【精准解析】四川省眉山市仁寿一中南校区2019-2020学年高一上学期期中考试数学试题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
仁寿一中南校区高 2019 级期中检测试题
数学
考试时间共 120 分钟,满分 150 分
一、选择题:本题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一
项是符合题目要求的.
1.集合U 1, 2,3,5 , P 1,3 , Q 2,3,则 ðU P Q ( )

2
A. 1
B. 0
C. 1
3
D.
2
【答案】A
【解析】
【分析】
根据函数的奇偶性计算可得.
-3-
【详解】解:因为函数 f x 是 R 上的奇函数,当 x 0 时, f x 2x x
2
所以
f
1
f
1
21
1 2
1
故选: A
【点睛】本题考查函数的奇偶性的应用,属于基础题.
7.函数
f
x
ln
1
x 1
x
对于 C : f x lg x 1 ,定义域为 1, ,不符合题意;
-1-
对于 D : f x x2 ,函数 在, 0 上单调递减,在 0, 上单调递增,满足条件.
故选: D
【点睛】本题考查常见函数的单调性的判定,关键是掌握常见函数的单调性,属于基础题.
3.下列各组的两个函数为相等函数的是(
1
42
2
,0
1
0.3 2
0.30
1
,即 0
b
1
2 log2 4 log2 3 log2 2 1 ,1 c 2
b c a
故选: B
【点睛】本题考查指数函数、对数函数的性质,属于基础题.
6.已知函数 f x 是 R 上的奇函数,当 x 0 时, f x 2x x ,则 f 1 (
故选: D
【点睛】本题考查求具体函数的定义域,属于基础题.
8.函数
f
x
2 x x 1
的大致图象为(

A.
B.
-4-
C.
D.
【答案】B
【解析】
【分析】
将函数解析式变形为
f
x
1
1 x 1
,根据函数的平移规则即可判断.
【详解】解: f x 2 x
x 1
f
x
1
1 x 1
函数
f
x
1
1 x 1
是由函数
y
故选: A
【点睛】本题考查待定系数法求函数解析式,及函数值的计算,属于基础题.
5.设
a
1
42

b
1
0.32

c
log 2
3
,则
a

b

c
的大小关系是(
A. b a c
B. b c a
C. a b c
) D. a c b
【答案】B
【解析】
【分析】
根据指数函数及对数函数的性质即可判断.
【详解】解: a
【答案】B 【解析】
B. (2 ,3)
C. (2 ,4)
D. (-2,3)
由条件得 f(a-3)<f(a2-9),即
∴a∈(2 2 ,3)故选 B.
10.函数 f (x) ln x x3 9 的零点所在的区间为( )
A. (0,1)
B. (1, 2)
C. (2,3)
【答案】C 【解析】
D. (3, 4)
-5-
试题分析:可以求得
,所以函数的零点
在区间 (2, 3) 内.故选 C.
考点:零点存在性定理. 11.某种计算机病毒是通过电子邮件进行传播的,下表是某公司前 5 天监测到的数据:
第x天
1来自百度文库
2
3
4
5
被感染的计算机数量 y (台)
10
20
39
81
160
则下列函数模型中,能较好地反映计算机在第 x 天被感染的数量 y 与 x 之间的关系的是
2x 3
2
的定义域为
3 2
,
,而函数
g
x
2
x
3
的定义域为 R ,定义域不相同,故不是相等函数;
对于 B :函数 f t t 的定义域为 R ,函数 g x x2 的定义域为 R ,但 g x x2 x ,
两函数的解析式不相同,故不是相等函数;
对于 C :
f
x
x
x, x x,
0 x

A. f x 2x 1
C. f x lg x 1
B. f x 1
x
D. f x x2
【答案】D 【解析】 【分析】 根据基本初等函数的性质对选项一一分析即可判断.
【详解】解:对于 A : f x 2x 1在定义域上单调递减,不符合题意;
对于 B : f x 1 函数在 , 0 , 0, 上单调递减,不符合题意;
4 x 2 的定义域为(

A. 2,2
B. 1, 2
C. 2,0 U 0, 2
D.
1,0 0, 2
【答案】D
【解析】
【分析】
根据函数解析式,列出使函数有意义的不等式组,解得.
【详解】解:
f
x
ln
1
x 1
4 x2
4 x2 0
2 x 2
x
1
0
解得 x 1 即 x 1,0 0, 2
ln x 1 0 x 0
A. 3
B. 5
C. 1, 2,3
D. 1, 2,5
【答案】D 【解析】 【分析】 根据交集、补集的定义计算可得.
【详解】解:U 1, 2,3,5, P 1,3 , Q 2,3
P Q 3
ðU P Q 1, 2,5
故选: D
【点睛】本题考查集合的运算,属于基础题.
2.下列函数在 0, 上是增函数的是(
4.已知幂函数 f x 的图象过点 2, 4 ,则 f 2 ( )
A. 16 【答案】A
B. 4
C. 8
D. 2
-2-
【解析】 【分析】 首先求出函数解析式,再代入计算即可.
【详解】解:设幂函数的解析式为 f x x
则 f 2 2 4 ,解得 4
f x x4
f 2 24 16
A. f x 2x 3 2 , g x 2x 3

B. f t t , g x x2
C.
f
x
x

g
x
x, x x,
0 x
0
D. f x x , g x x2
x
【答案】C
【解析】
【分析】
判断函数相等,需要满足定义域相同且解析式相同.
【详解】解:对于 A :函数 f x
0

g
x
x, x 0 x, x 0 两函数的定义域都为 R ,且解析式也
相同,故是相等函数.
对于 D :函数 f x x 的定义域为 R ,函数 g x x2 的定义域为 , 0 0, ,定
x
义域不相同,故不是相等函数;
故选: C
【点睛】本题考查相等函数的判定,关键从函数的定义域及函数解析式入手即可,属于基础 题.
1 x
向左移
1
个单位,向上移
1
个单位得到,
故满足条件的为 B 故选: B 【点睛】本题考查函数图象的识别,函数的平移变换,属于基础题.
9.已知定义域为(-1,1)的奇函数 y f (x) 又是减函数,且 f (a 3) f (9 a 2) 0. 则 a 的
取值范围是( )
A. (3, 10 )
相关文档
最新文档