数据结构中归并排序的设计与实现

合集下载

数据结构第9章 排序

数据结构第9章 排序

R[3] 10
R[4] 60
R[5] 25
R[6] 30
R[7] 18 18 18 18
18 36 20

10 10 36
60 60 60
25 25 25
30 30 30
【算法】直接插入排序 void D_InsertSort(datatype R[ ], int n) { /*对排序表R[1]..R[n]进行直接插入排序,n是记录的 个数*/ for(i=2; i<=n; i++) if (R[i].key<R[i-1].key) {R[0]=R[i]; /*将R[i]插入R[1].. R[i-1]中, R[0]为监测哨*/ for(j=i-1; R[0].key<R[j].key; j--) R[j+1]=R[j]; /*后移记录*/ R[j+1]=R[0]; /*插入到合适位置*/ } }
空间性能:除排序表以外的内存占用情况。 时间性能:比较关键码的次数,数据移动的次数。 它们往往是排序表规模(n)的函数
6. 记录和排序表的数据结构
一般采用顺序结构存储排序表。 记录和排序表的类型定义如下: #define MAXNUM … /* MAXNUM 为足够大的数 typedef struct { keytype key; …… } datatype; datatype R[MAXNUM]; /*关键码字段*/ /*其它信息*/ /*记录类型*/ /*定义排序表的存储
第一趟排序结果,使得间隔为5的字表有序: P=3
29 7 41 30 11 39 50 76 41 13 10 0 80 78 86
子序列分别为:{29,30,50,13,78},{7,11,76,100,86}, {41,39,41,80}。第二趟排序结果: P=1

数据结构实验指导书(新版)

数据结构实验指导书(新版)

《数据结构和算法》实验指导书实验及学时数分配序号实验名称学时数(小时)1 实验一线性表 42 实验二树和二叉树 23 实验三图 24 实验四查找 25 实验五内部排序 2合计12几点要求:一、上机前:认真预习相关实验内容,提前编写算法程序,上机时检查(未提前编写程序者,扣除平时成绩中实验相关分数)。

二、上机中:在Turbo C或VC6.0环境中,认真调试程序,记录调试过程中的问题、解决方法以及运行结果。

上机时签到;下机时验收签字。

三、下机后:按要求完成实验报告,并及时提交(实验后1周内)。

实验一线性表【实验目的】1、掌握用Turbo c上机调试线性表的基本方法;2、掌握线性表的基本操作,插入、删除、查找以及线性表合并等运算在顺序存储结构和链式存储结构上的运算;3、运用线性表解决线性结构问题。

【实验学时】4 学时【实验类型】设计型【实验内容】1、顺序表的插入、删除操作的实现;2、单链表的插入、删除操作的实现;3、两个线性表合并算法的实现。

(选做)【实验原理】1、当我们在线性表的顺序存储结构上的第i个位置上插入一个元素时,必须先将线性表中第i个元素之后的所有元素依次后移一个位置,以便腾出一个位置,再把新元素插入到该位置。

若是欲删除第i个元素时,也必须把第i个元素之后的所有元素前移一个位置;2、当我们在线性表的链式存储结构上的第i个位置上插入一个元素时,只需先确定第i个元素前一个元素位置,然后修改相应指针将新元素插入即可。

若是欲删除第i个元素时,也必须先确定第i个元素前一个元素位置,然后修改相应指针将该元素删除即可;3、详细原理请参考教材。

【实验步骤】一、用C语言编程实现建立一个顺序表,并在此表中插入一个元素和删除一个元素。

1、通过键盘读取元素建立线性表;(从键盘接受元素个数n以及n个整形数;按一定格式显示所建立的线性表)2、指定一个元素,在此元素之前插入一个新元素;(从键盘接受插入位置i,和要插入的元素值;实现插入;显示插入后的线性表)3、指定一个元素,删除此元素。

数据结构课程设计实践报告

数据结构课程设计实践报告

数据结构实验报告本文是范文,仅供参考写作,禁止抄袭本文内容上传提交,违者取消写作资格,成绩不合格!实验名称:排序算法比较提交文档学生姓名:提交文档学生学号:同组成员名单:指导教师姓名:排序算法比较一、实验目的和要求1、设计目的1.掌握各种排序的基本思想。

2.掌握各种排序方法的算法实现。

3.掌握各种排序方法的优劣分析及花费的时间的计算。

4.掌握各种排序方法所适应的不同场合。

2、设计内容和要求利用随机函数产生30000个随机整数,利用插入排序、起泡排序、选择排序、快速排序、堆排序、归并排序等排序方法进行排序,并统计每一种排序上机所花费的时间二、运行环境(软、硬件环境)软件环境:Vc6.0编程软件运行平台: Win32硬件:普通个人pc机三、算法设计的思想1、冒泡排序:bubbleSort()基本思想: 设待排序的文件为r[1..n]第1趟(遍):从r[1]开始,依次比较两个相邻记录的关键字r[i].key和r[i+1].key,若r[i].key>r[i+1].key,则交换记录r[i]和r[i+1]的位置;否则,不交换。

(i=1,2,...n-1)第1趟之后,n个关键字中最大的记录移到了r[n]的位置上。

第2趟:从r[1]开始,依次比较两个相邻记录的关键字r[i].key和r[i+1].key,若r[i].key>r[i+1].key,则交换记录r[i]和r[i+1]的位置;否则,不交换。

(i=1,2,...n-2)第2趟之后,前n-1个关键字中最大的记录移到了r[n-1]的位置上,作完n-1趟,或者不需再交换记录时为止。

2、选择排序:selSort()每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。

选择排序不像冒泡排序算法那样先并不急于调换位置,第一轮(k=1)先从array[k]开始逐个检查,看哪个数最小就记下该数所在的位置于minlIndex中,等一轮扫描完毕,如果找到比array[k-1]更小的元素,则把array[minlIndex]和a[k-1]对调,这时array[k]到最后一个元素中最小的元素就换到了array[k-1]的位置。

数据结构之各种排序的实现与效率分析

数据结构之各种排序的实现与效率分析

各种排序的实现与效率分析一、排序原理(1)直接插入排序基本原理:这是最简单的一种排序方法,它的基本操作是将一个记录插入到已排好的有序表中,从而得到一个新的、记录增1的有序表。

效率分析:该排序算法简洁,易于实现。

从空间来看,他只需要一个记录的辅助空间,即空间复杂度为O(1).从时间来看,排序的基本操作为:比较两个关键字的大小和移动记录。

当待排序列中记录按关键字非递减有序排列(即正序)时,所需进行关键字间的比较次数达最小值n-1,记录不需移动;反之,当待排序列中记录按关键字非递增有序排列(即逆序)时,总的比较次数达最大值(n+2)(n-1)/2,记录移动也达到最大值(n+4)(n-2)/2.由于待排记录是随机的,可取最大值与最小值的平均值,约为n²/4.则直接插入排序的时间复杂度为O(n²).由此可知,直接插入排序的元素个数n越小越好,源序列排序度越高越好(正序时时间复杂度可提高至O(n))。

插入排序算法对于大数组,这种算法非常慢。

但是对于小数组,它比其他算法快。

其他算法因为待的数组元素很少,反而使得效率降低。

插入排序还有一个优点就是排序稳定。

(2)折半插入排序基本原理:折半插入是在直接插入排序的基础上实现的,不同的是折半插入排序在将数据插入一个有序表时,采用效率更高的“折半查找”来确定插入位置。

效率分析:由上可知该排序所需存储空间和直接插入排序相同。

从时间上比较,折半插入排序仅减少了关键字间的比较次数,为O(nlogn)。

而记录的移动次数不变。

因此,折半查找排序的时间复杂度为O(nlogn)+O(n²)= O(n²)。

排序稳定。

(3)希尔排序基本原理:希尔排序也一种插入排序类的方法,由于直接插入排序序列越短越好,源序列的排序度越好效率越高。

Shell 根据这两点分析结果进行了改进,将待排记录序列以一定的增量间隔dk 分割成多个子序列,对每个子序列分别进行一趟直接插入排序, 然后逐步减小分组的步长dk,对于每一个步长dk 下的各个子序列进行同样方法的排序,直到步长为1 时再进行一次整体排序。

数据结构实验指导书(新版)

数据结构实验指导书(新版)

《数据结构与算法》实验指导书实验及学时数分配几点要求:一、上机前:认真预习相关实验内容,提前编写算法程序,上机时检查(未提前编写程序者,扣除平时成绩中实验相关分数)。

二、上机中:在Turbo C或VC6.0环境中,认真调试程序,记录调试过程中的问题、解决方法以及运行结果。

上机时签到;下机时验收签字。

三、下机后:按要求完成实验报告,并及时提交(实验后1周内)。

实验一线性表【实验目的】1、掌握用Turbo c上机调试线性表的基本方法;2、掌握线性表的基本操作,插入、删除、查找以及线性表合并等运算在顺序存储结构和链式存储结构上的运算;3、运用线性表解决线性结构问题。

【实验学时】4 学时【实验类型】设计型【实验内容】1、顺序表的插入、删除操作的实现;2、单链表的插入、删除操作的实现;3、两个线性表合并算法的实现。

(选做)【实验原理】1、当我们在线性表的顺序存储结构上的第i个位置上插入一个元素时,必须先将线性表中第i个元素之后的所有元素依次后移一个位置,以便腾出一个位置,再把新元素插入到该位置。

若是欲删除第i个元素时,也必须把第i个元素之后的所有元素前移一个位置;2、当我们在线性表的链式存储结构上的第i个位置上插入一个元素时,只需先确定第i个元素前一个元素位置,然后修改相应指针将新元素插入即可。

若是欲删除第i个元素时,也必须先确定第i个元素前一个元素位置,然后修改相应指针将该元素删除即可;3、详细原理请参考教材。

【实验步骤】一、用C语言编程实现建立一个顺序表,并在此表中插入一个元素和删除一个元素。

1、通过键盘读取元素建立线性表;(从键盘接受元素个数n以及n个整形数;按一定格式显示所建立的线性表)2、指定一个元素,在此元素之前插入一个新元素;(从键盘接受插入位置i,和要插入的元素值;实现插入;显示插入后的线性表)3、指定一个元素,删除此元素。

(从键盘接受删除元素位置i,实现删除;显示删除后的线性表)二、用C语言编程实现建立一个单链表,并在此表中插入一个元素和删除一个元素。

北邮数据结构实验报告-排序

北邮数据结构实验报告-排序

北邮数据结构实验报告-排序北邮数据结构实验报告-排序一、实验目的本实验旨在掌握常见的排序算法,包括冒泡排序、插入排序、选择排序、快速排序、归并排序等,并通过实际编程实现对数字序列的排序。

二、实验内容1.冒泡排序冒泡排序是一种简单的排序算法,其基本思想是依次比较相邻的两个元素,并按照从小到大或从大到小的顺序交换。

具体步骤如下:- 从待排序序列的第一个元素开始,依次比较相邻的两个元素;- 如果前面的元素大于后面的元素,则交换这两个元素的位置;- 重复上述步骤,直到整个序列有序。

2.插入排序插入排序是一种简单且直观的排序算法,其基本思想是将待排序序列分为已排序和未排序两部分,每次从未排序部分中选择一个元素插入到已排序部分的合适位置。

具体步骤如下:- 从待排序序列中选择一个元素作为已排序部分的第一个元素;- 依次将未排序部分的元素插入到已排序部分的合适位置,使得已排序部分保持有序;- 重复上述步骤,直到整个序列有序。

3.选择排序选择排序是一种简单且直观的排序算法,其基本思想是每次选择未排序部分中的最小(或最大)元素,并将其放在已排序部分的末尾。

具体步骤如下:- 在未排序部分中选择最小(或最大)的元素;- 将选择的最小(或最大)元素与未排序部分的第一个元素交换位置;- 重复上述步骤,直到整个序列有序。

4.快速排序快速排序是一种高效的排序算法,其基本思想是通过一趟排序将待排序序列分割成两部分,其中一部分的元素都比另一部分的元素小。

具体步骤如下:- 选择一个枢轴元素(一般选择第一个元素);- 将待排序序列中小于枢轴元素的元素放在枢轴元素的左侧,大于枢轴元素的元素放在枢轴元素的右侧;- 对枢轴元素左右两侧的子序列分别进行递归快速排序;- 重复上述步骤,直到整个序列有序。

5.归并排序归并排序是一种高效的排序算法,其基本思想是将待排序序列划分成足够小的子序列,然后对这些子序列进行两两合并,最终形成有序的序列。

具体步骤如下:- 将待排序序列递归地划分成足够小的子序列;- 对每个子序列进行归并排序;- 合并相邻的子序列,直到整个序列有序。

数据结构与算法(12):排序

数据结构与算法(12):排序

int[] data = new int[] {10,30,20,60,40,50};
mergesort(data);
for(int i:data) {
System.out.println(i);
}
}
public static void mergesort(int[] arr){
sort(arr, 0, arr.length-1);
例例如,假设有这样一一组数[ 13 14 94 33 82 25 59 94 65 23 45 27 73 25 39 10 ],如果我们以步⻓长 为5开始进行行行排序,我们可以通过将这列列表放在有5列列的表中来更更好地描述算法,这样他们就应该 看起来是这样:
13 14 94 33 82 25 59 94 65 23 45 27 73 25 39 10
坏的情况下,移动次数为n(n − 1)/2
冒泡排序的时间复杂度为O(n2)。冒泡排序不不需要辅助存储单元,其空间复杂度为O(1)。如果关
键字相等,则冒泡排序不不交换数据元素,他是一一种稳定的排序方方法。
时间复杂度:最好O(n);最坏O(n2);平均O(n2) 空间复杂度:O(1)
稳定性:稳定
二二、选择排序(Selection Sort)
排好序时,元素的移动次数为0。当每一一趟都需要移动数据元素时,总的移动次数为n − 1
选择排序的时间复杂度为O(n2)。选择排序不不需要辅助的存储单元,其空间复杂度为O(1)。选择
排序在排序过程中需要在不不相邻的数据元素之间进行行行交换,它是一一种不不稳定的排序方方法。
时间复杂度:O(n2) 空间复杂度:O(1)
地方方增量量和差值都是delta temp = arr[j-delta]; arr[j-delta] = arr[j]; arr[j] = temp;

《数据结构》课程标准

《数据结构》课程标准

《数据结构》课程标准一、课程定位《数据结构》是大数据技术与应用专业的一门专业基础课程,本课程所涵盖的知识和技能是作为大数据技术与应用专业学生其他专业课程的核心基础课程之一。

通过本课程的学习,使学生能够获得学习后续专业课程所需的编程算法、数据结构方面的基础知识。

通过本课程及其实践环节教学,使学生能够培养良好的编程习惯,锻炼计算机软件算法思想,并培养学生分析问题和解决问题的能力。

为以后进行实际的软件开发工作打下良好的专业知识和职业技能基础。

二、课程目标通过本课程的学习,培养和提高计算机软件技术专业学生的职业核心能力和素质。

使学生能够具备良好的职业素养,具备团队协作、与人沟通等多方面的能力;使学生具有较强的编程专业基础知识和技能,并具备进行自我拓展的能力。

让学生能够具备深厚的专业基础,为今后的长足发展提供厚实而强大的动力。

1、知识目标本课程涵盖了以下知识目标:(1)掌握算法设计的基本度量方法;(2)掌握线性表、栈、队列、数组和二叉树抽象数据类型的实现及其基本的操作实现;(3)理解图抽象数据类型的实现及其基本的操作特点;(4)掌握常见查找算法和排序算法的特点和实现方法。

2、能力目标(1)能查阅英文版的相关技术手册;(2)能正确地实现常用的抽象数据类型,并能实现常见的基本操作;(3)能针对现实问题选择正确的数据结构,并能在所选择的数据结构基础上编写相应算法以解决该问题;(4)能够对所编写的算法进行简单的度量和评估。

3、素质目标(1)具有良好的心理素质,顽强的意志力,勇于克服困难;(2)具有较强的身心素质,适应艰苦工作需要;(3)具有较扎实的业务基础,并能不断进行创新和自我超越。

三、课程设计1、设计思想教学内容框架按照知识和技能递进的关系,本课程的内容框架设计如下图所示:教学内容框架示意图本课程教学内容按照线性表、栈、队列、数组、树及二叉树和图等基本数据结构的顺序来实施教学,最后将前面的基本数据结构应用于查询算法和排序算法的设计和实现。

二路归并排序的链式实现方式

二路归并排序的链式实现方式
3;
2 每 两 个 相 邻 的 有 序 序 列 合 并 成 一 个 有 序 序 列 , 并 后 ) 合 的 有序 序列 的 记 录数 是 合 并 前 两 个 相 邻 有 序 序 列 的记 录 数 之
3 如 果 第 二 个 子 表 的数 据 记 录 尚 未 归 并 完 毕 , 当 前 记 ) 且
前 记 录 的下 标 , 后 指 针 后 移 f 然
二 路 归 并 排 序 的基 本 过 程 如 下 :
1 对于 给定序列 中的每 一个记 录 , ) 被认 为是一 个有序 序
列。
2 将第 二个 子表 的当前记 录链接 在第一个 子表 当前 记录 ) 的前一个记 录之 后 。 如果第一个 子表所有记 录都 已归并 , 则转
即为我们所需的排序结果 。
2 二路 归 并排 序 的链 式 实现 方式 的思想
二 路归 并排序 的链 式实 现 方式 在 结构 上采 用 了静 态链
表 , 样 需 要 在 每 个 数 据 记 录 增 加 一 个 整 型 的 指 针 分 量 用 于 这 指 向下 一 个 记 录 的 下 标 , 将 两 个 有 序 子 区 间 合 并 成 一 个 有 在
学 习园地
微 型 电脑应 用
20 0 6年第 2 2卷第 1 2期
二 路 归 并 排 序 的链 式 实 现 方 式
张 济 础
摘 要 : 本文就《 数据 结构》 课程 中两路 归并排 序 的算 法的特点进行 了分析 , 并提 出 了一个 改进空 间复杂性和 时 间复 杂性 的
两路 归 并 排 序 的 算 法 。 关 键 词 : 并排 序 ; 法 ; 间复 杂性 ; 间复 杂性 归 算 空 时
和。 如果存 在奇数个有序序列 , 则最后一个有序 序列 不参加归 并, 但应复制 到 目标序列 。

数据结构课程设计题目

数据结构课程设计题目

数据结构课程设计题⽬《数据结构》课程设计题⽬1. 排序算法的性能分析问题描述设计⼀个测试程序,⽐较⼏种内部排序算法的关键字⽐较次数和移动次数以取得直观感受。

基本要求(1)对冒泡排序、直接排序、选择排序、箱⼦排序、堆排序、快速排序及归并排序算法进⾏⽐较。

(2)待排序表的表长不⼩于100,表中数据随机产⽣,⾄少⽤5组不同数据作⽐较,⽐较指标:关键字参加⽐较次数和关键字的移动次数(关键字交换记为3次移动)。

(3)输出⽐较结果。

选做内容(1)对不同表长进⾏⽐较。

(2)验证各算法的稳定性。

(3)输出界⾯的优化。

2. 排序算法思想的可视化演⽰—1基本要求排序数据随机产⽣,针对随机案例,对冒泡排序、箱⼦排序、堆排序、归并算法,提供排序执⾏过程的动态图形演⽰。

3. 排序算法思想的可视化演⽰—2基本要求排序数据随机产⽣,针对随机案例,,对插⼊排序、选择排序、基数排序、快速排序算法,提供排序执⾏过程的动态图形演⽰。

4. 线性表的实现与分析基本要求①设计并实现线性表。

②线性表分别采取数组(公式化描述)、单链表、双向链表、间接寻址存储⽅式③针对随机产⽣的线性表实例,实现线性表的插⼊、删除、搜索操作动态演⽰(图形演⽰)。

5. 等价类实现及其应⽤问题描述:某⼯⼚有⼀台机器能够执⾏n个任务,任务i的释放时间为r i(是⼀个整数),最后期限为d i(也是整数)。

在该机上完成每个任务都需要⼀个单元的时间。

⼀种可⾏的调度⽅案是为每个任务分配相应的时间段,使得任务i的时间段正好位于释放时间和最后期限之间。

⼀个时间段不允许分配给多个任务。

基本要求:使⽤等价类实现以上机器调度问题。

等价类分别采取两种数据结构实现。

6. ⼀元稀疏多项式计算器问题描述设计⼀个⼀元稀疏多项式简单计算器。

基本要求⼀元稀疏多项式简单计算器的基本功能是:(1)输⼊并建⽴多项式;(2)输出多项式,输出形式为整数序列:n,c1,e1,c2,e2,…,c n,e n,其中n是多项式的项数,c i,e i,分别是第i项的系数和指数,序列按指数降序排序;(3)多项式a和b相加,建⽴多项式a+b;(4)多项式a和b相减,建⽴多项式a-b;(5)计算多项式在x处的值;(6)计算器的仿真界⾯(选做)7. 长整数的代数计算问题描述应⽤线性数据结构解决长整数的计算问题。

数据结构与算法-排序

数据结构与算法-排序
构成的逆序记录对。
假定待排序文件由 n 条记录组成,记录依次存储在 r[1]~r[n]中。使用简单冒泡排
序算法对待排序文件中的记录进行排序,具体处理流程如下。
(1)遍历待排序文件 r[1]~r[n],每访问一条记录 r[j]时,比较所访问记录排序关
键字与所访问记录后一记录排序关键字的大小,核对所访问记录 r[j]与所访问记录后一
则,此排序算法是不稳定的。例如, 给定待排序文件 A={1,2,3,1,4}和B={1,3,1,2,4},假定某
一排序算法对文件 A 和B 的排序结果分别为{1,1,2,3,4}和{1,1,2,3,4},由于文件 B 中存在多
项同为 1 的记录,且排序后同为 1 的记录相对位置发生了改变,因此,此算法是不稳定
排序

CONTENTS

01
排序的概述
02
插入排序算法
03
交换排序算法
04
选择排序算法
05
归并排序算法
06
分配排序算法
07
各种排序技术比较
08
本章小结
01
PART
排序的概述
排序是以某一数据项(称为排序关键字)为依据,将一组无序记录调整成一组有序
记录,形成有序表的过程。排序问题可以定义为以下形式。
件排序时,记录分组以及每趟排序结果如右
图所示。
插入排序算法
2.3希尔排序算法
第一趟排序时,增量 h=4,因此,以
h=4 为记录间隔,将待排序文件中的记录分
为 4 组:{r[1],r[5],r[9]}、{r[2],r[6]}、{r[3],r[7]}
和{r[4],r[8]},并分别对 4 组记录进行直接插入

数据结构课程设计

数据结构课程设计

数据结构课程设计----个人设计报告专业:班级:姓名:学号:指导教师:日期: 2016年X月XX日至XX日目录1 课程设计目的 (3)2 课程设计内容和要求 (3)3 任务完成情况 (3)4 设计报告 (4)4.1顺序表应用 (4)4.1.1 设计目的 (4)4.1.2 设计内容及要求 (4)4.1.3 需求分析 (5)4.1.4 概要设计 (7)4.1.5 详细代码 (8)4.1.6 使用说明 (8)4.1.7 测试结果与分析 (8)4.1.8 参考文献 (10)4.2链表应用 (10)4.2.1 设计目的 (10)4.2.2 设计内容及要求 (11)4.2.3 需求分析 (12)4.2.4 概要设计 (14)4.2.5 详细代码 (16)4.2.6 使用说明 (16)4.2.7 测试结果与分析 (16)4.2.8 参考文献 (18)4.3树和二叉树 (19)4.3.1 设计目的 (19)4.3.2 设计内容及要求 (19)4.3.3 需求分析 (19)4.3.4 概要设计 (20)4.3.5 详细代码 (21)4.3.6 使用说明 (21)4.3.7 测试结果与分析 (22)4.3.8 参考文献 (22)5 体会与感想 (23)附录: (24)设计一(顺序表应用)的代码 (24)设计二(链表的应用)的代码 (35)设计三(二叉树应用)的代码 (47)1 课程设计目的1、学习获取知识的方法;2、提高发现问题、分析问题和解决实际问题的能力;3、加强创新意识和创新精神;4、加强团队的分工与合作;5、掌握面向实际背景思考问题的方法。

2 课程设计内容和要求内容:(仅供参考,请根据实际完成情况填写)第一章前言第二章顺序表与链表的应用第三章树结构的应用第四章图结构的应用第五章赫夫曼编码的应用要求:完成第2章、第3章中每章的比作必做任务。

在完成个人任务的基础上,完成第4章第5章的小组任务。

每人必须在完成个人任务的基础上提交个人任务的设计报告,内容包括:任务名称、目的、具体内容、需求分析、概要设计、主要代码分析、测试结果、收获与体会。

数据结构-排序PPT课件

数据结构-排序PPT课件
平均情况时间复杂度
O(nlogn),归并排序的平均时间复杂度为O(nlogn)。其中,n为待排序序列的长度。
06
基数排序
基数排序是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。
分配和收集
基数排序是一种稳定的排序算法,即相同的元素在排序后仍保持原有的顺序。
文件系统需要对文件和目录进行排序,以便用户可以更方便地浏览和管理文件。
数据挖掘和分析中需要对数据进行排序,以便发现数据中的模式和趋势。
计算机图形学中需要对图形数据进行排序,以便进行高效的渲染和操作。
数据库系统
文件系统
数据挖掘和分析
计算机图形学
02
插入排序
将待排序的元素按其排序码的大小,逐个插入到已经排好序的有序序列中,直到所有元素插入完毕。
简单选择排序
基本思想:将待排序序列构造成一个大顶堆,此时,整个序列的最大值就是堆顶的根节点。将其与末尾元素进行交换,此时末尾就为最大值。然后将剩余n-1个元素重新构造成一个堆,这样会得到n个元素的次小值。如此反复执行,便能得到一个有序序列了。 时间复杂度:堆排序的时间复杂度为O(nlogn),其中n为待排序元素的个数。 稳定性:堆排序是不稳定的排序算法。 优点:堆排序在最坏的情况下也能保证时间复杂度为O(nlogn),并且其空间复杂度为O(1),是一种效率较高的排序算法。
基数排序的实现过程
空间复杂度
基数排序的空间复杂度为O(n+k),其中n为待排序数组的长度,k为计数数组的长度。
时间复杂度
基数排序的时间复杂度为O(d(n+k)),其中d为最大位数,n为待排序数组的长度,k为计数数组的长度。
适用场景
当待排序数组的元素位数较少且范围较小时,基数排序具有较高的效率。然而,当元素位数较多或范围较大时,基数排序可能不是最优选择。

数据库系统实现两阶段多路归并排序算法的C实现

数据库系统实现两阶段多路归并排序算法的C实现

两阶段多路归并排序Two-Phase Multiway Merge-Sort实验报告目录1 实验目的 (3)2 实验内容 (3)3 实验环境 (3)4 实验的设计和实现 (3)4.1 算法描述 (3)4.2 设计思路 (4)4.3 数据结构 (5)4.4 具体实现 (6)5 实验结果 (9)5.1 50MB内存TPMMS实验结果 (9)5.2 10MB内存TPMMS实验结果 (9)5.3 100MB内存TPMMS实验结果 (10)5.4 三者的比较 (11)6 实验遇到的问题和解决方法 (11)6.1 Phase2阶段遇到的问题和解决方法 (11)6.2 生成子记录文件名的方法 (13)7 代码附录 (13)1实验目的通过merge-sort算法的实现,掌握外存算法所基于的I/O模型与内存算法基于的RAM模型的区别;理解不同的磁盘访问优化方法是如何提高数据访问性能的。

2实验内容生成一个具有10,000,000个记录的文本文件,其中每个记录由100个字节组成。

实验只考虑记录的一个属性A,假定A为整数类型。

记录在block上封装时,采用non-spanned方式,即块上小于一个记录的空间不使用。

Block的大小可在自己的操作系统上查看,xp一般为4096 bytes。

在内存分配50M字节的空间用于外部merge-sort。

要求设计和实现程序完成下列功能:1)生成文本文件,其中属性A的值随机产生。

2)按照ppt中的方法对文本文件中的记录,按照属性A进行排序,其中在第二阶段的排序中每个子列表使用一个block大小的缓冲区缓冲数据。

3)按照教材cylinder-based buffers(1M bytes)的方法,修改第二阶段的算法。

4)比较两种方法的时间性能,如果有更大的内存空间,算法性能还能提高多少?3实验环境1)Visual C++ 6.02)Windows 7操作系统4实验的设计和实现4.1算法描述Two-Phase Multiway Merge-Sort算法的具体描述分为2个阶段,如下所示:●Phase 11)Fill main memory with records.2)Sort with favorite main memory sorting algorithms.3)Write sorted list to disk.4)Repeat until all records have been put into one of the sorted lists.●Phase 21)Initially load input buffers with the first block of their respective sortedlists.2)Repeated run a competition among the first unchosen records of each ofthe buffered blocks.3)If an input block is exhausted, get the next block from the same file.4)If the output block is full, write it to disk.4.2设计思路从上述的算法描述中,我们知道,系统主要由2大模块组成:Phase1和Phase2。

大数据数据结构和算法_排序_归并排序(外部排序)

大数据数据结构和算法_排序_归并排序(外部排序)
重复上述过程,直到大文件处理完毕,这样我们就得到了很多有序的小文件.
2.利用多路归并排序对这些小文件排序,按行写入最终的有序大 文件.

最终结果, 大文件(有序)
排序
2
6
1
3
7
5
4
7
13
5
8
14
6
20
15
文件1 文件2 文件3
3个小文件,每个文件内的数 据都有序
6 6 13
将最小值写入
6
6 13
将最小值写入
6
7 13
将最小值写入
7
7 13
将最小值写入
7
8 13
将最小值写入
8
13 20
将最小值写入
13
14 20
将最小值写入
14
15 20
排序
外部排序合并策略 维护n个小文件的输入input[n]. 维护1个内存中的小对象或者小数组mem_array[n],用于排序. 1.每次从小对象mem_array中取最小least的元素,写入最终文件, 一次写入一个数据. 2.若选取的最小元素属于第 i 个小文件,那么从input[i]读取下一 个数据放入mem_array[i]中,进行排序. 3.重复1、2步,直到所有的input[n]中数据都已处理完毕.
排序
最小值属于哪个文件,就从哪个文件取下一个值 并加入mem进行排序
2
6
1
1
2
6
将最小值写入
1
3
7
5
4
7
13
5
8
14
6
20
15
文件1 文件2 文件3
2
5

C语言中的数据结构与算法实现

C语言中的数据结构与算法实现

C语言中的数据结构与算法实现数据结构与算法是计算机科学中非常重要的概念,它们在程序设计中起着至关重要的作用。

在C语言中,我们可以利用各种数据结构和算法来实现一些复杂的功能和解决问题。

下面我将介绍C语言中常见的数据结构和算法,并举例说明它们的实现方法。

一、数据结构1. 数组:在C语言中,数组是最基本的数据结构之一。

数组是一种线性数据结构,它可以存储相同类型的元素,并通过下标访问。

例如,我们可以通过数组实现一维、二维甚至多维的数据结构。

2. 链表:链表是另一种常见的数据结构,它由一系列节点组成,每个节点包含数据和指向下一个节点的指针。

链表可以分为单向链表、双向链表和循环链表等不同类型。

通过链表我们可以实现插入、删除等操作。

3. 栈和队列:栈和队列是两种基本的线性数据结构。

栈是“先进后出”的数据结构,只能在栈顶进行插入和删除操作;队列是“先进先出”的数据结构,只能在队首和队尾进行插入和删除操作。

4. 树:树是一种非线性的数据结构,它由节点和边组成,可以表示层次关系。

二叉树是树的一种特殊形式,每个节点最多有两个子节点。

二叉搜索树是一种特殊的二叉树,左子树的节点都小于根节点,右子树的节点都大于根节点。

5. 图:图是一种复杂的非线性数据结构,由节点和边组成。

图可以分为有向图和无向图,常用于表示各种关系。

二、算法1. 排序算法:排序算法是最基本的算法之一,在实际开发中经常会用到。

常见的排序算法有冒泡排序、选择排序、插入排序、快速排序、归并排序等。

这些排序算法具有不同的时间复杂度和空间复杂度,可以根据实际需求选择适合的排序算法。

2. 查找算法:查找算法用于在数据集中查找指定元素。

常见的查找算法有顺序查找、二分查找、哈希查找等。

二分查找是最高效的查找算法之一,时间复杂度为O(logn)。

3. 图算法:图算法用于解决与图相关的问题,如最短路径、最小生成树等。

常见的图算法有Dijkstra算法、Prim算法、Kruskal算法等。

数据结构第十章 排序

数据结构第十章 排序
7
10.2 插入排序 插入排序
直接插入排序 折半插入排序 2-路插入排序 表插入排序 希尔排序
10.2.1 直接插入排序
基本操作:将一个记录插入到已排好序的有序表中, 从而得到一个新的、记录数增1的有序表。
例:有一组待排序的记录的关键字初始序列如下:
(49,38,65,97,76,13,27,49`)
(4)归并排序 (5)基数排序
按内排过程中所需的工作量分类:
(1)简单的排序方法,其时间复杂度为O(n×n)
(2)先进的排序方法,其时间复杂度为O(nlogn);
(3)基数排序,其时间复杂度为O(d(n+rd))
排序算法的两种基本操作:
(1)比较两个关键字的大小; (2)将记录从一个位置移至另一个位置;
算法实现的关键设计:
将d看成是一个循环数组,并设两个指针first和final分别指示排序过 程中得到的有序序列中的第一个记录和最后一个记录在d中的位置.
例:有一组待排序的记录的关键字初始排列如下:
(49,38,65,97,76,13,27,49`) 16
[初始关键字] 49 38 65 97 76 13 27 49`
18
10.2.3 希尔排序 从直接插入排序
待排序序列基本有序可提高效率 回顾 待排序序列的记录数n很小时可提高效率
希尔排序的基本思想:
先将整个待排记录序列分割成为若干子序列分别进行
直接插入排序,待整个序列中的记录“基本有序”时,再对 全
体记例录:有进一行组一待次排直序接的插记入录排的序关. 键字初始排列如下: (49,38,65,97,76,13,27,49`)
} 12
直接插入排序的性能分析: 10. 3
(1)空间:只需一个记录的辅助空间r[0].

数据结构排序实验报告

数据结构排序实验报告

数据结构排序实验报告一、实验目的本次数据结构排序实验的主要目的是深入理解和掌握常见的排序算法,包括冒泡排序、插入排序、选择排序、快速排序和归并排序,并通过实际编程和实验分析,比较它们在不同规模数据下的性能表现,从而为实际应用中选择合适的排序算法提供依据。

二、实验环境本次实验使用的编程语言为 Python 3x,开发环境为 PyCharm。

实验中使用的操作系统为 Windows 10。

三、实验原理1、冒泡排序(Bubble Sort)冒泡排序是一种简单的排序算法。

它重复地走访要排序的数列,一次比较两个数据元素,如果顺序不对则进行交换,并一直重复这样的走访操作,直到没有要交换的数据元素为止。

2、插入排序(Insertion Sort)插入排序是一种简单直观的排序算法。

它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入,直到整个数组有序。

3、选择排序(Selection Sort)首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。

以此类推,直到所有元素均排序完毕。

4、快速排序(Quick Sort)通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。

5、归并排序(Merge Sort)归并排序是建立在归并操作上的一种有效、稳定的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。

将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。

四、实验步骤1、算法实现使用 Python 语言分别实现上述五种排序算法。

为每个算法编写独立的函数,函数输入为待排序的列表,输出为排序后的列表。

2、生成测试数据生成不同规模(例如 100、500、1000、5000、10000 个元素)的随机整数列表作为测试数据。

数据结构课程设计--二路归并排序说明书

数据结构课程设计--二路归并排序说明书

前言1.1排序的重要性生活中,无时不刻不充满这排序,比如:班级同学的成绩排名问题,公司产值高低的问题等等,解决这些问题的过程中,都涉及到了一个数据结构的构造思想过程。

数据结构中的排序,也有很多种,如:插入排序、交换排序、选择排序等等,此时我们就要注意选择具有优解的算法,将一个数据元素(或记录)的任意序列,重新排列成一个有序的排列,便于我们查找。

假设含有n个记录的序列为{R1,R2,Rn},其相应的关键字序列为{K1,K2,…,Kn}需确定1,2…n的一种排序P1,P2…Pn,使其相应的关键字满足如下的非递减的关系:Kp1≤Kp2≤…≤Kpn,即按关键字{Rp1,Rp2,…,Rpn}有序的排列,这样的一种操作称为排序。

一般情况下,排序又分为内部排序和外部排序。

而在内部排序中又含有很多排序方法,就其全面性能而言,很难提出一种被认为是最好的方法,因为每一种方法都有它的优缺点,适合在不同的环境下使用。

我们学习的排序有:直接插入排序、折半插入排序、希尔排序、快速排序、基数排序、归并排序等。

本次课题研究中,我主要进行了二路归并排序的研究和学习。

1.2设计的背景和意义排序是计算机领域的一类非常重要的问题,计算机在出来数据的过程中,有25%的时间花在了排序上,有许多的计算机设备,排序用去计算机处理数据时间的一半以上,这对于提高计算机的运行速度有一定的影响。

此时排序算法的高效率显得尤为重要。

在排序算法汇中,归并排序(Merging sort)是与插入排序、交换排序、选择排序不同的另一类排序方法。

归并的含义是将两个或两个以上的有序表组合成一个新的有序表。

归并排序可分为多路归并排序,两路归并排序,既可用于内排序,也可以用于外排序。

这里仅对内排序的两路归并排序进行讨论。

而我们这里所探究学习的二路归并排序,设计思路更加清晰、明了,程序本身也不像堆结构那样复杂,同时时间复杂度仅为0(N),同时在处理大规模归并排序的时候,排序速度也明显优于冒泡法等一些排序算法,提高排序算法的效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计任务书学生姓名:专业班级:指导教师:工作单位:题目: 归并排序的设计与实现初始条件:理论:学习了《数据结构》课程,掌握了基本的数据结构和常用的算法;实践:计算机技术系实验室提供计算机及软件开发环境。

要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、系统应具备的功能:(1)输入一组数,用递归和非递归程序实现归并排序(2)分析归并排序的复杂度(3)将归并排序的思想用于外部排序中2、数据结构设计;3、主要算法设计;4、编程及上机实现;5、撰写课程设计报告,包括:(1)设计题目;(2)摘要和关键字(中文和英文);(3)正文,包括引言、需求分析、数据结构设计、算法设计、程序实现及测试、设计体会等;(4)结束语;(5)参考文献。

时间安排:2010年元月10日-14日(第19周)元月10日查阅资料元月11日系统设计,数据结构设计,算法设计元月12日-13日编程并上机调试元月14日撰写报告元月15日验收程序,提交设计报告书。

指导教师签名: 2010年元月10日系主任(或责任教师)签名: 2010年元月10日归并排序的设计和实现摘要:该程序主要由五个部分组成:把一组待排的数据信息放在结构体里,2-路归并排序,对数组作一趟归并排序,对数组作归并排序,主函数。

Abstract: The program mainly consists of five parts: the a row of data to be placed on structure, the 2 - way merge sort, for a trip to the array Merge sort, merge sort on the array as the main function.关键字:模型化, 2-路归并, 一趟归并, 归并Keywords: modeling, 2 - way merge, a trip to merge, merge0.引言归并排序是一种稳定的内部排序,“归并”的含义是将两个或两个以上的有序表组合成一个新的有序表。

无论是顺序存储结构还是链表存储结构,都可在O (m+n)的时间量级上实现。

利用归并的思想容易实现排序。

2—路归并排序:假设初始序列含有n个记录,则可看成是n个有序的子序列,每个子序列的长度为1,然后两两归并,得到不小于n/2整数个长度为2或1的有序子序列;再两两归并,……,如此重复,直至得到一个长度为n的有序序列为止。

1.算法把握1.1归并排序算法的具体分析咋一看,归并排序时一种“费力不讨好”的排序方法,因为最后一趟始终要对整个序列进行排序,这会使的前几趟的排序似乎是在做无用功,其实不然。

对初始关键字两两分组并进行组内排序后,在下一次处理中,并不是简单地在组容量扩大一倍的基础上重新排序,而是把上一趟已经排好序的两组数组重新合并成一个新的有序组。

这个把两个有序组合并到一个新的有序组的过程要比单独排序快得多。

归并排序的核心操作时合并有序组。

对于最开始的两两分组,也可以看成是两个只含有1个关键字的组进行合并。

1.2 除了核心的合并操作外,需要先把序列进行分组,每次组容量减半,直到组内只有一个关键字为止,再对组进行合并,直到所有关键字都属于一组为止。

实际上,分组采用递归的方法更加方便。

2.需求分析(1)通过建立一个结构体,用来存放数据信息,包括数据的个数,本身记录。

(2)2-路归并排序的算法,实现两两归并。

(3)主函数初始化数据,选择归并排序的方法及打印数据结果。

3.数据结构设计用结构体存储待排的数据。

#include<iostream.h>#define MAX 100 /*定义MAX是最大的允许输入数字个数*/typedef struct{int n; /* n为文件中的记录个数,n<MAXNUM */int data[MAX];}lqlist;4.算法设计4.1 2-路归并排序的非递归算法//将有序的SR[i..m]和SR[m+1..n]归并为有序的TR[i..n]void merge(RcdType SR[],RcdType&TR[],int i,int m,int n){for(j=m+1,k=I;i<=m&&j<=n;k++){ //将SR中记录由小到大的并入TRif(LQ(SR[i].key,SR[j].key))TR[k]=SR[i++];else TR[k]=SR[j++];}if(i<=m)TR[k..n]=SR[i..m]; //将剩余的SR[i..m]复制到TR if(j<=n)TR[k..n]=SR[j..n]; //将剩余的SR[i..m]复制到TR }//merge4.2 2-路归并排序的递归形式void Msort(RcdType SR[],RcdType&TR1[],int s,int t){//将SR归并排序为TRif(s==t)TR1[s]=SR[s];else{m=(s+t)/2; //将平分为SR[s..t]和SR[m+1..t]Msort(SR,TR2,s,m);// 递归的将SR[s..m]归并为有序的TR2[s..m]Msort(SR,TR2,m+1,t);//递归地将SR[m+1..t]归并为有序的TR[m+1..t] Merge(TR2,TR1,s,m,t);// 将TR2[s..m]和TR2[m+1..t]归并到TR1[s..t]}}//mergesort4.3 对顺序表L作归并排序Void mergesort(SqList &L){Msort(L.r,L.r,1,L.length);}//mergesort4.4 非递归形式归并算法void merge(int r[], int r1[], int low, int m, int high){/* r[low]到r[m]和r[m+1]到r[right]是两个有序段 */int i = low, j = m + 1, k = low;while ( i <= m && j <= high ){/* 反复复制两个段的第一个记录中较小的 */if (r[i] <= r[j] )r1[k++] = r[i++];elser1[k++] = r[j++];}while (i <= m)r1[k++] = r[i++]; /* 复制第一个段的剩余记录 */while (j <= high)r1[k++] = r[j++];/* 复制第二个段的剩余记录 */}4.5 对 r 做一趟归并的算法void mergePass(int r[], int r1[], int n, int length) {int i = 0, j; /* length为本趟归并的有序子段的长度 */ while(i + 2*length - 1 < n){/* 归并长length的两个子段*/merge(r, r1, i, i+length-1, i + 2*length - 1);i += 2*length;}if(i + length - 1 < n - 1) /* 剩下两段,后一段长度小于 length */ merge(r, r1, i, i+length-1, n-1);else /* 将剩下的一段复制到数组r1 */ for(j = i; j < n; j++) r1[j] = r[j];}4.6 对整个数据进行归并的算法void mergeSort(SortObject * p ){int data[MAXNUM];int length = 1;while (length < p->n){/* 一趟归并,结果存放在数组record中*/mergePass(p->record, record, p->n, length);length *= 2;/* 一趟归并,结果存回 */mergePass(record, p->record, p->n, length);length *= 2;}}4.7 主程序main(){cout<<"********************************************************** *********************"<<endl;cout<<" 归并排序的递归和非递归实现"<<endl;cout<<"********************************************************** *********************"<<endl;lqlist p;int i=0,z,m,k;cout<<" 请输入所要比较的数字组,以10000结束: "<<endl;cin>>z;while(z!=10000&&i<MAX){p.data[i]=z;i++;cin>>z;}p.n =i;cout<<"排序前的数组是:"<<endl;for(i=0;i<p.n ;i++)cout<<p.data [i]<<" ";cout<<"请选择需要归并排序的方法"<<endl<<"1.选择递归方法。

"<<endl;cout<<"2.选择非递归方法。

"<<endl;cin>>m;if(m==1)M(&p);else {if(m==2)mergesort2(&p);elsecout<<"输入有误。

"<<endl;}cout<<endl<<"排序后的数组:"<<endl;for(i=0;i<p.n ;i++){ /*输出排序前的数组*/cout<<p.data[i]<<" ";}cout<<endl;cout<<"请选择服务:"<<endl;if(m==1)cout<<"1.选择非递归方法。

相关文档
最新文档