最新计量经济学案例分析一元回归模型实例分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
案例分析1— 一元回归模型实例分析
依据1996-2005年《中国统计年鉴》提供的资料,经过整理,获得以下农村居民人均消费支出和人均纯收入的数据如表2-5:
表2-5 农村居民1995-2004人均消费支出和人均纯收入数据资料 单位:元 年度 1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
人均纯收入
1577.7 1926.1 2090.1 2161.1 2210.3 2253.4 2366.4 2475.6 2622.2 2936.4
人均消
费支出
1310.4 1572.1 1617.2 1590.3 1577.4 1670.1 1741.1 1834.3 1943.3 2184.7
一、建立模型
以农村居民人均纯收入为解释变量X ,农村居民人均消费支出为被解释变量Y ,分析Y 随X 的变化而变化的因果关系。
考察样本数据的分布并结合有关经济理论,建立一元线性回归模型如下:
Y i =β0+β1X i +μi
根据表2-5编制计算各参数的基础数据计算表。
求得:
082
.1704035.2262==Y X
∑∑∑∑====37
52432495.1986.788859011.516634423.1264471222i
i i i i
X y x y x 根据以上基础数据求得:
623865.0423
.126447986
.788859ˆ21
==
=∑∑i
i
i x
y
x β
8775.292035.2262623865.0082.1704ˆˆ1
0=⨯-=-=X Y ββ 样本回归函数为:
i
i X Y 623865.08775.292ˆ+= 上式表明,中国农村居民家庭人均可支配收入若是增加100元,居民们将会拿出其中的62.39元用于消费。
二、模型检验
1.拟合优度检验
952594.0011.516634423.1264471986.788859))(()(
2
2
222
=⨯==
∑∑∑i
i
i i y
x y x r
2.t 检验
525164
.3061 2
10423
.12644710.623865011.166345 2
ˆˆ222122=-⨯-=
--=
∑∑n x y i
i
βσ
049206.0423
.1264471525164
.3061ˆ)ˆ()ˆ(2
21
1==
==∑i
e x
Var S σ
ββ
6717
.112525164.3061423
.126447110137
.52432495ˆ)ˆ()ˆ(22
20
0=⨯===∑∑σββi
i e x
n X Var S 在显著性水平α=0.05,n-2=8时,查t 分布表,得到:
306.2)2(2
=-n t α
提出假设,原假设H 0:β1=0,备择假设H 1:β1≠0
67864.12049206
.0623865.0)ˆ(ˆ)ˆ(111==-=ββββe S t
)2(67864.12)ˆ(2
1->=n t t α
β,差异显著,拒绝β1=0的假设。
3. F 检验
提出原假设H 0:β1=0,备择假设H 1:β1≠0
在显著性水平α=0.05,n-2=8时,查F 分布表,得到: F (1,8)=5.32。
7505.160525164.30618097.4921412
1ˆ2
221==-=
∑∑n e x F i i
β
160.7505>5.32,即F > F (1,8),差异显著,拒绝β1=0的假设。
三、预测
当农村居民家庭人均纯收入增长到3500元时,对农村居民人均消费支出预测如下:
)(405.24763500623865.08775.292ˆ0
元=⨯+=Y
13257219
.84 423.1264471)035.22623500(1011525164.3061 )(11ˆ)(11ˆ)(S 2
22022200e =⎪⎪⎭
⎫ ⎝⎛-++⨯=⎪⎪⎭
⎫ ⎝⎛-++=-++=∑∑i i x X X n x X X n e σσ
在显著性水平α=0.05,n -2=8时, 025.0t =2.306 从而
)(S ˆ0
e 2
0e t Y α-=2476.405-2.306⨯84.13257219=2282.40(元) )(S ˆ0
e 2
0e t Y α+=2476.405+2.306⨯84.13257219=2670.41(元) []%9541.267040.22820=≤≤Y P
当农村居民家庭人均纯收入增长到3500元时,,农村居民人均消费支出在2282.40元至2670.41元之间的概率为95%。
四、利用计算机进行分析的步骤
以上分析内容可以借助计算机完成,下面以EViews3.0软件为例,介绍其分析过程。
1.设定工作范围
打开EViews ,按照以下步骤设定工作范围:
File →New →Workfile →Workfile Range →Annual →Start data(1995)→End data(2004)(图2-5、图2-6)→OK
图2-5 Workfile Range 对话框
图2-6 Workfile 工作状态图
2.输入变量
在Workfile工作状态下输入变量X,Y
Objects→New Object→Type of Object(series)→Name for Object(X)(图2-7、图2-8)→OK。
同理,可输入变量Y。
图2-7输入变量X状态图
图2-8 Workfile工作状态图
3.输入样本数据
在Workfile工作状态下选中X、Y,右击鼠标,Open→as Group→Edit,输入数据(见图2-9)。
图2-9 Edit工作状态图
4.输入方程式
在Workfile工作状态下,选中Y、X,右击鼠标,Open→as Equation→Equation Specification→(Y C X)(图2-10)→OK,输出回归分析结果(见图2-11)。
图2-10 输入Y C X工作状态图
图2-11 回归分析表
输出结果的解释:
Variable 解释变量
Coefficient 解释变量的系数 Std.Error 标准差
t-Statistic t-检验值
Prob. t-检验的相伴概率 R-squared 样本决定系数
Adjusted R-squared 调整后的样本决定系数
S.E.regression 回归标准差
Sum squared resid 残差平方和 Log likelihood 对数似然比
Durbin-Watson stat D-W 统计量
Mean dependent var 被解释变量的均值 S.D.dependent var 被解释变量的标准差 Akaike info criterion 赤池信息量 Schwarz criterion 施瓦兹信息量 F-statistic F 统计量
Prob(F-statistic) F 统计量的相伴概率 由图2-11可以获得以下信息:
952594
.0623865.0ˆ8769.292ˆ210===r ββ
是β0, β1回归系数的估计量值,r 2是在双变量情况下,样本的可决系数
67889.12)ˆ( 599413.2)ˆ( 049205.0)ˆ(6704.112)ˆ(1
1
====β
ββ
βt t S S e
e
)ˆ(),ˆ(10ββe e S S 是10ˆˆββ,估计量的标准差,)ˆ(),ˆ(10ββt t 是1
0ˆˆββ,估计量的t 统计量。
F =160.7542是F 检验统计量的值 样本回归函数为:
i
i X Y 623865.08769.292ˆ+= 样本回归函数(Sample Regression Function ,SRT )
5.预测
(1)扩展工作范围
在Workfile工作状态下,Procs→Change Workfile Range→End data(2005)→OK
再选择Sample(1995 2005)( 图2-12) →OK
图2-12 工作范围图
(2)输入解释变量值
在Workfile工作状态下,X→Edit →(3500)。
(3)预测
在图2-11 Equation工作状态下,选择For ecast→OK(见图2-13),得到预测结果(见图2-14)
图2-13 设定预测状态图
在Workfile工作状态下,显示YF,可得到点预测值(见图2-15)
图2-15 预测值输出图
根据模型预测结果,当中国农村居民家庭人均纯收入达到3500元时,每个人将会拿出
2476.41元用于消费。