2019-2020学年上学期高二数学12月月考试题含解析(1135)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
马边彝族自治县第二中学校2019-2020学年上学期高二数学12月月考试题含解
析
班级__________ 姓名__________ 分数__________
一、选择题
1. △ABC 的三内角A ,B ,C 所对边长分别是a ,b ,c ,设向量
,
,若
,则角B 的大小为( )
A .
B .
C .
D .
2. ()0﹣(1﹣0.5﹣2
)÷
的值为( )
A .﹣
B .
C .
D .
3. 已知双曲线
﹣
=1(a >0,b >0)的渐近线与圆(x ﹣2)2+y 2=1相切,则双曲线
的离心率为( )
A .
B .
C .
D .
4. 下列式子表示正确的是( )
A 、{}00,2,3⊆
B 、{}{}22,3∈
C 、{}1,2φ∈
D 、{}0φ⊆
5. 已知实数a ,b ,c 满足不等式0<a <b <c <1,且M=2a ,N=5﹣b ,P=()c ,则M 、N 、P 的大小关系为( )
A .M >N >P
B .P <M <N
C .N >P >M
6. 设x ,y 满足线性约束条件,若z=ax ﹣y (a >0)取得最大值的最优解
有数多个,则实数a 的值为( )
A .2
B .
C .
D .3
7. 不等式ax 2+bx+c <0(a ≠0)的解集为R ,那么( ) A .a <0,△<0 B .a <0,△≤0
C .a >0,△≥0
D .a >0,△>0
8. 函数()f x 在定义域R 上的导函数是'
()f x ,若()(
2)f x f x =-,且当(,1)x ∈-∞时,
'(1)()0x f x -<,设(0)a f =,b f =,2(log 8)c f =,则( )
A .a b c <<
B .a b c >>
C .c a b <<
D .a c b <<
9. 函数y=|a|x ﹣
(a ≠0且a ≠1)的图象可能是( )
A .
B .
C .
D .
10.已知i 为虚数单位,则复数所对应的点在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
11.已知α,β为锐角△ABC 的两个内角,x ∈R ,f (x )=(
)
|x ﹣2|
+()
|x ﹣
2|
,则关于x 的不等式f (2x ﹣1)﹣f (x+1)>0的解集为( )
A .(﹣∞,)∪(2,+∞)
B .(,2)
C .(﹣∞,﹣)∪(2,+∞)
D .(﹣,2)
12.已知全集U R =,{|239}x
A x =<≤,{|02}
B y y =<≤,则有( ) A .A ØB B .A
B B =
C .()R A B ≠∅ð
D .()R A B R =ð
二、填空题
13.把函数y=sin2x 的图象向左平移
个单位长度,再把所得图象上所有点的横坐标伸长
到原来的2倍(纵坐标不变),所得函数图象的解析式为 .
14.已知函数f (x )=,若f (f (0))=4a ,则实数a= .
15.下列四个命题:
①两个相交平面有不在同一直线上的三个公交点 ②经过空间任意三点有且只有一个平面 ③过两平行直线有且只有一个平面 ④在空间两两相交的三条直线必共面
其中正确命题的序号是 .
16.在三棱柱ABC ﹣A 1B 1C 1中,底面为棱长为1的正三角形,侧棱AA 1⊥底面ABC ,点D 在棱BB 1上,且BD=1,若AD 与平面AA 1C 1C 所成的角为α,则sin α的值是 .
17.过椭圆
+
=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,
若∠F 1PF 2=60°,则椭圆的离心率为 .
18.已知函数2
1()sin cos sin 2f x a x x x =-+的一条对称轴方程为6
x π
=,则函数()f x 的最大值为( )
A.1B.±1C D.
【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.
三、解答题
19.已知P(m,n)是函授f(x)=e x﹣1图象上任一于点
(Ⅰ)若点P关于直线y=x﹣1的对称点为Q(x,y),求Q点坐标满足的函数关系式
(Ⅱ)已知点M(x0,y0)到直线l:Ax+By+C=0的距离d=,
当点M在函数y=h(x)图象上时,公式变为,请参考该公式求出函数ω(s,t)=|s﹣e x﹣1﹣1|+|t﹣ln(t﹣1)|,(s∈R,t>0)的最小值.
20.某市出租车的计价标准是4km以内10元(含4km),超过4km且不超过18km的部分1.5元/km,超出18km的部分2元/km.
(1)如果不计等待时间的费用,建立车费y元与行车里程x km的函数关系式;
(2)如果某人乘车行驶了30km,他要付多少车费?
21.已知函数.
(1)求f(x)的周期和及其图象的对称中心;
(2)在△ABC中,角A、B、C的对边分别是a、b、c,满足(2a﹣c)cosB=bcosC,求函数f(A)的取值范围.
22.已知函数f(x)=|2x+1|+|2x﹣3|.
(Ⅰ)求不等式f(x)≤6的解集;
(Ⅱ)若关于x的不等式f(x)﹣log2(a2﹣3a)>2恒成立,求实数a的取值范围.
23.△ABC的三个内角A、B、C所对的边分别为a、b、c,asinAsinB+bcos2A=a.
(Ⅰ)求;
(Ⅱ)若c2
=b2+a2,求B.
24.一块边长为10cm的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,试建立容器的容积V与x的函数关系式,并求出函数的定义域.
马边彝族自治县第二中学校2019-2020学年上学期高二数学12月月考试题含解
析(参考答案)
一、选择题
1.【答案】B
【解析】解:若,
则(a+b)(sinB﹣sinA)﹣sinC(a+c)=0,
由正弦定理可得:(a+b)(b﹣a)﹣c(a+c)=0,
化为a2
+c2﹣b2=﹣ac,
∴cosB==﹣,
∵B∈(0,π),
∴B=,
故选:B.
【点评】本题考查了正弦定理与余弦定理的应用、向量数量积运算性质,考查了推理能力与计算能力,是一道基础题.
2.【答案】D
【解析】解:原式=1﹣(1﹣)÷
=1﹣(1﹣)÷
=1﹣(1﹣4)×
=1﹣(﹣3)×
=1+
=.
故选:D.
【点评】本题考查了根式与分数指数幂的运算问题,解题时应细心计算,是易错题.3.【答案】D
【解析】解:双曲线﹣=1(a>0,b>0)的渐近线方程为y=±x,即x±y=0.
根据圆(x﹣2)2+y2=1的圆心(2,0)到切线的距离等于半径1,
可得,1=,∴=,
,可得e=.
故此双曲线的离心率为:.
故选D.
【点评】本题考查点到直线的距离公式,双曲线的标准方程,以及双曲线的简单性质的应
用,求出的值,是解题的关键.
4.【答案】D
【解析】
试题分析:空集是任意集合的子集。
故选D。
考点:1.元素与集合的关系;2.集合与集合的关系。
5.【答案】A
【解析】解:∵0<a<b<c<1,
∴1<2a<2,<5﹣b<1,<()c<1,
5﹣b=()b>()c>()c,
即M>N>P,
故选:A
【点评】本题主要考查函数值的大小比较,根据幂函数和指数函数的单调性的性质是解决本题的关键.
6.【答案】B
【解析】解:作出不等式组对应的平面区域如图:(阴影部分).
由z=ax﹣y(a>0)得y=ax﹣z,
∵a>0,∴目标函数的斜率k=a>0.
平移直线y=ax﹣z,
由图象可知当直线y=ax﹣z和直线2x﹣y+2=0平行时,当直线经过B时,此时目标函数取得最大值时最优解只有一个,不满足条件.
当直线y=ax﹣z和直线x﹣3y+1=0平行时,此时目标函数取得最大值时最优解有无数多个,满足条件.
此时a=.
故选:B.
7. 【答案】A
【解析】解:∵不等式ax 2
+bx+c <0(a ≠0)的解集为R ,
∴a <0,
且△=b 2
﹣4ac <0,
综上,不等式ax 2
+bx+c <0(a ≠0)的解集为的条件是:a <0且△<0.
故选A .
8. 【答案】C 【解析】
考点:函数的对称性,导数与单调性.
【名师点睛】函数的图象是研究函数性质的一个重要工具,通过函数的图象研究问题是数形结合思想应用的不可或缺的重要一环,因此掌握函数的图象的性质是我们在平常学习中要重点注意的,如函数()f x 满足:()()f a x f a x +=-或()(2)f x f a x =-,则其图象关于直线x a =对称,如满足(2)2()f m x n f x -=-,则其图象关于点(,)m n 对称. 9. 【答案】D
【解析】解:当|a|>1时,函数为增函数,且过定点(0,1﹣),因为0<1﹣
<
1,故排除A ,B
当|a|<1时且a ≠0时,函数为减函数,且过定点(0,1﹣),因为1﹣
<0,故排
除C .
故选:D .
10.【答案】A
【解析】解:
=
=1+i ,其对应的点为(1,1),
故选:A .
11.【答案】B
【解析】解:∵α,β为锐角△ABC 的两个内角,可得α+β>90°,cos β=sin (90°﹣β)<sin α,同理cos α<sin β,
∴f (x )=()|x ﹣2|
+(
)
|x ﹣2|
,在(2,+∞)上单调递减,在(﹣∞,2)单
调递增,
由关于x 的不等式f (2x ﹣1)﹣f (x+1)>0得到关于x 的不等式f (2x ﹣1)>f (x+1),
∴|2x ﹣1﹣2|<|x+1﹣2|即|2x ﹣3|<|x ﹣1|,化简为3x 2
﹣1x+8<0,解得x ∈(,2);
故选:B .
12.【答案】A
【解析】解析:本题考查集合的关系与运算,3(log 2,2]A =,(0,2]B =,∵3log 20>,∴A ØB ,选A .
二、填空题
13.【答案】 y=cosx .
【解析】解:把函数y=sin2x 的图象向左平移个单位长度,得
,即
y=cos2x 的图象,把y=cos2x 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),
得到y=cosx 的图象; 故答案为:y=cosx .
14.【答案】 2 .
【解析】解:∵f (0)=2, ∴f (f (0))=f (2)=4+2a=4a , 所以a=2
故答案为:2.
15.【答案】 ③ .
【解析】解:①两个相交平面的公交点一定在平面的交线上,故错误;
②经过空间不共线三点有且只有一个平面,故错误;
③过两平行直线有且只有一个平面,正确;
④在空间两两相交交点不重合的三条直线必共面,三线共点时,三线可能不共面,故错误,
故正确命题的序号是③,
故答案为:③
16.【答案】.
【解析】解:如图所示,
分别取AC,A1C1的中点O,O1,连接OO1,取OE=1,连接DE,B1O1,AE.
∴BO⊥AC,
∵侧棱AA1⊥底面ABC,∴三棱柱ABC﹣A1B1C1是直棱柱.
由直棱柱的性质可得:BO⊥侧面ACC1A1.
∴四边形BODE是矩形.
∴DE⊥侧面ACC1A1.
∴∠DAE是AD与平面AA1C1C所成的角,为α,
∴DE==OB.
AD==.
在Rt△ADE中,sinα==.
故答案为:.
【点评】本题考查了直棱柱的性质、空间角、空间位置关系、等边三角形的性质,考查了推理能力与计算能力,属于中档题.
17.【答案】.
【解析】解:由题意知点P的坐标为(﹣c,)或(﹣c,﹣),
∵∠F1PF2=60°,
∴=,
即2ac=b2=(a2﹣c2).
∴e2+2e﹣=0,
∴e=或e=﹣(舍去).
故答案为:.
【点评】本题主要考查了椭圆的简单性质,考查了考生综合运用椭圆的基础知识和分析推理的能力,属基础题.
18.【答案】A
【解析】
三、解答题
19.【答案】
【解析】解:(1)因为点P,Q关于直线y=x﹣1对称,所以.
解得.又n=e m﹣1,所以x=1﹣e(y+1)﹣1,即y=ln(x﹣1).
(2)ω(s,t)=|s﹣e x﹣1﹣1|+|t﹣ln(t﹣1)﹣1|
=
,
令u(s)
=
.
则u(s),v(t)分别表示函数y=e x﹣1,y=ln(t﹣1)图象上点到直线x﹣y﹣1=0的距离.由(1)知,u min(s)=v min(t).
而f′(x)=e x﹣1,令f′(s)=1得s=1,所以u min(s)=.
故.
【点评】本题一方面考查了点之间的轴对称问题,同时利用函数式的几何意义将问题转化为点到直线的距离,然后再利用函数的思想求解.体现了解析几何与函数思想的结合.
20.【答案】
【解析】解:(1)依题意得:
当0<x≤4时,y=10;…(2分)
当4<x≤18时,y=10+1.5(x﹣4)=1.5x+4…
当x>18时,y=10+1.5×14+2(x﹣18)=2x﹣5…(8分)
∴…(9分)
(2)x=30,y=2×30﹣5=55…(12分)
【点评】本题考查函数模型的建立,考查利用数学知识解决实际问题,考查学生的计算能力,属于中档题.
21.【答案】
【解析】解:(1)由,∴f(x)的周期为4π.
由,故f(x)图象的对称中心为
.
(2)由(2a﹣c)cosB=bcosC,得(2sinA﹣sinC)cosB=sinBcosC,
∴2sinAcosB﹣cosBsinC=sinBcosC,∴2sinAcosB=sin(B+C),∵A+B+C=π,∴sin(B+C)=sinA,且sinA≠0,
∴.∴,
故函数f(A)的取值范围是.
22.【答案】
【解析】解:(Ⅰ)原不等式等价于或或
,
解得:<x≤2或﹣≤x≤或﹣1≤x<﹣,
∴不等式f(x)≤6的解集为{x|﹣1≤x≤2}.
(Ⅱ)不等式f(x)﹣>2恒成立⇔+2<f(x)=|2x+1|+|2x
﹣3|恒成立⇔+2<f(x)min恒成立,
∵|2x+1|+|2x﹣3|≥|(2x+1)﹣(2x﹣3)|=4,
∴f(x)的最小值为4,
∴+2<4,
即,
解得:﹣1<a<0或3<a<4.
∴实数a的取值范围为(﹣1,0)∪(3,4).
23.【答案】
【解析】解:(Ⅰ)由正弦定理得,sin2
AsinB+sinBcos2A=sinA,
即sinB(sin2
A+cos2A)=sinA
∴sinB=sinA,=
(Ⅱ)由余弦定理和C2
=b2+a2,得cosB=
由(Ⅰ)知b2
=2a2,故c2=(2+)a2,
可得cos2B=,又cosB>0,故cosB=
所以B=45°
【点评】本题主要考查了正弦定理和余弦定理的应用.解题的过程主要是利用了正弦定理和余弦定理对边角问题进行了互化.
24.【答案】
【解析】解:如图,设所截等腰三角形的底边边长为xcm,
在Rt△EOF中,,
∴,
∴
依题意函数的定义域为{x|0<x<10}
【点评】本题是一个函数模型的应用,这种题目解题的关键是看清题意,根据实际问题选择合适的函数模型,注意题目中写出解析式以后要标出自变量的取值范围.。