新苏科版八年级苏科初二数学下册第二学期月月考试卷及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新苏科版八年级苏科初二数学下册第二学期月月考试卷及答案
一、解答题
1.如图,▱ABCD中,BD⊥AD,∠A=45°,E、F分别是AB、CD上的点,且BE=DF,连接EF 交BD于O.
(1)求证:EO=FO;
(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AE的长.
2.某校计划组织学生参加“书法”、“摄影”、“航模”、“围棋”四个课外兴趣小组,要求每人必须参加,并且只能选择其中一个小组.学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据给出的信息解答下列问题:
(1)求参加这次问卷调查的学生人数;
(2)补全条形统计图;
(3)若该校共有1200名学生,请你过计算估计选择“围棋”课外兴趣小组的学生有多少人.
3.一粒木质中国象棋子“帅”,它的正面雕刻一个“帅”字,它的反面是平滑的.将它从定高度下掷,落地反弹后可能是“帅”字面朝上,也可能是“帅”字面朝下.由于棋子的两面不均匀,为了估计“帅”字面朝上的概率,某实验小组做了棋子下掷实验,实验数据如表:
试验次数20406080100120140160“帅”字面朝上频数a18384752667888
相应频率0.70.450.630.590.520.550.56b
=;=;
(2)画出“帅”字面朝上的频率分布折线图;
(3)如图实验数据,实验继续进行下去,根据上表的这个实验的频率将稳定在它的概率附近,请你估计这个概率是多少?
4.如图,在▱ABCD中,E为BC边上一点,且AB=AE
(1)求证:△ABC≌△EAD;
(2)若∠B=65°,∠EAC=25°,求∠AED的度数.
5.如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:
(1)以A点为旋转中心,将△ABC绕点A顺时针旋转90°得△AB1C1,画出△AB1C1.(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2.
(3)作出点C关于x轴的对称点P.若点P向右平移x(x取整数)个单位长度后落在
△A2B2C2的内部,请直接写出x的值.
6.如图,在平面直角坐标系中,点O为坐标原点,AB// OC,点B,C的坐标分别为(15,8),(21,0),动点M从点A沿A→B以每秒1个单位的速度运动;动点N从点C沿C→O以每秒2个单位的速度运动.M,N同时出发,设运动时间为t秒.
(1)在t=3时,M点坐标,N点坐标;
(2)当t为何值时,四边形OAMN是矩形?
(3)运动过程中,四边形MNCB能否为菱形?若能,求出t的值;若不能,说明理由.
7.计算: (1)
2354535
⨯; (2)()22360,0x y xy x y ≥≥;
(3)
(
)
48274153-+÷.
8.计算:242933
x x x x x -----
9.如图,在平面直角坐标系中,四边形ABCD 为正方形,已知点A(-6,0),D(-7,3),点B 、C 在第二象限内.
(1)点B 的坐标 ;
(2)将正方形ABCD 以每秒1个单位的速度沿x 轴向右平移t 秒,若存在某一时刻t,使在第一象限内点B 、D 两点的对应点B′、D′正好落在某反比例函数的图象上,请求出此时t 的值以及这个反比例函数的解析式;
(3)在(2)的情况下,问是否存在x 轴上的点P 和反比例函数图象上的点Q,使得以P 、Q 、B′、D′四个点为顶点的四边形是平行四边形?若存在,请求出符合题意的点P 、Q 的坐标;若不存在,请说明理由.
10.如图,∠MON =90°,正方形ABCD 的顶点A 、B 分别在OM 、ON 上,AB =13,OB =
5,E为AC上一点,且∠EBC=∠CBN,直线DE与ON交于点F.
(1)求证BE=DE;
(2)判断DF与ON的位置关系,并说明理由;
(3)△BEF的周长为.
11.如图,在四边形ABCD中,AB∥CD,AB=AD,对角线AC、BD交于点O,AC平分
∠BAD.求证:四边形ABCD为菱形.
12.(发现)
(1)如图1,在▱ABCD中,点O是对角线的交点,过点O的直线分别交AD,BC于点E,F.求证:△AOE≌△COF;
(探究)
(2)如图2,在菱形ABCD中,点O是对角线的交点,过点O的直线分别交AD,BC于点E,F,若AC=4,BD=8,求四边形ABFE的面积.
(应用)
(3)如图3,边长都为1的5个正方形如图摆放,试利用无刻度的直尺,画一条直线平分这5个正方形组成的图形的面积.(要求:保留画图痕迹)
13.如图,在平行四边形ABCD中,对角线AC、BD交于点O,AC⊥BC,AC=2,BC=3.点E是BC延长线上一点,且CE=3,连结DE.
(1)求证:四边形ACED为矩形.
(2)连结OE,求OE的长.
14.如图,点P 为ABC ∆的BC 边的中点,分别以AB 、AC 为斜边作Rt ABD ∆和
Rt ACE ∆,且BAD CAE α∠=∠=,DPE β∠=.
(1)求证:PD PE =.
(2)探究:α与β的数量关系,并证明你的结论.
15.已知ABC ∆是边长为8cm 的等边三角形,动点,P Q 同时出发,分别在三角形的边或延长线上运动,他们的运动时间为()t s .
()1如图1,若P 点由A 向B 运动,Q 点由C 向A 运动,他们的速度都是1/cm s ,连接
PQ .则AP =__,AQ = ,(用含t 式子表示);
()2在(1)的条件下,是否存在某一时刻,使得APQ ∆为直角三角形?若存在,请求出t 的
值,若不存在,请说明理由;
()3如图2,若P 点由A 出发,沿射线AB 方向运动,Q 点由C 出发,沿射线AC 方向运
动,P 的速度为3/,cm s Q 的速度为./acm s 是否存在某个a 的值,使得在运动过程中
BPO ∆恒为以BP 为底的等腰三角形?如果存在,请求出这个值,如果不存在,请说明理由.
【参考答案】***试卷处理标记,请不要删除
一、解答题
1.(1)见解析;(2)AE =3. 【分析】
(1)由平行四边形的性质和AAS 证明△OBE ≌△ODF ,得出对应边相等即可; (2)先证出AE=GE ,再证明DG=DO ,得出OF=FG=1,即可得出结果. 【详解】
(1)∵四边形ABCD 是平行四边形, ∴DC ∥AB , ∴∠OBE =∠ODF . 在△OBE 与△ODF 中,
OBE ODF BOE DOF BE DF ∠=∠⎧⎪
∠=∠⎨⎪=⎩
, ∴△OBE ≌△ODF (AAS ). ∴EO =FO ;
(2)∵EF ⊥AB ,AB ∥DC , ∴∠GEA =∠GFD =90°. ∵∠A =45°, ∴∠G =∠A =45°. ∴AE =GE , ∵BD ⊥AD ,
∴∠ADB =∠GDO =90°. ∴∠GOD =∠G =45°. ∴DG =DO , ∴OF =FG =1,
由(1)可知,OE =OF =1, ∴GE =OE +OF +FG =3, ∴AE =3. 【点睛】
本题考查了平行四边形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题(1)的关键. 2.(1)150人;(2)见解析;(3)192人 【分析】
(1)根据书法小组的人数及其对应百分比可得总人数;
(2)根据各小组人数之和等于总人数求得航模人数,从而补全图形;
(3)总人数乘以样本中围棋的人数所占百分比即可.
【详解】
(1)参加这次问卷调查的学生人数为:30÷20%=150(人);
(2)航模的人数为150﹣(30+54+24)=42(人),补全条形统计图如下:
(3)该校选择“围棋”课外兴趣小组的学生有:1200×
24
150
×100%=192(人).
【点睛】
本题考查了条形统计图和扇形统计图,用样本估计总体,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
3.(1)14,0.55;(2)图见解析;(3)0.55.
【分析】
(1)根据图中给出的数据和频数、频率与总数之间的关系分别求出a、b的值;
(2)将频率作为纵坐标,试验次数作为横坐标,描点连线,可得折线图.
(3)根据表中数据,试验频率为0.7,0.45,0.63,0.59,0.52,0.55,0.56,0.55稳定在0.55左右,即可估计概率的大小.
【详解】
(1)a=20×0.7=14;
b=
88
160
=0.55;
故答案为:14,0.55;
(2)根据图表给出的数据画折线统计图如下:
(3)随着试验次数的增加“帅”字面朝上的频率逐渐稳定在0.55左右,利用这个频率来估
计概率,得P (“帅”字朝上)=0.55. 【点睛】
此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.作图时应先描点,再连线.用到的知识点为:部分的具体数目=总体数目×相应频率.频率=所求情况数与总情况数之比.
4.(1)见解析;(2)∠AED =75°. 【分析】
(1)先证明∠B =∠EAD ,然后利用SAS 可进行全等的证明;
(2)先根据等腰三角形的性质可得∠BAE =50°,求出∠BAC 的度数,即可得∠AED 的度数. 【详解】
(1)证明:∵在平行四边形ABCD 中,AD ∥BC ,BC =AD , ∴∠EAD =∠AEB , 又∵AB =AE , ∴∠B =∠AEB , ∴∠B =∠EAD , 在△ABC 和△EAD 中,
AB AE ABC EAD BC AD =⎧⎪
∠=∠⎨⎪=⎩
, ∴△ABC ≌△EAD (SAS ). (2)解:∵AB =AE , ∴∠B =∠AEB , ∴∠BAE =50°,
∴∠BAC =∠BAE+∠EAC =50°+25°=75°, ∵△ABC ≌△EAD , ∴∠AED =∠BAC =75°. 【点睛】
本题考查了平行四边形的性质、全等三角形的判定与性质,注意掌握平行四边形的对边平行且相等的性质.
5.(1)图见解析;(2)图见解析;(3)x 的值为6或7. 【分析】
(1)分别作出B 、C 的对应点B 1,C 1即可解决问题; (2)分别作出A 、B 、C 的对应点A 2、B 2、C 2即可解决问题; (3)观察图形即可解决问题. 【详解】
(1)作图如下:△AB 1C 1即为所求; (2)作图如下:△A 2B 2C 2即为所求;
(3)P点如图,x的值为6或7.
【点睛】
本题考查旋转、中心对称图形,格点作图,熟练掌握对称、旋转及网格作图的特征是解题关键.
6.(1)(3,8);(15,0);(2)t=7;(3)能,t=5.
【分析】
(1)根据点B、C的坐标求出AB、OA、OC,然后根据路程=速度×时间求出AM、CN,再求出ON,然后写出点M、N的坐标即可;
(2)根据有一个角是直角的平行四边形是矩形,当AM=ON时,四边形OAMN是矩形,然后列出方程求解即可;
(3)先求出四边形MNCB是平行四边形的t值,并求出CN的长度,然后过点B作BC⊥OC于D,得到四边形OABD是矩形,根据矩形的对边相等可得OD=AB,BD=OA,然后求出CD,再利用勾股定理列式求出BC,然后根据邻边相等的平行四边形是菱形进行验证.
【详解】
解:(1)∵B(15,8),C(21,0),
∴AB=15,OA=8,
OC=21,
当t=3时,AM=1×3=3,
CN=2×3=6,
∴ON=OC-CN=21﹣6=15,
∴点M(3,8),N(15,0);
故答案为:(3,8);(15,0);
(2)当四边形OAMN是矩形时,AM=ON,
∴t=21-2t,
解得t=7秒,
故t=7秒时,四边形OAMN是矩形;
(3)存在t=5秒时,四边形MNCB能否为菱形.
理由如下:四边形MNCB是平行四边形时,BM=CN,
∴15-t =2t, 解得:t =5秒, 此时CN =5×2=10,
过点B 作BD ⊥OC 于D,则四边形OABD 是矩形, ∴OD =AB =15,BD =OA =8, CD =OC-OD =21-15=6,
在Rt △BCD 中,BC =22BD CD + =10, ∴BC =CN,
∴平行四边形MNCB 是菱形,
故,存在t =5秒时,四边形MNCB 为菱形.
【点睛】
本题主要考查了四边形综合以及矩形的性质,平行四边形与菱形的关系,梯形的问题、勾股定理等知识,根据矩形、菱形与平行四边形的联系列出方程是解题的关键. 7.(1)6;(2)32xy ;(3)5 【分析】
(1)利用二次根式的乘法法则运算; (2)利用二次根式的乘法法则运算; (3)利用二次根式的除法法则运算. 【详解】 (12354535
=
23×3
5545⨯=6;
(2()22360,0x y
xy x y ≥≥
2*236x y xy =32xy (3)
48274153
4832734153÷÷÷ =4﹣5
=1+45. 【点睛】 本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
8.3x -
【分析】
先把分式进行合并,再进行因式分解,然后约分,即可得到答案.
【详解】
解:原式222
42969(3)3333
x x x x x x x x x x --+-+-====----; 【点睛】
本题考查了分式的混合运算,分式的化简求值,解题的关键是熟练掌握运算法则进行解题.
9.(1)(31-,
);(2)t=9,6y x =;(3)点P 、Q 的坐标为:P (132,0)、Q (32
,4)或P (7,0)、Q (3,2)或P (-7,0)、Q (-3,-2). 【分析】
(1)过点D 作DE ⊥x 轴于点E ,过点B 作BF ⊥x 轴于点F ,由正方形的性质结合同角的余角相等即可证出△ADE ≌△BAF ,从而得出DE=AF ,AE=BF ,再结合点A 、D 的坐标即可求出点B 的坐标;
(2)设反比例函数为k y x
=
,根据平行的性质找出点B ′、D ′的坐标,再结合反比例函数图象上点的坐标特征即可得出关于k 、t 的二元一次方程组,解方程组解得出结论;
(3)假设存在,设点P 的坐标为(m ,0),点Q 的坐标为(n ,6n ).分B ′D ′为对角线或为边考虑,根据平行四边形的性质找出关于m 、n 的方程组,解方程组即可得出结论.
【详解】
解:(1)过点D 作DE ⊥x 轴于点E ,过点B 作BF ⊥x 轴于点F ,如图1所示.
∵四边形ABCD 为正方形,
∴AD=AB ,∠BAD=90°,
∵∠EAD+∠ADE=90°,∠EAD+∠BAF=90°,
∴∠ADE=∠BAF .
在△ADE 和△BAF 中,有
90AED BFA ADE BAF AD BA ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩
,
∴△ADE ≌△BAF (AAS ),
∴DE=AF ,AE=BF .
∵点A (-6,0),D (-7,3),
∴DE=3,AE=1,
∴点B 的坐标为(-6+3,0+1),即(-3,1).
故答案为:(-3,1).
(2)设反比例函数为k y x
=, 由题意得:点B ′坐标为(-3+t ,1),点D ′坐标为(-7+t ,3),
∵点B ′和D ′在该比例函数图象上,
∴33(7)k t k t =-+⎧⎨=⨯-+⎩
, 解得:t=9,k=6,
∴反比例函数解析式为6y x
=. (3)假设存在,设点P 的坐标为(m ,0),点Q 的坐标为(n ,
6n
). 以P 、Q 、B ′、D ′四个点为顶点的四边形是平行四边形分两种情况:
①B ′D ′为对角线时,
∵四边形B ′PD ′Q 为平行四边形,
∴
6
31
62
n
m n
⎧
-=
⎪
⎨
⎪-=-
⎩
,解得:
13
2
3
2
m
n
⎧
=
⎪⎪
⎨
⎪=
⎪⎩
,
∴P(13
2
,0),Q(
3
2
,4);
②当B′D′为边时.
∵四边形PQB′D′为平行四边形,
∴
62
6
031
m n
n
-=-
⎧
⎪
⎨
-=-
⎪⎩
,解得:
7
3
m
n
=
⎧
⎨
=
⎩
,
∴P(7,0),Q(3,2);
∵四边形B′QPD′为平行四边形,
∴
62
6
031
n m
n
-=-
⎧
⎪
⎨
-=-
⎪⎩
,解得:
7
3
m
n
=-
⎧
⎨
=-
⎩
.
综上可知:存在x轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、D′四个点
为顶点的四边形是平行四边形,符合题意的点P、Q的坐标为:P(13
2
,0)、Q(
3
2
,
4)或P(7,0)、Q(3,2)或P(-7,0)、Q(-3,-2).
【点睛】
本题考查了反比例函数图象上点的坐标特征、正方形的性质、全等三角形的判定及性质、平行四边形的性质以及解方程组,解题的关键是:(1)证出△ADE≌△BAF;(2)找出关于k、t的二元一次方程组;(3)分类讨论.本题属于中档题,难度不大,解决该题型题目时,找出点的坐标,利用反比例函数图形上点的坐标表示出来反比例函数系数k是关键.
10.(1)见解析;(2)DF⊥ON,理由见解析;(3)24
【分析】
(1)根据正方形的性质证明△BCE≌△DCE即可;
(2)由第一题所得条件和已知条件可推出∠EDC=∠CBN,再利用90°的代换即可证明;(3)过D点作DG垂直于OM,交点为G,结合已知条件推出DF和BF的长,再根据第一题结论得出△BEF的周长等于DF加BF即可得出答案.
【详解】
解:(1)证明:∵四边形ABCD正方形,
∴CA平分∠BCD,BC=DC,
∴∠BCE=∠DCE=45°,
∵CE=CE,
∴△BCE≌△DCE(SAS);
∴BE=DE;
(2)DF⊥ON,理由如下:
∵△BCE≌△DCE,
∴∠EBC=∠EDC,
∵∠EBC=∠CBN,
∴∠EDC=∠CBN,
∵∠EDC+∠1=90°,∠1=∠2,
∴∠2+∠CBN=90°,
∴∠EFB=90°,即DF⊥ON;
(3)过D点作DG垂直于OM,交点为G,
∵四边形ABCD是正方形,
∴AD=AB,∠BAD=90°,
∴∠DAG+∠BAO=90°,
∵∠ABO+∠BAO=90°,
∴∠DAG=∠ABO,
又∵∠MON=90°,DG⊥OM,
∴△ADG≌△ABO,
∴DM=AO,GA=OB=5,
∵AB=13,OB=5,
根据勾股定理可得AO=12,
由(2)可知DF⊥ON,
又∵∠MON=90°,DG⊥OM,
∴四边形OFDM是矩形,
∴OF=DG=AO=12,DF=OM=17,
由(1)可知BE =DE ,
∴△BEF 的周长=DF+BF=17+(12-5)=24.
【点睛】
本题考查了正方形的性质,全等三角形的判定和性质,矩形的判定,掌握知识点是解题关键.
11.详见解析.
【分析】
先判断出∠OAB =∠DCA ,进而判断出∠DAC =∠DAC ,得出CD =AD =AB ,证出四边形ABCD 是平行四边形,再由AD =AB ,即可得出结论.
【详解】
证明:∵AB ∥CD ,
∴∠OAB =∠DCA ,
∵AC 平分∠BAD .
∴∠OAB =∠DAC ,
∴∠DCA =∠DAC ,
∴CD =AD =AB ,
∵AB ∥CD ,
∴四边形ABCD 是平行四边形,
∵AD =AB ,
∴四边形ABCD 是菱形.
【点睛】
本题考查了菱形的判定,能够了解菱形的几种判定方法是解答本题的关键,难度不大.
12.(1)见解析 (2)8 (3)见解析
【分析】
(1)根据ASA 证明三角形全等即可.
(2)证明S 四边形ABFE =S △ABC 可得结论.
(3)利用中心对称图形的性质以及数形结合的思想解决问题即可(答案不唯一).
【详解】
(1)【发现】证明:如图1中,∵四边形ABCD 是平行四边形,
∴AO =OC ,AD ∥BC ,
∴∠EAO =∠FCO ,
在△AOE 和△COF 中,
EAO FCO AO CO
AOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩
, ∴△AOE ≌△COF (ASA ).
(2)【探究】解:如图2中,由(1)可知△AOE ≌△COF ,
∴S △AOE =S △COF ,
∴S 四边形ABFE =S △ABC ,
∵四边形ABCD是菱形,
∴S△ABC=1
2
S菱形ABCD,
∵S菱形ABCD=1
2
•AC•BD=
1
2
×4×8=16,
∴S四边形ABFE=1
2
×16=8.
(3)【应用】
①找出上面小正方形的对角线交点,以及下面四个小正方形组成的矩形的对角线交点,连接即可;
②连接下面左边数第二个小正方形右上角和左下角的顶点;
③分别找出第二列两个小正方形的对角线交点,并连接,与最上面的小正方形最上面的边交于一点,把这个点与图形底边中点连接即可.
如图3中,直线l即为所求(答案不唯一).
【点睛】
本题考查全等三角形的判定、菱形的性质以及中心对称图形的性质,掌握数形结合的思想是解决本题的关键.
13.(1)见解析(210
【分析】
(1)根据平行四边形的性质得到AD=BC=3,AD∥BC,得到AD=CE,推出四边形ACED 是平行四边形,由垂直的定义得到∠ACE=90°,于是得到结论;
(2)根据三角形的中位线定理得到OC=1
2
DE=
1
2
AC=1,由勾股定理即可得到结论.
【详解】
(1)证明:∵在平行四边形ABCD中,AD=BC=3,AD∥BC,∵CE=3,
∴AD=CE,
∴四边形ACED是平行四边形,
∵AC⊥BC,
∴∠ACE=90°,
∴四边形ACED为矩形;
(2)解:连接OE,如图,
∵BO =DO ,BC =CE ,
∴OC =12DE =12
AC =1, ∵∠ACE =90°,
∴OE 22221310OC CE +=+=
【点睛】
本题主要考查了平行四边形的性质,结合三角形中位线定理和勾股定理进行求解.
14.(1)详见解析;(2)2180αβ+=︒,证明见解析.
【分析】
(1)如图,分别取AB 、AC 的中点M 、N ,连接DM 、PM 、PN 、NE ,根据三角形的中位线定理和直角三角形的性质可得PM NE =,DM PN =,根据等腰三角形的性质、三角形的外角性质和已知条件可得BMD CNE ∠=∠,根据平行线的性质可得BMP BAC ∠=∠=CNP ∠,进而可得DMP PNE ∠=∠,于是可根据SAS 证明MDP NPE ∆≅∆,从而可得结论;
(2)根据平行线的性质可得BMP MPN ∠=∠,根据全等三角形的性质可得
EPN MDP ∠=∠,然后在DMP ∆中利用三角形的内角和定理和等量代换即可得出结论.
【详解】
(1)证明:如图,分别取AB 、AC 的中点M 、N ,连接DM 、PM 、PN 、NE . 点P 为ABC ∆的边BC 的中点, ∴12
PM AC =, NE 为Rt AEC ∆斜边上的中线, ∴12
NE AN AC ==, PM NE ∴=,
同理可得:DM PN =,
12
DM AM AB ==, ADM BAD ∴∠=∠,
2BMD BAD ∴∠=∠,
同理,2CNE CAE ∠=∠,
又BAD CAE α∠=∠=,
BMD CNE ∴∠=∠,
又PM 、PN 都是ABC ∆的中位线,
//PM AC ∴,//PN AB ,
BMP BAC ∴∠=∠,CNP BAC ∠=∠,
BMP CNP ∴∠=∠,
∴DMP PNE ∠=∠,
MDP NPE ∴∆≅∆(SAS),
PD PE ∴=;
(2)解:α与β的数量关系是:2180αβ+=︒;
证明:
//PN AB ,
BMP MPN ∴∠=∠,
∵MDP NPE ∆≅∆,
EPN MDP ∴∠=∠,
在DMP ∆中,∵180MDP DPM DMP ∠+∠+∠=︒,
∴180MDP DPM DMB PMB ∠+∠+∠+∠=︒,
而22DMB BAD α∠=∠=,
2180EPN DPM MPN α∴∠+∠++∠=︒,
DPE DPM MPN EPN β∠=∠+∠+∠=, 2180αβ∴+=︒.
【点睛】
本题考查了三角形的中位线定理、全等三角形的判定和性质、直角三角形的性质、等腰三角形的性质、平行线的性质、三角形的外角性质和三角形的内角和定理等知识,具有一定的综合性,正确添加辅助线、熟练掌握上述知识是解题的关键.
15.(1)(),6AP tcm AQ t cm ==-;(2)存在,8163t s s
=或;(3)存在, 3/a cm s =.
【分析】
(1)根据路程=时间×速度,即可表示出来
(2)要讨论PA AB ⊥,PQ AC ⊥两种情况,即可求出对应的时间
(3)根据BPQ ∆以BP 为底的等腰三角形,作QM BP ⊥于M ,用a ,t 的代数式表示出
AP ,CQ ,AQ ,BP 等边长,再根据ABC ∆是等边三角形,求出30AQM ︒∠=,从而得出2AQ AM =,讨论P 在线段AB 内运动和P 在AB 外运动两种情况,即可求出结果.
【详解】
解:()1由题意可知:(),,6AP tcm CQ tcm AQ t cm ===-
()2存在8163t s s =或时,使得APQ ∆为直角三角形,理由是 ①当PA AB ⊥时,由题意有28t t =-,解得83
t s = ②当PQ AC ⊥时,由题意有()8,2t t =-解得163
t s = ∴综上所述,存在8163t s s
=或时,使得APQ ∆为直角三角形 ()3存在3/a cm s =时,BPQ ∆恒为以BP 为底的等腰三角形,理由是:
作QM BP ⊥于M ,如图2所示
由题意得:3,AP t CQ at ==,则8,83AQ at BP t =+=-
,PQ BQ QM BP =⊥
12
PM BM BP ∴== ABC ∆是等边三角形,
60A ︒∴∠=
30AQM ︒∴∠=
2AQ AM ∴=, ①当83t ≤时,由题意有832382t t at -⎛⎫+=+ ⎪⎝
⎭,解得3/a cm s =, ②当83t ≥时,由题意有382382t t at -⎛⎫-=+ ⎪⎝⎭
,解得3/a cm s =, ∴综上所述,存在3/a cm s =时,BPQ ∆恒为以BP 为底的等腰三角形.
【点睛】
本题主要考察了直角三角形,等腰三角形,动点等知识点,记住它们的常用性质和把动点问题转换成代数式求解问题是解题关键.。