人教备战中考数学压轴题专题一元二次方程的经典综合题含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、一元二次方程 真题与模拟题分类汇编(难题易错题)
1.在等腰三角形△ABC 中,三边分别为a 、b 、c ,其中ɑ=4,若b 、c 是关于x 的方程x 2
﹣(2k +1)x +4(k ﹣
1
2
)=0的两个实数根,求△ABC 的周长. 【答案】△ABC 的周长为10. 【解析】 【分析】
分a 为腰长及底边长两种情况考虑:当a=4为腰长时,将x=4代入原方程可求出k 值,将k 值代入原方程可求出底边长,再利用三角形的周长公式可求出△ABC 的周长;当a=4为底边长时,由根的判别式△=0可求出k 值,将其代入原方程利用根与系数的关系可求出b+c 的值,由b+c=a 可得出此种情况不存在.综上即可得出结论. 【详解】
当a =4为腰长时,将x =4代入原方程,得:()2
14421402k k ⎛⎫-++-
= ⎪⎝⎭
解得:5
2
k = 当5
2
k =
时,原方程为x 2﹣6x +8=0, 解得:x 1=2,x 2=4,
∴此时△ABC 的周长为4+4+2=10;
当a =4为底长时,△=[﹣(2k +1)]2﹣4×1×4(k ﹣1
2
)=(2k ﹣3)2=0, 解得:k =
32
, ∴b +c =2k +1=4. ∵b +c =4=a ,
∴此时,边长为a ,b ,c 的三条线段不能围成三角形. ∴△ABC 的周长为10. 【点睛】
本题考查了根的判别式、根与系数的关系、一元二次方程的解、等腰三角形的性质以及三角形的三边关系,分a 为腰长及底边长两种情况考虑是解题的关键.
2.已知关于x 的一元二次方程()2
2
2130x k x k --+-=有两个实数根.
()1求k 的取值范围;
()2设方程两实数根分别为1x ,2x ,且满足221223x x +=,求k 的值.
【答案】(1)13
4
k ≤
;(2)2k =-.
【解析】 【分析】
()1根据方程有实数根得出()()
22[2k 1]41k 38k 50=---⨯⨯-=-+≥,解之可得.
()2利用根与系数的关系可用k 表示出12x x +和12x x 的值,根据条件可得到关于k 的方
程,可求得k 的值,注意利用根的判别式进行取舍. 【详解】 解:()
1关于x 的一元二次方程()2
2
2130x k x k --+-=有两个实数根,
0∴≥,即()()22
[21]4134130k k k ---⨯⨯-=-+≥,
解得134
k ≤
. ()2由根与系数的关系可得1221x x k +=-,2123x x k =-,
()
22
2222121212()2(21)23247x x x x x x k k k k ∴+=+-=---=-+, 22
1223x x +=,
224723k k ∴-+=,解得4k =,或2k =-,
13
4
k ≤
, 4k ∴=舍去, 2k ∴=-. 【点睛】
本题考查了一元二次方程2
ax bx c 0(a 0,++=≠a ,b ,c 为常数)根的判别式.当0>,
方程有两个不相等的实数根;当0=,方程有两个相等的实数根;当0<,方程没有实数根.以及根与系数的关系.
3.已知关于x 的二次函数22(21)1y x k x k =--++的图象与x 轴有2个交点. (1)求k 的取值范围;
(2)若图象与x 轴交点的横坐标为12,x x ,且它们的倒数之和是3
2
-,求k 的值. 【答案】(1)k <-3
4
;(2)k=﹣1 【解析】
试题分析:(1)根据交点得个数,让y=0判断出两个不相等的实数根,然后根据判别式△= b 2-4ac 的范围可求解出k 的值;
(2)利用y=0时的方程,根据一元二次方程的根与系数的关系,可直接列式求解可得到k 的值.
试题解析:(1)∵二次函数y=x 2-(2k-1)x+k 2+1的图象与x 轴有两交点, ∴当y=0时,x 2-(2k-1)x+k 2+1=0有两个不相等的实数根.
∴△=b2-4ac=[-(2k-1)]2-4×1×(k2+1)>0.
解得k<-3
4

(2)当y=0时,x2-(2k-1)x+k2+1=0.则x1+x2=2k-1,x1•x2=k2+1,
∵=== 3
2
-,
解得:k=-1或k=
1
3
-(舍去),
∴k=﹣1
4.“父母恩深重,恩怜无歇时”,每年5月的第二个星期日即为母亲节,节日前夕巴蜀中学学生会计划采购一批鲜花礼盒赠送给妈妈们.
(1)经过和花店卖家议价,可在原标价的基础上打八折购进,若在花店购买80个礼盒最多花费7680元,请求出每个礼盒在花店的最高标价;(用不等式解答)
(2)后来学生会了解到通过“大众点评”或“美团”同城配送会在(1)中花店最高售价的基础上降价25%,学生会计划在这两个网站上分别购买相同数量的礼盒,但实际购买过程
中,“大众点评”网上的购买价格比原有价格上涨5
2
m%,购买数量和原计划一样:“美团”网
上的购买价格比原有价格下降了9
20
m元,购买数量在原计划基础上增加15m%,最终,在
两个网站的实际消费总额比原计划的预算总额增加了15
2
m%,求出m的值.
【答案】(1)120;(2)20.
【解析】
试题分析:(1)本题介绍两种解法:
解法一:设标价为x元,列不等式为0.8x•80≤7680,解出即可;
解法二:根据单价=总价÷数量先求出1个礼盒最多花费,再除以折扣可求出每个礼盒在花店的最高标价;
(2)先假设学生会计划在这两个网站上分别购买的礼盒数为a个礼盒,表示在“大众点评”
网上的购买实际消费总额:120a(1﹣25%)(1+5
2
m%),在“美团”网上的购买实际消费
总额:a[120(1﹣25%)﹣9
20
m](1+15m%);根据“在两个网站的实际消费总额比原计划
的预算总额增加了15
2
m%”列方程解出即可.
试题解析:(1)解:解法一:设标价为x元,列不等式为0.8x•80≤7680,x≤120;解法二:7680÷80÷0.8=96÷0.8=120(元).
答:每个礼盒在花店的最高标价是120元;
(2)解:假设学生会计划在这两个网站上分别购买的礼盒数为a 个礼盒,由题意得:
120×0.8a (1﹣25%)(1+
52
m %)+a [120×0.8(1﹣25%)﹣920m ](1+15m %)=120×0.8a
(1﹣25%)×2(1+ 152m %),即72a (1+ 52
m %)+a (72﹣
9
20m )(1+15m %)=144a (1+ 15
2m %),整理得:0.0675m 2﹣1.35m =0,m 2﹣20m =0,解得:m 1=0(舍),
m 2=20.
答:m 的值是20.
点睛:本题是一元二次方程的应用,第二问有难度,正确表示出“大众点评”或“美团”实际消费总额是解题关键.
5.由图看出,用水量在m 吨之内,水费按每吨1.7元收取,超过m 吨,需要加收.
6.用适当的方法解下列一元二次方程: (1)2x 2+4x -1=0;(2)(y +2)2-(3y -1)2=0.
【答案】(1)x 1=-1+2x 2=-1-2
2)y 1=-14,y 2=32.
【解析】
试题分析:(1)根据方程的特点,利用公式法解一元二次方程即可;
(2)根据因式分解法,利用平方差公式因式分解,然后再根据乘积为0的方程的解法求解即可.
试题解析:(1)∵a=2,b=4,c=-1 ∴△=b 2-4ac=16+8=24>0
∴=4122-=-⨯
∴x 1=-1+
2,x 2=-1-2
(2)(y +2)2-(3y -1)2=0 [(y+2)+(3y-1)][ (y+2)-(3y-1)]=0 即4y+1=0或-2y+3=0 解得y 1=-
14,y 2=32
.
7.已知关于x 的一元二次方程()2
2
11204
x m x m +++
-=. ()1若此方程有两个实数根,求m 的最小整数值;
()2若此方程的两个实数根为1x ,2x ,且满足22212121184
x x x x m ++=-,求m 的值.
【答案】(1)m 的最小整数值为4-;(2)3m = 【解析】 【分析】
(1)根据方程有两个实数根得0∆≥,列式即可求解,(2)利用韦达定理即可解题. 【详解】
(1)解:()2
2114124m m ⎛⎫∆=+-⨯⨯-
⎪⎝⎭
22218m m m =++-+
29m =+
方程有两个实数根
0∴∆≥,即290m +≥
9
2
m ∴≥-
∴ m 的最小整数值为4-
(2)由根与系数的关系得:()121x x m +=-+,2
12124
x x m =- 由2
2
212121184x x x x m ++=-
得:()22211121844m m m ⎛⎫⎡⎤-+--=- ⎪⎣⎦⎝⎭
13m ∴=,25m =-
9
2
m ≥-
3m ∴=
【点睛】
本题考查了根的判别式和韦达定理,中等难度,熟悉韦达定理是解题关键.
8.“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法. 例如:图1有6个点,图2有12个点,图3有18个点,……,按此规律,求图10、图n 有多少个点?
我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个:图3中黑点个数是6×3=18个;所以容易求出图10、图n 中黑点的个数分别是 、 .
请你参考以上“分块计数法”,先将下面的点阵进行分块(画在答题卡上),再完成以下问题:
(1)第5个点阵中有 个圆圈;第n 个点阵中有 个圆圈. (2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.
【答案】60个,6n个;(1)61;3n2﹣3n+1,(2)小圆圈的个数会等于271,它是第10个点阵.
【解析】
分析:根据规律求得图10中黑点个数是6×10=60个;图n中黑点个数是6n个;
(1)第2个图中2为一块,分为3块,余1,
第2个图中3为一块,分为6块,余1;
按此规律得:第5个点阵中5为一块,分为12块,余1,得第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,
(2)代入271,列方程,方程有解则存在这样的点阵.
详解:图10中黑点个数是6×10=60个;图n中黑点个数是6n个,
故答案为:60个,6n个;
(1)如图所示:第1个点阵中有:1个,
第2个点阵中有:2×3+1=7个,
第3个点阵中有:3×6+1=17个,
第4个点阵中有:4×9+1=37个,
第5个点阵中有:5×12+1=60个,

第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,
故答案为:60,3n2﹣3n+1;
(2)3n2﹣3n+1=271,
n2﹣n﹣90=0,
(n﹣10)(n+9)=0,
n1=10,n2=﹣9(舍),
∴小圆圈的个数会等于271,它是第10个点阵.
点睛:本题是图形类的规律题,采用“分块计数”的方法解决问题,仔细观察图形,根据图形中圆圈的个数恰当地分块是关键.
9.已知关于x 的方程(a ﹣1)x 2+2x +a ﹣1=0. (1)若该方程有一根为2,求a 的值及方程的另一根;
(2)当a 为何值时,方程的根仅有唯一的值?求出此时a 的值及方程的根. 【答案】(1)a=1
5,方程的另一根为12
;(2)答案见解析. 【解析】 【分析】
(1)把x=2代入方程,求出a 的值,再把a 代入原方程,进一步解方程即可;
(2)分两种情况探讨:①当a=1时,为一元一次方程;②当a≠1时,利用b 2-4ac =0求出a 的值,再代入解方程即可. 【详解】
(1)将x =2代入方程2
(a 1)x 2x a 10-++-=,得4(a 1)4a 10-++-=,解得:a =
1
5
. 将a =15代入原方程得24
x 2054x 5-+-=,解得:x 1=12
,x 2=2. ∴a =
1
5,方程的另一根为12
; (2)①当a =1时,方程为2x =0,解得:x =0.
②当a≠1时,由b 2-4ac =0得4-4(a -1)2=0,解得:a =2或0. 当a =2时, 原方程为:x 2+2x +1=0,解得:x 1=x 2=-1; 当a =0时, 原方程为:-x 2+2x -1=0,解得:x 1=x 2=1. 综上所述,当a =1,0,2时,方程仅有一个根,分别为0,1,-1. 考点:1.一元二次方程根的判别式;2.解一元二次方程;3.分类思想的应用.
10.阅读下面的材料,回答问题:
解方程x 4﹣5x 2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是: 设x 2=y ,那么x 4=y 2,于是原方程可变为y 2﹣5y +4=0 ①,解得y 1=1,y 2=4. 当y =1时,x 2=1,∴x =±1; 当y =4时,x 2=4,∴x =±2;
∴原方程有四个根:x 1=1,x 2=﹣1,x 3=2,x 4=﹣2.
(1)在由原方程得到方程①的过程中,利用法达到的目的,体现了数学的转化思想.
(2)解方程(x2+x)2﹣4(x2+x)﹣12=0.
【答案】(1)换元,降次;(2)x1=﹣3,x2=2.
【解析】
【详解】
解:(1)在由原方程得到方程①的过程中,利用换元法达到降次的目的,体现了数学的转化思想;
(2)设x2+x=y,原方程可化为y2﹣4y﹣12=0,解得y1=6,y2=﹣2.
由x2+x=6,得x1=﹣3,x2=2.
由x2+x=﹣2,得方程x2+x+2=0,b2﹣4ac=1﹣4×2=﹣7<0,此时方程无实根.所以原方程的解为x1=﹣3,x2=2.。

相关文档
最新文档