电平(通常为-10V 到+10V)。

常见的串口转换芯片有 MAX232 等。

此外,还需要连接相应的数据线,将单片机的串口引脚与 PC 机的串口接口相连。

在软件方面,对于单片机来说,需要编写相应的串口通信程序,设置串口的工作模式、波特率、数据位、停止位等参数,并实现数据的发送和接收功能。

而对于 PC 机,通常可以使用各种编程语言,如 C++、C、Python 等,通过调用操作系统提供的串口通信库来实现与单片机的通信。

```cinclude <reg52h>void initUART(){TMOD = 0x20; //设置定时器 1 为模式 2TH1 = 0xfd; //波特率 9600TL1 = 0xfd;TR1 = 1; //启动定时器 1SCON = 0x50; //工作方式 1,允许接收}void sendByte(unsigned char dat){SBUF = dat;while (!TI);//等待发送完成TI = 0; //清除发送标志}void main(){initUART();while (1){sendByte('A');delay_ms(1000);}}```在这个示例中,首先通过`initUART` 函数对串口进行初始化设置,包括波特率等参数。

pc机与单片机之间的通信方式及协议

pc机与单片机之间的通信方式及协议

pc机与单片机之间的通信方式及协议PC机和单片机之间的通信是嵌入式系统开发过程中的一个重要问题。

随着嵌入式技术的不断发展,越来越多的应用需要通过PC机和单片机之间的通信来实现数据交换、控制指令传输等功能。

本文将深入探讨PC机和单片机之间的通信,并介绍一些常用的通信方式和协议。

一、PC机和单片机之间的通信方式在PC机和单片机之间进行通信前,需要确定使用哪种通信方式。

根据通信距离、带宽、成本和可靠性等因素的不同,可以选择以下几种通信方式:1.串口通信串口通信是PC机和单片机之间最常用的通信方式之一。

它使用两根线(TX 和RX)进行数据传输,传输速率一般较低,但成本低廉,适用于较短距离的通信。

串口通信常用的协议包括UART(Universa1AsynchronousReceiver/TransmItter)>RS232和RS485等。

2.并口通信并口通信是另一种常见的PC机和单片机之间的通信方式。

它使用8根或16根线进行数据传输,传输速率较高,但成械校高,适用于较长距离的通信。

并口通信常用的协议包括GP1O(Genera1Purpose1nput∕Output)、1PT(1inePrintTermina1)和CentroniCS等。

B通信USB通信是一种高速、可靠和易于使用的通信方式,成本适中,适用于中短距离的通信。

USB通信可以提供高带宽和多路复用功能,并支持热插拔和自动配置。

在PC机和单片机之间进行USB通信时,需要使用USB转串□芯片或USB转并口芯片将USB信号转换为串口信号或并□信号。

4.网络通信网络通信是一种基于TCP/IP协议的通信方式,适用于远程通信和大规模数据传输。

在PC机和单片机之间进行网络通信时,需要使用以太网接口芯片或无线网络模块等设备来连接网络,并通过socket编程实现数据交换和控制指令传输。

二、PC机和单片机之间的通信协议为了保证PC机和单片机之间的通信稳定和正确,需要使用适当的通信协议。

51单片机与PC串口间通讯设计与分析

51单片机与PC串口间通讯设计与分析

51单片机与PC串口间通讯设计与分析一、串口通讯原理串口通讯是指通过串口来进行数据的收发传输的一种通讯方式。

串口通讯分为同步串行通讯和异步串行通讯两种方式,而51单片机与PC之间的串口通讯采用的是异步串行通讯方式。

异步串行通信是指每个数据字节之间可以有可变长度的停止位和起始位。

串口通讯一般由以下几个部分组成:1.传输数据线:用于传输数据的信号线,包括发送数据线(TXD)和接收数据线(RXD)。

2.时钟线:用于提供通讯双方的时钟信号。

3.控制线:用于控制串口通讯的流程,包括数据准备好(DSR)、数据就绪(DTR)等。

二、串口通讯协议串口通讯协议是约定通讯双方数据传输的格式和规则,常见的串口通讯协议有RS-232、RS-485等。

在51单片机与PC之间的串口通讯中,一般使用的是RS-232协议。

RS-232协议规定了数据的起始位、数据位数、校验位和停止位等。

起始位用于标识数据的传输开始,通常为一个逻辑低电平;数据位数指定了每个数据字节的位数,常见的值有5位、6位、7位和8位等;校验位用于校验数据的正确性,一般有无校验、奇校验和偶校验等选项;停止位用于表示数据的传输结束,通常为一个逻辑高电平。

三、51单片机串口的程序设计#include <reg52.h>#define UART_BAUDRATE 9600 // 波特率设置#define UART_DIV 256- UART_BAUDRATE/300void UART_Init( //串口初始化TMOD=0x20;SCON=0x50;PCON=0x00;TH1=UART_DIV;TL1=UART_DIV;TR1=1;EA=1;ES=1;void UART_SendByte(unsigned char ch) //串口发送字节TI=0;SBUF = ch;while(TI == 0);TI=0;void UART_Interrupt( interrupt 4 //串口中断处理if(RI)unsigned char ch;ch = SBUF;RI=0;//处理接收到的数据}if(TI)TI=0;//发送下一个字节}void mainUART_Init(;while(1)//主循环}在上述程序中,首先通过UART_Init(函数进行串口初始化,其中设置了波特率为9600;然后使用UART_SendByte(函数发送数据,调用该函数时会把数据放入SBUF寄存器,并等待TI标志位变为1;最后,在UART_Interrupt(函数中,使用RI标志位判断是否收到数据,然后对数据进行处理,TI标志位判断是否发送完当前字节。

免费单片机串行口与PC机通讯(一).

免费单片机串行口与PC机通讯(一).

免费单片机串行口与PC机通讯(一)第1节引言单片机应用中,串口通信是不可缺少的部分。

如何编写有效的串口通信程序对程序的结构、可靠性都有很大的影响。

串口控制程序一般分为查询和中断两者方式。

查询方式适用于简单的应用,简单可靠,但是缺点是需要占用处理器资源,在发送或者接收数据的时候不能做其它的事情,处理器利用率低。

中断方式下,在发送或者接受数据的时候处理器还可以做其它的工作,效率较高。

1.1 单片机串行口与PC机通讯概述目前,计算机控制系统已逐步从单机控制发展成为多机控制并出现了以计算机技术为核心,与数据通讯技术相结合的集检测、控制和管理为一体的计算机网络,即集中分布式测控系统。

其中单片机作为从机,负责现场控制和实时数据的采集;PC机作为主机,负责对各从机发来的数据进行分析、处理,并向各从机发布命令,以实现对工业现场的集中监控与管理。

由于主从机需不断进行信息交流,因此通信成为分布式测控系统重要而基本的功能。

基本原理PC机与单片机之间通常采用2种通信方式:并行通信和串行通信。

并行通信是指将待发送数据的各位同时传送,串行通信则将数据一位一位地按顺序传送。

并行通信虽然传输效率高,由于所需硬件设备复杂,不适于长距离通信,所以一般只适用于要求实时性强,传送速率较高的控制系统中,实用面较窄;相比之下,串行通信简单易实现,传输距离较长,所以已被广泛应用于各种工控系统中。

串行通信分为同步通信和异步通信2种方式。

同步通信是指通过在每个数据块开始时的同步字符来实现收/发双方同步的一种数据传输方法,常用于信息量大,速度要求高的场合;异步通信则规定了标准的字符数据传输格式,即每一帧信息由起始位、数据位、奇偶校验位和停止位组成。

由于有冗余位,所以传送效率不高,常用于信息量不大,速度较低的场合。

在计算机测控系统中,由于串行接口的标准化,一般采用异步串行通信方式,以提高其通用性。

由于各种接口的机械和电器特性有所差异,串行通信分为近程通信和远程通信。

PC机与单片机的通讯

PC机与单片机的通讯
2400 00h 30h
4800 00h 18h
9600 00h 0Ch
19200 00h 06h
38400 00h 03h
57600 00h 02h
115200 00h 01h
以下几个表格为8250的寄存器的功能描述:
中断允许寄存器(IER):
4 Read/Write MCR MODEM控制寄存器
5 Read LSR 线路状态寄存器
6 Read MSR MODEM状态寄存器
7 Read/Write - Scratch Register
PC机支持1-4个串行口,即COM1-COM4,其基地址在BIOS数据区0000:0400-0000:0406中描述,对应地址分别为3F8/2F8/3E8/2E8,COM1及COM3使用PC机中断4,COM2及COM4使用中断3。
位 注 释
7 未使用
6 未使用
5 进入低功耗模式(16750)
4 进入睡眠模式(16750)
3 允许MODEM状态中断
2 允许接收线路状态中断
1 允许发送保持器空中断
0 允许接收数据就绪中断
Bit0置1将允许接收到数据时产生中断,Bit1置1时允许发送保持寄存器空时产生中断,Bit2置1将在LSR变化时产生中断,相应的Bit3置位将在MSR变化时产生中断。
Bit5:3=111 奇偶保持为0
Bit2=0 1位停止位
Bit2=1 2位停止位(数据位6-8位),1.5位停止位(5位数据位)
Bit1:0=00 5位数据位
Bit1:0=01 6位数据位
Bit1:0=10 7位数据位
Bit1:0=11 8位数据位

51单片机与PC串口通讯

51单片机与PC串口通讯

目录第1章需求分析 ............................................................................................................................ - 1 -1.1课题名称 (1)1.2任务 (1)1.3要求 (1)1.4设计思想 (1)1.5课程设计环境 (1)1.6设备运行环境 (2)1.7我在本实验中完成的任务 (2)第2章概要设计 ............................................................................................................................ - 2 -2.1程序流程图 (2)2.2设计方法及原理 (3)第3章详细设计 ............................................................................................................................ - 3 -3.1电路原理 (3)3.1.1STC89C52芯片 ............................................................................................................. - 3 -3.2串口通信协议 (4)3.3程序设计 (5)3.3.1主程序模块 .................................................................................................................... - 5 -3.3.2串口通讯模块 ................................................................................................................ - 6 -3.3.3控制部分文件 ................................................................................................................ - 8 -3.3.4公共部分模块 .............................................................................................................. - 11 -3.4电路搭建 (12)3.4.1电路原理图 .................................................................................................................. - 12 -第4章上位机关键代码分析 ...................................................................................................... - 12 -4.1打开串口操作 (12)4.2后台线程处理串口程序 (15)4.3程序运行界面 (18)第5章课程设计总结与体会 ...................................................................................................... - 19 -第6章致谢 .................................................................................................................................. - 19 -参考文献........................................................................................................................................... - 19 -第1章需求分析1.1 课题名称故障诊断数据采集通信系统设计与制作。

单片机与pc机的串口通信

单片机与pc机的串口通信

单片机与pc机的串口通信曹元山07电信工220071201010一.PC与单片机串行通信控制背景和意义:计算机与计算机或计算机与终端之间的数据传送可以采用串行通讯和并行通讯二种方式。

由于串行通讯方式具有使用线路少、成本低,特别是在远程传输时,避免了多条线路特性的不一致而被广泛采用。

在串行通讯时,要求通讯双方都采用一个标准接口,使不同的设备可以方便地连接起来进行通讯。

RS-232-C接口(又称EIA RS-232-C)是目前最常用的一种串行通讯接口。

它是在1970年由美国电子工业协会(EIA)联合贝尔系统、调制解调器厂家及计算机终端生产厂家共同制定的用于串行通讯的标准。

它的全名是“数据终端设备(DTE)和数据通讯设备(DCE)之间串行二进制数据交换接口技术标准”该标准规定采用一个25个脚的DB25连接器,对连接器的每个引脚的信号内容加以规定,还对各种信号的电平加以规定。

随着计算机技术尤其是单片微型机技术的发展,人们已越来越多地采用单片机来对一些工业控制系统中如温度、流量和压力等参数进行检测和控制。

PC 机具有强大的监控和管理功能,而单片机则具有快速及灵活的控制特点,通过PC机的RS-232串行接口与外部设备进行通信,是许多测控系统中常用的一种通信解决方案。

因此如何实现PC机与单片机之间的通讯具有非常重要的现实意义。

二.串行通信接口常用PC机串行接口有3种:PS/2接口用于连接键盘和鼠标;RS232C串行接口一般用来实现PC机与较低速外部设备之间的远距离通信;USB通用串行总线接口是现在比较流行的接口,它最大的好处在于能支持多达127个外设,外设可以独立供电,也可以通过USB接口从主板上获得500 mA@+5 V的电流,并且支持热拔插,真正做到即插即用。

PC机的3种串行接口都可以用于与外设之间的数据通信,PS/2接口由于是专用于键盘和鼠标,在PC机的编程处理上要麻烦一些,而且在多数情况下,其他外设还不能占用。

51单片机与PC机通信

51单片机与PC机通信

51单片机与PC机通信随着嵌入式系统和物联网技术的发展,51单片机在许多应用中扮演着重要的角色。

这些单片机具有低功耗、高性能和易于编程等优点,使其在各种嵌入式设备中得到广泛应用。

在这些应用中,与PC机的通信是一个关键的需求。

本文将探讨51单片机与PC机通信的方法和协议。

串口通信是51单片机与PC机进行通信的最常用方式之一。

串口通信使用一个或多个串行数据线来传输数据,通常使用RS232或TTL电平标准。

在硬件连接方面,需要将51单片机的串口与PC机的串口进行连接。

通常使用DB9或USB转TTL电路来实现这一连接。

在软件编程方面,需要使用51单片机的UART控制器来进行数据的发送和接收。

具体实现可以使用Keil C51或IAR Embedded Workbench 等集成开发环境进行编程。

USB通信是一种比较新的通信方式,它具有传输速度快、支持热插拔等优点。

在51单片机中,可以使用USB接口芯片来实现与PC机的通信。

在硬件连接方面,需要将51单片机的USB接口芯片与PC机的USB接口进行连接。

通常使用CH340G或FT232等USB转串口芯片来实现这一连接。

在软件编程方面,需要使用51单片机的USB接口芯片来进行数据的发送和接收。

具体实现可以使用相应的USB库来进行编程。

网络通信是一种更加灵活和高效的通信方式。

在51单片机中,可以使用以太网控制器来实现与PC机的网络通信。

在硬件连接方面,需要将51单片机的以太网控制器与PC机的网络接口进行连接。

通常使用ENC28J60等以太网控制器来实现这一连接。

在软件编程方面,需要使用51单片机的以太网控制器来进行数据的发送和接收。

具体实现可以使用相应的网络库来进行编程。

需要注意的是,网络编程涉及到更多的协议和数据格式,需要有一定的网络基础知识。

本文介绍了51单片机与PC机通信的三种常用方式:串口通信、USB 通信和网络通信。

每种方式都有其各自的优缺点和适用场景。

单片机与pc机之间的通信例程

单片机与pc机之间的通信例程

单片机与PC机之间的通信例程1. 引言单片机与PC机之间的通信是嵌入式系统开发中非常重要的一部分。

通过单片机与PC机之间的通信,可以实现数据传输、命令控制等功能。

本文将介绍单片机与PC 机之间通信的基本原理以及编写通信例程的步骤。

2. 单片机与PC机通信原理单片机与PC机之间的通信可以通过串口(UART)或者USB接口实现。

串口是一种常见且简单的通信方式,适用于低速数据传输。

USB接口则具有更高的传输速率和更复杂的协议,适用于高速数据传输和复杂的控制。

2.1 串口通信原理串口通信使用两根线(TXD和RXD)进行数据传输。

发送端将数据通过TXD线发送到接收端,接收端通过RXD线接收数据。

发送端和接收端需要使用相同的波特率(Baud rate)进行通信,波特率决定了每秒钟传输的位数。

2.2 USB通信原理USB通信使用四根线进行数据传输:VCC(供电)、GND(地线)、D+、D-(数据线)。

USB接口还包括一个复杂的协议,如USB1.1、USB2.0、USB3.0等。

3. 编写通信例程的步骤编写单片机与PC机之间的通信例程,需要以下步骤:3.1 确定通信方式首先需要确定使用串口通信还是USB通信。

根据实际需求选择合适的通信方式。

3.2 配置硬件根据选择的通信方式,配置单片机和PC机的硬件接口。

如果使用串口通信,需要连接TXD和RXD线;如果使用USB通信,需要连接VCC、GND、D+、D-线。

3.3 编写单片机程序根据单片机的型号和开发环境,编写单片机程序。

程序中需要包含对串口或USB接口的初始化配置以及数据传输或命令控制的代码。

3.4 编写PC机程序在PC机上编写相应的程序,用于与单片机进行通信。

根据选择的通信方式,编写串口或USB接口相关的代码。

在使用串口通信时可以使用Python中的serial库进行串口读写操作。

3.5 测试与调试将编写好的单片机程序烧录到单片机中,并运行PC机程序。

通过监视器或调试工具查看数据传输情况,并进行必要的调试。

单片机串行口与PC机通讯资料

单片机串行口与PC机通讯资料

单片机串行口与PC机通讯目录第1节引言 (1)单片机串行口与PC机通信概述 (1)系统主要功能 (1)第2节单片机串行口与PC机通讯硬件设计 (2)系统的硬件构成 (2)设计说明 (2)系统电路图 (3)8031单片机及其引脚说明 (5)显示接口8279的功能及其引脚说明 (5)数据格式和数据的协议 (6)第3节系统软件设计 (7)系统主程序框架图 (7)系统主要程序 (8)第3节结束语 (14)参考文献 (15)第1节引言单片机应用中,串口通信是不可缺少的部分。

如何编写有效的串口通信程序对程序的结构、可靠性都有很大的影响。

串口控制程序一般分为查询和中断两者方式。

查询方式适用于简单的应用,简单可靠,但是缺点是需要占用处理器资源,在发送或者接收数据的时候不能做其它的事情,处理器利用率低。

中断方式下,在发送或者接受数据的时候处理器还可以做其它的工作,效率较高。

单片机串行口与PC机通讯概述目前,计算机控制系统已逐步从单机控制发展成为多机控制并出现了以计算机技术为核心,与数据通讯技术相结合的集检测、控制和管理为一体的计算机网络,即集中分布式测控系统。

其中单片机作为从机,负责现场控制和实时数据的采集;PC机作为主机,负责对各从机发来的数据进行分析、处理,并向各从机发布命令,以实现对工业现场的集中监控与管理。

由于主从机需不断进行信息交流,因此通信成为分布式测控系统重要而基本的功能。

基本原理PC机与单片机之间通常采用2种通信方式:并行通信和串行通信。

并行通信是指将待发送数据的各位同时传送,串行通信则将数据一位一位地按顺序传送。

并行通信虽然传输效率高,由于所需硬件设备复杂,不适于长距离通信,所以一般只适用于要求实时性强,传送速率较高的控制系统中,实用面较窄;相比之下,串行通信简单易实现,传输距离较长,所以已被广泛应用于各种工控系统中。

串行通信分为同步通信和异步通信2种方式。

同步通信是指通过在每个数据块开始时的同步字符来实现收/发双方同步的一种数据传输方法,常用于信息量大,速度要求高的场合;异步通信则规定了标准的字符数据传输格式,即每一帧信息由起始位、数据位、奇偶校验位和停止位组成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计报告书课程名称:MCS-51单片机课程设计题目:单片机与PC机之间的通信姓名:高富帅学号:嘿嘿嘿学院:电气工程与自动化学院专业:电气工程与自动化年级:2010级指导教师:嘿嘿嘿目录1.引言与系统结构 (2)2.硬件实现2.1.AT89C52 (2)2.2.MAX232芯片 (3)2.3. 9针串口 (5)3.虚拟串口调试 (7)4.Proteus仿真原理图及元件清单 (14)5.软件设计 (15)6.主程序代码 (16)7.心得体会 (18)8.参考文献 (18)1.引言与系统结构:利用PC 机配置的异步通信适配器,可以方便的完成PC 机遇89C52单片机的数据通信。

由于89C52单片机输入、输出电平为TTL 电平,而PC 机配置的是RS-232标准串行接口,二者的电器规范不一致,因此采用MXA232单芯片 实现89C52单片机于PC 机的RS-232标准接口通信电路。

如今,在很多场合中,要求单片机不仅能独立完成单机的控制任务,还要能与其他数据控制设备(单片机、PC 机等)进行数据交换。

串口通讯对单片机而言意义重大,不但可以实现将单片机的数据传输到电脑端,而且也能实现电脑对单片机的控制,比如可以很直观地把红外遥控器键值的数据码显示在电脑上,可以使编写红外遥控程序时方便不少,起到仿真器的某些功效。

89C52有一个全双工的串行通讯口,所以单片机和电脑之间可以方便地进行串口通讯。

进行串行通讯时要满足一定的条件,比如电脑的串口是RS232电平的,而单片机的串口是TTL 电平的,两者之间必须有一个电平转换电路,我们采用了专用芯片MAX232进行转换,虽然也可以用几个三极管进行模拟转换,但是还是用专用芯片更简单可靠。

我们采用了三线制连接串口,也就是说和电脑的9针串口只连接其中的3根线:第5脚的GND.第2脚的RXD.第3脚的TXD 。

图1 系统结构2.硬件实现:2.1.AT89C52:AT89C52是51系列单片机的一个型号,它是ATMEL 公司生产的。

AT89C52是一个低电压,高性能CMOS 8位单片机,片内含8k bytes的可反复擦写的Flash只读程序存储器和256 bytes的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash存储单元,功能强大的AT89C52单片机可为您提供许多较复杂系统控制应用场合。

AT89C52有40个引脚,32个外部双向输入/输出(I/O)端口,同时内含2个外中断口,3个16位可编程定时计数器,2个全双工串行通信口,2个读写口线,AT89C52可以按照常规方法进行编程,但不可以在线编程(S系列的才支持在线编程)。

其将通用的微处理器和Flash存储器结合在一起,特别是可反复擦写的Flash存储器可有效地降低开发成本。

AT89C52有PDIP、PQFP/TQFP及PLCC等三种封装形式,以适应不同产品的需求。

图2 AT89c52引脚图2.2. MAX232芯片:是MAXIM公司生产的、包含两路接收器和驱动器的IC芯片,适用于各种EIA-232C和V.28/V.24的通信接口。

MAX232芯片的功能: MAX232内部有一个电源电压变换器,可以把输入的+5V电源电压变换成为RS-232C输出电平所需的±10V电压。

所以,采用此芯片接口的串行通信系统只需单一的+5V电源就可以了。

对于没有±12V电源的场合,其适应性更强图3 MAX232芯片引脚图4中,上半部分的的电容C1,C2,C3,C4以及V+,V-是电源变换电路部分。

在实际应用中,器件对电源噪声很敏感。

因此,VCC必须要对地加去耦电容C5,电容C1,C2,C3和C4取同样数值的钽电容,用以提高抗干扰能力。

在连接时必须尽量靠近器件。

下半部分为发送和接收部分。

实际应用中T1IN和T2IN 可直接接TTL/CMOS电平的89C52单片机的串行发送端TXD;R1OUT和R2OUT 可直接接TTL/CMOS电平的89C52单片机的的串行接收端;T1OUT和T2OUT可直接接PC的RS-232串口的接收端RXD;R1IN和R2IN直接接PC的RS-232串口的发送端TXD。

图4 MAX232典型工作电路图2.3.9针串口:一个完整的RS-232接口是一个25针的D 型插头座,25针的连接器实际上只有9根连接线,所以就产生了一个简化的9针D 型RS-232插头座,常用的就是一个9针的D 型插头座。

EIA-RS-232C 对电器特性、逻辑电平和各种信号线功能都作了规定: 在TxD 和RxD 上:逻辑1(MARK)=-3V ~-15V 逻辑0(SPACE)=+3~+15V在RTS 、CTS 、DSR 、DTR 和DCD 等控制线上: 信号有效(接通,ON 状态,正电压)=+3V ~+15V 信号无效(断开,OFF 状态,负电压)=-3V ~-15V介于-3~+3V 之间的电压无意义,低于-15V 或高于+15V 的电压也认为无意义。

因此如果要进行通信,还要对信号的电平进行转换,比如使用MAX3232芯片来转换电平。

使用串口进进行通信时,我们最主要关心的时以下这三个引脚:输入输出RS-232输入V CCC C C 45 GND2 RXD3 TXD要完成数据的发送与接收就必须要到上面这三个引脚。

而其它引脚是用来控制传输规则的,即握手协议。

下面是9针串口(DB9),引脚功能。

图5 九针串口引脚功能图6 protues串口图我们还要注意串口插座有公母两种类型其中:公的串口插座是带有插针的 (有针) 母的串口插座是不带有插针的(有洞).3.虚拟串口调试:单片机和Proteus 虚拟串口调试,就是我们不需要实际的串口进行调试,只需要用protues加串口,在加串口调试助手就行了。

写好单片机串口程序加载到protuse仿真里,这边串口调试助手就有反应。

比如我们的程序是单片机通过串口发送数据C到电脑,然后串口调试助手就回接收到C。

也可以有单片机接收数据串口调试助手发送数据。

3.1.设置虚拟串口(如图)图7开始界面3.2.然后按add pair 添加串口,添加了COM3和COM4,执行后如下图图8 添加串口3.3.我们启动虚拟串口调试软件图9 启动3.4.打开自己的仿真图。

图10仿真图单片机的RXD连接COMPIN的RXD,单片机的TXD连接COMPIM的RXD。

3.5.设置COMPIM的属性图11设置COMPIM的属性我们需要关心的是 Physical port、Physical Baud Rate、Virtual Baud Rate 这三个栏目,特别是波特率的值一定要与源文件(C程序)规定的值一定,比如我们这里是 9600则就是因为源文件中设置的就是 9600,在这里我们一定要选择好 COM3,默认是 COM1。

设置完成这个界面如上图。

3.6.我们需要把串口号和波特率设置,串口号一定记住在COMPIM中我们设置成了 COM3,在这里要设置成 COM4 才行,我试了 COM3 是不出现的。

波特率一定要与 COMPIM的波特率设置成一样的。

设置如下图。

图12串口号和波特率设置用的时候记得打开串口。

3.7. Keil的设置图13 Keil的设置我们最好改成11.0592M图14晶振设置还有就是Protues里也要做相应设置成11.0592M3.8.所有准备工具均已经完成,现在开始运行仿真图15 终端接收到的数据图16 串口调试小助手接收到的数据3.9.调试原程序#include <reg52.h>#include<stdio.h>void delay1ms(){unsigned int i;for(i=500000;i>0;i--); //延时}Initial_com(){TMOD=0x20; //定时器T1 PCON &= 0xef; SCON=0x50;TH1=0xfd; //波特率设置为9600TL1=0xfd;TR1=1; //开定时器T1运行控制位}main(){Initial_com();while(1){SBUF='c';while(!TI);delay1ms();delay1ms();TI=0;}}4.Proteus仿真原理图:图 17 原理图形元件清单:极性电容 C3 C4 C5 C6 容值为1uf 无极性的电容 C1 C2 容值为1ufAT89c52一片max232一片9针串口(母)12MHz 晶振5.软件设计:图18 程序流程6.主程序代码:#include <reg52.h> unsigned char butter; void send();void receive();void main(){PCON=0x80;SCON=0Xd0;TMOD=0X20;TH1=0Xfd;TL1=0Xfd;TR1=1;TI=1;while(1);receive();send();}void send(){if(TI==1){ SBUF=1; TI=0;}}void receive() {if(RI==1) {ACC=SBUF;butter=ACC; RI=0;}}7.心得体会:通过这次课程设计,更加深入理解了PC与单片机的串行通讯。

通过硬件的焊接与调试,增强了动手能力,懂得如何更好的排线,避免短路,将知识用于实践。

当在调试过程中出现问题时,学会了如何一一排除错误,例如,刚刚开始的时候我在cpu的发送端发现有波形,而通过max232后波形却消失了或者变的很不规则,这种情况下只能不断的检查电路,最后发现时max232的接地端没接好。

还有就是当max232输出端有信号了可是串口却收不到数据,我用排除法一一排查问题的原因,首先max232输出端有信号而串口收不到数据我将pc的串口的2,3脚接在一起并且发给个数据发现串口有接受数据,那么pc串口没问题,那么问题只能出现小板上,通过检查发现还是接地不好,所以通过这次课设让我了解怎样进行调试,怎样使实验达到最好的效果,学会了如何使用资料自学,更加深入的了解一些课堂上学不到的知识。

在整个过程中画好原理图其实是最重要的一部分,很多知识,是需要通过实践才能更加理解,很多经验是通过动手才能积累。

并且通过这次课设还让我明白word排版其实也是很需要技巧的,通过不断的改正我的排版比之前好看多了。

最后,在此感谢张丽萍老师跟黄宴委老师为我们提供的帮助,以及悉心的教导。

还有也要感谢苏士超同学提供的帮助。

8.参考文献周国运《单片机原理及应用(C语言版)》中国水利水电出版社 2009喻宗泉.单片机原理与应用技术.西安:西安电子科技大学出版社,2006冯育长.单片机系统设计与实例分析.西安:西安电子科技大学出版社,2007陈涛.单片机应用及C51程序设计.机械工业出版社,2008赵亮,侯国锐.单片机C语言编程与实例.北京:人民邮电出版社,2003。

相关文档
最新文档