Characteristics of Fine Oxide Particles Produced by Ti-M Complex Deoxidation

合集下载

氧化铝陶瓷多粒子冲蚀磨损的数值模拟

氧化铝陶瓷多粒子冲蚀磨损的数值模拟

氧化铝陶瓷多粒子冲蚀磨损的数值模拟∗胡彪;纪秀林;段慧;丁伟【摘要】采用LS⁃DYNA有限元分析软件建立多粒子冲蚀氧化铝陶瓷的有限元模型,运用LS⁃DYNA求解器对冲蚀过程进行仿真,通过观察靶材等效应力的分布分析冲蚀机制。

结果表明:靶材体积磨损率随着冲蚀角度的增大而增大,在冲蚀角度达到90°时,体积磨损率达到最大值,表现出典型的脆性材料的冲蚀特性;靶材的体积磨损率随着冲蚀速度的增大而增大,且具有良好的线性增长关系;靶材的体积磨损率整体上随着冲击粒子粒径的增大而增大,但在达到临界尺寸的一段时间内会随着粒径的增大而减小;靶材会吸收粒子的一部分动能转化为自己的内能,但随着粒子冲击结束而离开靶材表面,靶材表面形成微裂纹以及部分单元失效,因此靶材的能量随着单元的失效而减小。

%LS⁃DYNA was used to establish the finite element model of multi particles impacting on alumina ceramics, and the erosion process was simulated by using LS⁃DYNA solver� The erosion mechanism was analyzed by observing the distribution of Von Mises stress of the target� The results show that volume loss rate of the target is increased with increas⁃ing the impact angle, and volume loss rate reaches the maximum value at the impact angle of 90°, which exhibits erosio n characteristics of typical brittle materials� Volume loss rate of the target is increased with increasing the impact velocity, and they have good linear growth relationship� Volume loss rate of the target is increased with increasing the impact parti⁃cle size as a whole, but it is decreased within a period of time when the impact particle size reaches a critical size� The target absorbs part of the particles kinetic energy and transforms it intointernal energy, and when the particles leave the target surface,micro⁃crack and some elements failure are formed on the target surface, therefore, the target total energy is decreased with the failure of the elements.【期刊名称】《润滑与密封》【年(卷),期】2015(000)004【总页数】5页(P49-53)【关键词】冲蚀磨损;氧化铝陶瓷;脆性材料;多粒子;冲蚀机制【作者】胡彪;纪秀林;段慧;丁伟【作者单位】河海大学常州校区机电工程学院江苏常州213022;河海大学常州校区机电工程学院江苏常州213022;河海大学常州校区机电工程学院江苏常州213022;河海大学常州校区机电工程学院江苏常州213022【正文语种】中文【中图分类】TH117.1冲蚀磨损是固体颗粒随着高速流体对材料表面冲击造成的材料损坏,是一个动态的失效过程[1]。

材料导论中英文讲稿 (58)

材料导论中英文讲稿 (58)

Module 7-video 12What are particle-reinforced composites?什么是颗粒增强复合材料?Hello!Welcome to Introduction to Materials. Today, we are going to talk about particle-reinforced composites, also called particle or particulate composites.译文:大家好!欢迎走进《材料导论》课堂。

今天,我们来一起学习颗粒增强复合材料。

Particle composites containing reinforcing particles of one or more materials suspended in a matrix of a different materials. As with nearly all materials, structure determines properties, and so it is with particle composites.This Figure illustrates the geometrical and spatial characteristics of particles, such as the concentration, size, shape,distribution and orientation. They all contribute to the properties of these materials. 颗粒增强复合材料由基体和分散相构成,分散相粒子的几何和空间特性,如含量、大小、形状、分布、取向等结构因素都会影响颗粒复合材料的性能。

译文:颗粒增强复合材料是由一种或多种增强颗粒分散于另一种基体材料中构成的复合材料。

颗粒增强复合材料与其它几乎所有材料一样,其结构决定着性能。

Mg脱氧对船板结构钢中夹杂物的影响

Mg脱氧对船板结构钢中夹杂物的影响

Mg脱氧对船板结构钢中夹杂物的影响徐龙云;杨健;王睿之;祝凯;周乐君;王万林【摘要】研究了Mg脱氧对于船板结构钢中微米级夹杂物演变行为的影响.钢中典型夹杂物是中心为氧化物、外围为MnS的复合夹杂物.随着钢中Mg含量的增高,独立氧化物和独立硫化物的数量减少,氧化物和硫化物的复合夹杂物数量增多,同时夹杂物的尺寸减小、数量增加.随着钢中Mg含量从0升高到27 ×10-4%、38×10-4%、99 ×10-4%,夹杂物中心氧化物成分的变化趋势是:Al2O3→(Mg-Al-Ti-O)→MgO.【期刊名称】《宝钢技术》【年(卷),期】2014(000)006【总页数】6页(P1-6)【关键词】Mg脱氧;夹杂物;船板结构钢;热影响区【作者】徐龙云;杨健;王睿之;祝凯;周乐君;王万林【作者单位】中南大学,湖南长沙410083;宝山钢铁股份有限公司,上海201900;宝山钢铁股份有限公司,上海201900;宝山钢铁股份有限公司,上海201900;宝山钢铁股份有限公司,上海201900;中南大学,湖南长沙410083;中南大学,湖南长沙410083【正文语种】中文【中图分类】TG142.1+3厚钢板广泛应用于造船、海洋平台、石油管线、高层建筑等领域。

为了提高焊接效率和焊接质量,以降低建造成本、提高经济效益,国内外逐渐开始采用大线能量焊接技术。

但是,在大线能量焊接过程中,焊接热影响区(Heat Affected Zone,HAZ)韧性严重劣化。

利用钢中非金属夹杂物的“氧化物冶金”技术是改善焊接热影响区韧性的最有效方法[1-4]。

氧化物冶金技术用来提高焊接热影响区韧性的思路主要有以下两种:一种是利用微米级夹杂物诱发晶内针状铁素体(Intragranular Acicular Ferrite,IAF)的形成,一种是利用纳米级析出物的钉扎作用抑制焊接热影响区奥氏体晶粒的长大。

关于利用强脱氧剂Mg的氧化物冶金技术,前人已经开展了一些研究工作。

矿物加工技术双语翻译

矿物加工技术双语翻译

PartI words Chapter1 Introductionalluvial mining---冲积矿床开采aluminium—铝an optimum grind size—最佳磨矿粒度barytes—重晶石comminution—粉碎degree of liberation—解离度diamond ores—金刚石矿石Electrical conductivity properties—导电性fluorite—萤石fundamental operations—基本选别流程release/liberation—解离Galena—leadsulphide—方铅矿sphalerite-zincsulphide—闪锌矿cassiterite-tin oxide—锡石grinding—磨矿Laboratory and pilot scale test-work—试验室和半工业实验Line flowsheet—线流程locking of mineral and gangue—连生体Middlings—中矿mill(concentrator)--- 选矿厂milling costs—磨矿消耗Minerals definition(p.1)metallic ore processing –金属矿石加工gangue—脉石Mineral—矿物ore—矿石crust of the earth—地壳sea-bed—河床non-metallic ores—非金属矿石bauxite—氧化铝optical properties—光学性质Ore bodies—矿体part per million(ppm)Primary grind—粗磨product handling—产品处理pyrite –黄铁矿Recovery—回收率Refractory bricks—耐火砖abrasives—磨料Separation—分离Smelter—熔炼sorting—拣选subsequent concentration process—后续选别流程Tailings retreatment—尾矿再处理as-mined(run of mine)—原矿mineral processing(ore dressing/mineral dressing/milling(磨选))—矿物加工portion/concentrate—精矿discard/tailing—尾矿the flowsheet—工艺流程The minimum metal content(grade)—最低金属含量The valuable mineral—有用矿物complex ores—复合矿The waste minerals—脉石enrichment process—富集工艺metal losses—金属损失the enrichment ratio—富集比efficiency of mineral processing operations—矿物加工作业效率The ratio of concentration –选别比the grade/assay—品位ultra-fine particles—超细颗粒unit concentration processes—单元选别流程Chapter2Ore handingopen-pit ore(露天开采的矿石p30,左下)run-of-mine ore(原矿)Typical washing plant flowsheet(洗矿车间典型流程figure 2.2) tipper (卸料器p33 右上)Shuttle belt (梭式胶带p33 右中)Gravity bucket elevator (斗式重力提升机p33 右下)Ore storage(矿物储存p35 右上)包括:stockpile (矿场)bin(矿仓)tank (贮槽)Front-end loader (前段式装载机p35 右上)Bucket-wheel reclaimer(斗轮式装载机p35 右上)Reclaim tunnel system(隧道装运系统p35 右上)The amount of reclaimable material/the live storage(有效贮量p35 右中figure 2.7) Conditioning tank (调和槽p36 左上)Chain-feeder (罗斯链式给矿机figure 2.9)Cross-section of elliptical bar feeder (椭圆形棒条给矿机figure 2.10)Vibrating grizzly feeder (振动格筛给矿机p37 左上)Apron feeder (板式给矿机figure 2.11)Belt feeder (胶带给矿机p37 右下)Chapter 4 particle size analysisacicular(针状);adverse(相反的);algorithm(算法);angular(多角状);aperture(孔径);apex (顶点);apparatus(仪器);arithmetic(运算器,算术); assaying(化验);attenuation(衰减);beaker decantation(烧杯倾析); blinding(阻塞);calibration(校正);charge(负荷);congest(充满);consecutive(连续的);contract(压缩);convection current(对流); conversion factor(转化因子); crystalline(晶体状);cyclosizer(旋流分析仪);de-aerated(脱气);derive:(得出);dilute(稀释);dimensionless quantity(无量纲量); dispersing agent(分散剂);distort(变形);duplicate(重复); electrical impedence(电阻); electroetching(电蚀刻); electroform(电铸);elutriation(淘析);epidote(绿帘石);equilateral triangle(等边三角形); flaky(薄片状);flask(烧瓶);fractionated sample(分级产品); gauze(筛网);geometric(几何学的);granular(粒状的);graticule(坐标网);gray scale(灰度);ground glass(毛玻璃);hand sieve(手动筛);histogram(直方图);immersion(浸没);inter-conversion(相互转变); interpolate(插值);intervals(区间);laminar flow(粘性流体);laser diffraction(激光衍射);light scattering method(光散射法); line of slope(斜率);logarithmic(对数的);machine sieve(机械筛); mechanical constraint(机械阻力);mesh(目);modular(系数的,制成有标准组件的);near size(临界筛孔尺寸);nominal aperture();nylon(尼龙);opening(开口);ordinate(纵坐标);perforated(多孔的);pipette(吸管);plotting cumulative undersize(累积筛下曲线); median size(中间粒度d50);polyhedron(多面体); reflection(反射); procure(获得);projected area diameter(投影面直径);ratio of the aperture width(筛比);refractive index(折射率);regression(回归) ;reproducible(可再生的);sedimentation balance(沉降天平); sedimentation(沉降) ;segment(片);sensor section(传感器); sieve shaker(振动筛,振筛器); spreadsheet(电子表格);simultaneously(同时地);size distribution(粒度分布);spectrometer(摄谱仪);stokes diameter(斯托克斯直径);subdivide(细分);sub-sieve(微粒);suction(吸入);syphon tube(虹吸管);tabulate(列表);tangential entry(切向入口);terminal velocity(沉降末速);truncate(截断);twill(斜纹图);two way cock(双通塞);ultra sonic(超声波);underside(下侧);vertex(顶点);vortex outlet (涡流出口);wetting agent(润湿剂);Chapter 5 comminutionattrition----- 研磨batch-type grindability test—小型开路可磨性实验bond’s third theory—邦德第三理论work index----功指数breakage—破碎converyor--- 运输机crack propagation—裂隙扩展crushing and grinding processes—破碎磨矿过程crushing----压扎crystalline material—晶状构体physical and chemical bond –物理化学键diameter—直径elastic—弹性fine-grained rocks—细粒岩石coarse-grained rocks—粗粒岩石chemical additives—化学添加剂fracture----碎裂free surface energy—自由表面能potential energy of atoms—原子势能graphical methods---图解法grindability test—可磨性实验crushing and grinding efficiency--- 破碎磨矿效率grinding media—磨矿介质gyratory crusher---旋回破碎机tumbling mill --- 筒形磨矿机impact crusher—冲击式破碎机high pressure griding roll--高压辊磨impact breaking-冲击破碎impact—冲击jaw—颚式破碎机material index-材料指数grindability—可磨性mill----选矿厂non-linear regression methods--- 非线性回归法ore carry--- 矿车Parameter estimation techniques—参数估计技术reduction ratio—破碎比roll crusher—辊式破碎机operating work indices—操作功指数Scraper—电铲slurry feed—矿浆SPI(SAG Power Index)—SAG 功指数simulation of comminution processes and circuits—粉碎工艺流程模拟stirred mill—搅拌磨stram energy---应变能the breakage characteristics—碎裂特性the crystalline lattice—晶格the reference ore---参比矿石product size distribution--- 产品粒度分布theory of comminution—粉碎理论brittle—脆性的tough material--- 韧性材料platstic flow—塑性流动Tracer methods—示踪法vibration mill-- 振动磨矿机Chapter 6CrushersAG/SAG mills(autogenousgrinding/semiautogenous grinding) 自磨、半自磨Alternating working stresses交替工作应力Amplitude of swing 摆幅Arrested or free crushing 夹压碎矿、自由碎矿Bell-shaped 钟形Belt scales 皮带秤Binding agents 粘结剂Bitumen 沥青Blending and rehandling 混合再处理Breaker plate 反击板Capital costs 基建费用Capstan and chain 铰杆铰链Cast iron or steel 铸铁铸钢Chalk 白垩Cheek plates 夹板Choke fed 阻塞给矿(挤满给矿)Choked crushing 阻塞碎矿Chromium carbide 碳铬合金Clay 粘土Concave 凹的Convex 凸的Corrugated 波纹状的Cross-sectional area 截面积Cross-section剖面图Crusher gape 排矿口Crusher throat 破碎腔Crushing chamber 破碎腔Crushing rolls 辊式碎矿机Crushing 破碎Discharge aperture 排矿口Double toggle 双肘板Drilling and blasting 打钻和爆破Drive shaft 驱动轴Eccentric sleeve 偏心轴套Eccentric 偏心轮Elliptical 椭圆的Epoxy resin 环氧树脂垫片Filler material 填料Fixed hammer impact mill 固定锤冲击破碎机Flakes 薄片Flaky 薄而易剥落的Floating roll 可动辊Flywheel 飞轮Fragmentation chamber 破碎腔Grizzlies 格条筛Gypsum 石膏Gyratory crushers 旋回破碎机Hammer mills 锤碎机Hydraulic jacking 液压顶Idle 闲置Impact crushers 冲击式破碎机Interparticle comminution 粒间粉碎Jaw crushers 颚式破碎机Limestone 石灰岩Lump 成块Maintenance costs 维修费Manganese steel mantle 锰钢罩Manganese steel 锰钢Mechanical delays 机械检修Metalliferous ores 有色金属矿Nip 挤压Nodular cast iron 球墨铸铁Nut 螺母Pack 填充Pebble mills 砾磨Pillow 垫板Pitman 连杆Pivot 轴Plates 颚板Primary crushing 初碎Receiving areas 受矿面积Reduction ratio 破碎比Residual stresses 残余应力Ribbon 流量Rivets 铆钉Rod mills 棒磨Roll crushers 辊式碎矿机Rotary coal breakers 滚筒碎煤机Rotating head 旋回锥体Scalp 扫除Secondary crushing 中碎Sectionalized concaves分段锥面Set 排矿口Shales 页岩Silica 二氧化硅Single toggle 单肘板Skips or lorries 箕斗和矿车Spider 壁架Spindle 竖轴Springs 弹簧Staves 环板Steel forgings 锻件Stroke 冲程Stroke 冲程Surge bin 缓冲箱Suspended bearing 悬吊轴承Swell 膨胀Swinging jaw 动颚Taconite ores 铁燧岩矿石Tertiary crushing 细碎The (kinetic) coefficient of friction (动)摩擦系数The angle of nip啮角The angle of repose 安息角The cone crusher 圆锥破碎机The cone lining 圆锥衬里The gyradisc crusher 盘式旋回碎矿机Thread 螺距Throughput 处理量Throw 冲程Tripout 停机Trommel screen 滚筒筛Valve 阀Vibrating screens 振动筛Wear 磨损Wedge-shaped 锥形Chapter 7 grinding millsAbrasion 磨蚀Alignment Amalgamation 融合/汞剂化Asbestos 石棉Aspect ratio 纵横比/高宽比Attrition 磨蚀Autogenous mill 自磨机Ball mill 棒磨Barite 重晶石Bearing 轴承Bellow 吼叫Belly 腹部Best-fit 最优化Bolt 螺栓Brittle 易碎的Build-up 增强Butt-weld 焊接Capacitance 电容量Cascade 泻落Cataract 抛落Central shaft 中心轴Centrifugal force 离心力Centrifugal mill 离心磨Chipping 碎屑Churning 搅拌器Circulating load 循环负荷Circumferential 圆周Clinker 渣块Cobbing 人工敲碎Coiled spring 盘簧Comminution 粉碎Compression 压缩Contraction 收缩Corrosion 腐蚀Corrugated 起褶皱的Crack 裂缝Critical speed 临界速度Crystal lattice 晶格Cushion 垫子Cyanide 氰化物Diagnose 诊断Dilute 稀释Discharge 放电Drill coreElastic 有弹性的Electronic belt weigher 电子皮带秤Elongation 延长率Emery 金刚砂Energy-intensive 能量密度Entangle 缠绕Expert system 专家系统Explosives 易爆炸的Flange 破碎Fracture 折断、破碎Front-end loader 前段装备Gear 齿轮传动装置Girth 周长Granulate 颗粒状的Grate discharge 磨碎排矿GreenfieldGrindability 可磨性Grinding media 磨矿介质Groove 沟槽Helical 螺旋状的High carbon steel 高碳钢High pressure grinding roll 高压滚磨Hopper 加料斗Housing 外壳Impact 冲击Impeller 叶轮IntegralInternal stress 内部压力Kinetic energy 运动能Least-square 最小平方Limestone 石灰岩Liner 衬板Lock 锁Lubricant 润滑剂Magnetic metal liner 磁性衬板Malleable 有延展性的Manhole 检修孔Material index 材料指数Matrix 矿脉Muffle 覆盖Multivariable control 多元控制Newtonian 牛顿学的Nodular cast iron 小块铸铁Non-Newtonian 非牛顿的Normally 通常Nuclear density gauge 核密度计Nullify废弃Oblique间接地,斜的Operating 操作Orifice 孔Output shaft 产量轴Overgrinding 过磨Parabolic 像抛物线似地Pebble 砾石Pebble mill 砾磨PendulumPilot scale 规模试验Pinion 小齿轮Pitting 使留下疤痕Plane 水平面PloughPotential energy 潜力Pressure transducer 压力传感器Prime moverPrismatic 棱柱形的Probability 可能性/概率Propagation 增值Pulp density 矿浆密度Pulverize 粉碎Quartzite 石英岩Radiused 半径Rake 耙子Reducer还原剂Reduction ratio 缩小比Retention screenRetrofit 改进Rheological 流变学的Rib骨架Rod 棒Roller-bearing 滚动轴承Rotor 旋转器Rubber liner 橡胶衬板Rupture 裂开ScatsScoop铲起Scraper 刮取器Screw flight 螺旋飞行Seasoned 干燥的SegregationSet-point 选点Shaft 轴Shear 剪Shell 外壳Simulation 模拟SlasticitySpalling 击碎Spigot 龙头Spill 溢出/跌落Spin 使什么旋转Spiral classifier 螺旋分级机Spout 喷出Stationary 静止的Stator 固定片Steady-state 不变的Steel plate 钢盘Steel-capped 钢帽Stirred mill搅拌磨Stress concentration 应力集中Sump 水池Taconite 铁燧岩Tensile stress 拉伸力Thicken 浓缩Throughput 生产量Thyristor 半导体闸流管Time lag 时间间隔Tower mill塔磨Trajectory 轨迹Trial and error 反复试验Trunnion 耳轴Tube millTumbling mill 滚磨Undergrinding 欠磨Underrun 低于估计产量Unlock 开启Vibratory mill 振动磨Viscometer 黏度计Viscosity 黏性Warp 弯曲Wearing linerWedged 楔形物Work index 功指数Chapter 8Industrial screeningBauxite 铝土矿Classification 分级Diagonal 斜的Dry screening 干筛Efficiency or partition curve 效率曲线、分离曲线Electrical solenoids 电磁场Elongated and slabby particles 细长、成板层状颗粒Granular 粒状Grizzly screens 格筛Hexagons 六边形Hydraulic classifiers 水力旋流器Linear screen 线性筛Mesh 网眼Mica 云母Near-mesh particles 近筛孔尺寸颗粒Octagons 八边形Open area 有效筛分面积Oscillating 振荡的Perpendicular 垂直的Polyurethane 聚氨酯Probabilistic 概率性的Resonance screens 共振筛Rhomboids 菱形Rinse 漂洗Rubber 橡胶Screen angle 颗粒逼近筛孔的角度Shallow 浅的Static screens 固定筛Tangential 切线的The cut point(The separation size)分离尺寸Trommels 滚筒筛Vibrating screens 振动筛Water sprays 喷射流Chapter9 classification added increment(增益)aggregate(聚集)alluvial(沉积)apex(顶点) deleterious(有害) approximation(概算,近似值)apron(挡板)buoyant force(浮力)correspond(符合,相符)critical dilution(临界稀释度)cut point(分离点)descent(降落)dilute(稀释的)drag force(拖拽力)duplex(双)effective density(有效比重)emergent(分离出的)equilibrium(平衡)exponent(指数)feed-pressure gauge(给矿压力表)free-settling ratio(自由沉降比)full teeter(完全摇摆流态化)geometry(几何尺寸)helical screw(螺旋沿斜槽)hindered settling(干涉沉降)hollow cone spray(中空锥体喷流)Hydraulic classifier(水力分级机)imperfection(不完整度)incorporated(合并的)infinite(任意的)involute(渐开线式)Mechanical classifier(机械分级机)minimize(最小限度的)multi-spigot hydro-sizer(多室水力分级机)pressure-sensitive valve(压敏阀)Newton’s law(牛顿定律)orifice(孔)overflow(溢流)parallel(平行的,并联的)performance or partition curve(应用特性曲线)predominate(主导)pulp density(矿浆比重)quadruple(四倍)quicksand(流砂体)Reynolds number(雷诺数)scouring(擦洗)Settling cones(圆锥分级机)shear force(剪切力)simplex(单)simulation(模拟)slurry(矿浆)sorting column(分级柱)spherical(球形的)spigot(沉砂)Spiral classifiers(螺旋分级机)Stokes’ law(斯托克斯定律)surging(起伏波动)suspension(悬浮液)tangential(切线式)Teeter chamber(干涉沉降室)teeter(摇摆)terminal velocity(末速)The rake classifier(耙式分级机) turbulent resistance(紊流阻力)underflow (底流)vertical axis(垂直轴)vessel(分级柱)viscosity(粘度)viscous resistance(粘滞阻力) vortex finder(螺旋溢流管)well-dispersed(分散良好的)Chapter 10gravity concentrationactive fluidised bed(流化床); amplitude(振幅);annular(环状的); asbestos(石棉); asymmetrical (非对称的); baddeleyite (斜锆石); barytes (重晶石); cassiterite (锡石); chromite(铬铁矿);circular (循环的); circumference (圆周); closed-circuit (闭路);coefficient of friction (摩擦系数); compartment (隔箱);concentration criterion (分选判据); conduit(管);contaminated(污染);counteract (抵消);degradation (降解);density medium separation (重介质分选); detrimental(有害的);diaphragm (隔膜);dilate (使膨胀);displacement (置换);divert (转移);dredge (挖掘船);eccentric drive(偏心轮驱动); encapsulate (密封);equal settling rate(等沉降比);evenly(均匀的);excavation (采掘);exhaust (废气);feed size range (给矿粒度范围); fiberglass (玻璃纤维);flash floatation (闪浮);flattened(变平);float (浮子);flowing film (流膜);fluid resistance (流体阻力);gate mechanism (开启机制);halt(停止);hand jig (手动跳汰机);harmonic waveform (简谐波);helical(螺旋状的);hindered settling (干涉沉降);hutch(底箱);immobile (稳定);interlock (连结);interstice (间隙);jerk(急拉);kyanite (蓝晶石);lateral (侧向的,横向的);linoleum (漆布);mica(云母);momentum (动量) ;mount(安装);multiple (多重的);multi-spigot hydrosizer (多室水力分级机); natural gravity flower (自流); neutralization (中和作用);nucleonic density gauge (核密度计); obscure (黑暗的,含糊不清的); obsolete (报废的);onsolidation trickling (固结滴沉);open-circuit (开路);pebble stone/gravels(砾石); periphery(周边的);pinched (尖缩的) ;platelet(片晶);platinum(铂金);plunger (活塞);pneumatic table(风力摇床); pneumatically (靠压缩空气); porus(孔);preset(预设置);pressure sensing(压力传感的); pressurize (加压);pulsating (脉动的);pulsion/suction stroke (推/吸冲程); quotient (商);radial(径向的);ragging (重物料残铺层);rate of withdraw (引出速率);raw feed (新进料);reciprocate(往复);refuse (垃圾);render (使得);residual (残留的);retard(延迟);riffle (床条);rinse(冲洗);rod mill (棒磨);rotary water vale (旋转水阀); rubber(橡胶);saw tooth (锯齿形的);scraper(刮板);sectors(扇形区);semiempirical(半经验的); settling cone (沉降椎);shaft (轴);side-wall (侧壁);sinterfeed (烧结料);sinusoidal (正弦曲线);slime table(矿泥摇床);sluice (溜槽);specular hematite (镜铁矿); spinning (自转;离心分离); splitters (分离机);starolite (星石英);staurolite (十字石);stratification (分层); stratum (地层); submerge (浸没);sump (池); superimposed (附加的); surge capacity (缓冲容量); synchronization (同步的); throughput(生产能力); tilting frames (翻筛); timing belt (同步带); trapezoidal shaped (梯形的); tray (浅盘) ;trough(槽);tungsten (钨);uneven (不均匀的);uniformity(均匀性);uranolite (陨石);validate(有效);vicinity (附近);water (筛下水);wolframite (黑钨矿,钨锰铁矿);Chapter 11 dense medium separation(DMS) barite(重晶石)Bromoform(溴仿)bucket(桶)carbon tetrachloride(四氯化碳)centrifugal(离心的)chute(陡槽)Clerici solution(克莱利西溶液)corrosion(腐蚀)dependent criterion(因变判据)discard(尾渣)disseminate(分散,浸染)DMS(重介质分选)dominant(主导)Drewboy bath(德鲁博洗煤机)drum separator(双室圆筒选矿机)Drum separator(圆筒选矿机)Dyna Whirlpool()effective density of separation(有效分选比重)envisage(设想)feasibility(可行性)ferrosilicon(硅铁)flexible sink hose(沉砂软管)fluctuation(波动)fluorite(萤石)furnace(炉)grease-tabling(涂脂摇床)hemisphere(半球)incombustible(不可燃烧的)incremental(递增的)initially(最早地)installation(设备)LARCODEMS(large coal dense medium separator)lead-zinc ore(铅锌矿)longitudinal(纵向)magneto-hydrostatic(磁流体静力)mathematical model(数学模型)metalliferous ore(金属矿)nitrite(亚硝酸盐)Norwalt washer(诺沃特洗煤机)olfram(钨)operating yield(生产回收率)optimum(最佳)organic efficiency(有机效率)paddle(搅拌叶轮)Partition coefficient or partition number(分配率)Partition or Tromp curve(分配或特劳伯曲线)porous(多孔的)probable error of separation;Ecart probable (EP)(分选可能误差)raw coal(原煤)recoverable(可回收的)residue(残渣)revolving lifter(旋转提升器)two-compartmentrigidity(稳定性)sand-stone(砂岩)shale(页岩)siliceous(硅质的)sink-discharge(排卸沉砂)sodium(钠)sulphur reduction(降硫)tabulate(制表)tangential(切线)tedious (乏味)Teska Bash()Tetrabromoethane(TBE,四溴乙烷)theoretical yield(理论回收率)toxic fume(有毒烟雾)tracer(示踪剂)typical washability curves(典型可选性曲线)Vorsyl separator(沃尔西尔选矿机)weir(堰板)well-ventilated(通风良好的)Wemco cone separator(维姆科圆锥选矿机)yield stress(屈服应力)yield(回收率)Chapter 12 Froth flotationActivator(活化剂)adherence (附着,坚持)adhesion(附着)adhesion(粘附)adjoining(毗邻,邻接的)adsorption(吸附)aeration(充气)aeration(充气量)aerophilic(亲气疏水的)aerophilic(亲气性)Aggregation(聚集体)agitation(搅动)agitator(搅拌机)allegedly(据称)Amine(胺)baffle(析流板)Bank(浮选机组)barite(重晶石)Barren(贫瘠的)batch(开路)Borne(承担)Bubble(泡沫)bubble(气泡)bubble-particle(泡沫颗粒)bulk flotation (混合浮选)capillary tube(毛细管)cassiterite (锡石)cerussite(白铅矿) chalcopyrite(黄铜矿)circulating load(循环负荷)cleaner(精选)clearance(间隙)Collector(捕收剂)collide(碰撞,抵触)compensate(补偿,抵偿)component(组成)concave(凹)concentrate trade(精矿品位)Conditioning period(调整期)conditioning tank(调和槽)cone crusher(圆锥破碎机)configuration(表面配置,格局) Conjunction(关联,合流)contact angle measurement(接触角测量)contact angle(接触角)copper sulphate(硫酸铜)copper-molybdenum(铜钼矿)core(核心)correspondingly(相关的)cylindrical(圆柱)Davcra cell(page305)decantation(倾析)depressant(抑制剂)deteriorating(恶化)Dilute(稀释)Direct flotation(正浮选)disengage(脱离,解开)dissemination(传播)dissolution(解散)distilled water(蒸馏水)diverter(转向器)drill core(岩心)drill(钻头,打眼)duplication(复制)dynamic(动态,能动)economic recovery(经济回收率)Elapse(过去,推移)electrolyte(电解质)electrowinning(电积)Eliminating(消除)enhance(提高、增加)Entail(意味着)entrainment(夹带)erosion(腐蚀)Fatty acid(脂肪酸)fatty acids(脂肪酸)faulting(断层)FCTRfiltration(过滤)fine particle(较细颗粒)floatability(可浮性)flotation rate constant(浮选速率常数)flowsheet(工艺流程)fluctuation(波动)fluorite(萤石)frother(起泡剂)Frother(起泡剂)Gangue(脉石)grease(润滑脂)grindability(可磨性)gross(毛的,)Hallimond tube technique(哈利蒙管)hollow(凹,空心的)hydrophilic(亲水性)Hydrophobic(疏水)Impeller(叶轮)in situ(原位)Incorporate(合并)indicator(指标,迹象)inert(惰性的)intergrowth(连生)intermediate-size fraction(中等粒度的含量)ionising collector(离子型捕收剂)amphoteric(两性)irrespective(不论)jaw crusher(颚式破碎机)jet(喷射,喷出物)laborious(费力的)layout(布局,安排)layout(布局,设计)liable(负责)magnitude(幅度)maintenance(维修)malachite(孔雀石)manganese(锰)mathematically (数学地) mechanism(进程)metallurgical performance(选矿指标)metallurgical(冶金的)MIBC(methyl isobutyl carbinol)(甲基异丁甲醇)Microflotation(微粒浮选)Mineralized(矿化的)mineralogical composition(矿物组成) mineralogy(矿物学)mineralogy(岩相学)MLA(mineral liberation analyser)modify(改变)molybdenite(辉钼矿)multiple(复合的)multiple-step(多步)Natural floatability(天然可浮性)hydrophobic(疏水性的)neutral(中性的)non-metallic(非金属)non-technical(非技术)nozzle(喷嘴)optimum(最佳)organic solvent(有机溶剂)oxidation(氧化)oxyhydryl collector(羟基捕收剂)xanthate(黄药)Oxyhydryl collector(羟基捕收剂)palladium(钯)parallel(平行)penalty(惩罚,危害)penetrate(穿透)peripheral(周边)peripheral(周边的)permeable base(透气板)personnel(人员)pH modifier(pH调整剂)pinch(钉)platinum(铂)pneumatic(充气式)polishing(抛光)portion(比例)postulate(假设)predetermined value(预定值)prior(优先)Pulp potential(矿浆电位)pyramidal tank(锥体罐)pyrite(黄铁矿)QEMSCAN(p288)reagent(药剂)rectangular(长方形)regulator(调整剂)reluctant(惰性的)residual(残留物)reverse flotation(反浮选)rod mill(棒磨机)rougher concentrate(粗选精矿)rougher-scavenger split(粗扫选分界)scale-up(扩大)scavenger(少选精矿)scheme(计划,构想)SE(separation efficienty)sealed drum(密封桶)severity(严重性)Sinter(烧结)sleeve(滚轴)slipstream(汇集)smelter(熔炼)sparger(分布器)sphalerite(闪锌矿)sphalerite(闪锌矿)Standardize(标定,规范)stationary(静止的)stator(定子,静片)storage agitator(储存搅拌器) Straightforward(直接的)Subprocess(子过程)subsequent(随后)Sulphide(硫化物)summation(合计)sustain(保留)swirling(纷飞)tangible(有形,明确的)tensile force(张力)texture(纹理)theoretical(原理的)thickener (浓密机)titanium(钛)TOF-SIMStonnage(吨位)Tube(管,筒)turbine(涡轮)ultra-fine(极细的)undesirable(不可取) uniformity(统一性)unliberated(未解离的)utilize(使用)Vigorous(有力,旺盛)weir-type(堰式)whereby(据此)withdrawal(撤回)Work of adhesion(粘着功)XPSAgglomeration-skin flotation(凝聚-表层浮选p316 左中)Associated mineral (共生矿物)by-product (副产品)Chalcopyrite (黄铜矿)Coking coal (焦煤p344 左下)Control of collector addition rate(p322 last pa right 捕收剂添加率的控制) Control of pulp level(矿浆液位控制p321 last pa on the right )Control of slurry pH(矿浆pH控制p322 2ed pa on the left)DCS--distributed control system(分布式控制系统p320 右中)Denver conditioning tank(丹佛型调和槽figure 12.56)Electroflotation (电浮选p315 右中)feed-forward control(前馈控制p323 figure 12.60)Galena(方铅矿)Molybdenum (钼)Nickel ore (镍矿的浮选p343 左)PGMs--platinum group metals(铂族金属)PLC--programmable logic controller(可编程序逻辑控制器p320 右中)porphyry copper(斑岩铜矿)Table flotation (摇床浮选俗称“台选”p316 左中)Thermal coal (热能煤p344 左下)Ultra-fine particle(超细矿粒p315 右中)Wet grinding(湿式磨矿)Chapter 13 Magnetic and electrical separationCassiterite(锡石矿) wolframite(黑钨矿) Diamagnetics(逆磁性矿物) paramagnetics(顺磁性矿物) Ferromagnetism(铁磁性) magnetic induction(磁导率)Field intensity(磁场强度) magnetic susceptibility(磁化系数) Ceramic(瓷器) taconite(角岩)Pelletise(造球) bsolete(废弃的)Feebly(很弱的) solenoid(螺线管)Cobbing(粗粒分选) depreciation(折旧)Asbestos(石棉) marcasite(白铁矿)Leucoxene(白钛石) conductivity(导电性)Preclude(排除) mainstay(主要组成)Rutile(金红石) diesel(柴油)Cryostat(低温箱)Chapter 14 ore sortingappraisal(鉴别);audit(检查);barren waste(废石); beryllium isotope(铍同位素); boron mineral(硼矿物); category(范围);coil(线圈);downstream(后处理的); electronic circuitry(电路学); feldspar(长石); fluorescence(荧光);grease(油脂);hand sorting(手选);infrared(红外的);irradiate(照射);laser beam(激光束); limestone(石灰石); luminesce(发荧光); luminescence(荧光); magnesite(菱镁矿); magnetic susceptivity(磁敏性); matrix(基质); microwave(微波);monolayer(单层);neutron absorption separation(中子吸收法); neutron flux (中子通量);oleophilicity(亲油的);phase shift(相变);phosphate(磷酸盐);photometricsorting(光选);photomultiplier(光电倍增管);preliminary sizing(预先分级);proximity(相近性);radiometric (放射性的);scheelite(白钨矿);scintillation(闪烁);seam(缝隙);sequential heating(连续加热);shielding(防护罩);slinger(投掷装置);subtle discrimination(精细的鉴别);talc(滑石);tandem(串联的);thermal conductivity(热导率);ultraviolet(紫外线); water spray(喷水); Chapter15DewateringAcrylic(丙烯酸) monomer(单分子层) Allotted(分批的)jute(黄麻) Counterion(平衡离子) amide(氨基化合物) Diaphragm(隔膜) blanket(覆盖层) Electrolyte(电解液) gelatine(动物胶) Flocculation(聚团) decant(倒出)Gauge(厚度,测量仪表) rayon(人造纤维丝) hyperbaric(高比重的) Membrane(薄膜) coagulation(凝结) miscelaneous(不同种类的) barometric(气压的) Potash(K2CO3)tubular(管状的) Sedimentation(沉淀) filtration(过滤)Thermal drying(热干燥) polyacrylamide(聚丙烯酰胺)Chapter16 tailings disposalBack-fill method—矿砂回填法tailings dams—尾矿坝impoundment—坝墙Cyclone—旋流器Dyke—坝体slimes—矿泥Floating pump—浮动泵站compacted sand—压实矿砂Lower-grade deposits -- 低品位矿床heavy metal—重金属mill reagent—选矿药剂Neutralization agitator—中和搅拌槽thickener---浓密池overflow –溢流River valley—河谷upstream method of tailings-dam construction –上流筑坝法Sulphur compound—硫化物additional values—有价组分the resultant slimes—脱出的矿泥surface run-off-- 地表水lime—石灰the downstream method—下游筑坝法the centre-line method –中线筑坝法drainage layer—排渗层Underflow—沉砂water reclamation—回水利用reservoir—贮水池Part II ElaborationsChapter2 Ore handing1.The harmful materials and its harmful effects(中的有害物质,及其影响) -----P30 右2.The advantage of storage (贮矿的好处)-----p35 左下Chapter 4 particle size analysis3.equivalent diameter (page90);4.:stokes diameter (page98) ; median size (page95,left and bottom); 80% passing size (page95,right) ; cumulative percentage(page94-95under the title’presentation of results’); Sub-sieve;(page 97,right)5.why particle size analysis is so important in the plant operation? (page90, paragraph one); some methods of particle analysis, their theory and the applicable of thesize ranges.(table4.1+theory in page91-106)7.how to present one sizing test?(page94)8.how to operate a decantation test?(page98 sedimentation test)9.advantage and disadvantage of decantation in comparison with elutriation? (Page99 the second paragraph on the left +elutriation technique dis/advantage in page 102 the second paragraph on the left)Chapter 6Crushers10.The throw of the crusher: Since the jaw is pivoted from above, it moves a minimum distance at the entry point and a maximum distance at the delivery. This maximum distance is called the throw of the crusher.11.Arrested(free) crushing: crushing is by the jaws only12.Choked crushing: particles break each other13.The angle of nip:14.1)the angle between the crushing members2)the angle formed by the tangents to the roll surfaces at their points of contact withthe particle(roll crushers)15.Ore is always stored after the crushers to ensure a continuous supply to the grinding section. Why not have similar storage capacity before the crushers and run this section continuously?(P119,right column, line 13)16.The difference between the jaw crusher and the gyratory crusher?(P123,right column, paragraph 3)17.Which decide whether a jaw or a gyratory crusher should be used in a particular plant?(p125,left column, paragraph 2)18.Why the secondary crushers are much lighter than the heavy-duty, rugged primary machines?(P126,right column, paragraph 4)19.What’s the difference between the 2 forms of the Symons cone crusher, the Standard and the short-head?(P128,left column, paragraph3 )20.What’s the use of the parallel section in the cone crusher?(P128,left column, paragraph4)21.What’s the use of the distributing plate in the cone crusher?(P128,right column, paragraph1)22.Liner wear monitoring(P129,right column, paragraph2)23.Water Flush technology(P130, left column, paragraph1)24.What’s the difference between the gyradisc crusher and the conventional cone crusher?(P130,right column, paragraph 4)25.What’s the use of the storage bin?(P140,left column, paragraph 2)26.Jaw crushers(p120)27.the differences between the Double-toggle Blake crushers and Single-toggle Blakecrushers(p121, right column, paragraph 3)28.the use of corrugated jaw plates(p122, right column, line 8)29.the differences between the tertiary crushers and the secondary crushers?(p126,right column, paragraph 5)30.How to identify a gyratory crusher, a cone crushers?(p127, right column, paragraph 3)31.the disadvantages of presence of water during crushing(p130,right column, paragraph 2)32.the relationship between the angle of nip and the roll speed?(p133, right column)33.Smooth-surfaced rolls——used for fine crushing; corrugated surface——used for coarse crushing;(p134, left column, last paragraph)Chapter 7 grinding mills34.Autogenous grinding:An AG mill is a tumbling mill that utilizes the ore itself as grinding media. The ore must contain sufficient competent pieces to act as grinding media.P16235.High aspect ratio mills: where the diameter is 1.5-3 times of the length. P16236.Low aspect ratio mills:where the length is 1.5-3 times of the diameter. P16237.Pilot scale testing of ore samples: it’s therefore a necessity in assessing the feasibility of autogenous milling, predicting the energy requirement, flowsheet, and product size.P16538.Semi-autogenous grinding: An SAG mill is an autogenous mill that utilizes steel balls in addition to the natural grinding media. P16239.Slurry pool:this flow-back process often leads to higher slurry hold-up inside an AG or SAG mill, and may sometimes contribute to the occurrence of “slurry pool”, which has adverse effects on the grinding performance.P16340.Square mills:where the diameter is approximately equal to the length.P16241.The aspect ratio: the aspect ratio is defined as the ratio of diameter to length. Aspect ratios generally fall into three main groups: high aspect ratio mills、square mills and low aspect ratio mills.P16242.grinding circuit: Circuit are divided into two broad classifications: open and closed.( 磨矿回路p170)43.closed circuit: Material of the required size is removed by a classifier, which returns oversize to the mill.(闭路p170左最后一行)44.Circulation load: The material returned to the mill by the classifier is known as circulation load , and its weight is expressed as a percentage of the weight of new feed.(循环负荷p170右)45.Three-product cyclone: It is a conventional hydrocyclone with a modified top cover plate and a second vortex finder inserted so as to generate three product streams. (p171右)46.Parallel mill circuit: It increase circuit flexibility, since individual units can be shut down or the feed rate can be changed, with little effect on the flowsheet.(p172右) 47.multi-stage grinding: mills are arranged in series can be used to produce。

钨氧化物纳米结构的合成与表征

钨氧化物纳米结构的合成与表征
第2 6卷第 1 2期
21 0 0年 1 2月






C NE E J HI S OURNALOF I ORGANI HEMI T Y N CC S R
Vo _ .2 l 26 No 1 22 9— 2 5 2 65
钨 氧化物 纳米 结构 的合成 与表 征
Q N Y — i g B O Z i ig I uX a A h— n HU Mig S N P n n Y n U e g
(colfEet nc adI om t nE gnei , i j n e i, ini 3 07 ) S ho o l r i n fr ai nier g Ta i U i rt Ta n 0 0 2 co s n o n n n v sy j
米结 构 对 N O 气体 表 现 出 良好 的 可 逆性 , W 纳 米 棒 和 WO 纳 米 片相 比 , 。 纳 米线 对 N : 有 更 高 的灵 敏 度 。 与 O , Wl 0 O具
关键 词 : 化钨 : 米 结 构 ; 剂热 法 ; 敏 性 能 氧 纳 溶 气
中图 分 类号 : 6 9 0 4
t e D s n h r o0 Y o h ss n h sz d t g t n o i e n n sr c u e r n e tg td a d t e N02 h ha e a d t e mo ph lg ft e a —y t e ie un se x d a o tu t r swe e i v sia e n h 一
文 献标 识 码 : A
文章 编 号 : 0 14 6 ( 1)225 — 10 —8 1 0 01—2 90 2 7

高纯三氧化钼激光粒度分布的测定与分析

高纯三氧化钼激光粒度分布的测定与分析

收稿日期:2003-02-14作者简介:王新刚,男,1969年生,西安交通大学材料科学与工程学院博士生。

高纯三氧化钼激光粒度分布的测定与分析王新刚1,2 唐利侠2(1西安交通大学材料科学与工程学院 西安 710049)(2金堆城钼业公司技术中心 西安 710068)摘 要 用扫描电镜观察了高纯三氧化钼的形貌,高纯三氧化钼是长条状的单颗粒聚集成的团聚体。

用激光粒度仪的干法测定了高纯三氧化钼团聚体的激光粒度分布,用水作分散剂测定了高纯三氧化钼分散体的激光粒度分布,结果表明高纯三氧化钼的激光粒度分布值与电镜测量的颗粒及颗粒团尺寸一致,这样的测试方法能全面正确地反映高纯三氧化钼粒度的特征。

讨论了高纯三氧化钼激光粒度分布对后续的还原过程及钼粉质量的影响。

关键词 高纯三氧化钼 激光粒度分布 团聚颗粒 分散颗粒中图分类号:TG 115.21 文献标识码:A 文章编号:1006-2602(2003)02-0067-04 MEASUREMENT AN D ANALYSIS OF LASER PARTIC L E -SIZE DISTRIBUTIONOF HIGH -PURIT Y TRIOXIDE MOLYB DENUM POWDERWang Xingang 1,2 Tang Lixia 2(1School of Materials Science and Engineering of Xi ’an Jiaotong University ,Xi ’an 710049)(2Technical Center of Jinduicheng Molybdenum Mining Corporation ,Xi ’an 710068)Abstract The SEM morphology of high -purity trioxide molybdenum powder was observed.High -purity tri 2oxide molybdenum powder was agglomerated particles which consisted of primary strip particles.The particle -size distribution of agglomerated particles was measured using dry -dispersion method of Malvern Mastersizer 2000,and deagglomerated particle -size distribution was determined with water as dispersant.The results showed that the laser particle -size distribution was same as that examined by SEM ,and this kind of method could completely and accurately analyze characteristics of particle size of high -purity trioxide molybdenum pow 2der.It was discussed that the laser particle -size distribution of high -purity trioxide molybdenum powder influ 2enced subsequent t hydrogen -reduction process and quality of molybdenum powder.K ey w ords High 2purity trioxide molybdenum ,Laser particle -size distribution ,Agglomerated particle ,Deag 2glomerated particle1 前 言高纯三氧化钼是钼制品深加工的主要原料,尤其在发达国家,许多钼制品生产厂家出于环保的要求,逐渐采用高纯三氧化钼代替钼酸铵作为钼制品生产的原料,高纯三氧化钼是直接影响到后续加工质量的关键[1]。

无机非金属材料 英语阅读教程单词

无机非金属材料 英语阅读教程单词

A brasion 磨损,擦伤,刮除accelerate 加快…之速度,变快accelerated period 加速期acoustical 声音的,声学的activator 活化剂,催化剂additive 添加剂admixture 混合,混合物aggregate 聚集,凝结,骨料air-entraining agent 加气剂alkali sulfate 碱硫酸盐alkali 碱,碱性alloy 合金alumina Al2O3 矾土aluminate 铝酸盐ambient 周围的,外界的ammonium sulphate 硫酸铵amorphous 无定形的非结晶的anhydride 无水石膏anhydrite 硬石膏,硫酸铁矿approximately 近似地,大约artificial 人工的,人造的asset财产,资产available 可获得的,可利用的B auxite 矾土,铝矾土,矾土矿beneficiate 富集bind 使凝固binder 粘合剂,粘结剂blended 混合的,融合的blending 掺和,混合brittle 易碎的,脆弱的bulk 体积,主体,凝结,块状burning 煅烧burnt clay 粘性土C alcareous 石灰质的,钙质的calcium 钙calcium aluminate 铝酸钙calcium aluminoferrite 铁铝酸钙calcium carbonate 碳酸钙calcium hydroxide 氢氧化钙calcium oxide 氧化钙calcium silicate 硅酸钙calcium sulphate 硫酸钙calorific 热量的,含热量的capacity 容量,智能,才能capillary 毛状的,毛细作用carbon dioxide 二氧化碳cast iron 铸铁caution 小心cementing property 胶结能力cementitious 似水泥的ceramic 陶瓷chalk 白垩characteristics 特性,特征chemical admixture 化学外加剂chlorine 氯气circumference 周长clay 粘土clinker 水泥熟料,炉渣coal ash 煤灰commensurate 相等的,均匀的comparable 可以比较的comparably 可比较低compatible 协调的,一致的comply 遵守,遵循component 成分,组成物composite 合成的,复合的composition 构造,组成,作品compound 混合物compressive strength 抗压强度concrete 混凝土consecutive 连续的,连贯的consistency 链接,结合,浓度,密度consolidation 巩固;加强constituent 成分,要素constitute 构成,组成consumption 消费,消耗contaminate 沾染,污染conversion 变换,转化convert 使转变,转换coral reef 珊瑚礁corrective 矫正的,改过自新corrosion 腐蚀,侵蚀,受损creep 蠕变,徐变criteria 标准,准则cross section 横截面,横断面crystalline 晶体的,晶体状的cube 立方体curing 养护,湿治cylinder 圆筒D ecade 十年decarbonation 碳酸盐分解deflection 偏斜,偏转,偏差deformation 变形,扭曲变形denote 指示表示density 密度,比重deposit 堆积物,沉淀物designated 指定的,派定的deterioration 消耗,磨损,变坏detestable 可恨的,可厌恶的detrimental 有害的diatomaceous earth 硅藻土dicalcium silicate 硅酸二钙C2Sdiffusion 扩散,弥漫dimension 尺寸,尺度dissolution 分解,分离dissolve 溶解,液化distinguish 区分,辨别distort 歪曲,曲解distribute 分发,分配,散步dolomite 白云石dormant period 潜伏期,静止期dry process 干法ductility 延展性,韧性durability 耐久性,耐用性E lastic 弹性的,可自由伸缩的electrolytic 电解的eliminate 消灭,消除,排除elongation 伸长,延长,伸长率embed 使插入endurance 忍耐energy consumption 能源消耗enhance 增强,增加era 纪元ettringite 钙矾石evolution 开展,发展excess 过度的,额外的excessive 多的,过分的,极端的exothermic 放热的,方能的exotic 吸引人的,异乎寻常的F atigue 疲劳ferrite 铁酸盐ferrosilicon 硅铁,高硅铸铁fertilizer 化肥,肥料fibre 纤维,构造,纤维制品fibrous 纤维制的,纤维状的fineness 细度flash furnace 快速分解炉flexural 挠性的,弯曲的flexure 弯曲,歪度floatation 浮选fluidity 流动性,流质fluidized-bed 流化床,流动层fluorine 氟flux 流动,通量,流量fly ash 粉煤灰,飘尘foreign ion 杂质离子formation 形成,构成fracture surface 断裂面froth 起沫,发泡fuse 熔化fusion 融合,熔化G auge 标准度量,程度gehlenite 钙黄长石generic name 属名glassy 玻璃状的,透明的granulated blast furnace slag:粒化高炉矿渣granulated 颗粒状的grate 炉格;摩擦gravel 砂砾grinding stage 研磨阶段ground 粉磨,粉碎,研磨gypsum 石膏H ammer 捶打hardening 硬化heat curing 热养护hematite 赤铁矿hexagonal 六角形的,六方晶系的high-carbon steel 高碳钢high-limed 高(氧化)钙的homogeneous 同类的,均一的hot exit gas 热废气humidity 湿气,潮湿,湿度hydrate 水合物,氢氧化物hydration 水合,水合作用hydraulic 水力的,水压的I dentical 相等的相同的impact 冲打,碰撞,影响impetus 刺激,动力,原动力impracticable 不能实行的impurity 不纯净物incorporation 结合,合并;掺和indentation 穴孔,压痕induction period 诱导期inferior 次等的劣等的ingredient 组成,成分initial 最初的,开始的,初期的initially 开始地,起初initiate 开始innovation 革新inorganic binder 无机粘结剂insoluble 点燃,发火,着火manufacture 制造intergrind 共同粉磨,互磨interlock 使连接intermediate 中间的intermix 混合,混杂interstitial space 胞间隙,空隙intimately 密切的ion 离子ionic 离子的iron ore 铁矿铁矿石iron oxide 氧化铁L atent 潜在的,潜伏的laterite 红土,红泥limestone 石灰石,石灰岩liquid phase 液相longitudinal 经度的,纵向的loot 抢劫掠夺low-carbon steel 低碳钢M agnesium oxide 氧化镁magnetite 磁铁矿malleable 可锻的,可压制的marl 泥灰岩mechanical 机械的,机械性的member 构件mesh 目,筛,网眼metallurgy 冶金术,冶金学metric ton 公吨microcrystalline 微晶的micrometer 测微计,千分尺microscopical 显微镜的microsilica 硅灰,微硅粉mineral 矿物,矿物质minimum 最少的,最小的mix 混合物mixture 混合物mobility 易变性,灵活性;流动性modulus 模数,模量molar ratio 摩尔比monitor 监视器,监控monolithic 块体的,整体浇注的mortar 灰浆,灰泥,胶泥mullite 莫来石N egligible 可以忽略的nodule 结节,小结nonferrous metals 有色金属nonferrous 非铁的non-reactive不起反应的惰性的nonrenewable 不能再生的noticeable 明显的,重要的O btainable 可以获得的offset 弥补,抵消opening 筛孔optimize 使最优化oxide 氧化物oyster 牡蛎P acking 堆积,填料,密封parameter 限制因素;界限partial 部分的particle 颗粒penetration 渗入,进入performance tests 性能测试periclase 氧化锰permeability 渗透,渗透性pertain 属于,适合于pharmacy 制药业phase 状态,阶段,相phosphorous oxide 五氧化二磷plague 瘟疫,祸患plastic 塑胶的plasticity 塑性plasticizer 增塑剂,增韧剂platy 板状的,扁平状的polymer 聚合物,高聚物polymorph 多型,多晶型pore 毛孔,孔隙portion 部分portlandite 氢氧钙石possess 占有,拥有,持有potassium oxide 氧化钾pozzolana 火山灰pozzolanic 凝硬性的,火山灰的precipitation 沉淀,析出preheating 预热pre-induction period 初始水解期prerequisite 首要的,必备的prestress 给…预加应力prominent 著名的,卓越的pronounced 显著的,断然,明确的proportion 比例,均衡pulp 柔软的材料;木浆Q ualify 具有资格,证明资格quantitative 定量的,与量有关的quarry 采石场quench 熄灭,淬火R apture 破裂,断裂ratio 比,比率raw feed 生料喂入reactivity 反应能力,活性refractory 耐火的,耐火材料reinforce 加强,增援,加固reinforcement 增强,加固resilience 弹性,弹力,回弹respectively 分别的,各个的retardation 减速,延缓reverse 相对,相反rheological property 流变性质rheology 流变能力rigidity 坚硬,讲话roam 闲逛,无目的地漫游rod mill 棒磨roller mill 辊磨机,立磨rotary kiln 回转窑rotate 转动S and shale 砂页岩saturation 饱和,饱和度scratching 刮伤,刻,搔semiconductor 半导体sensor 传感器serrated 边上呈锯齿状的serviceability 有用性,适用性setting time 凝结时间setting 凝固shaft kiln 立窑shearing stress 剪应力,切应力significantly 重要地,重大地silica fume 硅粉silica 二氧化硅,硅石simultaneous 同时发生sinter 烧结烧成slag 矿渣,炉渣sludge 污水烂泥slump 混凝土坍落度slurry 泥浆sodium oxide 氧化钠span 跨度,跨距specification 说明,技术规范,规格spherical 球的,球形的stationary 固定的,静止的steam-curing 蒸汽养护steelwork 钢铁架stiffness 刚变,刚性,稳定度strength development 强度增进stringent 严厉的,严格的strut 支柱柱子subsequent 后来的,并发的substandard 标准以下的,不合规格的substantial 很多的,大量的substantially 实际上,很多地sufficient 足够的,充分的superconductor 超导体superplasticizer 超塑化剂supplementary 增补的,补充的suspension 悬吊,悬浮sustenance 实物,饮料,营养swirl calciner 涡流分解炉T ensile strength 抗拉强度tetracalcium aluminoferrite C4AFthermal 热的,热量的,热学的timber 木料torsion 扭,扭转,扭力,扭矩transition zone 界面过渡层tricalcium aluminate 铝酸三钙tricalcium silicate 硅酸三钙C3Strigger 扳机,引发U ltimately 最后,最终,基本undergo 经历,遭受,忍受undesirable 不符合要求的undesirably 不合要求的不理想uniformity 一致,均匀utilize 利用V ariation 变异,差异,变种vertical kiln 立窑viscosity 粘度,粘滞性Y ield point 屈服点yield 生出,生产;产生。

《中国环境科学》再次获评“RCCSE中国权威学术期刊(A+)”,位列学科榜首

《中国环境科学》再次获评“RCCSE中国权威学术期刊(A+)”,位列学科榜首

10期曹雅洁等:g-C3N4/rGO/TiO2光催化材料降解模拟污水中氨氮 4377Physical Chemistry A, 2001,105(14):3658-3666.[19] Wang H, Su Y, Zhao H, et al. Photocatalytic oxidation of aqueousammonia using atomic single layer graphitic-C3N4 [J]. Environmental Science & Technology, 2014,48(20):11984-11990.[20] Zhang F, Jin R, Chen J, et al. High photocatalytic activity andselectivity for nitrogen in nitrate reduction on Ag/TiO2catalyst with fine silver clusters [J]. Journal of Catalysis, 2005,232(2):424-431. [21] Kominami H, Nakaseko T, Shimada Y, et al. Selective photocatalyticreduction of nitrate to nitrogen molecules in an aqueous suspension of metal-loaded titanium (IV) oxide particles [J]. Chemical Communications, 2005,23:2933-2935.[22] 王伟,夏小春,蒋程扬,等.石墨烯氧化物的制备及其在钻井液中的降滤失性能研究 [J]. 化学与生物工程, 2018,35(10):1672-5425.Wang W, Xia X C, Jiang C Y, et a1. Preparation of graphene oxide and its fluid loss control property in drilling fluid [J]. Chemis try & Bioengineering, 2018,35(10):49-52,68.[23] Zhang Y, Ding Q, Liu D, et al. Fabrication of novel ternary three-dimensional RuO2/Graphitic-C3N4@reduced graphene oxide aerogel composites for supercapacitors [J]. ACS Sustainable Chemistry & Engineering, 2017,5(6):4982-4991.[24] 彭小明,罗文栋,胡玉瑛,等.磷掺杂的介孔石墨相氮化碳光催化降解染料 [J]. 中国环境科学, 2019,39(8):3277-3285.Peng X M, Luo W D, Hu Y Y, et al. Study on the photocatalytic degradation of dyes by phosphorus doped mesoporous graphite carbon nitride [J]. China Environmental Science, 2019,39(8):3277-3285. [25] 王新,熊巍,王金,等.AgInS2/g-C3N4复合材料光催化降解邻二氯苯性能 [J]. 中国环境科学, 2019,39(11):4697-4703.Wang X, Xiong W, Wang J, et al. Photocatalytic degradation of o-dichlorobenzene by AgInS2/g-C3N4composites [J]. China Environmental Science, 2019,39(11):4697-4703.[26] 张凯龙,施妙艳,倪貌貌,等.优化内浸式Ce掺杂ZnO光催化降解罗丹明B [J]. 中国环境科学, 2019,39(4):1447-1455.Zhang K L, Shi M Y, Ni M M, et al. Optimization of internal immersed irradiation and photocatalytic degradation of rhodamine B with Ce doped ZnO particles [J]. China Environmental Science, 2019,39(4):1447-1455.[27] 张婉.纳米氧化锌及其复合材料光催化去除水中低浓度氨氮研究[D]. 南京:南京理工大学, 2016.Zhang W. ZnO and its composites for photocatalytic removal of ammonia nitrogen at low concentration [D]. Nanjing:Nanjing University of Science & Technology, 2016.[28] Zou C, Liu S, Shen Z. Efficient removal of ammonia with a novelgraphene-supported BiFeO3 as a reusable photocatalyst under visible light [J]. Chinese Journal of Catalysis, 2017,38:20–28.[29] 于晓彩,聂志伟,刘京华,等.CaF2(Tm3+)/Ti02光催化剂的制备及其对海水养殖废水中氨氮的降解研究 [J]. 环境污染与防治, 2019, 41(6):658-662.Yu X C, Nie Z W, Liu J H, et al. Preparation of CaF2(Tm3+)/Ti02photocatalyst and its performance for treatment of ammonia nitrogenin marine cultured wastewater [J]. Environmental Pollution & Control,2019,41(6):658-662.作者简介:曹雅洁(1994-),女,山西太原人,太原理工大学硕士研究生,主要从事水体污染控制方面的研究.《中国环境科学》再次获评“RCCSE中国权威学术期刊(A+)”,位列学科榜首《中国环境科学》在武汉大学中国科学评价研究中心发布的第四届中国学术期刊评价中获评“RCCSE中国权威学术期刊(A+)”.中国学术期刊评价按照各期刊的期刊学术质量和影响力指标综合得分排名,将排序期刊分为A+、A、A-、B+、B、C 6个等级,评价的6201种中文学术期刊中有316种学术期刊获评权威期刊(A+),A+为得分排名前5%的期刊.此次获得“RCCSE 中国权威学术期刊(A+)”称号的环境类期刊有3种,《中国环境科学》在环境科学技术与资源科学技术学科内荣登榜首.。

国外:精细陶瓷(高级陶瓷、高级工业陶瓷)系列标准(日本)

国外:精细陶瓷(高级陶瓷、高级工业陶瓷)系列标准(日本)

国外:精细陶瓷(高级陶瓷、高级工业陶瓷)系列标准(日本)1、标准名称[中文]:精细陶瓷(高级陶瓷、高级工业陶瓷).使用电流中断技术的固体氧化物电化学电池用单个电池电极试验方法标准名称[英文]:Fine ceramics (advanced ceramics, advanced technical ceramics) -- Single cell polarization test method for solid oxide electrochemical cell by current interruption technique标准编号: JIS R1684-2008标准类型:发布单位: JP-JISC发布日期: 2008-1-1实施日期:开本页数: 14P;A4国际标准分类号: 81.060.30国别: 日本2、标准名称[中文]:精细陶瓷(高级陶瓷、高级工业陶瓷).光催化材料的空气净化性能的试验方法.第5部分:甲苯的清除标准名称[英文]:Fine ceramics (advanced ceramics, advanced technical ceramics) -- Test method for air purification performance of photocatalytic materials -- Part 5: Removal of methylmercaptan标准编号: JIS R1701-5-2008标准类型发布单位: JP-JISC发布日期: 2008-1-1实施日期:开本页数: 18P;A4国际标准分类号: 81.060.30国别: 日本关键词:3、标准名称[中文]:精细陶瓷(高级陶瓷、高级工业陶瓷).光催化材料的空气净化性能试验方法.第4部分:甲苯的清除标准名称[英文]:Fine ceramics (advanced ceramics, advanced technical ceramics) -- Test method for air purification performance of photocatalytic materials -- Part 4: Removal of formaldehyde标准编号: JIS R1701-4-2008标准类型:发布单位: JP-JISC发布日期: 2008-1-1实施日期:开本页数: 16P;A4国际标准分类号: 81.060.30国别: 日本关键词:4、标准名称[中文]:精细陶瓷(高级陶瓷、高级工业陶瓷).光催化材料的空气净化性能的试验方法.第3部分:甲苯的脱除标准名称[英文]:Fine ceramics (advanced ceramics, advanced technical ceramics) -- Test method for air purification performance of photocatalytic materials -- Part 3: Removal of toluene标准编号: JIS R1701-3-2008标准类型:发布单位: JP-JISC发布日期: 2008-1-1实施日期:开本页数: 20P;A4中国标准分类号: Q30国际标准分类号: 81.060.30国别: 日本关键词:5、标准名称[中文]:精细陶瓷(高级陶瓷、高级工业陶瓷).光催化材料空气净化性能的试验方法.第2部分:乙醛的脱除标准名称[英文]:Fine ceramics (advanced ceramics, advanced technical ceramics) -- Test method for air purification performance of photocatalytic materials -- Part 2: Removal of acetaldehyde标准编号: JIS R1701-2-2008标准类型:发布单位: JP-JISC发布日期: 2008-1-1实施日期:开本页数: 20P;A4中国标准分类号: Q30国际标准分类号: 81.060.30国别: 日本关键词:6、标准名称[中文]:精细陶瓷(高级陶瓷、高级工业陶瓷).光致辐照下光催化产品抗菌活性的试验方法标准名称[英文]:Fine ceramics (advanced ceramics, advanced technical ceramics) -- Test method for antifungal activity of photocatalytic products under photoirradiation标准编号: JIS R1705-2008标准类型:发布单位: JP-JISC发布日期: 2008-1-1实施日期:开本页数: 20P;A4中国标准分类号: Q30国际标准分类号: 81.060.30国别: 日本关键词:7、标准名称[中文]:精细陶瓷(高级陶瓷和高级技术陶瓷).光催化材料的自清洁性能用试验方法.第1部分:水接触角的测量标准名称[英文]:Fine ceramics (advanced ceramics, advanced technical ceramics) -- Test method for self-cleaning performance of photocatalytic materials -- Part 1: Measurement of water contact angle标准名称[日文]:ファインセラミックス―ヒカリショクバイザイリョウノセルフクリーニングセイノウシケンホウホウ―ダイ1ブ:ミズセッショクカクノソクテイ标准编号:JIS R1703-1-2007发布单位: JP-JISC发布日期: 2007-1-1实施日期: 2007-1-1开本页数: 24P;A4中国标准分类号: Q32国际标准分类号: 81.060.30国别: 日本关键词:8、标准名称[中文]:、精细陶瓷(高级陶瓷和高级技术陶瓷).光催化材料的自清洁性能用试验方法.第2部分:湿亚甲蓝的分解标准名称[英文]:Fine ceramics (advanced ceramics, advanced technical ceramics ) -- Test method for self-cleaning performance of photocatalytic materials -- Part 2: Decomposition of wet methylene blue标准名称[日文]:ファインセラミックス―ヒカリショクバイザイリョウノセルフクリーニングセイノウシケンホウホウ―ダイ2ブ:シツシキブンカイセイノウ标准编号: JIS R1703-2-2007发布单位: JP-JISC发布日期: 2007-1-1实施日期: 2007-1-1开本页数: 24P;A4中国标准分类号: Q32国际标准分类号: 81.060.30国别:日本关键词:9、标准名称[中文]:精细陶瓷(高级陶瓷、高级工业陶瓷).通过测量活性氧的形成能力测定光催化材料的水净化性能的试验方法标准名称[英文]:Fine ceramics (advanced ceramics, advanced technical ceramics) -- Test method for water-purification performance of photocatalytic materials by measurement of forming ability of active oxygen标准名称[日文]:ファインセラミックス―カッセイサンソセイセイノウリョクソクテイニヨルヒカリショクバイザイリョウノスイシツジョウカセイノウシケンホウホウ标准编号: JIS R1704-2007发布单位: JP-JISC发布日期: 2007-1-1实施日期:开本页数: 16P;A4中国标准分类号:Q32国际标准分类号: 81.060.30国别:日本关键词:10、标准名称[中文]:精细陶瓷用精细氮化铝粉的化学分析方法标准名称[英文]:Methods for chemical analysis of fine aluminium nitride powders for fine ceramics标准名称[日文]:ファインセラミックスヨウチッカアルミニウムビフンマツノカガクブンセキホウホウ标准编号: JIS R1675-2007发布单位: JP-JISC发布日期: 2007-1-1实施日期:开本页数: 46P;A4中国标准分类号: Q32国际标准分类号: 71.040.40 81.060.30国别: 日本关键词:11、标准名称[中文]:高温下精细陶瓷弯曲疲劳性的测试方法标准名称[英文]:Testing method for bending fatigue of fine ceramics at elevated temperature标准名称[日文]:ファインセラミックスノコウオンマゲヒロウシケンホウホウ标准编号: JIS R1658-2008发布单位: JP-JISC发布日期: 2008-1-1实施日期:开本页数: 16P;A4中国标准分类号: Q32国际标准分类号: 81.060.30国别: 日本关键词:12、标准名称[中文]:室温下精细陶瓷弯曲疲劳性的测试方法标准名称[英文]:Testing method for bending fatigue of fine ceramics at room temperature 标准名称[日文]:ファインセラミックスノシツオンマゲヒロウシケンホウホウ标准编号: JIS R1621-2008发布单位: JP-JISC发布日期: 2008-1-1实施日期:开本页数: 14P;A4采用关系: ISO 22214-2006,MOD中国标准分类号: Q32国际标准分类号: 81.060.30国别: 日本关键词:13、标准名称[中文]:精细陶瓷用碳化硅细粉末的化学分析方法标准名称[英文]:Methods for chemical analysis of fine silicon carbide powders for fine ceramics标准名称[日文]:ファインセラミックスヨウタンカケイソビフンマツノカガクブンセキホウホウ标准编号: JIS R1616-2007发布单位: JP-JISC发布日期: 2007-1-1实施日期: 2007-1-1开本页数: 58P;A4中国标准分类号: Q32国际标准分类号: 81.060.30国别: 日本关键词:14、标准名称[中文]:精细陶瓷用氮化硅细粉末的化学分析方法标准名称[英文]:Methods for chemical analysis of fine silicon nitride powders for fine ceramics标准名称[日文]:ファインセラミックスヨウチッカケイソビフンマツノカガクブンセキホウホウ标准编号: JIS R1603-2007发布单位: JP-JISC发布日期: 2007-1-1实施日期: 2007-1-1开本页数: 46P;A4中国标准分类号: Q32国际标准分类号: 81.060.10国别: 日本关键词:15、标准名称[中文]:多孔精细陶瓷球形缺口的测试方法标准名称[英文]:Testing method for sphere indentation of porous fine ceramics标准名称[日文]:ファインセラミックスタコウタイノキュウアツシオシコミシケンホウホウ标准编号: JIS R1681-2007发布单位: JP-JISC发布日期: 2007-1-1开本页数: 12P;A4中国标准分类号: Q32国际标准分类号: 81.060.30国别: 日本关键词:16、标准名称[中文]:多孔精细陶瓷用测定液体中颗粒保持力的测试方法标准名称[英文]:Testing method for determining particle retention in liquid for porous fine ceramics标准名称[日文]:ファインセラミックスタコウタイノエキチュウリュウシホソクセイノウシケンホウホウ标准编号: JIS R1680-2007发布单位: JP-JISC发布日期: 2007-1-1实施日期:开本页数: 14P;A4中国标准分类号: Q32国际标准分类号: 81.060.30关键词:17、标准名称[中文]:室温下多孔性精细陶瓷的挠曲疲劳用试验方法标准名称[英文]:Testing method for bending fatigue of porous fine ceramics at room temperature标准名称[日文]:ファインセラミックスタコウタイノシツオンマゲヒロウシケンホウホウ标准编号: JIS R1677-2007发布单位: JP-JISC发布日期: 2007-1-1实施日期:开本页数: 16P;A4中国标准分类号: Q32国际标准分类号: 81.060.30国别: 日本关键词:18、标准名称[中文]:多孔性精细陶瓷的抗热冲击用试验方法标准名称[英文]:Testing method for thermal shock resistance of porous fine ceramics标准名称[日文]:ファインセラミックスタコウタイノネツショウゲキシケンホウホウ标准编号: JIS R1676-2007发布单位: JP-JISC发布日期: 2007-1-1实施日期:开本页数: 10P;A4中国标准分类号: Q32国际标准分类号: 81.060.30国别: 日本关键词:19、标准名称[中文]:多孔精细陶瓷液压当量直径和水渗透性的试验方法标准名称[英文]:Testing method for water permeability and hydraulic equivalent diameter of porous fine ceramics标准名称[日文]:ファインセラミックスタコウタイノミズトウカリツオヨビスイリョクトウカチョッケイシケンホウホウ标准编号: JIS R1671-2006发布单位: JP-JISC发布日期: 2006-1-1实施日期:开本页数: 12P;A4中国标准分类号: Q32国际标准分类号: 81.060.30国别: 日本关键词:20、标准名称[中文]:多孔精细陶瓷液压当量直径和水渗透性的试验方法标准名称[英文]:Testing method for water permeability and hydraulic equivalent diameter of porous fine ceramics标准名称[日文]:ファインセラミックスタコウタイノミズトウカリツオヨビスイリョクトウカチョッケイシケンホウホウ标准编号: JIS R1671-2006发布单位: JP-JISC发布日期: 2006-1-1实施日期:开本页数: 12P;A4中国标准分类号: Q32国际标准分类号: 81.060.30国别: 日本关键词:21、标准名称[中文]:精细陶瓷微观结构中粒度的试验方法标准名称[英文]:Testing method for grain size in microstructure of fine ceramics 标准名称[日文]:ファインセラミックスノグレインサイズソクテイホウホウ标准编号: JIS R1670-2006发布单位: JP-JISC发布日期: 2006-1-1实施日期:开本页数: 16P;A4中国标准分类号: Q32国际标准分类号: 81.060.30国别: 日本关键词:22、标准名称[中文]:精细陶瓷.滚动轴承球的氮化硅材料的基本特征和分类标准名称[英文]:Fine ceramics -- Fundamental characteristics and classification of silicon nitride materials for rolling bearing balls标准名称[日文]:ファインセラミックス―コロガリジクウケキュウヨウチッカケイソザイノキホントクセイオヨビトウキュウブンルイ标准编号: JIS R1669-2006发布单位: JP-JISC发布日期: 2006-1-1实施日期:开本页数: 8P;A4中国标准分类号: Q32国际标准分类号: 81.060.30国别: 日本关键词:国外精细陶瓷(高级陶瓷、高级工业陶瓷)系列标准(英国)1、标准名称[中文]:精细陶瓷(高级陶瓷、高级工业陶瓷).陶瓷涂层粘附力评估用洛氏针入试验].标准名称[英文]:Fine ceramics (advanced ceramics, advanced technical ceramics) - Rockwell indentation test for evaluation of adhesion of ceramic coatings标准编号:BS ISO 26443-2008—2008发布单位: GB-BSI发布日期: 2008-1-1实施日期: 2008-1-1开本页数: 16P;A4采用关系: ISO 26443-2008,IDT国际标准分类号: 81.060.30国别: 英国关键词:粘附高级工业陶瓷分析陶瓷涂层陶瓷复合材料定义测定评估精整硬度测量解释层材料测试机材料测试测量测量技术金相学方法渗透探伤穿透深度防护覆层洛氏(硬度) 洛氏硬度测量抽样方法测试测试装置厚度Adhesion Advanced echnical ceramics Analysis Ceramic Ceramiccoatings Ceramics Compositematerials Definition Definitions Determination Evaluations Finishes Hardness measurement Interpretations Layers Material testing machines Materials testing Measureme2、标准名称[中文]:精细陶瓷(高级陶瓷、高级工业陶瓷).室温下整体陶瓷的抗拉强度用试验方法标准名称[英文]:Fine ceramics (advanced ceramics, advanced technical ceramics) - Test method for tensile strength of monolithic ceramics at room temperature标准编号:BS ISO 15490-2008—2008发布单位: GB-BSI发布日期: 2008-1-1实施日期: 2008-1-1开本页数: 18P.;A4采用关系: ISO 15490-2008,IDT中国标准分类号: Q32国际标准分类号: 81.060.30国别: 英国关键词:高级工业陶瓷室温陶瓷定义测定材料规范整体材料特性质量温度测量抗拉强度测试须晶Advanced echnical ceramics Ambienttemperatures Ceramics Definition Definitions Determination Materialsspecification Monolithic materials Properties Quality Temperature measurement Tensile strength Testing Whisker3、标准名称[中文]:精细陶瓷(高级陶瓷、高级工业陶瓷).使用微尺度磨损试验测定涂层的耐磨性标准名称[英文]:Fine ceramics (advanced ceramics, advanced technical ceramics) - Determination of the abrasion resistance of coatings by a micro-scale abrasion test标准编号:BS ISO 26424-2008—2008发布单位: GB-BSI发布日期: 2008-1-1实施日期: 2088-1-1开本页数: 24P;A4采用关系: ISO 26424-2008,IDT国际标准分类号: 81.060.30国别: 英国关键词:磨蚀抗磨性磨蚀试验高级工业陶瓷陶瓷涂层陶瓷涂层厚度涂层定义解释层材料试验数学计算测量耐力试样制备试验设备试验程序试验报告试验磨损试验Abrasion Abrasion resistance Abrasion tests Advanced technical ceramics Ceramic Ceramic coatings Ceramics Coatingthickness Coatings Definition Definitions Interpretations Layers Materialstesting Mathematical calculations Measurement Resistance Specimen4、标准名称[中文]:精细陶瓷(高级陶瓷、高级工业陶瓷).半导体光催化材料的空气净化性能用试验方法.一氧化氮的移除标准名称[英文]:Fine ceramics (advanced ceramics, advanced technical ceramics) - Test method for air-purification performance of semiconducting photocatalytic materials - Removal of nitric oxide标准编号: BS ISO 22197-1-2008发布单位: GB-BSI发布日期: 2008-1-1实施日期: 2008-1-1开本页数: 22P;A4采用关系: ISO 22197-1-2007,IDT国际标准分类号: 81.060.30国别: 英国关键词:高级工业陶瓷空气过滤空气净化催化催化剂定义光影响细陶瓷实验室器皿数学计算氧化氮一氧化氮光化反应半导体材料试验方法试件试验报告Advanced technical ceramics Air filtration Airpurification Catalysis Catalysts Definition Definitions Effect of light Fineceramics Laboratory ware Mathematical calculations Nitric oxide Nitrogenmonoxide Photochemical reactions Semiconductor materials T5、标准名称[中文]:精细陶瓷(高级陶瓷、高级工业陶瓷).用弯曲表面裂纹(SCF)法测定室温下单片陶瓷的断裂韧性Determination of fracture toughness of monolithic ceramics at room temperature by the surface crack in flexure (SCF) method标准编号: BS EN ISO 18756-2006发布单位: GB-BSI发布日期: 2006-1-1实施日期: 2006-1-1开本页数: 40P.;A4采用关系: EN ISO 18756-2005,IDT ISO 18756-2003,IDT中国标准分类号: Q32国际标准分类号: 81.060.30国别: 英国关键词:高级工业陶瓷环境温度弯曲样品断裂试验陶瓷定义裂纹断裂韧性努氏(硬度) 机械试验整体材料试样裂纹表面温度法试验方法试验韧性Advanced technical ceramics Ambient temperatures Bend specimens Breakingtests Ceramics Definition Definitions Flaws Fracture toughness Knoop Mechanical testing Monolithic materials Samples Surface cracking Temperature method Test method Testing Toughness6、标准名称[中文]:精细陶瓷(高级陶瓷、高级工业陶瓷).用比重计测定陶瓷粉末的绝对密度Determination of absolute density of ceramic powders by pyknometer标准编号: BS EN ISO 18753-2006发布单位: GB-BSI发布日期: 2006-1-1实施日期: 2006-1-1开本页数: 16P;A4采用关系: EN ISO 18753-2005,IDT ISO 18753-2004,IDT中国标准分类号: Q32国际标准分类号: 81.060.30国别: 英国关键词:高级工业陶瓷分析陶瓷粉末陶瓷定义密度测定法密度密度测定瓶密度瓶密度测量测定实验室试验材料试验机械试验比重瓶测量分析法试验方法试验Advanced technical ceramics Analysis Ceramicpowders Ceramics Definition Definitions Densimetry Density Density bottles Density measurement Determination Laboratory testing Materials testing Mechanicaltesting Pycnometric analysis Test method Testing7、标准名称(中文)精细陶瓷(高级陶瓷、高级工业陶瓷).室温下用单边预裂束法(SEPB)测定块体陶瓷破裂韧性的试验方法标准名称(英文)Fine ceramics (advanced ceramics, advanced technical ceramics) - Test method for fracture toughness of monolithic ceramics at room temperature by single edge precracked beam (SEPB) method标准编号: BS EN ISO 15732-2006发布单位: GB-BSI发布日期: 2006-1-1实施日期: 2006-1-1开本页数: 30P.;A4采用关系: EN ISO 15732-2005,IDT ISO 15732-2003,IDT中国标准分类号: Q32国际标准分类号: 81.060.30国别: 英国关键词:高级工业陶瓷环境温度抗弯强度抗弯应力破坏试验陶瓷定义挠性挠曲蠕变断裂韧性材料试验测量机械试验整体材料温度试验试验方法试验韧性Advanced technical ceramics Ambient temperatures Bending strength Bendingstress Breaking tests Ceramics Definition Definitions Flexibility Flexural creep Fracture toughness Materials testing Measurement Mechanical testing Monolithicmaterials Temperature。

循环流化床锅炉专业词汇英汉对照

循环流化床锅炉专业词汇英汉对照

循环流化床锅炉专业词汇:CFB boiler (circulating fluidized bed boiler) 循环流化床锅炉fuel燃料bottom ash 底渣circulating ash循环灰limestone石灰石fluidized air流化风separator分离器circulating combustion循环燃烧heat transfer传热consistence(density) of particles颗粒浓度medium transfer传质desulphurizer脱硫剂combustion chamber燃烧室coal feeder给煤机material feeder给料机air distributor布风板cyclone separator旋风分离器heat exchanger换热器back pass尾部烟道convection heating surface对流受热面bag filter布袋除尘器electrostatic precipitator(ESP)静电除尘器stack, chimney烟囱bed material床料upright pipes (vertical pipe)立管material-returning system回料系统Tapping (bulk packing)density堆积密度Dense region密相区secondary air二次风spout喷口gap rate空隙率Dilute region稀相区airflow气流conical section锥段elutriation扬析Transition region过渡区carrying over phenomena夹带现象Fluidized speed流化速度empty tower velocity空塔速度apparent speed表观速度heat carrying载热formula(equation)公式、方程式flue gas烟气cross-section of furnace炉膛截面积dynamic control combustion动力控制燃烧flux通量adaptability适应性peak adjustment调峰heat transfer coefficient传热系数slagging结渣flameout灭火explosion爆炸contamination污染物flue gas and air烟风auxiliary power厂用电abrasion-resistant refractory material耐磨耐火浇筑料expansion膨胀sealing密封boiler proper system锅炉本体系统boiler auxiliary system锅炉辅助系统combustion system燃烧系统steam & water system汽水系统ash handling system灰处理系统ignition system点火系统Furnace炉膛material-returning vessel返料器External heat exchanger外置式热交换器slag cooler冷渣器limestone silo石灰石仓Fluidized air chamber流化风室steam Drum汽包convection superheater对流过热器economizer省煤器Primary air一次风Air preheater空气预热器I.D. fan (induced draft )引风机F.D. fan (forced draft ) 送风机lower secondary air下二次风Upper secondary air上二次风Limestone fan石灰石风机boiler wall炉墙water wall水冷壁straight section直段denitrogened脱氮denitration脱硝air nozzles风帽orifice小孔air-distributor布风板inner pipe内管external cover外罩annular base plate环形底板bell glass air nozzle钟罩式风帽deformation变形below-bed ignition床下点火secondary air input二次风入口decomposition分解过程superheated wall过热屏reheated wall再热屏separating wall分隔墙parameter参数start-up启动shut down 停机HT insulated cyclone separator高温绝热旋风分离器steam(water)-cooled cyclone separator汽(水)冷旋风分离boiler rating锅炉出力heat radiation loss散热损maintenance维修inertial separator惯性分离器shutter(louver) separator百叶窗分离器air lock device锁气器(rated)nominal load额定负荷evaporative rating蒸发出力fluidized seal material returning device流化密封返料器Valve type material returning device阀型返料器platen heating surface屏式受热面evaporator蒸发器screening 筛分coarse screening宽筛crushing characteristics破碎特性granularity粒度screen cloth筛网screening mesh筛孔mesh diameter筛分孔径screening residue筛余量volatile挥发specific surface area比表面积particle sphericity颗粒球形度spherical degree球形度median diameter中位径gas density气体密度Critical bubbling velocity临界鼓泡速度gas back mixing气体返混fine powder细粉freely falling body motion自由落体运动gravity重力floatage/ bouyance浮力air flow dragging force气流曳力accelerating velocity加速equilibrium relationship平衡关系maximum sedimentation velocity终端沉降速度relative motion相对运动static particle静止颗粒gas-solid sliding velocity气固滑移速度critical value临界值heat transmission factor传热系数near-wall region近壁区gas phase气相gas film气膜bed layer床层particle mass 颗粒团dispersion phase弥散相heat transfer wall surface传热壁面gas phase convection heat transfer coefficient气相对流换热系数particle convection heat transfer coefficient颗粒对流换热系数radiant heat-transfer coefficient辐射换热系数heat emission coefficient放热系数volume flow体积流量high intensity高强度emulsification phase乳化项fixed bed固定床material feeding bunker加料仓separation and returning system分离回送系统pneumatic conveying气力输送vortex flow漩涡流动moving bed移动床ash Balance灰平衡circulating circuit循环回路heat transfer mechanism传热机理air duct风道bed density 床层密度thermal-conductivity导热系数(导热率)volatile matter挥发物ash sludge灰浆steam blowing out吹管scrap iron铁屑core-annulus flow环核流动radial distribution径向分布overall pressure drop总压降high-speed fluidized bed快速流化床strip floc条状絮状物burning out燃尽dry-out 烘炉safety valve setting安全门整定steam and water quality汽水品质anthracite coal无烟煤lean coal 贫煤momentum 动量banking characteristic 压火特性oil stone 油石fly ash resistivity 飞灰比电阻coil pipe蛇行管flue gas duct烟道air chamber风室carbon content 含碳量gypsum 石膏industrial data acquisition system 工业用采数系统mineral asbestos矿石棉combustion efficiency燃烧效率combustible content可燃物含量excess air coefficient 过量空气系数typical working condition 典型工况active carbon filter活性碳过滤器包墙过热器 enclosed wall superheater下降管 downcomer屏式过热器 platen/screen-type superheater工质 working medium蒸发设备 evaporating device膜式水冷壁 membrane water wall排渣口 slag discharging outlet水冷蒸发屏 water-cooled evaporating screen 喷水减温器water- spraying desuperheater喷燃器burner反冲洗阀 back wash valve管组 pipe bank进口集箱 inlet header转向室guiding chamber给料皮带 material feeding belt加药管 chemical-dosing tube三通T-joint挡板 damper出渣 discharge slag进口导叶 inlet guide vane联杆 linkage动平衡 dynamic balance压头 pressure head喘振 surge水冷套 water cooling jacket炉膛负压 furnace vacuum主燃料切除 main fuel trip (MFT)放气阀 vent/exhaust valve疏水阀 drain valve截止阀 stop valve止回阀 check valve弹簧安全装置 spring safety device给料增压风机material feeding booster fan气固两相流风箱gas-solid two-phase flow air box密封用风sealing air出口烟道outlet flue gas duct排污管blow-down pipe波形板corrugated plate防漩装置a device against rotation水冷蒸发屏water-cooling evaporating screen耐火、绝热材料层refractory and insulated material layer 气力输送pneumatic conveying闸板gate board点火器igniter减温器desuperheater/attemperator对空排汽阀steam bleeding valve定容式风机constant volume blower逆流(反向电流)countercurrent干燥箱Drying cabinet给水分配管Feed water distrubited pipe放气阀Vent valve副柱sub-post发光二极管light-emitted diode (LED)点动操作stepping operation超载overload变频电机Frequency-converting motor负压vacuum铣床milling machine增压风机Booster fan (Coal Distribution Air Fan)多孔管perforated pipe涡流eddy current闸板gate aboard上升管riser左右对称 bilateral symmetry热冲击thermal shock水平烟道horizontal flue gas duct水冷风室water-cooled air chamber灰斗ash bunker吹灰器soot blower后墙back wall侧墙side wall下水连接管sewage connecting pipes清扫链clean-out chain原理图(示意图)Schematic Diagram落煤管coal spout进口导叶调节门IGV control valve进气箱air input box调节杆dolly bar驱动机构drive mechanism联动试车interlock test running弹簧储能spring energy集汽室steam trap永久负载permanent load油封oil seal热电阻thermal resistance原煤仓(斗)raw coal bunker联箱header管束(排)tube bundle饱和蒸汽saturated steam减速器speed reducer/decelerator耐用的、持久的durable防磨盖板anti-wear cover plate热传导Thermal conduction卧式汽水分离器Horizontal steam-water separator 热偏差 heat deviation(bias)叶轮blade wheel/impeller传动机构actuator联杆link消声器silence/muffler进渣管Slag inlet tube播煤风coal-spreading air水冷套water jacket烟煤soft coal密封垫圈sealing washer起座压力start pressure回座压力reseating/return pressure变送器transmitter标高Elevation苏单项目专业术语缩写1.1缩写表单位或组织CMEC China National Machinery & Equipment Import & Export Corporation China National Mechanical & Equipment Import & Export Company中国机械设备进出口总公司NEC National Electricity Corporation苏丹国家电力公司IEC International Electrical Commission国际电工协会ISO International Standard Organisation国际标准组织LI Lahmeyer International GmbH, Bad Vilbel雷美尔咨询公司VGB Technische Vereinigung der G roßkraftwerks Betreiber(Technical Association of large Power Plant Operators) 大型电厂协会其它AC Alternating Current 交流电AVR Automatic Voltage Regulator自动电压调整器CFB Circulating Fluid Bed循环流化床CFBB Circulating Fluid Bed Boiler循环流化床锅炉CCR Central Control Room中央控制室CCW Closed Cooling Water System闭式循环冷却水系统CT Current Transformer电流变压器CW Circulating Water System (Cooling Water System) 循环冷却水系统DC Direct Current直流电DCS Distributed Control System分散控制系统DIN German Industrial Standard德国工业标准FAC Final Acceptance Certificate最终验收证FG Function Group功能组GIS Gas (SF6) Insulated Switch-gear气体(SF6)绝缘开关HB Heat Balance热平衡HP High Pressure高压(力)HV High Voltage ( > 36 kV ) 高电压KKS Kraftwerk-Kennzeichen-System = Power Plant Identification System电厂标识系统I&C Instrumentation and Control仪表及控制LDC Load Dispatch Center负荷分配中心LP Low Pressure低压(力)LV Low Voltage ( < 1 kV ) 低电压( < 1 kV )MCR Maximum Continuous Rating最大连续蒸发量MMI Man/Machine Interface人/机界面MR Meeting Report会议纪要MV Medium Voltage ( > 1 kV < 36 kV ) 中电压MVR Manual Voltage Control手动电压控制PAC Provisional Acceptance Certificate初步验收证书PDA Programming/ Diagnostic/ Alarms Station工程师站POS Process Operation Station过程操作站PT Potential Transformer电压互感器P&ID Process and Instrumentation Diagram工艺流程及仪表图RTU Remote Terminal Unit远程终端SCADA Supervisory Control & Data Acquisition电气微机监控系统SLD Single Line Diagram电气主接线ST Steam Turbine 汽轮机SWG Switchgear开关UCB Unit Control Board 机组控制盘VDU Video Display Unit 显示器、氧化铁ferric oxide 氧化铝alumina 铝aluminum二氧化硅silicon dioxide 氧化钙(生石灰) calcium oxide熟石灰(氢氧化钙) white lime 石灰石limestone氧化镁magnesia 镁magnesium 碳carbon二氧化碳Carbon dioxide 一氧化碳carbon monoxide烟囱chimney, stack 浇注料refractory总图、总平面图General Layout 工艺流程Process Flow安装图Installation Drawing 装配图erection drawing附件、附属物Appurtenance 除去矿物质(除盐)Demineralize灰厍气化设备Gasifying Device of Fly Ash Silo Gasify 使气化接地与防雷Earthing and Lightning Protection变电站、分站、分所Substation 配置、结构、构成configuration综合水泵房Composite water pump house 精炼厂、炼油厂Refinery燃烧、消耗V Combust 燃烧器Combuster 燃烧N combustion废热锅炉、余热锅炉Heat Recovery Steam Generators循环流化床锅炉Circulating Fluid Bed (CFB) boiler蒸汽轮机Steam Turbine Generator (STG) 燃气轮机Gas turbine也就是说(副词)i.e. 从此以后,今后hereafter技术规范(说明)Technical Specification 引风机Induced Draught FanAVR 自动电压调节器automatic voltage regulator 消音器silencers碟片式过滤器debris filter 氯化\用氯气处理Chlorination次氯酸Hypochlorite 水除盐装置Water Demineralisation Plant离子交换技术ion exchange technology 阳床(阳离子交换器)cation exchanger 脱二氧化碳器decarbonator 阴床anion exchanger 混床mixed-bed exchanger未净化的水(原水)raw water 澄清水池clarified water basin再生设备Regeneration equipment 凝结剂、絮凝剂Coagulan生活废水Sanitary Waste Water 化粪池septic tank饮用水系统Potable Service Water System 水龙头water tap 氨、氨水ammonia 肼、联氨hydrazine 磷酸钠sodium phosphate 苛性钠、烧碱Caustic soda稀硫酸dilute Sulphuric acid 溴化物Bromide消防栓和消火栓箱Hydrants and hose cabinets推车式灭火器和手提式灭火器Wheeled and portable fire extinguishers备用零件和专用工具Spare parts and special tools往复式无油空气压缩机装置Reciprocating oil free running air compressor unit辅助设备\外部设备ancillary equipment. 过滤设备filtration equipment土建工程和建筑设施Civil Works and Building Facilities沥清防水层asphalt water barriers 钢筋混凝土结构reinforced concrete structure 根据详细规范设计的带有沥青防水层钢筋混凝土屋顶RC concrete roof with asphalt water barriers according detail specification.钢筋混凝土(围)挡墙RC retaining walls 装卸和运输Handling and Transport地磅Weight Bridge 砌筑墙masonry wall 考虑到under consideration混凝土骨架结构concrete skeleton structure 摆放空间lay down areas龙门起重机\龙门吊\行车Gantry crane 安装和维修erection and maintenance卫生设备,卫生设施sanitary facilities 祈祷prayer(n) pray(V)消防队Fire Brigade 调度室Control Building 管道支架pipe rack测试和校准testing and calibration 投标文件Tender Documents试运行和性能试验commissioning and performance testing后翻斗式自卸卡车rear dump truck 磷酸三钠Trisodium phosphate排水系统和下水道系统Drainage and Sewerage System聚合(高分子)电解质Polyelectrolyte 局域网LAN 母线bus bar电缆沟cable trench 地形勘测topographical survey更改、再布置和重建Modification, relocation and reconstruction。

材料英汉单词

材料英汉单词

建筑材料单词carbonating 碳化处理carbon steel 碳素钢carbonated shrinkage 碳化收缩carbon tetrachloride 四氯化碳cation 阳离子 anion 阴离子cationic emulsifier 阳离子乳液化剂capillary voids (pores) in cement水泥中的毛细管capillary water 毛细管水carbon dioxide 二氧化碳cement 水泥cement clinker 水泥熟料cement fineness 水泥细度cement mortar 水泥砂浆cement resistance to chemical水泥抗化学侵蚀性cement paste 水泥浆cement soundness 水泥安定性cement specifications 水泥规范cement strength 水泥强度cement types 水泥品种cement-water ratio 灰水比characteristic strength 特征强度chemically combined water 化学结合水crack 裂纹chemical property 化学性质chert 燧石 ( 黑硅石 )chloride 氯化物chord modulus of elasticity 弦弹性模量civil Engineering 土木工程clinker 熟料coarse aggregate 粗集料coefficient of permeability of concrete 混凝土渗透系数coefficient of thermal expansion热膨胀系数coefficient of shrinkage 收缩系数coefficient of shrinkage of concrete 混凝土收缩系数compacting factor test 捣实系数试验compaction (consolidation)捣实( 捣固 ) compressive strength 抗压强度computer control system 计算机控制系统cube size 立方体试件尺寸coarse aggregate ratio to fine粗集料与细集料之比composite insulation 复合绝热层component组分 , 成分 , 构件composite 复合 , 合成 , 复合材料composite insulation 复合绝热层composite Portland cement复合硅酸盐水泥concrete 混凝土concrete batching plant 混凝土搅拌站concrete composition 混凝土配合比concrete block 混凝土砌块condensation polymerization 缩聚反应concrete products 混凝土制品concrete pump 混凝土输送泵condensed silica fume 浓缩 ( 凝聚 ) 的二氧化硅烟雾 ( 硅粉 )conductivity 导热性consistency 稠度corrosion of steel in concrete钢筋的腐蚀cost of concrete 混凝土成本cold bending test 冷弯试验cold-laid bituminous concrete冷铺沥青混凝土coal tar 煤沥青coarse aggregate 粗集料coefficient of variation (Cv) 变异系数cohesion 粘聚cohesiveness 粘聚性cold draw 冷拔cold-laid bituminous mixture冷铺沥青混合料cold stretching 冷拉cold working 冷加工colloid 胶体colloidal structure 胶体结构colloid mill 胶体磨compacting factor 捣实因素composite material 复合材料concrete 混凝土concrete mix 混凝土混合料concrete mix proportion 混凝土配合比continuous grading 连续级配cork 软木cork insulation 软木绝热制品creep 蠕变crack 裂缝cracking 开裂creep 徐变crescent ribbed bars 月牙肋钢筋critical aggregate size 临界集料尺寸critical degree of saturation临界饱和度critical stress 临界应力cross grain 斜纹C-S-H 水化硅酸钙crushing test 压碎试验crushing value 压碎值crystallization 结晶(作用) cryogenic behavior 低温性质curing 养护decay 腐朽dense concrete 密实混凝土defect 缺陷deflection 挠度degree of complex flow 复合流动度degree of hardness 硬度degree of humidity 湿度deicing salts action 除冰盐作用design of concrete mix混凝土配合比设计density 密度dense grading 密级配dicalcium silicate (C2S)硅酸二钙disperse phase 分散相dispersion medium 分散介质drying shrinkage 干燥收缩 ( 干缩 ) ductility 延展性durability 耐久性durability factor 耐久性因素dormant period 垫伏期early-age behavior 早期性质early strength cement 早强水泥early wood 早材asphalt cement 粘稠沥青(膏体沥青) asphalt concrete (地)沥青混凝土alkali-aggregate reaction 碱-集料反应bend stress 弯曲应力binder bonding agent 粘合剂binder 结合料blast-furnace slag 高炉矿渣blast-furnace slag cements 高炉矿渣水泥bleeding 泌水性blending method 调和法blender 搅拌器,打浆机bond 粘结Calcium钙,形成层calcium aluminate 铝酸钙calcium aluminate cement 铝酸钙水泥calcium carbonate 碳酸钙calcium chloride 氯化钙calcium ferroalumnates 铁铝酸钙calcium hydroxide 氢氧化钙calcium lignosulphonate 木质磺酸钙calcium lime 钙质石灰calcium oxide 氧化钙calcium silicate 硅酸钙calcium silicate hydrate(CHS) 水化硅酸钙calcium silicate insulat1on硅酸钙绝热制品calcium sulfates 硫酸钙calcium sulfoaluminate 硫铝酸钙calcium sulfoaluminate hydrates水化硫铝酸钙carbon disulphide 二硫化碳ettringite 钙矾石flint 燧石float test 浮标试验floating 刮平flow of cement mortar 水泥胶砂流动度flow value 流值formwork removal 拆模fine aggregate 细集料final set 终凝fire resistance 耐火性flowing concrete 流动混凝土flexural property 受弯性能flexural rigidity 抗弯刚度 (B)fiber reinforced plastics 纤维增强塑料fiber-glass reinforced plastics 玻璃纤维增强塑料fiber cement 纤维水泥fiber insulation 纤维绝热材料fineness of cement 水泥细度fineness modulus 细度模数(M) finishing 抹面( 修整 )fibre board 纤维板fiber concrete 纤维混凝土fine sand 细砂fiber saturation point 纤维饱和点filler 填料final set 终凝fire point 燃点fly ash 粉煤灰fly-ash cement 粉煤灰水泥flash set 闪凝( 瞬间凝结 )flash point 闪点flexural strength 弯曲强度graph 图表、图解graphical method 图解法gravel 砾石、卵石gradation 级配ground quick lime 磨细生石灰grading / gradation 颗粒级配grading curve 级配曲线grain-size refinement 颗粒尺寸的优化granite 花岗石gel 凝胶gel pores 凝胶孔gel/space ratio 凝胶/空隙比gap-graded aggregate 间断级配集料gas concrete 加气混凝土gap grading 间断级配fraction 组分fracture mechanics 断裂力学fracture toughness 断裂韧性free carbon 游离碳free calcium oxide 游离氧化钙fresh concrete 新拌混凝土freeze-thaw resistance 抗冻融性frost action on aggregate骨料受到冰冻作用frost action on cement paste水泥浆受到冰冻作用frost action on concrete混凝土受到冰冻作用frost resistance 抗冻性gypsum 石膏gypsum concrete 石膏混凝土hardening 硬化hardness 硬度high-early strength cement 早强水泥high-early strength concrete 早强混凝土high performance concrete 高性能混凝土homogeneous materials 均质材料hydrophilic and hydrophobic 亲水与憎水hydrated (Portland) cement paste 已水化的水泥浆hydration of Portland cement 波特兰水泥的水化hydration reaction of aluminates 铝酸盐水化反应hydration reaction of silicates硅酸盐水化反应hydraulic cement 水硬性水泥hydraulic pressure 水压力impact strength 冲击强度igneous rocks for aggregateimpact ductility 冲击韧性impact strength 抗冲击强度impermeability 抗渗性,不渗透性impact resistance 抗冲击性impact test 冲击试验impact toughness 冲击韧度initial set 初凝1ime 石灰lime cement 石灰水泥lime stone 石灰石loss of slump of concrete混凝土的坍落度损失low alloy steel 低合金钢macrostructure 宏观结构magnitude of self-stress 自应力magnesium oxide 氧化镁manganese steel 锰钢manual plastering 手工抹浆map cracking 龟裂marble 大理石masonry cement 砌筑水泥masonry mortar 砌筑砂浆mass concrete 大体积混凝土maximum aggregate size 最大集料粒径maximum crack width 最大裂缝宽度maximum density curve 最大密度曲线maximum size of sand 砂的最大粒径maximum theorical density 理论最大密度mechanical property 力学性质membrane curing 薄膜养护metal 金属metamorphic rock 变质岩mica 云母microcracking 微裂缝microsilica 微细二氧化硅(硅粉)mild steel 低碳钢microstructure 微观结构mineral admixture 矿物外加剂mineral powder 矿粉minimum crack spacing 最小裂缝间距mix design 配合比设计mixing of concrete 混凝土的搅拌mixing water 拌和用水mix proportioning(designing )配合比(设计)mix proportions 配合比mix proportion by absolute volume绝对体积法配合比(设计)mix proportion by loose volume现场松散体积配合比(设计)mix proportion by weight 重量配合比mixed base 混合基mixed-in-place 现场拌和mixed process 混合过程mixing time 拌和时间mixing water 拌和水mixed cement 混合水泥mixture 混合料modility,fluidity流动性modulus of deformation 变形模量(EB) modulus of elasticity 弹性模量modulus of elasticity concrete 混凝土弹性模量moisture 湿度,水分moisture absorption 吸湿率moisture content (MC) 含水量moisture condition 含水状态moisture content of aggregate骨料含水量monosulphalte 单硫酸盐monosulfate hydrate 单硫酸盐水化物mortar theory 胶浆理论mortar consistency 砂浆稠度mortar strength 砂浆强度needle penetrometer 维卡仪penetration index (PI) 针入度指数penetration 针入度Particle size 颗粒尺寸particle size distribution 粒度分布pat test 试饼法penetration resistance 抗贯入性percentage elongation 伸长率percentage passing 通过百分率percentage retained 存留百分率oven-dry aggregate 炉干骨料ordinary Portland cement普通硅酸盐水泥ordinary concrete 普通水泥混凝土open-graded mixture 开级配混合料poisson's ratio 泊松比physical property 物理性质phosphate 磷酸盐placing of concrete 混凝土的浇筑porosity 孔隙率portland cement 波特兰水泥portland blast-furnace slag cement 高炉矿渣波特兰水泥portland pozzolan cement火山灰质波特兰水泥portlandite 氢氧钙石pore-size distribution 孔径分布pozzolan 火山灰pozzolanic reaction 火山灰质反应preplaced aggregate concrete预填集料混凝土pumped concrete 泵送混凝土quality 质量,性质quality control 质量控制quality assurance 质量保证quartz 石英quartz glass 石英玻璃quartz sand 石英砂quartzite 石英岩quick lime 生石灰quick set 快凝quick setting cement 快硬水泥quick-taking cement 快凝水泥quick hardening 水硬性水泥quench 水淬,骤冷rapid setting and hardening cements快凝与快硬水泥raw limestone 石灰石ready-mixed concrete 预拌混凝土recycled-concrete aggregate再生混凝土集料regulated-set cement 调凝水泥reinforced concrete (RC) 钢筋混凝土relative density 相对密度resin 胶质,树脂retarder 缓凝剂retarding admixtures 缓凝外加剂retempering 重新调拌revibration 重新振捣rheological characteristics 流变特性sand 砂sand grading 砂的级配sandstone 砂岩sand grading curve 砂的级配曲线sand grading standard region 砂的级配标准区segregation 离析set retarder admixture 缓凝剂set retarding and water-reducing admixture 缓凝减水剂setting time 凝结时间setting of cement paste 水泥浆的凝结setting of concrete 混凝土的凝结shrinkage 收缩shrinkage-compensating concrete收缩补偿混凝土shrinkage crack 收缩裂缝sieve analysis of aggregate集料的筛分析silica fume 硅粉slag 矿渣slump cone test 坍落度锥体试验slump loss in concrete混凝土中的坍落度损softening point test 软化点试验solid/space ratio 固体/空隙比solid-state hydration 固态水化solidification 凝固作用soundness 安定性specific heat 比热specific surface area 比表面积specifications 规范standard specifications 标准规范stiffening of cement paste 水泥浆的变硬standard deviation 标准差standard error 标准误差standard of concrete 混凝土强度standard sand 标准砂standard sieve 标准筛standard test method 标准试验方法static modulus 静弹性模量strain 应变strength 强度strength at 28days 28天强度strength grade of cement 水泥强度等级strength of cement mortar 水泥胶砂强度strength of cube 立方体强度strength of cylinders 圆柱体强度structure high density concrete高表观密度混凝土结构stress 应力stress concentration 应力集中stressed crack 受力裂缝stress intensity factor 应力强度因素stress-strain curve 应力-应变曲线sulfate attack 硫酸盐侵蚀sulfate resisting cement 抗硫酸盐水泥temperature susceptibility 温度感应性temperature shrinkage 温度收缩temperature effects 温度效应tensile strain 拉伸应变tensile strain capacity 拉伸应变能力tensile strength 拉伸强度(抗拉强度) tetracalcium aluminate hydrate水化铝酸四钙test methods 试验方法test sieve 试验筛testing of material 材料试验testing sieve shaker 试验用振动筛分机test load 试验负荷the particle grading 颗粒级配thermal conductivity 导热性thermal contraction 热收缩thermal diffusivity 热扩散性thermal expansion coefficient热膨胀系数thermal insulation material 绝热材料thermal insulation properties 保温性能timber 木材toughness 韧性trial mixes 试拌混合物tricalcium aluminate 铝酸三钙tricalcium silicate 硅酸三钙uncombined CaO 游离CaOVander Wale force 范德华力vapor pressure 蒸汽压力vacuum insulation 真空绝热vapor barrier / water vapor retarder 隔汽层variegated glass 大理石纹Vebe consistency 维勃稠度void 空隙voids detection 空隙的测定voids ratio 孔隙率void in hydrated cement paste水化水泥浆中的孔隙water 水water absorption 吸水率water / cement ratio 水灰比water content 用水量water content (moisture content)含水率( 湿度 )water-lightness 不透水性water repellent admixture 防水剂water-proof 防水的water proofing admixture 防水剂water proofing compound 防水化合物water-reducing admixtures 减水剂water-reducing retaders 缓凝减水剂water-reducing admixture 普通减水剂workability control 和易性控制workability definition 和易性定义workability 工作性workability of ready-mixed concrete 预拌混凝土和易性workability of light weight concrete 轻混凝土和易性workability measurement 和易性测量。

三层共挤输液用袋标准英文版

三层共挤输液用袋标准英文版

The State food and Drug AdministrationNational drug packaging containers (material) standard(interim)YBB00102005 3-layer Co-extrusion Films and Bags Used for Infusion Polypropyrene/ polypropyrene/ polypropyrene three-tier film refers to polypropyrene as the main body to adopt the coextrusion process, do not use adhesive, formed by the three-tier IV film.Bags is made of polypropyrene / polypropyrene / polypropyrene three-tier IV film by rahfu used for infusion.[Appearance] regulations appearance an adequate amount of light in the nature of the rink, the Department should be addressed in a transparent and smooth, non-visible foreign matter.[Identification] * (1) Microscopic characteristics of this product by just the right amount, and cut into appropriate thickness is microscopically, cross section should display a clear third floor.(2) The product is Infrared Spectra taken in moderation, with the thickness of the slicer cut into colussoma (less than 50 μm) adjustableplate, situated at a micro-infrared instrument observation sample cross section. According to the packaging material infrared spectrometry (YBB00262004) method for the determination, each layer should be substantialagreement and electrophoretograms.[Sterilizaion adaptability of bags] except where otherwise provided, the product is a number, and by 0.45 μm pore size filtration of water for injection to nongraphite capacity, and seal. Use the method of sterilization (standard sterilizaion F0 value = 8, such as sterilization of 121℃for 15 minutes) to sterilizaion, make the following experiment:Temperature adaptability said samples or 25℃±2 ℃, placed under the condition of a 24-hour, and then in the 50℃±2 ℃ to continue to be placed under 24 hours, and then on the 23℃±2 ℃, placed under 24 hours, the sample is placed between two parallel plates, 67KPa of hyperteution, the maintenance of up to 10 minutes. Should have no liquid.Resistance to drop the said samples or 25℃±2 ℃, placed under the condition of a 24-hour, and then in the50℃±2 ℃ to continue to be placed under 24 hours, and then on the 23℃±2 ℃in 24 hours will be placed in the condition,according to table 1 drop drop height, respectively, in a stereoplasm on rigid smooth surface without rupture and leak.Transparency the said samples or another empty bag, mount the level number is 4 turbidimetrv of the standard solution, contrast bags; a black background, with gluehlampenwerk to 2000 lx to 3000 lx irradiation experiment (avoiding exposure), the person's eyes, should be able to distinguish between bag with a control.Particulate matter the said samples a few, as far as packaging material for determination of particulate matter (YBB00272004) infusion bottles and infusion bag under the method for the determination of the particle diameter ≥5, 10, 25 μm particles number not 100, 20, 2 pc/ml.[Using adaptive test] (bags) piercing except where otherwise provided, take the product, subject to a number of single-use infusion set gravity transfusion standards (GB8368-2005)puncturation, 200mm/min±20mm/min a puncturation of the pericardiocentesis, the plastic puncturation for piercing should be less than 100N, the metal puncturation for piercing should be less than 80N.Puncturation for retention and the insertion point is not permealbe except where otherwise provided, something like a liquid bag, in line with the single-use infusion set gravity transfusion standards (GB8368-2005) of puncturation with puncturation bag insertion point, and then to 200mm/min ± 20mm/min speed unplug puncturation, the plastic puncturation's separator force more than 5.0N, the metal puncturation's separator force shall not be less than 1.0N. Pull-out puncturation for then bag placed between two parallel plates, 20kPa hyperteution, the maintenance of 15 seconds, and the insertion point there shall be no leakage of liquid.Injection point airproof something like a liquid bag, with the outer diameter as 0.6mm injection needle aspiration injection point and 15 seconds, and unplug the needle, and then set the bags reset between two parallel plates, 20kPa hyperteution, the maintenance of 15 seconds, and injection point shall not be leak.Something like the hoisting of the force a liquid bag, imposed in accordance withtable 2, uponsize shall not break within 60 minutes.[Physical properties] WVT (film): as water vapor transmission measurements (YBB00092003) the first method for the determination. Temperature of 38℃±0.6 ℃and relative humidity 90% ±2% of the condition, not more than 5.0g /(m2·24h).(bags) by liquid bag several, as far as water vapor transmission measurements (YBB00092003) the third method for the determination. Each bag shall not reduce the weight of over 0.2%.The amount of oxygen through (film) according to the gas through measurements (YBB00082003) the first determination, not more than 1200cm3/ ( m2·24h·0.1MPa).The amount of nitrogen through (film) according to the gas through measurements (YBB00082003) the first determination, not more than 600cm3/ ( m2·24h·0.1MPa).Tensile strength (film) by the amount of the product, according to the determination of tensile properties (YBB00112003), typeⅱ, rheomolding choice test speed (loadless) to select a 500 mm/min ±50 mm/min, vertical and lateral tensile strength shall be more than the average 20MPa.Rahfu strength (bags) according to the rahfu method for determination of strength (compaund YBB00122003) for the determination of the bag, each rahfu parts shall not be lower than the average of 20N/15mm.[Light transmittance] provisions the product area, and cut into five sections of 0.9 respectively cm×4cm, vertically along the incident light into absorption, fill it up with water in the pool, with water as the blank, as far as UV-vis spectrophotometry (PRC Pharmacopoeia 2005 appendices ⅣA), in the determination of the transmittance of 450nm Department shall not be less than 75%.[Residue on ignition] provisions Alex this product 5.0g accurate, placed has constant weight of crucible. Heating to 100 ℃drying 1 hour later slowly Chi-amustion to the complete carbonification, cold, 550 ℃at the Chi-amustion a full ashing, move to the dryer, inside, when accurate, and then on to 550 ℃at theChi-amustion, that is, the constant heavy.[Metallic elements]* regulations metals butter under the rasidues and add chemonucleolysis(1→2) 25ml, according to the atomic absorption spectrometry (PRC Pharmacopoeia 2005 part 2 appendices ⅣD) determination, should satisfy the following requirements:Office of copper in 324.8nm wavelength, calculated at 3 shall not be more than 106;Cd in 228.8nm wavelength measurement shall not be more than 106 at 3;chromium in the determination of 357.9nm wavelength division shall not be more than 106 at 3;lead in 217.0nm wavelength division less a million determination shall be calculated at 3;Tin determination in 286.3nm wavelength division shall not be more than 106 at 3;barium 553.6nm wavelength measurement at the less than 106 shall be calculated at 3.[Dissolved matter test] regulations opinins experiments of article skinpass part of the surface area of 600cm2, and cut into small pieces of 5cm×0.5cm to post-drying at room temperature, situated at a 500 ml bottle of cone-shaped, add water 200ml, airproof, reset the high pressure steam sterilizer, 121℃for 30 minutes of heating, cooling and at room temperature, as oleiferous and as obtainingwater with the manipulation, as blank-control solution, make the following experiment: Clarity by oleiferous, as far as clarity inspection method (PRC Pharmacopoeia 2005 part 2 appendices Ⅸ B), the solution should be clarified;Colour such as chloroben muddily, and turbidimetrv No. 2, the volume may not be standard solutions. Color opinins oleiferous (according to the law of the people's Pharmacopoeia 2005 appendices Ⅸ a), the solution should be achromatous.pH value add 20 ml potassium chloride solution (1→1000) dispensable 1 ml, according to the determinationd method (PRC Pharmacopoeia 2005 part 2 appendices VI H) determination of the pH value should be 5.0 ~ 7.0.Ultraviolet absorption by oleiferous, with a blank solution for the control. According to the UV-vis spectrophotometry (PRC Pharmacopoeia 2005 part 2 appendices ⅣA), wavelength of 220 ~ 350nm carried out by the scan. 220 ~ 240nm biggest absorption value should 0.08; 241 ~ 350nm biggest absorption valuenot 0.05.Non-volatile matter opinins oleiferous 50ml, reset has been constant heavy handled, dehydrated, shuiyu and eyecoat 105℃ dry to constant weight, with the blank controlled trial. The difference of residue between the text solution and the control fluid does’t exceed 2.5mg.Easy-to-oxide precision measuring 20 ml opinins oleiferous, detrmincd precision by adding potassium permanganate solution (0.002mol/L) MB-amoxycillin and dilute sulfuric acid solution 10.0ml, 3-minute micro-boiling heat, cooling to room temperature. Plus 0.1g potassium iodide, Sodium Thiosulphate solution (tirtate 0.01mol/l) tirtate to light brown, and then add five drops of liquid starch indicates to achromatous after tirtate. At the same time carry out a blank test, oleiferous and blank titration with sodium thiosulfate reference consumption (liquid 0.01mol/L) of not 1.5ml.Ammonium 50ml oleiferous opinins alkline iodisatum multicomponeut 2ml, mercury potassium placed 15 minutes (or, in color, and ammonium chloride solution (opinins 31.5mg no ammoniawith water ammonium chloride and an adequate amount of diluting the dissolution and 1000ml) 4.0ml, 46ml with a blank solution and alkaline potassium iodide mercury multicomponeut 2ml made of reference comparison, not better. (0.00008 per cent)Barium ion * opinins oleiferous in moderation, if necessary, can be concentrated, as far as the determination of metals, believing that it is not in a million.Copper ion * opinins oleiferous in moderation, if necessary, can be concentrated, as far as the determination of metals, believing that it is not in a million.Cadmium * opinins oleiferous just the right amount, necessary, concentration, according to the determination of metal elements shall not be under, over a ten-thousand.Lead ions * opinins oleiferous in moderation, if necessary, can be concentrated, as far as the determination of metals, believing that it is not in a million.Tin oleiferous ion * take just the right amount, necessary, concentration, according to the determination of metal elements shall not be under, over a ten-thousand.Chromium ion * opinins oleiferous in moderation, if necessary, can be concentrated, as far as the determination of metals, believing that it is not in a million.Aluminium ion * opinins oleiferous just the right amount, necessary,concentration, according to the atomic absorption spectrometry (PRC Pharmacopoeia 2005 part 2 appendicesⅣD) determination of wavelength at 309.3nm, and 0.5 shall not be more than one million.Heavy metal precision measuring 20 ml opinins, and oleiferous acetate buffer (pH3.5) 2ml (according to the law of the people's Pharmacopoeia 2005 part 2 appendices Ⅷ H first method), not in a million.Foam test oleiferous 5 ml, situated at the inner diameter of the test tube with stopper (15mm -200mm) and a height of about, severe oscillation in the 3min, the resulting foam disappearing within should be 3min.[Bacterial Endotoxin] (bag) provisions, by adding an empty bag by nongraphite capacity noheat raw water, seaming, placed high pressure steam sterilizer, 121℃±2 ℃in sterilizaion for 30 minutes, inside, alternate, and a trial solution, as far as the bacterial endotoxins (PRC Pharmacopoeia 2005 part 2 appendices Appendix XI E) determination of method 1 gel, it may not have 0.25EU/ml.[biological test] ** provisions cytotoxicity according to cytotoxicity testing method (YBB00012003) the first determination to contain UN-treated for condations media; samples of surface area and condations media is 6cm2/ml, should conform to the requirements.Sensitization to test according to maximization test (YBB00052003), typeⅰreaction should.Intradermic challenge test according to the intradermic stimulation with (YBB00062003) should be no irritation.Acute systemic toxicity test according to acute systemic toxicity testing method (YBB00042003), samples of surface area and condations media is 6cm2/ml, the temperature is 37 ℃± 1 ℃in condations time for 24h ± 2 h should be no acute.systemic toxicity. According to the lysophosphatidyl test (lysophosphatidyl) with YBB00032003, not lysophosphatidyl rate of 5%.[storaging] provisions inner packaging with low density polyethylene bags, medical remains at cleaning, ventilate.Attachment:checking rule1, product testing is divided into parts of all tests and inspections.2. any of the following circumstances, should be based on standards for all surveys.(1) packsproduct(2) product material quality accident back production(3) inspection(4) product after regaining production of3, one of the following by standards nullahs “**” project.(1) inspection(2) product after regaining production4, is registered with the product, the drug packaging materials production, use enterprise in supplies, additives, production process, and so there is no change in the circumstances according to the standards “*” nullahs, “**” project.5. the film look and feel of each volume 2 m; bag appearance, temperature adaptability, Resistance to drop, diaphaneity, nonsoluble microparticulate, puncturation and puncturation for retention and the insertion point is not permealbe, injection point airproof, hanging power, water vapour permeability (bag), according to the sampling procedures part 1: according to receive restricted (AQL) to retrieve country-by-batch sampling plan (GB/T2828.1-2003) to test the quality of the project, qualified (AQL) and check the level of table 3.。

陶瓷涂层的无纺布隔膜- 特性及其优势

陶瓷涂层的无纺布隔膜- 特性及其优势

Ceramic coated nonwoven separator "NanoBaseX"characteristics and its benefitI. Fujita, K. Kato, N. Kasai, H. Watanabe,M.Kato,K. Hyodo, ,Battery Separator GroupMitsubishi Paper Mills Limitede-mail:libsepa@mpm.co.jpThe nonwoven separator with ceramic coating (NanoBaseX) is designed to meet potential demands of the Li-ion battery industry for safer and affordable Li-ion battery. The wet laid nonwoven process is not only suitable for mass production but also advantageous for uniform and thin nonwoven fabric production. The ceramic coating with fine aluminum oxide particle can improve nonwoven's relatively large pore size and wider pore size distribution resulting in sufficient performance as physical barrier between an anode and a cathode. Thanks to excellent heat resistance of PETnonwoven, NanoBaseX shows excellent heat resistance even at 220 degree Celsius promising the higher margin of safety. The mechanical strength has been improved by coating. In addition to it, because of rich contents of ceramic particle, NanoBaseX shows excellent protection against foreign particle. The inherent advantages ofnonwoven, such as electrolyte wettability and ion conductivity can be kept even after the ceramic coating resulting in longer cycle life than that in microporous membrane separator.In this report, we will demonstrate characteristic of this newly developed nonwoven separator and the battery performance with it.AbstractClassification of battery based on its applicationsÿ R eproduced based on Roadmap for secondly battery technology by NEDO ÿ M ay 2010ÿ1002003001,0002,0003,000P o w e r d e n s i t y (W /k g )Gravimetric Energy Density ÿ W h/KgÿCycle life orientedRate orientedEnergy density orientedType $`Type $aType $bType $cType $dType $eType $f 0ûEV0ûE -bike0ûF orklift0ûG olf buggy0ûW elding machine0ûP C0ûM obile phone0ûD igital camera0ûH EV/PHEV 0ûR ailroad vehicle 0ûH EV construction machine 0ûP ower toolUPSBack-up battery system for ATM security system0ûb ack-up system forwireless base stationESSÿ s olar energy 0 windmill,factory and home use ESS)Challenge in micro porous membraneChange to another type of separatormay provide a dramatic performance improvement !Higher safetyBetter performanceÿ Higher capacity0 rate performance0cycle performance0Low temperature performance )Lower Cost1)heat resistance layer coating 2)triple layers ;thicker than 30 ¼m 3)improÿV e d materialÿ h igher MW0 modified MS ÿ4)thermal hysteresis5)three dimensional pore structureÿ d endritic growth control ÿ1)improved pore structure 2)better electrolyte affinity 3)less thickness1)Higher productivityComparison betweenmicro porous membrane and nonwoven micro porous membrane nonwovenAdvantage Disadvantage0ûS mall and uniform pore ÿ 0.06 ¼mÿ0ûH igher mechanical strength0ûT hin and smooth film0ûL ow heat resistance0ûP oor electrolyte permeability0ûC ost0ûH igher heat resistance0ûL ow cost0ûG ood electrolyte permeability0ûH igher thickness0ûL arge and nonuniform pore0ûP oor uniformity0ûL ower mechanical strengthChallenge in nonwoven separator is to realizesmall and uniform pore with thickness of lower than 40 micron meterWet-laid nonwoven manufacturing methodDryingWindingPaper making andDewateringDispersion of short fiberAdvantagesÿ(1) Suitable for thin and uniform nonwoven fabric production (2) Flexibility in the selection of different type of fiber material (3) Established process for mass production at low costGood dispersion of fibers is very important to realize thin and uniform unwoven fabric.poor dispersionKey issue in Wet-laid nonwoven processgood dispersiongeneral outline of NanoBaseFPC2515FPC30180ûMean Pore Size of less than 1 ¼m0ûG ood balance between thinness and Submicron pore sizeÿ b y combination of ultrafine PET and cellulose nano fiber )0ûH eat resistance 0ûE xpected to be solo useNanoBase ÿÿ NB2)OZ-S0ûCeramic coating on NanoBase00ûM ean Pore Size of less than 1 ¼m 0ûS ufficient mechanical strength with submicron pore size 0ûGood heat resistance and heat conductivityNanoBaseXÿ NBX)FPB1510FPB18120ûMean Pore Size ÿ ÿ ¼mÿ^ÿ ÿ ¼mor ÿ ÿ ¼mÿ^ÿ ¼m 0ûN on-woven fabric with ultrafine PET fiber 0ûH eat resistance, high tensile strength 0ûU sed as substrate for additional functional layerNanoBase ÿÿ NB0)Product NameFeaturesNanoBase is series of Mitsubishi's non-woven fabric for battery separator that brings great improvement in battery quality and low cost .Conventional nonwoven NanoBase2NanoBase0top view20kV 10 ¼ÿM×1,000cross-sectionNanoBase2%ÏThe non-woven separator made of PET fiber andnano-size cellulose fiber.%ÏThe mean pore size is less than 1 ¼m at the thickness of less than 40 ¼m.Successful result:(1) Small mean pore size less than 0.5 ¼m(2) Thickness 40 ¼m or less(3) Excellent heat resistance higher than 180 !(4) Excellent wettability and cycle performanceFurther challenges remained:(1) Reduction of absorbed moisture(2) Higher mechanical strengthNanoBaseX(NBX):-Ceramic coating nonwoven separator -Expected improvement :(1) Smaller amount of absorbed moisture contents(2) Higher mechanical strength than NanoBase2PET with ceramic coating<3.0<5.00.88.3551814.52701,6000.903128OZ-S35PropertiesUnitDire-ctionNanoBase0NanoBase2NanoBaseX FPB1510FPC2515FPC3018Basic Wight(Wj ‘Ï)g/m 2101518Thickness(Sš0•)¼m172330Density([Æ^¦)g/cm 30.590.650.60Tensile Strength(_ _5_7^¦)N/m MD 880490700N/mCD 150353490Tensile Elongation(_ _5O80s)%MD 1964%CD2033Porosity(zz–™s‡)%575359Gurley Permeability(ÿv ÿžÿp ÿš•l ^¦)sec/100cc 0.2 4.77.0Mean Pore Size(^sWG ÿŽÿŸÿq _…)¼m4.60.60.5Heat Resistance(€ q±`')%MD <5.0<3.0<3.0< after 180! / 30mini. >%CD<5.0<3.0<3.0Composition(}Db )PETPETCellulosePET CelluloseCharacteristics of NanoBaseSurface SEM imageCross section SEM imageSEM observation of NanoBase-Xanodecathodecoated sidepositive electrode negativeelectrodeComparison of surface roughness of nonwoven separatortraditional nonwoven NanoBase2NanoBaseXPouch cell setupandbattery performance measurement30mAhtheoretical capacityof single cell1M LiPF 6/EC:DEC (3:7)electrolyte MCMBÿ 30mm ×50mmÿ negative electrodeLiMn 2O 4ÿ 30mm ×50mmÿ positive electrode Experimental condition ÿCharge ÿ 1C, 4.2V, cc-cvÿ 1/10ÿ#cut off)Discharge ÿ 0.2, 0.5, 1, 3, 5C,2.8V,cc;Conditioning ÿ R ate performance of cell was measured after 3 cycle at ÿ ÿ#. ;PP membrane : mono layer PP , 25 ¼m thickness, basic weight 14.3g/m20air permeability 570sec/100mlCelgard24002.52.72.93.13.33.53.73.94.14.30510152025e>–û[¹‘Ï(mAh)–ûW 'ÿÿ6ÿ1C2C3C5Coz-30S(8th-44)2.52.72.93.13.33.53.73.94.14.30510152025e>–û[¹‘Ï(mAh)–ûW 'ÿÿ6ÿ1C2C3C5CComparison of rate property between micro porous membrane and NanoBaseXTest Condition Charge ÿ 1C, 4.2V, cc-cv(1/10C cut off)Discharge ÿ 0.2C, 0.5C, 1C, 3C, 5C, 2.8V cut offPP monolayer 25 ¼mNanoBaseX (OZ-S30)Cycle performance of NanoBaseX 70758085909510020406080100Cycle NumberD i s c h a r g e C a p a c i t y ÿÿÿPP membrane (25 ¼m)NanoBase-X (35 ¼m)Cycle conditionCharge at 1C from 2.8V to 4.2VDischarge at 1C from 4.2V to 2.8VComparison of hole shape by a needle with Æ1mm peak.Dry process25 ¼mPP single layer Wet-laid nonwoven30 ¼mNanoBase2Ceramic coatingnonwoven separatorNanoBaseXNB2 and NBX have less damage by a hole-piercing than pp membrane.Wettability of separator material to various electrolyte solvent Penetration degree of solventinto a separator was observedafter one minute of solvent drop.Excellent Wettability0.511.522.50246time (min)H e i g h t ÿÿCÿM ÿÿ.ÿ"ÿ ÿÿÿÿÿ+ÿÿ#ÿ4ÿ&ÿÿÿÿÿ#ÿE ÿL ÿG ÿA ÿRÿD PP monolayer 25 ¼m NanoBaseXNanoBase210mm0»0Ñ0ì0ü0¿rG20mmX 200mm 10mmPCPC0»0Ñ0ì0ü0¿0nT8m²• ^¦n,[šL /cmExperimental methodseparator slip 20mmx200mmElectrolyte absorption property of NanoBaseXTime (min)7PP/PE/PP Dry process 18¼m 8PPDry process 25 ¼m 16NBX Nonwoven 35¼mÿ,ÿI ÿ0ÿ&ÿ /ÿ%ÿ#ÿ ÿ$ÿ%ÿ#ÿ ÿÿÿÿ(g /10 micron0ûm 2)OÝm²s ‡0n n,[še¹lÕ0»0Ñ0ì0ü0¿0’–û‰ãm²0k 1m i n •“mx m²0Y 0‹Drain off excess electrolyte byhanging separator for 1 min.e l e c t r o l y t es e p a r a t o rs e p a r a t o rNormalized Electrolyte Absorption (NEA)of separatorSoaking separator in electrolyte for 1 min.Measurement method of NEASeparatorNEAExcellent electrolyte retention abilityNanoBaseXPP microporous membrane(25 ¼m+2 ¼m ceramic coating on both side)5cmÿX 12cm separator slip is hooked at both ends with 5g load on its center,then the specimen was stored at 220! environment.30minutes later25seconds laterHeat resistance of N anoBsse X$`NanoBaseX$a30 ¼mPPÿ dual-side ceramic coating $b27 ¼mPPÿ single-sideceramic coating $c25 ¼mPPÿ dual-side ceramic coating$`$a$b $c250! 0 30minNanoBaseX could be unfolded after the test.heated up to 250! for 30miniteus in crucibleHeat resistance of N anoBsse Xÿ ÿ 0!300!270! 500!600!250!420!520!250!420!PETÿ CellulosePPPETCelluloseThermal decomposition of separator material under oxygen-free condition-12.0-10.0-8.0-6.0-4.0-2.00.02.0246810Time (min)A m o u n t o f e l i m i n a t e d w a t e (%)100200300400500600700T e m p e r a t u r e (!)$` N a n o B a s e X $a A l l c l l u l o s e $b c e l g a r d 240T e m p .(! )T e m p e r a t u r e$a$b $`TGA analysis of release process of adsorbed water.ÿ ÿ ÿThe rate of temperature elevation was 2.0! /min.0.01.02.03.04.05.06.07.08.09.010.0020406080100Time 0 (min)A m o u n t o f w a t e r a d s o r p t i o n (ÿ)N a n o B a s e X A l l c e l l u l o s eMoisture re-adsorption behavior on the cellulose contain nonwoven separator.Each separator was dried at 140 ! for 5 hours first.Then the weight change was measured as a separator was placed on an electronic balance under the condition of 23 ! and 50 %.Two different opinion about the shutdown function of separator (1) Shutdown function is still very important.Although it is not perfect solution for large power battery insome conditions, shutdown is still best way and indispensable.(2) There is not strong reason to insist shutdown functionfor large power battery.Then, heat resistance of separator can be alternativestrategy against shutdown function.Delivery of separator and storageAssembly of battery and drying of cellvacuum dryingStorage at room temperature /open humiditydry room strageDry roomvacuum dryingelectrolyte fillingelectrolyte fillingelectrolyte fillingÿ A)(B)(C)Battery assembly and heat drying processDry roomDry roombattery assemblybattery assemblybattery assemblydry room strageDried at 80!Dried at 110!Benefit of higher cell drying temperatureLiMn2O4/ graphite laminated cellCapacity retention of 20Ah battery after cycle test at room temperature8,00012,00016,00020,00012014016018011,0011,2011,401Cycle numberD i s c h a r g e C a p a c i t y (m A h )NanoBaseXafter 1,450 cycle test retantion rate :74%PP/PE micro porous membraneafter 1,000 cysle test retention rate :46%LiMn2O4/ graphite laminated cellNail penetration test on 10Ahbattery with NanoBaseX.0û2 cell were tested resulting in no fire for both cells0ûS urface temperature of the cell stayed at below 100! after a nail penetration 0ûN o leakage of electrolyte through the hole was recognized .0ûN o remarkable expansion of the hole was found in the disassembled cell.LiMn2O4/ graphite laminated cell<test condition>nail diameter : 4.5 mmpenetration speed : 20 mm/sNail penetration for first 3 cells of 5 series of10 Ah battery0ûinflation of lamination at first top cell followed by gas releasing0ûb ut no fire was observedModel estimation of foreign particle resistanceof battery separator<Experiment Setup>model foreign object : short copper wire(Load)0.2mm5mmbrass cylinderplate electrodepressure censorSeparator with model foreign objecton the surface05001,0001,5002,0002,5001020304050Separator thickness ( µm )W i t h s t a n d l o a d ( N0)NB2 separatorPaper separatorMicroporous membraneNanoBaseX<Result>Model estimation of foreign particle resistanceof battery separatorNanoBaseX has more toleranceto foreign particles than the other separators.Estimation of foreign particle resistanceÿ2ÿ : merits in battery properties0ûHeat resistance ÿ =>for higher safetyÿ0ûG ood electrolyte absorption ability ÿ =>long cycle lifeÿÿ 3ÿ : merit in the manufacturing process 0ûH igher speed in electrolyte absorptionÿ =>reduction of process time ÿ0ûL ow contents of adsorbed water and excellent mechanical strengthÿ 1ÿ : achievement in this study0ûC eramic coated nonwoven separator (NanoBaseX) hasmean pore size of less than 1 ¼m.SUMMERYBattery Separator Group // Mitsubishi Paper Mills Ltd.Ryogoku City Core,2-10-14 Ryogoku, Sumida-ku, Tokyo 130-0026, JAPANTEL +81-3-5600-1471// FAX +81-3-5600-14190 130-0026gqN¬•ýX¨u0S:N!Vý2-10-14 N!Vý0·0Æ0£0³0¢N ƒñˆý} h*_ O y>j_€ýgP N‹im •èBSN‹im [¤TEL:03-5600-1471 //FAX:03-5600-1419Thank you for your attention !libsepa@mpm.co.jp。

Oxide particles with controlled color characterist

Oxide particles with controlled color characterist

专利名称:Oxide particles with controlled colorcharacteristics, and coating composition orfilm-like composition containing said oxideparticles发明人:Masakazu Enomura,Daisuke Honda申请号:US16306098申请日:20170602公开号:US11033960B2公开日:20210615专利内容由知识产权出版社提供专利附图:摘要:With an aim to provide an oxide particle with controlled color characteristics,the present invention provides a method for producing an oxide particle, wherein the color characteristics of the oxide particle are controlled by controlling a M-OH bond/M-O bond ratio, which is a ratio of a M-OH bond between an element (M) and a hydroxide group (OH) to a ratio of an M-O bond between the element (M) and oxygen (O), where the element (M) is one or plural different elements other than oxygen or hydrogen included in the oxide particle selected from metal oxide particles and semi-metal oxide particles. According to the present invention, by controlling the M-OH bond/M-O bond ratio of the metal oxide particle or the semi-metal oxide particle, the oxide particle with controlled color characteristics of any of reflectance, transmittance, molar absorption coefficient, hue, and saturation can be provided.申请人:M. Technique Co., Ltd.地址:Izumi JP国籍:JP代理机构:Birch, Stewart, Kolasch & Birch, LLP更多信息请下载全文后查看。

大气污染英语

大气污染英语

2, floating particle shape material (SPM)
Material is in air zooplankton floating substance, is one of the atmospheric pollution of pollution. In addition, the smoke from factory car emissions, outside of man-made factors such as volcano, forest disasters occur naturally natural disaster is also one of the reasons it. Floating particle shape material is harmful to human health of atmospheric pollution substances, can cause respiratory patients rise of mortality.
大气污染的状况 随着经济发展,也造成的严重的大气污染。各个国家也开始关注了这个问题,并采取了有 关措施。有的国家制定了关于大气污染的规定和规则,并且得到了大幅度的改善。但我们 面临着新的问题。因汽车的增加,使用汽车移动的次数的增多,废气引起的大气污染在加 深。 改善大气污染 近年来,各个国家为改善大气污染在采取各项措施。但围绕大气污染,我们还有很多问题 未能得到解决,离完全的改善还有很大的距离。世界在关注由大气污染引起的全球变暖问 题。要是我们从日常生活中稍微注意以下,会对改善大气污染有帮助的。下面说一下我们 能做到的一些节能措施。
是造成大气污染原因的代表性物质。造成氮氧化物的原因是锅炉,汽车等排出的烟。这种 烟燃烧后作为一氧化氮排到空气中,在空气中成为二氧化氮。一氧化氮是造成酸雨的原因。

纳米颗粒分散技术研究进展_分散方法与机理_1_马文有

纳米颗粒分散技术研究进展_分散方法与机理_1_马文有

收稿日期:2001-07-03,修回日期:2002-01-30基金项目:中国博士后科学基金资助项目,黑龙江省博士后科研启动基金和黑龙江省自然科学基金资助项目。

纳 米 颗 粒 分 散 技 术 研 究 进 展———分散方法与机理(1)马文有1,田 秋1,曹茂盛1,2,高正娟1,陈玉金1,朱 静2(1.哈尔滨工程大学材料科学与工程系,黑龙江哈尔滨 150001;2.清华大学材料科学与工程研究院,北京 100084)摘 要:对纳米颗粒在介质中的分散进行理论分析,同时对纳米颗粒在不同介质中的分散进行技术方法论证,从而为纳主颗粒的应用奠定基础。

关键词:纳米颗粒;分散;团聚体;分散剂中图分类号:T B383 文献标识码:A 文章编号:1008-5548(2002)03-0029-04Progress on Dispersion Technologyof Micron /nano -meter Particles———Dispersion Method and Mechanism (1)MA Wen -you 1,TI AN Qiu 1,CAO Mao -sheng 1,2,GAO Zheng -juan 1,CHEN Y u -jin 1,ZHU Jing 2(1.Department of M aterial Science and Engineering ,Harbin Engineering University ,Harbin 150001;2.School of M aterial S cience and Engineer -ing ,Tsinghua Univers ity ,Beijing 100084,China )A bstract :T he dispersio n theory of ultra -fine particle in matrix w ere studied ,and the dispersio n of particle in different media w ere investigated in technologies .T he application of ultra -fine particle are based on these .Key words :ultra -fine particle ;dispersion ;agg regate ;dispersant纳米颗粒通常指尺度在1~100nm 之间的微小固体颗粒,属于微观粒子和宏观物体交界的过渡区域,具有一系列新的物理、化学特性[1~3]。

大气细粒子阳离子表面有机活性物质分析方法的优化

大气细粒子阳离子表面有机活性物质分析方法的优化

大气细粒子阳离子表面有机活性物质分析方法的优化于彦婷;李红;张庆竹;白英臣;张正正;韩静磊;付建平【摘要】The optimization of the analytical conditions of Disulfine Blue Spectrophotometry for the characterization of surface organic active substances in fine particles was carried out from two aspects of the pretreatment and the analytical parameters,respectively.In addition,the optimized method was applied to measurement of the mass concentrations of the surface organic active substances in fine particle samples collected in Beijing.The results showed that:(1)The optimal frequency,initial bath temperature and extraction time for ultrasonic extraction were 40 Hz,30 ℃ and 30 min,respectively.(2) The optimal amount of chromogenic reagent was 1.29 mg of disulfine blue(0.5 mL 2.58 g/L of disulfine blue solution);the optimal standing time was controlled in the range of 30 min.;and the optimal amount of the auxiliary reagents were 3 mL of acetate buffer (pH =5).The determined average value for the concentration of the cationic surface organic active substances in fine particles was 12.87 pmol/m3,acquired by using the optimal experimental schemes for the Disulfine Blue Spectrophotometry,which was 1/10 of the anionic surface organic active substances.The concentration level of Beijing was higher than the concentrations levels of Norwich and Edinburgh in the United Kingdom,but was lower than the concentrations levels of Kuala Lumpur in Malaysia.%分别从样品前处理和分析测定两方面对大气细粒子中阳离子表面有机活性物质的二硫蓝分光光度分析法进行优化,并采用优化方案对北京市大气细粒子进行了分析.结果表明:①优化的最佳样品前处理条件中超声提取频率为40 Hz、初始水浴温度为30℃、超声提取时间为30 min;②优化的最佳分析测定条件中二硫蓝使用量为1.29 mg(0.5 mL的2.58 g/L二硫蓝溶液)、最佳静置时间为30 min、醋酸盐缓冲液(pH为5)最佳使用量为3 m L.二硫蓝分光光度法优化方案标准曲线的R2为0.998 6,线性较好.采用该优化方案测得的北京市大气细粒子中阳离子表面有机活性物质浓度的平均值为12.87 pmol/m3,其浓度水平数量级是阴离子表面有机活性物质的1/10,其浓度水平高于英国诺威奇与爱丁堡,但低于马来西亚吉隆坡.【期刊名称】《环境科学研究》【年(卷),期】2017(030)003【总页数】6页(P444-449)【关键词】大气细粒子;阳离子表面有机活性物质;分光光度法;二硫蓝;方法应用【作者】于彦婷;李红;张庆竹;白英臣;张正正;韩静磊;付建平【作者单位】濮阳市环境保护科学研究所,河南濮阳457000;中国环境科学研究院,环境基准与风险评估国家重点实验室,北京 100012;中国环境科学研究院,环境基准与风险评估国家重点实验室,北京 100012;大气环境与装备技术协调创新中心,江苏南京 210044;山东大学环境研究院,山东济南250100;中国环境科学研究院,环境基准与风险评估国家重点实验室,北京 100012;中国环境科学研究院,环境基准与风险评估国家重点实验室,北京 100012;贵州大学资源与环境工程学院,贵州贵阳550025;环境保护部华南环境科学研究所,广东广州510655;环境保护部华南环境科学研究所,广东广州510655【正文语种】中文【中图分类】X705大气细粒子表面有机活性物质存在于大气细粒子表面,通常由高含氧量水溶性有机物、脂肪族碳氢化合物及其两亲衍生物等物质组成[1-6].这类物质自然来源主要是海洋飞沫[4,7-8],人为污染源主要包括柴油等燃料的燃烧、生物质燃烧和机动车尾气以及大气环境二次反应等[1,9-10].按照亲水基团带电特性分类,大气细粒子表面有机活性物质可以分为阳离子表面有机活性物质和阴离子表面有机活性物质[11-12].虽然大气细粒子中阳离子表面有机活性物质的含量通常低于阴离子表面有机活性物质的含量[6,13],但是由于阳离子表面有机活性物质分子一端为带正电的基团,主要为有机胺,易与表面带负电的物质结合,或在酸性介质中起乳化、分散等作用,因此,阳离子表面有机活性物质在大气细粒子表面的附着会影响大气细粒子表面辐射特性与表面张力等表面性质[11-12],进而对大气能见度、地面辐射强度等造成影响[14-21];同时表面活性物质随大气细粒子进入人体后会引发人体呼吸系统疾病,以及造成眼睛的不适症状,对人体健康有较大的影响[22-24].目前国际上已经开展了关于大气细粒子中阳离子表面活性物质的研究[1,6-7],而国内鲜见报道.国际上已有的大气细粒子阳离子表面有机活性物质的分析方法是二硫蓝分光光度法,但尚未形成规范的通用分析方案文本.我国大气环境颗粒物具有高浓度与高氧化性的特征,大气复合污染特性明显,大气细粒子的化学组成复杂等特点[25-26],因此,在进行大气细粒子中阳离子表面有机活性物质分析时应先对其试验参数进行优化.综上,该研究在水中表面活性剂测定方法[27-31]的基础上,参考国内外学者的大气气溶胶阳离子表面有机活性物质分析方法[6,10,13,32-33],从样品前处理和分析测定两方面对二硫蓝分光光度法分别进行了方案优化,以期提出适用于我国大气细粒子阳离子表面有机活性物质分析试验方案.1.1 试验原理阳离子表面有机活性物质分子量一般在5 000 Da以下[1],其分子一端为亲水性基团,一端为亲油性式中:V为样品提取液体积,L;Vn为标准状况下的采样体积,m3;N为试验所用滤膜面积与采样滤膜面积的百分比,%.1.2 设计思路按照图1分别对二硫蓝分光光度法的样品前处理、分析测定条件参数进行了优化.通过正交试验设计确定最佳参数,并采用优化试验方案,建立标准曲基团[11-12].由于阳离子表面有机活性物质含有亲水性基团,易溶于水,在一定温度范围,温度越高,水溶解度越大.阳离子表面有机活性物质水解后,亲水基带正电荷,可与带负电荷的物质发生反应,反应物具有亲油性基团,在水中的溶解性较小,易溶于有机溶剂,因此,水相中阳离子表面有机活性物质的分析[27-29,31,34]常选用阴离子显色剂染色,以分光光度法定量分析样品中阳离子表面有机活性物质的浓度.参考国内外研究[6,10,13,32-33],可通过超声提取的方式将附着在采样滤膜上的大气细粒子中水溶性物质溶解于水,水中的阳离子表面有机活性物质与阴离子显色剂二硫蓝发生缔合反应,生成疏水性有机缔合物DBAS(二硫蓝活性物质).根据相似相容原理,DBAS易被氯仿萃取,在波长628 nm下DBAS氯仿溶液的吸光度达到最大值[6,13,31].根据Lambert-Beer定律,选择一种常见的阳离子表面有机活性物质为参比物作标准曲线,以得到样品提取液中阳离子表面有机活性物质的浓度.根据国内外文献报道[6,13,31],可选择十四烷基二甲基苄基氯化铵(常见阳离子表面活性物质)作为参比物.样品提取液中阳离子表面有机活性物质浓度c(pmol L)计算公式如下:A=lg(1 T)=kbc式中:A为吸光度;k为光被吸收的比例系数,L (pmol·cm);b为吸收层厚度,即盛放样品的液槽的透光厚度,cm;c为样品提取液中阳离子表面有机活性物质浓度,pmol L.通过上式得到样品提取液中阳离子表面有机活性物质浓度c后,可通过下式换算出大气细粒子中阳离子表面有机活性物质的浓度c0(pmol m3):线,进行优化试验方案的初步应用.试验所用样品提取液与萃取剂体积比均为20∶1.试验所用样品均为随机抽取(样品编号为Nx,x=1,2,…,n),所用试剂均为分析纯,试验用水均为超纯水(25℃,18.18 MΩ·cm).1.3 样品采集2013年3月13―21日,将大流量大气细粒子采样仪(武汉天虹仪表有限责任公司,TH-1000CⅡ型)设在中国环境科学研究院大气楼楼顶(116°25'E、40°02'N),距地面约15 m高,周围无局地污染源.采用石英滤膜(美国Whatman公司,20.3 cm×25.4 cm)采集大气细粒子样品,采样时间设定为09:00—20:30,21:00—次日08:30).采样滤膜在使用前需经高温处理后,称重,采样完成后密封防潮冷冻保存至分析.1.4 试验步骤1.4.1 样品前处理条件的优化试验将一定面积的采样滤膜剪碎,完全浸于超纯水中,利用超声波清洗器(昆山禾创超声仪器有限公司,KH5200DV)进行超声提取,超声提取参数按照表1设定.采用聚碳酸酯膜(Millipore,孔径0.4 μm)对超声提取后的混合液进行真空抽滤(该方法参考国内外相关研究[6,10,13,32-33,35])处理,滤液定容至100 mL,得到样品提取液.采用二硫蓝分光光度法对样品提取液进行分析,测定不同超声提取条件下的吸光度,确定最佳超声提取条件.1.4.2 分析测定条件的优化试验在二硫蓝的使用量分别为0.645、1.29、1.935和2.58 mg下,测定DBAS吸光度,以确定其最佳使用量.静置时间设为15、30、45和60 min,测定4种情况下DBAS吸光度,以确定二硫蓝分光光度法的最佳静置时间.在缓冲液使用量分别为1、2、3和4 mL的情况下测定DBAS吸光度,确定最佳使用量.2.1 样品前处理优化方案2.1.1 最佳超声提取频率由图2(a)可见,超声提取频率越大,DBAS吸光度越大.究其原因,是当超声提取频率较小时,阳离子表面有机活性物质不能完全进入水相中,其提取效率不高,DBAS吸光度较小.因此,为确保阳离子表面有机活性物质的提取效率,应选择超声波清洗器的最大工作频率(40 Hz)为最佳超声提取频率.2.1.2 最佳初始水浴温度如图2(b)所示,初始水浴温度为30℃时,DBAS吸光度最大.研究表明,初始水浴温度越低,阳离子表面有机活性物质的溶解度越低,采样滤膜上的阳离子表面有机活性物质只有很少的量进入水中,相比而言,水相中二硫蓝过量,易发生高配位反应[32-33],对DBAS吸光度的测定造成干扰.初始水浴温度过高,促进了提取过程中阳离子表面有机活性物质的挥发或分解,并且在超声提取过程中因超声振动过程有热能产生,导致阳离子表面有机活性物质提取效率降低,造成DBAS吸光度变小.综上,最佳初始水浴温度为30℃.2.1.3 最佳超声提取时间如图2(c)所示,超声提取时间在20、30 min时,DBAS吸光度变化不大.但超声提取时间过短,阳离子表面有机活性物质的提取效率较小,因此,阳离子表面有机活性物质在水相中的浓度不足,易为二硫蓝在分子量较大的物质上的附着创造条件[32-33],对DBAS吸光度的测定造成干扰.超声提取时间过长,超声提取产生的能量易促进阳离子表面有机活性物质分解,其分解物也可能与二硫蓝发生反应,干扰DBAS吸光度的测定.因此,选择30 min为最佳超声提取时间较为合适.2.2 分析测定条件2.2.1 最佳显色剂使用量二硫蓝使用量为1.29 mg时,DBAS吸光度达到一个较大值.一方面,二硫蓝使用量不足1.29 mg时,不足以保障样品溶液中的阳离子表面有机活性物质全部参与缔合反应.另一方面,当二硫蓝使用量超过1.29 mg时,过量的二硫蓝与阳离子表面有机活性物质发生高配位缔合反应,生成的高配位缔合物对DBAS吸光度的测定造成了干扰.此外,二硫蓝可能附着在分子量较大物质的表面[32-33],对DBAS吸光度的测定造成更大的干扰〔见图3(a)〕.因此,二硫蓝分光光度法应严格控制二硫蓝的使用量,选择1.29 mg的二硫蓝使用量较适宜.2.2.2 最佳静置时间如图3(b)所示,DBAS吸光度在静置时间为30 min时达到最大值.静置时间过短,水相与氯仿相未达到平衡状态,不宜于DBAS吸光度的测定.当静置时间超过30 min时,少量DBAS被紫外光破坏[1],导致DBAS吸光度的测定值低于实测值.静置时间过长,水相与氯仿相分界层中的二硫蓝吸附在了氯仿相分子量较大的物质上,破坏了两相分界层的平衡,水相中的二硫蓝不断进入氯仿相,严重干扰了DBAS吸光度的测定结果.因此,最佳静置时间应为30 min.2.2.3 最佳缓冲液使用量由图3(c)可见,DBAS吸光度在缓冲液使用量为3 mL时达到最大值.缓冲液使用量较少,无法为缔合反应提供所需的pH条件,反应未完全发生,DBAS吸光度的测定结果偏低;而缓冲液使用量过多,可能会促进二硫蓝与阳离子表面活性物质的高配位反应.因此,缓冲液的最佳使用量为3 mL.2.3 标准曲线如图4所示,二硫蓝分光光度法标准曲线的R2达到0.998 6,相关系数较好,线性响应关系较好,可以用于大气细粒子中阳离子表面有机活性物质的测定.3.1 样品分析北京市大气细粒子中阳离子表面有机活性物质的浓度平均值为12.87 pmol m3,其浓度变化趋势与大气细粒子的质量浓度基本相同(见图5).3月16—17日,大气细粒子中阳离子表面有机活性物质浓度不断升高,在17日晚达到最高值(14.72 pmol m3);3 月18日白天大气细粒子中阳离子表面有机活性物质浓度急剧降低至10.88 pmol m3,其原因为18日有四五级大风,有利于大气颗粒物的扩散;18日晚,风力逐渐降低,气象条件趋于稳定,大气细粒子中阳离子表面有机活性物质浓度再次呈现升高趋势.与北京市大气细粒子中阴离子表面有机活性物质浓度(2013年日平均值504.07 pmol m3)[32]相比,阳离子表面有机活性物质的浓度数量级是阴离子表面有机活性物质浓度数量级的1 10.与国外城市相比,北京市的浓度高于英国诺威奇(夏季7.6 pmol m3、秋季5.0 pmol m3、冬季4.1 pmol m3)与爱丁堡(夏季11.7 pmol m3)[6],低于马来西亚吉隆坡(春季57.28 pmol m3、夏季57.95 pmol m3、秋季 66.41 pmol m3、冬季28.16 pmol m3)[13].3.2 优化方案存在的问题由于目前国内外尚无大气细粒子阳离子表面有机活性物质的标准样品,因此本优化方案在优化过程中未能探讨仪器检测限与方法检测限,未能进行回收率试验.将在今后的研究中继续关注此方面的问题,一旦获得大气细粒子阳离子表面有机活性物质的标准样品,将开展补充实验,以研究本优化方案的仪器检测限、方法检测限及回收率.由于本研究是针对国外研究方法进行方案优化,目前的上述缺陷不影响该方案的可靠性与应用前景.a)在二硫蓝分光光度法测定大气细粒子阳离子表面有机活性物质浓度的试验中,样品前处理的最佳参数如下:初始水浴温度为30℃,超声提取频率为40 Hz,超声提取时间以30 min为宜.b)向100 mL样品提取液中加入3 mL的醋酸盐缓冲液(pH=5)有利于阳离子表面有机活性物质与二硫蓝的配位反应,2.58 g L二硫蓝溶液的最佳使用量为0.5 mL(即二硫蓝使用量1.29 mg),氯仿萃取样品时静置30 min为宜.c)二硫蓝分光光度法优化方案的标准曲线R2为0.998 6,线性较好,可以用于大气细粒子中阳离子表面有机活性物质浓度的测定与污染特征研究.d)二硫蓝分光光度法优化方案测定的北京市大气细粒子中阳离子表面有机活性物质的浓度为10.88~14.72 pmol m3,其浓度水平高于英国诺威奇与爱丁堡,低于马来西亚吉隆坡.【相关文献】[1] LATIF M T,BRIMBLECOMBE P.Average molecular weight of surfactants in aerosols [J].Atmospheric Chemistry and Physics Discussions,2007,7:13805-13838.[2] PETERSON R E,TYLER B J.Analysis of organic and inorganic species on the surface of atmospheric aerosol using time-of-flight secondary ion mass spectrometry(TOF-SIMS)[J].Atmosphere Environment,2002,36:6041-6049.[3] TERVAHATTU H,JUHANOJA J,VAIDA V,et al.Fatty acids on continental sulfate aerosol particles[J].Journal of Geophysical Research,2005,110:D6207.[4] TERVAHATTU H.Identification of an organic coating on marine aerosolparticles by TOF-SIMS[J].JournalofGeophysical Research,2002,107(D16):4319.[5] GILMAN J B,ELIASON T L,FAST A,et al.Selectivity and stability of organic films at the air-aqueous interface[J].Journal of Colloid and Interface Science,2004,280:234-243.[6] LATIF M T,BRIMBLECOMBE P.Surfactants in atmospheric aerosols [J].Environmental Science&Technology,2004,38:6501-6506.[7] BECAGLI B,GHEDINI C,PEETERS S,et al.MBAS(methylene blue active substances)and LAS(linear alkylbenzene sulphonates) in Mediterranean coastal aerosols:Sources and transport processes [J].Atmospheric Environment,2011,45:6788-6801.[8] BLANCHARD D C.Sea-to-air transport of surface active material [J].Science,1964,146(3642):396-397.[9] LIN P,HUANG X,HE L,et al.Abundance and size distribution of HULIS in ambient aerosols at a rural site in South China[J].Journal of Aerosol Science,2010,41:74-87.[10]吴水平,闫景明,张萌萌,等.大气气溶胶中水溶性有机物的紫外-可见及表面活性特征[J].过程工程学报,2009,9(S2): 258-262.WU Shuiping,YAN Jingming,ZHANG Mengmeng,et al.UV-VIS and surfactantcharacteristicsofwater-soluble compoundsin atmospheric aerosol[J].The Chinese Journal of Process Engineering,2009,9(S2):258-262.[11]姜兆华,孙德智,邵光杰.应用表面化学[M].哈尔滨:哈尔滨工业大学出版社,2009:231-256.[12]沈钟,赵振国,康万利.胶体与表面化学[M].4版.北京:化学工业出版社,2012:109-114.[13] WAHID N B A,LATIF M T,SURATMAN S.Composition and source apportionment of surfactants in atmospheric aerosols of urban and semi-urban areas in Malaysia[J].Chemosphere,2013,91: 1508-1516.[14] FACCHINI M C,DECESARI S,MIRCEA M,et al.Surface tension of atmospheric wet aerosol and cloud fog droplets in relation to their organic carbon content and chemical composition[J].Atmospheric Environment,2000,34:4853-4857.[15] SCHWIER A,MITROO D,MCNEILL F.Surface tension depression by low-solubility organic material in aqueous aerosol mimics[J].Atmospheric Environment,2012,54:490-495.[16]刘新罡,张远航.大气气溶胶吸湿性质国内外研究进展[J].气候与环境研究,2010,15(6):808-816.LIU Xingang,ZHANG Yuanhang.Advances in research on aerosol hygroscopic properties at home and abroad[J].Climatic and Environmental Research,2010,15(6):808-816.[17]叶兴南,陈建民.灰霾与颗粒物吸湿增长[J].自然杂志,2013,35(5):337-341.YE Xingnan,CHEN Jianmin.Haze and hygroscopic growth[J].Chinese Journal of Nature,2013,35(5):337-341.[18] ASA-AWUKU A,SOROOSHIAN A,FLAGAN R,et al.CCN properties of organic aerosol collected below and within marine stratocumulus clouds near monterey,California[J].Atmosphere,2015,6(11):1590-1607.[19] ROSENFELD D,SHERWOOD S,WOOD R,et al.Climate effects of aerosol-cloud interactions[J].Science,2014,343(6169): 379-380.[20] GERARD V,NOZIERE B,BADUEL C.Seasonal evolution of anionic,cationic and non-ionic surfactant concentrations in coastal aerosols from Asko,Sweden[J].Geophysical Research Abstracts,2015,17:851.[21] NOZIRE B,BADUEL C,JAFFREZO J.The dynamic surface tension of atmospheric aerosol surfactants reveals new aspects of cloud activation[J].Nature Communications,2014,5(2):3335.[22] CSERHATI T,FORGACS E,OROS G.Biological activity and environmentalimpactofanionic surfactants[J].Environment International,2002,28:337-348.[23] MOSHAMMER H,NEUBERGER M.Theactivesurfaceof suspended particles as a predictor of lung function and pulmonary symptoms in Austrian school children [J].Atmospheric Environment,2003,37:1737-1744.[24] ZIMMER A T,BARON P A,BISWAS P.The influence of operating parameters on number-weighted aerosol size distribution generated from a gas metal arc welding process[J].Aerosol Science,2002,33:519-531.[25]李培,王新,柴发合,等.我国城市大气污染控制综合管理对策[J].环境与可持续发展,2011(5):8-14.LI Pei,WANG Xin,CHAI Fahe,et al.Recommendation and suggestionon policyand measuresforairpollution control integrated management in China [J].Environment and Sustainable Development,2011(5):8-14.[26]杨春雪,阚海东,陈仁杰.我国大气细颗粒物水平、成分、来源及污染特征[J].环境与健康杂志,2011,28(8):735-738.YANG Chunxue,KAN Haidong,CHEN Renjie.Research on level,composition,source and pollution characteristics of ambient fine particles in China[J].Journal of Environment and Health,2011,28(8):735-738.[27]施周,王湘,许光眉,等.测定环境水中阳离子表面活性剂方法的改进[J].日用化学工业,2006,36(5):324-327.SHI Zhou,WANG Xiang,XU Guangmei,et al.Improvement method for determination of cationic surfactants in environmental water samples [J].China Surfactant Detergent& Cosmetics,2006,36 (5):324-327.[28]何晓玲.分光光度法测定水中微量阳离子表面活性剂[J].日用化学工业,2013,43(3):232-234.HE Xiaoling.Determination of cationic surfactants in water by spectrophotometry[J].China Surfactant Detergent&Cosmetics,2013,43(3):232-234.[29]赵书林,李舒婷,谭斌.工业废水中阳离子表面活性剂的分光光度法测定[J].分析科学学报,2003,19(3):240-242.ZHAO Shulin,LI Shuting,TAN Bin.Spectrophotometric determination of cationic surfactants in industrial waste water[J].Journal of Analytical Science,2003,19(3):240-242.[30]谭蓉,秦宗会.曙红亚甲基蓝分光光度法测定水中阳离子表面活性剂[J].日用化学工业,2010,40(2):144-147.TAN Rong,QIN Zonghui.Spectrophotom etric method for determination content of cationic surfactants with eosin methylene blue[J].China Surfactant Detergent&Cosmetics,2010,40(2): 144-147.[31]李涛,魏福祥.水体中阳离子表面活性剂测定方法的研究进展[J].河北工业科技,2006,23(5):321-324.LI Tao,WEI Fuxiang.Progress in research on determination of cationic surfactants in water[J].Hebei Journal of Industrial Science and Technology,2006,23(5):321-324.[32]于彦婷.北京市大气细粒子阴离子表面有机活性物质的污染特征与来源识别[D].济南:山东大学,2014:10-20.[33]于彦婷,李红,张庆竹,等.大气细粒子中阴离子表面有机活性物质分析方法的优化[J].环境科学研究,2014,27(6): 575-581.YU Yanting,LI Hong,ZHANG Qingzhu,et al.Optimization study on the analytical methods for anionic surface organic active substances in atmospheric fine particles[J].Research of Environmental Sciences,2014,27(6):575-581.[34]秦宗会,谭蓉,胡武洪.依文思蓝光度法测定水样中阳离子表面活性剂[J].分析科学学报,2007,23(2):209-212.QIN Zonghui,TAN Rong,HU Wuhong.Spectrophotometric determination of cationic surfactants in water with evans blue[J].Journal of Analytical Science,2007,23(2):209-212.[35] ROSLAN R N,HANIF N M,OTHMAN M R,et al.Surfactants in the sea-surface microlayer and their contribution to atmospheric aerosols around coastal areas of the Malaysian peninsula[J].Marine Pollution Bulletin,2010,60:1584-1590.。

高频介入式超声体模及其应用研究

高频介入式超声体模及其应用研究

高频介入式超声体模及其应用研究刘鹏波;简小华;韩志乐;崔崤峣;轩辕凯【摘要】随着体内高频超声成像技术的发展及设备的不断更新,其安全性与可靠性的研究日益重要.但目前国内尚未出台明确的检测标准,相关检测技术也未完善,尤其是在高频体内超声体模方面缺少合适的产品.文章用有机硅橡胶材料(RTV615)作基材并按照一定比例掺入粉末颗粒作为散射子制作了一种高频介入式超声体模,该体模具有与人体软组织相近似的高频声学性能,包括声速、声阻抗和声衰减系数.利用自制的高频(50MHz)血管内超声成像系统,对体模性能进行测试,与在体实验比较,二者测试结果相近似.同时,该高频超声体模在腔内超声成像如超声胃窥镜、支气管超声内镜等设备安全性、可靠性的研究应用中也能发挥重要的作用.【期刊名称】《中国医疗器械信息》【年(卷),期】2017(023)009【总页数】3页(P6-8)【关键词】高频介入式超声;超声体模;超声成像;应用研究【作者】刘鹏波;简小华;韩志乐;崔崤峣;轩辕凯【作者单位】中国科学院苏州生物医学工程技术研究所苏州 215163;中国科学院苏州生物医学工程技术研究所苏州 215163;中国科学院苏州生物医学工程技术研究所苏州 215163;中国科学院苏州生物医学工程技术研究所苏州 215163;国家食品药品监督管理局湖北医疗器械质量监督检验中心武汉 430075【正文语种】中文【中图分类】R445.1超声体模是用于仿人体组织(软组织和硬组织)声学特性的装置。

主要是通过仿人体肌肉、肌腱、韧带、脂肪、纤维、滑膜、神经以及囊肿等组织和器官,以供医用超声设备的性能测量和研究试验,或将被模拟的生理结构可视化。

目前商业化较为成熟的超声体模可以进行成像设备的空间分辨率测试,并且可以仿组织的囊肿、肿瘤、结石等较为典型的病灶成像,其成像频率一般在2~12MHz范围,主要应用于普通B超的相关测试研究。

随着高频介入式超声成像技术,如血管内超声成像、消化道胃窥镜、呼吸道支气管超声内镜的发展,研究和开发专门用于高频频率(>20MHz)介入式超声成像的超声体模以进行设备的性能检测显得越来越重要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ISIJ International, Vol. 48 (2008), No. 11, pp. 1507–15161507©2008ISIJstead of an Fe–C alloy which is preferable to be used. How-ever, there are two reasons why it was not to be used. One is that; oxide particles obtained on a film filter are analyzed by SEM. If an Fe–C alloy is used, oxide particles on a film fil-ter are difficult to analyze due to the presence of other residual particles and/or precipitates whose amount is in-creased with an increase in carbon content. It was con-firmed that amount of such residual particles and/or precip-itates was small in the case of an Fe–CϽ0.05mass%C alloy. Another is that; the yield of Mg in metal is significantly high due to the fact that the solubility of Mg in liquid Ni is considerably higher than that in liquid Fe. This leads to the excellent reproducibility in the measurement of particle size distribution, because the characteristics of deoxidation particles such as size, number, composition and dispersion are reproducible in an Fe–10mass%Ni alloy.2.Experimental2.1.ProcedureThe melting of an Fe–10%Ni alloy was carried out in an induction furnace (100kHz) under an Ar atmosphere. In order to eliminate the fluid flow due to induction current, a graphite susceptor (10mm of wall thickness) was installed between induction coil and crucible. A charge (70g) con-taining high-purity electrolytic iron (99.99%) and globular nickel (99.97%) was melted at 1600°C and held for 30min at this temperature for homogenization of metal composi-tion. High purity Al2O3and MgO crucibles were used for0.20% Ti experiments (Exp. Nos. 3 to 5) and all other de-oxidation experiments, respectively. The Fe–50%Ti, Ni–12%Mg and Fe–10%Zr alloys were melted previously in an arc furnace under an Ar atmosphere and used as deoxidants in all experiments.The melt with an initial oxygen content in the range from 0.010 to 0.014% was deoxidized with Ti (0.025 and 0.20%), Mg (0.1%) or Zr (0.08 and 0.20%) in Exp. Nos. 1to 13. After stirring for 20s using an Al2O3rod, the meltwas held for 1, 3, 5 or 10min at 1600°C, followed by rapid quenching in water. Reoxidation during quenching was pre-vented in such a way that the flow rate of Ar gas from the bottom was first increased and immediately after a crucible containing a sample was taken out from the furnace, He gas was blown onto melt surface, followed by quenching in water. In Exp. Nos. 14 to 19 the melt was first deoxidizedwith 0.025% Ti, stirred for 20s using an Al2O3rod andheld for 40s, followed by addition of Mg or Zr. After stir-ring for 20s, the melt was held for 1min at 1600°C and quenched in water immediately. In Exp. No. 20 the appro-priate amount of Ti (0.025%) and Mg (0.1%) was added in the melt at once. In Exp. Nos. 21 and 22 the melt was first deoxidized with 0.06% Ti, stirred for 20s and held for 30min, followed by addition of Mg (0.1%) or Zr (0.05%). Then, the melt was stirred for 20s and held for 1min at 1600°C, followed by rapid quenching in water.2.2.Observation of Spatial ParticlesFor the analysis of particle size, number and composi-tion, a metal sample was dissolved by using a potentiostatic electrolytic extraction (Ϫ150mV, 45 to 55mA and 350 coulomb). The 10% AA (10v/v%acetylacetone–1w/v% tetramethylammonium chloride–methanol) and 2% TEA (2v/v%triethanol amine–1w/v%tetramethylammonium chloride–methanol) were used as electrolyte for the Ti, Zr and Ti/Zr and the Mg and Ti/Mg deoxidation experiments, respectively. The weight of dissolved metal was from 0.07 to 0.10g. After electrolytic extraction the solution with par-ticles was filtrated by using a polycarbonate film filter with an open pore size of 0.05m m. The particles and clusters ona surface of film filter were observed by using the scanningelectron microscope (SEM) at a magnification of 1000, 2000, 5000 and 10000. The spatial size, dV, of each parti-cle on a photomicrograph was obtained by using a semi-au-tomatic image analyzer. The method for the calculation of number of particles per unit volume, NV, is described else-where.15)The composition of particles was determined by using the electron probe microanalysis (EPMA). Qualitative analysis of particle composition was obtained for particles larger than 0.05m m. Estimation of particle composition in percentage was made for particles larger than 1.0m m due to the difficulty in accurate quantitative analysis of composi-tion for particles below 1.0m m.2.3.Chemical AnalysisIn order to determine soluble and insoluble contents of elements ([sol.M] and [insol.M]), a metal sample was dis-solved by using a potentiostatic electrolytic extraction method (Ϫ150mV, 45 to 55mA and 1500 coulomb). The weight of dissolved metal was from 0.3 to 0.5g. The elec-trolyte solution was 10% AA for Ti, Zr and Ti/Zr deoxida-tion experiments and 2% TEA with Ba (0.1 to 0.2w/v% Ba) for Mg and Ti/Mg deoxidation experiments. After elec-trolytic extraction the solution was filtrated by using a poly-tetrafluoroethylene (PTFE) film filter with an open pore size of 0.1m m. The solution and residue on a film filter after filtration were used for analysis of soluble and insolu-ble M contents, respectively, by using inductively coupled plasma (ICP) emission spectrometry.3.Results and DiscussionThe experimental conditions for the sample preparation, chemical composition of metal and particle characteristics are given in Table 1.3.1.Effe ct of Comple x De oxidation on Total ParticleSize DistributionTotal particle size distributions obtained in Ti, Mg and Ti/Mg deoxidations are shown in top, middle and bottom diagrams in Fig. 1, respectively. In Ti/Mg complex deoxi-dation, Ti (0.025%, the amount of initial addition) is added and 1min later Mg (0.1%) is added, followed by quenching after 1, 3 or 5min. This method denotes Ti/1min/Mg deox-idation, hereinafter.The size distribution in Ti deoxidation at 1min corre-sponds to the primary and secondary deoxidation particles (primary and secondary particles, hereinafter). The curve at 5min corresponds to mostly secondary particles except for large particles. These are the particles crystallized and/or precipitated during cooling and solidification since dis-solved oxygen content is relatively high in Ti deoxidation.Most of primary particles after deoxidation floats out and/or coagulates.In Mg deoxidation at 1min, a bimodal curve is observed.The curves at large and small size particles correspond to primary and secondary particles, respectively. When the melt containing initial oxygen level of about 100ppm is de-oxidized with Mg, dissolved oxygen content does not im-mediately approach the oxygen level determined by the Mg/MgO equilibrium. For this reason secondary particles are produced during rapid cooling and solidification. MgO particles formed at 1min are easy to be in cluster and float out, because of high contact angle (qϭ125°) with respect 1508©2008ISIJto liquid Fe on MgO substrate and low density of MgO (3.65g/cm3). As a result, the number of primary particles decreases with increasing holding time and the particle size distribution at 3min has a single peak, although it consistsof primary and secondary particles. Furthermore, dissolved Mg vaporizes rapidly with holding time at 1600°C and ini-tial MgO particles change to MgO–FeO particles which will be explained in Sec. 3.2. As shown in the middle dia-gram, the number of particles in Mg deoxidation experi-ment at 5min decreases drastically. This is due to the fact that most of primary MgO particles coagulate and float out.The number of secondary particles after 5min is also low because the content of dissolved oxygen is almost equal to the oxygen level determined by the Mg/MgO equilibrium.In Ti/1min/Mg deoxidation at 1min, a bimodal curve is observed, as shown in the lower diagram. The primary par-ticles, which are correlated with the peak on the right-hand side for large size particles, are produced by the deoxida-tion of soluble oxygen with Mg and Ti and by the reduction of primary TiO X particles with Mg. The secondary parti-cles, which are correlated with the peak on the left-hand side for small size particles, are produced by the reaction of dissolved oxygen with Mg and Ti during rapid cooling and solidification. Large size primary particles and clusters float out with holding time. It is considered that the curve at 5min corresponds to mostly secondary particles except for large particles.Total particle size distributions obtained at Zr and Ti/1min/Zr deoxidations are shown in the upper and lower diagrams of Fig. 2as a function of holding time at 1600°C.As given in Table 1, total N V values decrease with holding time in both deoxidations. A bimodal curve of particle size distribution is observed in Zr deoxidation at 1min. This is due to the coexistence of primary and secondary particles.The primary ZrO 2and ZrO 2–FeO particles are produced after Zr deoxidation. However, dissolved oxygen content is higher than that determined by the Zr/ZrO 2equilibrium. As1509©2008ISIJTable 1.Experimental conditions, composition of metal phase and characteristics of particles.Fig.1.Total particles size distributions in Ti, Mg and Ti/Mg de-oxidation experiments.a result, the secondary particles are produced by crystalliza-tion and/or precipitation of ZrO 2and ZrO 2–FeO particles during cooling and solidification. The modal values for pri-mary particles move to lower particle size and a single peak curve is obtained with holding time due to the particle flotation and coagulation. It is considered that the curves at 3 and 5min correspond to only primary particles, since the contribution of secondary particles is small due to low solu-ble oxygen content at 3min after Zr addition.In Ti/1min/Zr deoxidation, particle size distribution at 1min shows single peak curve which is different from those obtained in Mg, Zr and Ti/1min/Mg deoxidations at 1min.The content of soluble oxygen in Ti/1min/Zr deoxidation at 1min after Zr addition is lower in comparison with that for Zr deoxidation experiment. Thus, it is considered that the contribution of secondary particles is smaller. On the other hand, the number of primary particles in Ti/1min/Zr deoxi-dation is higher and the mean particle size is smaller than that in Zr deoxidation experiments. As a result, two peaks for primary and secondary particles are combined to one peak. The number and size of particles in Ti/1min/Zr deox-idation decrease gradually with increasing the holding time compared with those in Zr deoxidation experiments.Variation of particle number per unit volume, N V , with holding time at 1600°C is shown in the upper diagram of Fig. 3for Ti, Mg and Ti/1min/Mg deoxidations which correspond to the results shown in Fig. 1. The results for the simultaneous addition of Ti and Mg (Ti ϩMg) and those for Ti addition, followed by Mg addition after 30min (Ti/30min/Mg) which will be discussed in Sec. 3.3. are in-cluded in the upper diagram. The N V values for Mg and Ti/1min/Mg deoxidation at 1min are nearly the same, but those for Mg deoxidation decrease faster than those for Ti/1min/Mg deoxidation with holding time. It can be seen that the N V value for Mg deoxidation within 5min of hold-ing time is about half of those for Ti/1min/Mg deoxidation.The N V values for Zr and Ti/1min/Zr deoxidation which are shown in Fig. 2 are plotted against holding time in the lower diagram of Fig. 3. The results for Ti addition, fol-lowed by Zr addition after 30min (Ti/30min/Zr) which will be discussed in Sec. 3.3. are included. The N V values for Zr deoxidation decrease faster than those for Ti/1min/Zr deox-idation and within 5min of holding time are about half of those for Ti/1min/Zr deoxidation.The N V values for particles below 0.5m m in Mg and Zr deoxidations tend to decrease with holding time. This can be explained by the decrease of soluble oxygen after deoxi-dation with an increase of holding time in these experi-ments. It is of interest to note that the N V values for parti-cles below 0.5m m in Ti/1min/Mg and Ti/1min/Zr deoxida-tions decrease slightly during holding time from 1 to 5min.The fraction of the small size particles to total N V values in-creases due to the flotation of large particles with increas-ing holding time.3.2.Variation of Size Distribution and Composition of Particles with Holding Time at 1600°CThe effects of Ti addition and holding time at 1600°C on composition and size distribution of particles are studied in M and Ti/M (M ϭMg and Zr) deoxidation experiments in an Fe–10%Ni alloy. The qualitative composition analysis was made for the particles above 0.05m m on film filter. The par-ticle compositions which are discussed in Sec. 3.4 were de-termined for the particles in the range of d V Ն1.0m m.It should be pointed out that the composition of particles precipitated during rapid quenching corresponds to non-equilibrium phases containing FeO. This is due to the rela-tively high content of supersaturated oxygen in the melt.The content of FeO in particles depends also on amount of deoxidant addition, deoxidation power, order of deoxidant addition and holding time at 1600°C.The size distributions of particles above 0.05m m ob-tained in Ti deoxidation experiments are shown in Fig. 4in which the results for the initial addition of 0.20 or 0.025%Ti are shown. In 0.20% Ti deoxidation at 1, 3 and 10min of holding time, the particles are mostly TiO X –FeO and con-sist of 79–99% TiO X , 1–15%FeO and 0–7% Al 2O 3. In the 0.025% Ti deoxidation at 1 and 5min of holding time,the particles are FeO–TiO X (78–95% FeO and 5–22%TiO X ). High content of FeO in these particles is due to the high content of soluble oxygen after the deoxidation with1510©2008ISIJFig.2.Total particles size distributions in Zr and Ti/Zr deoxida-tion experiments.Fig.3.Variation of number for small (d V Յ0.5m m) and large(d V Ͼ0.5m m) oxide particles with holding time at 1600°C in M (M ϭMg or Zr) and Ti/M deoxidaton exper-iments.small addition of 0.025% Ti.The curves at 1min shown in the upper diagram consist of primary and secondary particles for large and small par-ticles, respectively. Particle size distributions have single peak because the number of primary particles is consider-ably smaller in comparison with that of secondary particles.The curve at 3min for 0.20% Ti shown in the middle dia-gram has a bimodal curve due to the decrease of secondary particle number as a result of decrease in soluble oxygen content at 3min. The curves at 5 and 10min for 0.025 and 0.20% Ti, respectively, shown in the lower diagram corre-spond to secondary particles except for large size particles.Most of large primary particles float out or coagulate with holding time and high dissolved oxygen content determined by the Ti/TiO X equilibrium promotes the formation of sec-ondary particles. It should be pointed out that pure FeO particles are observed in 0.025% Ti deoxidation in some amount, but these particles are not shown in the figure.In Mg deoxidation pure MgO and MgO–FeO particles are observed and size distributions of particles above 0.05m m are shown in Fig. 5. A bimodal curve is obtained at 1min, as shown in the top diagram, and high and low modal values correspond to primary and secondary parti-cles, respectively. The presence of secondary MgO particles suggests that supersaturated oxygen exists even in the pres-ence of dissolved Mg and MgO particles. This high oxygen level exists only in the initial period when Mg is added into the melt containing high initial soluble oxygen such as 100ppm, because after Mg addition soluble oxygen content is not immediately lowered to the value determined by the Mg/MgO equilibrium.The number of secondary particles decreases with in-creasing the holding time at 1600°C since soluble oxygen content approaches the equilibrium value. The number of primary particles also decreases due to the coagulation and flotation of MgO particles, as discussed in the Sec. 3.4. As a result, the curves at 3 and 5min shown in the middle and lower diagrams have single peak. Furthermore, soluble Mgcontent decreases rapidly with holding due to the evapora-tion of Mg from the melt. Consequently, the particle com-position changes from pure MgO to MgO–FeO. As shown in the middle diagram, particle compositions are mostly the MgO–FeO due to small content of soluble Mg. Moreover,the MgO content in these particles decreases from 55–91 to 17–48% with decreasing the particle size from 1–10 to 0.8–2m m, whereas the FeO content increases from 9–45 to 52–83%. The number of pure MgO and MgO–FeO parti-cles at 5min decreases drastically because these particles are easy to be in clusters and float out, as discussed in the Sec. 3.4. The particle composition approaches MgO since a melt tends to be saturated with a MgO crucible.In Ti/1min/Mg deoxidation, MgO and MgO–FeO, MgO–TiO X –FeO and TiO X –FeO particles are obtained and size distributions of these particles are shown in Fig. 6as a function of holding time. When 0.025% Ti is added to the melt containing about 100ppm dissolved oxygen, the pri-mary particles of TiO X –FeO are produced. The reduction of TiO X –FeO particles with Mg occurs after the addition of 0.1% Mg and then MgO–TiO X –FeO particles are produced.Due to insufficient amount of dissolved Mg remained in the melt, all TiO X –FeO particles cannot be reduced to MgO–TiO X and/or MgO. In addition to the aforementioned reduc-tion, added Mg reacts with dissolved oxygen, whereby leading to the formation of MgO and/or MgO–FeO parti-cles. As shown in the top diagram, primary MgO–TiO X –FeO particles are observed at 1min. It was found that the MgO content in these particles decreases from 31–94 to 1–6% with decreasing the particle size from 5–10 to 1–2m m, whereas the FeO content increases from 1–20 to 22–90%. The TiO X content in these particles varies be-tween 6 to 78%. Based on these results it is suggested that the MgO–TiO X –FeO particles below 2m m are formed when the content of soluble Mg decreases significantly due to evaporation and aforementioned reactions. Secondary and some number of primary TiO X –FeO particles are ex-pected to be present from the bimodal curve of TiO X –FeO1511©2008ISIJFig.4.Particle size distributions in Ti deoxidation experimentsas a function of holding time at 1600°C.Fig.5.Particle size distributions in Mg deoxidation experimentsas a function of holding time at 1600°C.particles. It is not certain whether MgO–FeO particles are primary or secondary in the present study. However, these particles seem to be secondary judging from the particle size.Large size primary particles of MgO–TiO X –FeO and TiO X –FeO float out by coagulation with holding time and their modal values move to the left-hand side. The contribu-tion of secondary particles to the size distribution of these particles increases due to the decrease in soluble Mg con-tent through vaporization and to the increase in soluble oxygen content, as shown in the bottom diagram. The num-ber of primary and secondary particles of TiO X –FeO de-creases with increasing the holding time and the size distri-butions at 3 and 5min show single peak curve.The N V values for the particles above 0.05m m in Ti, Mg and Ti/1min/Mg deoxidations which are shown in Figs. 4to 6, respectively, are summarized in Fig. 7in which the fraction of respective particles to total particles is indicated by a bar diagram. In Ti (0.025 and 0.20%) deoxidations,the N V values of TiO X –FeO particles decrease slowly with holding time. This is due to small number of primary parti-cles. Furthermore, the number of secondary particles is high and changes only slightly with holding time due to high soluble oxygen content in Ti deoxidation. The FeO contents in TiO X –FeO particles at 0.025 and 0.20% Ti de-oxidations are 78–95 and 1–15%, respectively.In Mg deoxidation the N V values decrease rapidly with holding time. As mentioned above, the decrease in the N V values is explained by the competition of the flotation de-gree of large particles and that of the crystallization and/or precipitation of secondary particles. The particle composi-tion changes from pure MgO to MgO–FeO during holding time due to the decrease of soluble Mg content.In Ti/1min/Mg deoxidation, the N V values for MgO–FeO particles remain almost constant during holding time. The N V values for TiO X –FeO and MgO–TiO X –FeO particles de-crease continuously with holding time. The reason for the decrease in N V values for these particles may be explained by the aforementioned competition.The size distributions of pure ZrO 2and ZrO 2–FeO parti-cles in Zr deoxidation are shown in Fig. 8. Bimodal distri-butions are observed at 1min for ZrO 2and ZrO 2–FeO parti-cles, thus suggesting that primary and secondary particles are present. When Zr is added to the melt containing about 100ppm of initial oxygen, the non-equilibrium phase of (30–93%) ZrO 2–(7–70%)FeO particles and the equilibrium phase of pure ZrO 2particles are produced. It is considered1512©2008ISIJFig.6.Size distributions of particles in Ti/Mg deoxidation ex-periments as a function of holding time at 1600°C.Fig.7.Variation of number of oxide particles with holding timeat 1600°C in Ti, Mg and Ti/Mg experiments.Fig.8.Size distributions of particles in Zr (0.08%) experimentsas a function of holding time at 1600°C.that dissolved oxygen content is supersaturated and higher than that determined by the Zr/ZrO 2equilibrium even in the presence of dissolved Zr. This leads to the formation of sec-ondary ZrO 2–FeO and ZrO 2particles during cooling and solidification. The number of primary ZrO 2and ZrO 2–FeO particles above 1m m decreases significantly with increasing the holding time due to the coagulation of these particles,as discussed in the Sec. 3.4, and flotation of large size parti-cles and clusters. The content of dissolved oxygen ap-proaches the equilibrium value with holding time and the number of secondary particles also decreases. Therefore,the curves for ZrO 2and ZrO 2–FeO particles at 3 and 5min have single peak.The particle size distributions in Ti/1min/Zr deoxida-tion whose particle compositions are pure ZrO 2, ZrO 2–(1–13%)FeO, ZrO 2–(3–12%)TiO X and (12–85%)ZrO 2–(11–46%)TiO X –(1–36%)FeO are shown in Fig. 9. The curves for these particles at 1min shown in the top diagram indicate single peak. This is different from the results of bi-modal curves obtained in Zr deoxidation at 1min shown in the top diagram of Fig. 8. When Zr is added to the melt containing dissolved oxygen content determined by the Ti/TiO X equilibrium, dissolved oxygen content easily ap-proaches the value determined by the Zr/ZrO 2equilibrium.Thus, the number of precipitated secondary particles is small. This is different from the formation of secondary particles in Zr deoxidation in which non-equilibrium phase affects and controls dissolved oxygen content. It is con-firmed that FeO content decreases and becomes negligibly small with further holding time.The N V values in Zr (0.08 and 0.20%) and Ti/1min/Zr deoxidations whose size distributions of respective particles are shown in Figs. 8 and 9, respectively, are summarized in Fig. 10by a bar diagram. The fraction of respective parti-cles to total particles is indicated as a function of holding time. In Zr (0.08 and 0.20%) deoxidation shown in the upper diagram, the N V values for ZrO 2–FeO and those for ZrO 2decrease with holding time. The fraction of ZrO 2par-ticles to total particles at 0.20% Zr is significantly higher than that at 0.08% Zr and is dependent on the content of dissolved Zr.The N V values for ZrO 2and ZrO 2–FeO particles in Ti/1min/Zr deoxidation tend to increase with holding time,whereas those for ZrO 2–TiO X –FeO particles tend to de-crease with holding time, particularly, from 3 to 5min. No TiO X –FeO particles are observed in Ti/1min/Zr deoxida-tion, but the TiO X –FeO particles are observed in Ti/1min/Mg deoxidation, as shown in Fig. 7. This is due to the fact that dissolved Zr reduces TiO X –FeO particles completely to ZrO 2–TiO X –FeO and ZrO 2–TiO X particles.3.3.Effect of Deoxidation Method on Size Distribution and Composition of ParticlesThree different deoxidation methods have been used to study the effect of deoxidation method on size distribution and composition of particles for Ti and Mg deoxidation. Ti-tanium (0.025%) and Mg (0.1%) were added simultane-ously, followed by quenching after 1min. This method de-notes Ti ϩMg and the results are shown in the top diagram of Fig. 11. Titanium (0.025%) was added and 1min later Mg (0.1%) was added, followed by quenching after 1min.This method denotes Ti/1min/Mg, as already mentioned.The results are shown in the middle diagram. Titanium (0.06%) was added and 30min later Mg (0.1%) was added,followed by quenching after 1min. This method denotes Ti/30min/Mg. The results are shown in the bottom dia-gram.In Ti ϩMg deoxidation method, MgO, MgO–FeO,MgO–TiO X , MgO–TiO X –FeO and TiO X –FeO particles are observed and the size distributions of these particles are shown in the upper diagram of Fig. 11. The compositions of most particles are MgO–TiO X and MgO–TiO X –FeO. Size distributions of these particles show single peak curve, al-though primary and secondary particles are considered to be present. The primary particles above 1m m consist of MgO–(8–51%)TiO X and (46–65%)MgO–(33–52%)TiO X –(1–5%)FeO. Pure MgO and MgO–FeO particles show a bi-modal curve consisting of primary and secondary particles.It was determined that the content of FeO in MgO–FeO par-ticles is also below 5%. The size distribution of TiO X –FeO1513©2008ISIJFig.9.Size distributions of particles in Ti/Zr experiments as afunction of holding time at 1600°C.Fig.10.Variation of number of oxide particles with holding timeat 1600°C in Zr and Ti/Zr experiments.particles shows single peak curve with low modal value and consists of mostly secondary particles. The content of FeO in TiO X –FeO particles changes from 50 to 70%.In Ti/1min/Mg method, most particles are MgO–TiO X –FeO and produced by primary deoxidation, as shown in the middle diagram. In Ti ϩMg deoxidation method, the pri-mary TiO X –FeO particles are not precipitated as is precipi-tated in Ti/1min/Mg deoxidation method. As a result, the number of primary MgO–TiO X and MgO–TiO X –FeO parti-cles in Ti ϩMg deoxidation is considerably smaller com-pared with Ti/1min/Mg experiment. On the other hand, the secondary MgO–TiO X –FeO particles in Ti ϩMg deoxida-tion are produced in a large amount as a result of high solu-ble oxygen content.The size distributions of MgO, MgO–FeO, MgO–TiO X ,MgO–TiO X –FeO and TiO X –FeO particles in Ti/30min/Mg deoxidation method are shown in the bottom diagram of Fig. 11. Most of primary particles in 0.025 and 0.20% Ti deoxidations after 5 or 10min float out and thus most of particles are secondary ones, as shown in the bottom dia-gram of Fig. 4. The number of primary particles in 0.06%Ti deoxidation after 30min is significantly small and solu-ble oxygen content is close to that determined by the Ti/TiO X equilibrium. Under these conditions the following reactions occur after Ti addition, followed by Mg addition after 30min: i) Mg deoxidation, ii) reduction of suspended TiO X particles with Mg, and iii) crystallization and/or pre-cipitation of MgO–TiO X and MgO–TiO X –FeO particles.The curves of particle size distribution for MgO and MgO–FeO and those for MgO–TiO X and MgO–TiO X –FeO show an irregular bimodal curve consisting of one peak and one shoulder. The shoulder part corresponds to the primary particles which are produced by Mg deoxidation and the reduction of suspended TiO X particles with Mg. The com-plex primary particles above 1m m consist of MgO–(2–48%)TiO X and (44–87%)MgO–(11–53%)TiO X –(1–13%)FeO. The peaks correspond to the crystallization and/or precipitation of secondary particles. The TiO X –FeO particle size distribution shows single peak curve with low modal value and consists of only secondary particles.The size distributions of ZrO 2and ZrO 2–FeO, and ZrO 2–TiO X –FeO particles obtained by Ti/1min/Zr and Ti/30min/Zr deoxidation methods are shown in the upper and lower diagrams of Fig. 12, respectively. The results in the top dia-gram for Ti/1min/Zr deoxidation are already shown in the top diagram of Fig. 9 and discussed in the Sec. 3.2. In the Ti/30min/Zr experiment, the following three reactions occur after Ti addition, followed by Zr addition after 30min: i) Zr deoxidation, ii) reduction of suspended TiO X particles with Zr, and iii) crystallization and/or precipitation of ZrO 2–TiO X –FeO particles. The curve of ZrO 2–TiO X and ZrO 2–TiO X –FeO particles corresponds to mostly the sec-ondary particles produced by the crystallization and precip-itation of ZrO 2–TiO X –FeO particles. The reduction of TiO X particles with Zr seems to be small due to a small amount of suspended TiO X particles. The complex particles above 1m m consist of ZrO 2–(2–34%)TiO X and (23–91%)ZrO 2–(5–43%)TiO X –(1–31%)FeO.In Ti/1min/Zr deoxidation method the amount of pri-mary ZrO 2–TiO X –FeO particles is significantly larger than that in Ti/30min/Zr deoxidation method. This is due to the fact that many primary TiO X particles are suspended in the melt and are reduced by Zr very effectively in the former deoxidation method.The N V values for the particles with different composi-tions are plotted against the deoxidation method in the upper and lower diagrams of Fig. 13for Mg and Ti/Mg,and Zr and Ti/Zr deoxidations, respectively. It can be seen that the N V values are nearly the same among different de-oxidation methods since initial oxygen content is almost the same and the degree of the particle flotation is small at 1min holding time except for Ti/30min/M method. How-ever, the method of deoxidation strongly affects the compo-sition of particles. It is seen that the N V values for pure M O y and M O y –FeO particles (M ϭMg and Zr) decrease in the order of M ϾTi/30min/M ϾTi ϩM ϾTi/1min/M . The N V val-ues for M O y –TiO X –FeO particles increase in the order of Ti/30min/M ϽTi ϩM ՅTi/1min/M . These results indicate that a large amount of M O y –TiO X –FeO particles is obtained in Ti/1 min/M deoxidation method compared with other de-oxidation methods since the reduction of TiO X particles1514©2008ISIJFig.11.Size distribution of oxide particles for different deoxida-tion methods in Ti/Mg experiments.Fig.12.Size distribution of oxide particles for different deoxida-tion methods in Ti/Zr experiments.。

相关文档
最新文档