高考数学模拟复习试卷试题模拟卷第八章 直线与圆0061.35
高考数学模拟复习试卷试题模拟卷第八章 直线与圆006490
![高考数学模拟复习试卷试题模拟卷第八章 直线与圆006490](https://img.taocdn.com/s3/m/38ea6a0633d4b14e84246832.png)
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【高频考点解读】1.了解导数概念的实际背景. 2.理解导数的几何意义.3.能根据导数的定义求函数y =c(c 为常数),y =x ,y =1x ,y =x2,y =x3,y =x 的导数. 【热点题型】题型一 利用定义求函数的导数例1、用定义法求函数f(x)=x2-2x -1在x =1处的导数. 解 方法一 Δy =f(x +Δx)-f(x) =(x +Δx)2-2(x +Δx)-1-(x2-2x -1) =x2+2x·Δx +Δx2-2x -2Δx -1-x2+2x +1 =(2x -2)Δx +Δx2,所以lim Δx→0ΔyΔx =lim Δx→02x -2Δx +Δx2Δx =lim Δx→0[(2x -2)+Δx]=2x -2. 所以函数f(x)=x2-2x -1在x =1处的导数为 f′(x)|x =1=2×1-2=0. 方法二 Δy =f(1+Δx)-f(1)=(1+Δx)2-2(1+Δx)-1-(12-2×1-1) =1+2Δx +Δx2-2-2Δx -1+2 =Δx2,所以lim Δx→0Δy Δx =lim Δx→0Δx2Δx =lim Δx→0Δx =0. 故f′(x)|x =1=0. 【提分秘籍】(1)求函数f(x)的导数步骤:①求函数值的增量Δy =f(x2)-f(x1); ②计算平均变化率Δy Δx =f x2-f x1x2-x1;③计算导数f′(x)=lim Δx→0ΔyΔx .(2)利用定义法求解f′(a),可以先求出函数的导数f′(x),然后令x =a 即可求解,也可直接利用定义求解.【举一反三】(1)函数y =x +1x 在[x ,x +Δx]上的平均变化率ΔyΔx =________;该函数在x =1处的导数是____________________________________.(2)已知f(x)=1x,则f′(1)=________. 答案 (1)1-1x x +Δx 0 (2)-12解析 (1)∵Δy =(x +Δx)+1x +Δx -x -1x=Δx +1x +Δx -1x =Δx +-Δx x x +Δx .∴Δy Δx =1-1x x +Δx .y′|x =1=lim Δx→0Δy Δx =0.(2)∵Δy =f(1+Δx)-f(1)=11+Δx -1=1-1+Δx 1+Δx=1-1+Δx1+1+Δx1+Δx 1+1+Δx=-Δx1+Δx 1+1+Δx ,∴Δy Δx =-11+Δx 1+1+Δx ,∴lim Δx→0ΔyΔx =lim Δx→0-11+Δx 1+1+Δx=-12.∴f′(1)=-12. 题型二导数的运算 例2、求下列函数的导数: (1)y =ex·lnx ; (2)y =x ⎝⎛⎭⎫x2+1x +1x3.解 (1)y′=(ex·lnx)′=exlnx +ex·1x =ex(lnx +1x ).(2)∵y =x3+1+1x2,∴y′=3x2-2x3. 【提分秘籍】有的函数虽然表面形式为函数的商的形式,但在求导前利用代数或三角恒等变形将函数先化简,然后进行求导,有时可以避免使用商的求导法则,减少运算量,提高运算速度,减少差错.【举一反三】(1)f(x)=x(+lnx),若f′(x0)=,则x0等于()A.e2B.1C.ln2D.e(2)若函数f(x)=ax4+bx2+c满足f′(1)=2,则f′(-1)等于()A.-1B.-2C.2D.0答案(1)B(2)B题型三导数的几何意义例3已知函数f(x)=x3-4x2+5x-4.(1)求曲线f(x)在点(2,f(2))处的切线方程;(2)求经过点A(2,-2)的曲线f(x)的切线方程.解(1)∵f′(x)=3x2-8x+5,∴f′(2)=1,又f(2)=-2,∴曲线f(x)在点(2,f(2))处的切线方程为y-(-2)=x-2,即x-y-4=0.(2)设切点坐标为(x0,x30-4x20+5x0-4),∵f′(x0)=3x20-8x0+5,∴切线方程为y-(-2)=(3x20-8x0+5)(x-2),又切线过点(x0,x30-4x20+5x0-4),∴x30-4x20+5x0-2=(3x20-8x0+5)(x0-2),整理得(x0-2)2(x0-1)=0,解得x0=2或x0=1,∴经过A(2,-2)的曲线f(x)的切线方程为x -y -4=0或y +2=0. 【提分秘籍】利用导数研究曲线的切线问题,一定要熟练掌握以下条件:(1)函数在切点处的导数值也就是切线的斜率.即已知切点坐标可求切线斜率,已知斜率可求切点坐标.(2)切点既在曲线上,又在切线上.切线有可能和曲线还有其它的公共点. 【举一反三】在平面直角坐标系xOy 中,若曲线y =ax2+bx (a ,b 为常数)过点P(2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是______.(2)已知函数f(x)=x3-3x ,若过点A(0,16)且与曲线y =f(x)相切的直线方程为y =ax +16,则实数a 的值是________.答案 (1)-3 (2)9【高考风向标】【高考新课标1,文14】已知函数()31f x ax x =++的图像在点()()1,1f 的处的切线过点()2,7,则a =.【答案】1【高考天津,文11】已知函数()()ln ,0,f x ax x x =∈+∞ ,其中a 为实数,()f x '为()f x 的导函数,若()13f '= ,则a 的值为.【答案】3【解析】因为()()1ln f x a x '=+ ,所以()13f a '==.【高考陕西,文15】函数xy xe =在其极值点处的切线方程为____________. 【答案】1y e=-【解析】()()(1)x xy f x xe f x x e '==⇒=+,令()01f x x '=⇒=-,此时1(1)f e-=-函数xy xe =在其极值点处的切线方程为1y e=- (·陕西卷)设函数f(x)=ln x +mx ,m ∈R.(1)当m =e(e 为自然对数的底数)时,求f(x)的极小值; (2)讨论函数g(x)=f′(x)-x3零点的个数;(3)若对任意b >a >0,f (b )-f (a )b -a <1恒成立,求m 的取值范围.【解析】解:(1)由题设,当m =e 时,f(x)=ln x +ex ,则f′(x)=x -e x2, ∴当x ∈(0,e)时,f′(x)<0,f(x)在(0,e)上单调递减; 当x ∈(e ,+∞)时,f′(x)>0,f(x)在(e ,+∞)上单调递增. ∴x =e 时,f(x)取得极小值f(e)=ln e +ee =2, ∴f(x)的极小值为2.(2)由题设g(x)=f′(x)-x 3=1x -m x2-x3(x>0), 令g(x)=0,得m =-13x3+x(x>0), 设φ(x)=-13x3+x(x≥0),则φ′(x)=-x2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x)>0,φ(x)在(0,1)上单调递增; 当x ∈(1,+∞)时,φ′(x)<0,φ(x)在(1,+∞)上单调递减.∴x =1是φ(x)的唯一极值点,且是极大值点,因此x =1也是φ(x)的最大值点, ∴φ(x)的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x)的图像(如图所示),可知(3)对任意的b>a>0,f (b )-f (a )b -a <1恒成立,等价于f(b)-b <f(a)-a 恒成立.(*) 设h(x)=f(x)-x =ln x +mx -x(x>0), ∴(*)等价于h(x)在(0,+∞)上单调递减. 由h′(x)=1x -mx2-1≤0在(0,+∞)上恒成立,得m≥-x2+x =-⎝⎛⎭⎫x -122+14(x>0)恒成立,∴m≥14⎝⎛⎭⎫对m =14,h′(x )=0仅在x =12时成立,∴m 的取值范围是⎣⎡⎭⎫14,+∞.(·安徽卷)设函数f(x)=1+(1+a)x -x2-x3,其中a>0. (1)讨论f(x)在其定义域上的单调性;(2)当x ∈[0,1]时,求f(x)取得最大值和最小值时的x 的值.(2)因为a>0,所以x1<0,x2>0,①当a≥4时,x2≥1,由(1)知,f(x)在[0,1]上单调递增,所以f(x)在x =0和x =1处分别取得最小值和最大值.②当0<a<4时,x2<1,由(1)知,f(x)在[0,x2]上单调递增,在[x2,1]上单调递减, 因此f(x)在x =x2=-1+4+3a 3处取得最大值.又f(0)=1,f(1)=a , 所以当0<a<1时,f(x)在x =1处取得最小值; 当a =1时,f(x)在x =0和x =1处同时取得最小值; 当1<a<4时,f(x)在x =0处取得最小值. (·北京卷)已知函数f(x)=2x3-3x. (1)求f(x)在区间[-2,1]上的最大值;(2)若过点P(1,t)存在3条直线与曲线y =f(x)相切,求t 的取值范围;(3)问过点A(-1,2),B(2,10),C(0,2)分别存在几条直线与曲线y =f(x)相切?(只需写出结论) 【解析】解:(1)由f(x)=2x3-3x 得f′(x)=6x2-3. 令f′(x)=0,得x =-22或x =22.因为f(-2)=-10,f ⎝ ⎛⎭⎪⎫-22=2,f ⎝ ⎛⎭⎪⎫22=-2,f(1)=-1, 所以f(x)在区间[-2,1]上的最大值为f ⎝ ⎛⎭⎪⎫-22= 2.当x 变化时,g(x)与g′(x)的变化情况如下:x (-∞,0) 0 (0,1) 1 (1,+∞) g′(x) + 0 - 0 +g(x)t +3t +1所以,g(0)=t +3是g(x)的极大值,g(1)=t +1是g(x)的极小值.结合图像知,当g(x)有3个不同零点时,有⎩⎪⎨⎪⎧g (0)=t +3>0,g (1)=t +1-0,解得-3<t<-1.故当过点P(1,t)存在3条直线与曲线y =f(x)相切时,t 的取值范围是(-3,-1). (3)过点A(-1,2)存在3条直线与曲线y =f(x)相切; 过点B(2,10)存在2条直线与曲线y =f(x)相切; 过点C(0,2)存在1条直线与曲线y =f(x)相切.(·福建卷)已知函数f(x)=ex -ax(a 为常数)的图像与y 轴交于点A ,曲线y =f(x)在点A 处的切线斜率为-1.(1)求a 的值及函数f(x)的极值; (2)证明:当x >0时,x2<ex ;(3)证明:对任意给定的正数c ,总存在x0,使得当x ∈(x0,+∞)时,恒有x <cex.(2)证明:令g(x)=ex -x2,则g′(x)=ex -2x. 由(1)得,g′(x)=f(x)≥f(ln 2)=2-ln 4>0, 即g′(x)>0.所以g(x)在R 上单调递增,又g(0)=1>0, 所以当x >0时,g(x)>g(0)>0,即x2<ex. (3)证明:对任意给定的正数c ,取x0=1c , 由(2)知,当x >0时,x2<ex.所以当x >x0时,ex >x2>1c x ,即x<cex.因此,对任意给定的正数c ,总存在x0,当x ∈(x0,+∞)时,恒有x <cex. 方法二:(1)同方法一. (2)同方法一.(3)证明:令k =1c (k >0),要使不等式x <cex 成立,只要ex >kx 成立. 而要使ex >kx 成立,则只需要x>ln(kx), 即x >ln x +ln k 成立.①若0<k≤1,则ln k≤0,易知当x >0时,x >ln x≥ln x +ln k 成立. 即对任意c ∈[1,+∞),取x0=0, 当x ∈(x0,+∞)时,恒有x <cex.方法三:(1)同方法一. (2)同方法一.(3)证明:①若c≥1,取x0=0, 由(2)的证明过程知,ex >2x ,所以当x ∈(x0,+∞)时,有cex≥ex >2x >x , 即x <cex. ②若0<c <1,令h(x)=cex -x ,则h′(x)=cex -1. 令h′(x)=0得x =ln 1c .当x >ln 1c 时,h′(x)>0,h(x)单调递增. 取x0=2ln 2c ,则h(x0)=ce2ln 2c -2ln 2c =2⎝⎛⎭⎫2c -ln 2c ,易知2c -ln 2c >0,又h(x)在(x0,+∞)内单调递增, 所以当x ∈(x0,+∞)时,恒有h(x)>h(x0)>0, 即x <cex.综上,对任意给定的正数c ,总存在x0,当x ∈(x0,+∞)时,恒有x <cex. (·广东卷)曲线y =-5ex +3在点(0,-2)处的切线方程为________. 【答案】5x +y +2=0【解析】∵y′=-5ex ,∴所求切线斜是k =-5e0=-5,∴切线方程是y -(-2)=-5(x -0),即5x +y +2=0.【高考押题】1.设f(x)=xlnx ,若f′(x0)=2,则x0的值为( ) A .e2B .eC.ln22D .ln2 答案 B解析 由f(x)=xlnx 得f′(x)=lnx +1.根据题意知lnx0+1=2,所以lnx0=1,因此x0=e.2.已知函数f(x)的导函数为f ′(x),且满足f(x)=2x·f′(1)+lnx ,则f′(1)等于( ) A .-eB .-1 C .1D .e 答案 B解析 由f(x)=2xf′(1)+lnx ,得f′(x)=2f′(1)+1x . ∴f′(1)=2f′(1)+1, 则f′(1)=-1.3.设函数f(x)=g(x)+x2,曲线y =g(x)在点(1,g(1))处的切线方程为y =2x +1,则曲线y =f(x)在点(1,f(1))处的切线的斜率为( )A .4B .-14C .2D .-12 答案 A解析 由条件知g′(1)=2,又∵f′(x)=[g(x)+x2]′=g′(x)+2x ,∴f′(1)=g′(1)+2=2+2=4. 4.与直线2x -y +4=0平行的抛物线y =x2的切线方程是( ) A .2x -y +3=0B .2x -y -3=0 C .2x -y +1=0D .2x -y -1=0 答案 D解析 对y =x2求导得y′=2x.设切点坐标为(x0,x20),则切线斜率为k =2x0. 由2x0=2得x0=1,故切线方程为y -1=2(x -1),即2x -y -1=0.5.曲线y =x3在点(1,1)处的切线与x 轴及直线x =1所围成的三角形的面积为( ) A.112B.16C.13D.12 答案 B解析 求导得y′=3x2,所以y′|x =1=3, 所以曲线y =x3在点(1,1)处的切线方程为y -1=3(x -1),结合图象易知所围成的三角形是直角三角形, 三个交点的坐标分别是(23,0),(1,0),(1,1), 于是三角形的面积为12×(1-23)×1=16,故选B.6.已知函数f(x)的导函数为f′(x),且满足f(x)=3x2+2x·f′(2),则f′(5)=________. 答案 6解析 对f(x)=3x2+2xf′(2)求导, 得f′(x)=6x +2f′(2). 令x =2,得f′(2)=-12.再令x =5,得f′(5)=6×5+2f′(2)=6.7.已知函数y =f(x)及其导函数y =f′(x)的图象如图所示,则曲线y =f(x)在点P 处的切线方程是__________.答案 x -y -2=0解析 根据导数的几何意义及图象可知,曲线y =f(x)在点P 处的切线的斜率k =f′(2)=1,又过点P(2,0),所以切线方程为x -y -2=0.8.已知曲线y =x3+x -2在点P0处的切线l1平行于直线4x -y -1=0,且点P0在第三象限. (1)求P0的坐标;(2)若直线l ⊥l1,且l 也过切点P0,求直线l 的方程. 解 (1)由y =x3+x -2,得y′=3x2+1, 由已知令3x 2+1=4,解之得x =±1.当x=1时,y=0;当x=-1时,y=-4.又∵点P0在第三象限,∴切点P0的坐标为(-1,-4).(2)∵直线l⊥l1,l1的斜率为4,∴直线l的斜率为-14.∵l过切点P0,点P0的坐标为(-1,-4),∴直线l的方程为y+4=-14(x+1),即x+4y+17=0.9.已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线的方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标.解(1)可判定点(2,-6)在曲线y=f(x)上.∵f′(x)=(x3+x-16)′=3x2+1.∴f(x)在点(2,-6)处的切线的斜率为k=f′(2)=13.∴切线的方程为y+6=13(x-2)即y=13x-32.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【考情解读】1.理解等差数列的概念;2.掌握等差数列的通项公式与前n 项和公式;3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题;4.了解等差数列与一次函数、二次函数的关系. 【重点知识梳理】 1.等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示.数学语言表达式:an +1-an =d(n ∈N*,d 为常数),或an -an -1=d (n≥2,d 为常数). 2.等差数列的通项公式与前n 项和公式(1)若等差数列{an}的首项是a1,公差是d ,则其通项公式为an =a1+(n -1)d . 通项公式的推广:an =am +(n -m)d(m ,n ∈N*). (2)等差数列的前n 项和公式 Sn =n (a1+an )2=na1+n (n -1)2d(其中n ∈N*,a1为首项,d 为公差,an 为第n 项). 3.等差数列及前n 项和的性质(1)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b2.(2)若{an}为等差数列,且m +n =p +q ,则am +an =ap +aq(m ,n ,p ,q ∈N*).(3)若{an}是等差数列,公差为d ,则ak ,ak +m ,ak +2m ,…(k ,m ∈N*)是公差为m d 的等差数列. (4)数列Sm ,S2m -Sm ,S3m -S2m ,…也是等差数列. (5)S2n -1=(2n -1)an.(6)若n 为偶数,则S 偶-S 奇=nd2; 若n 为奇数,则S 奇-S 偶=a 中(中间项). 4.等差数列的前n 项和公式与函数的关系 Sn =d 2n2+⎝⎛⎭⎫a1-d 2n.数列{an}是等差数列⇔Sn =An2+Bn(A ,B 为常数). 5.等差数列的前n 项和的最值在等差数列{an}中,a1>0,d<0,则Sn存在最大值;若a1<0,d>0,则Sn存在最小值.【高频考点突破】考点一等差数列的性质及基本量的求解【例1】 (1)设Sn为等差数列{an}的前n项和,S8=4a3,a7=-2,则a9=()A.-6 B.-4 C.-2 D.2【答案】A(2)(·浙江卷)已知等差数列{an}的公差d>0.设{an}的前n项和为Sn,a1=1,S2·S3=36.①求d及Sn;②求m,k(m,k∈N*)的值,使得am+am+1+am+2+…+am+k=65.规律方法(1)一般地,运用等差数列性质,可以化繁为简、优化解题过程.但要注意性质运用的条件,如m+n=p+q,则am+an=ap+aq(m,n,p,q∈N*),只有当序号之和相等、项数相同时才成立.(2)在求解等差数列基本量问题中主要使用的是方程思想,要注意公式使用时的准确性与合理性,更要注意运算的准确性.在遇到一些较复杂的方程组时,要注意整体代换思想的运用,使运算更加便捷.【变式探究】(1)设数列{an},{bn}都是等差数列,且a1=25,b1=75,a2+b2=100,则a37+b37等于()A.0 B.37 C.100 D.-37(2)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列的项数为()A .13B .12C .11D .10(3)已知等差数列{an}的前n 项和为Sn ,且S10=10,S20=30,则S30=________.【答案】(1)C(2)A(3)60考点二 等差数列的判定与证明【例2】若数列{an}的前n 项和为Sn ,且满足an +2SnSn -1=0(n≥2),a1=12.(1)求证:⎩⎨⎧⎭⎬⎫1Sn 成等差数列;(2)求数列{an}的通项公式.规律方法证明一个数列是否为等差数列的基本方法有两种:一是定义法,证明an-an-1=d(n≥2,d为常数);二是等差中项法,证明2an+1=an+an+2.若证明一个数列不是等差数列,则只需举出反例即可,也可以用反证法.【变式探究】已知公差大于零的等差数列{an}的前n项和为Sn,且满足a3·a4=117,a2+a5=22.(1)求数列{an}的通项公式;(2)若数列{bn}满足bn=Snn+c,是否存在非零实数c使得{bn}为等差数列?若存在,求出c的值;若不存在,请说明理由.考点三等差数列前n项和的最值问题【例3】等差数列{an}的首项a1>0,设其前n项和为Sn,且S5=S12,则当n为何值时,Sn有最大值?规律方法求等差数列前n项和的最值,常用的方法:(1)利用等差数列的单调性,求出其正负转折项;(2)利用性质求出其正负转折项,便可求得和的最值;(3)将等差数列的前n项和Sn=A n2+Bn(A,B为常数)看作二次函数,根据二次函数的性质求最值.【变式探究】(1)等差数列{an}的前n项和为Sn,已知a5+a7=4,a6+a8=-2,则当Sn取最大值时,n的值是()A.5 B.6 C.7 D.8(2)设数列{an}是公差d <0的等差数列,Sn 为前n 项和,若S6=5a1+10d ,则Sn 取最大值时,n 的值为()A .5B .6C .5或6D .11(3)已知等差数列{an}的首项a1=20,公差d =-2,则前n 项和Sn 的最大值为________.【答案】(1)B(2)C(3)110 【真题感悟】【高考新课标1,文7】已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =()(A )172(B )192(C )10(D )12 【答案】B【高考陕西,文13】中位数为1010的一组数构成等差数列,其末项为,则该数列的首项为________ 【答案】5【高考福建,文16】若,a b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,且,,2a b -这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于________.【答案】9【高考浙江,文10】已知{}n a 是等差数列,公差d 不为零.若2a ,3a ,7a 成等比数列,且1221a a +=,则1a =,d =.【答案】2,13-1.(·安徽卷)数列{an}是等差数列,若a1+1,a3+3,a5+5构成公比为q 的等比数列,则q =________.【答案】12.(·北京卷)若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n =________时,{an}的前n 项和最大.【答案】83.(·福建卷)等差数列{an}的前n 项和为Sn ,若a1=2,S3=12,则a6等于( ) A .8 B .10 C .12 D .14 【答案】C4.(·湖北卷)已知等差数列{an}满足:a1=2,且a1,a2,a5成等比数列. (1)求数列{an}的通项公式.(2)记Sn 为数列{an}的前n 项和,是否存在正整数n ,使得Sn>60n +800?若存在,求n 的最小值;若不存在,说明理由.5.(·湖南卷)已知数列{an}满足a1=1,|an +1-an|=pn ,n ∈N*. (1)若{an}是递增数列,且a1,2a2,3a3成等差数列,求p 的值;(2)若p =12,且{a2n -1}是递增数列,{a2n}是递减数列,求数列{an}的通项公式.6.(·辽宁卷)设等差数列{an}的公差为d.若数列{2a1an}为递减数列,则() A.d<0 B.d>0 C.a1d<0 D.a1d>0【答案】C7.(·全国卷)等差数列{an}的前n项和为Sn.已知a1=10,a2为整数,且Sn≤S4.(1)求{an}的通项公式;(2)设bn=1anan+1,求数列{bn}的前n项和Tn.8.(·新课标全国卷Ⅰ] 已知数列{an}的前n项和为Sn,a1=1,an≠0,anan+1=λSn-1,其中λ为常数.(1)证明:an+2-an=λ.(2)是否存在λ,使得{an}为等差数列?并说明理由.9.(·山东卷)已知等差数列{an}的公差为2,前n项和为Sn,且S1,S2,S4成等比数列.(1)求数列{an}的通项公式;(2)令bn=(-1)n-14nanan+1,求数列{bn}的前n项和Tn.10.(·陕西卷)△ABC的内角A,B,C所对的边分别为a,b,c.(1)若a,b,c成等差数列,证明:sin A+sin C=2sin(A+C);(2)若a,b,c成等比数列,求cos B的最小值.11.(·天津卷)设{an}是首项为a1,公差为-1的等差数列,Sn 为其前n 项和.若S1,S2,S4成等比数列,则a1的值为________.【答案】-1212.(·重庆卷)设a1=1,an +1=a2n -2an +2+b(n ∈N*). (1)若b =1,求a2,a3及数列{an}的通项公式.(2)若b =-1,问:是否存在实数c 使得a2n<c<a2n +1对所有n ∈N*成立?证明你的结论.13.(·新课标全国卷Ⅰ] 某几何体的三视图如图1-3所示,则该几何体的体积为()图1-3A.16+8π B.8+8πC.16+16π D.8+16π【答案】A14.(·新课标全国卷Ⅰ] 设等差数列{an}的前n项和为Sn,若Sm-1=-2,Sm=0,Sm+1=3,则m =()A.3 B.4 C.5 D.6【答案】C15.(·广东卷)在等差数列{an}中,已知a3+a8=10,则3a5+a7=________.【答案】2016.(·北京卷)已知{an}是由非负整数组成的无穷数列,该数列前n项的最大值记为An,第n项之后各项an+1,an+2,…的最小值记为Bn,dn=An-Bn.(1)若{an}为2,1,4,3,2,1,4,3,…,是一个周期为4的数列(即对任意n∈N*,an+4=an),写出d1,d2,d3,d4的值;(2)设d是非负整数,证明:dn=-d(n=1,2,3,…)的充分必要条件为{an}是公差为d的等差数列;(3)证明:若a1=2,dn=1(n=1,2,3,…),则{an}的项只能是1或者2,且有无穷多项为1.17.(·全国卷)等差数列{a n}前n 项和为Sn.已知S3=a22,且S1,S2,S4成等比数列,求{an}的通项公式.18.(·山东卷)设等差数列{an}的前n 项和为Sn ,且S4=4S2,a2n =2an +1. (1)求数列{an}的通项公式;(2)设数列{bn}的前n 项和为Tn ,且Tn +an +12n =λ(λ为常数),令cn =b2n(n ∈N*),求数列{cn}的前n 项和Rn.19.(·四川卷)在等差数列{an}中,a1+a3=8,且a4为a2和a9的等比中项,求数列{an}的首项、公差及前n项和.20.(·新课标全国卷Ⅱ] 等差数列{an}的前n项和为Sn,已知S10=0,S15=25,则nSn的最小值为________.【答案】-4921.(·重庆卷)已知{an}是等差数列,a1=1,公差d≠0,Sn 为其前n 项和,若a1,a2,a5成等比数列,则S8=________.【答案】64【押题专练】1.记Sn 为等差数列{an}的前n 项和,若S33-S22=1,则其公差d = ()A.12 B .2 C .3D .4【答案】B2.设{an}是首项为a1,公差为-1的等差数列,Sn 为其前n 项和.若S1,S2,S4成等比数列,则a1=() A .2B .-2C.12D .-12【答案】D3.已知等差数列{an},且3(a3+a5)+2(a7+a10+a13)=48,则数列{an}的前13项之和为 () A .24B .39C .104D .52【答案】D4.设Sn 是等差数列{an}的前n 项和,公差d≠0,若S11=132,a3+ak =24,则正整数k 的值为 () A .9B .10C .11D .12【答案】A5.已知数列{an}满足an +1=an -57,且a1=5,设{an}的前n 项和为Sn ,则使得Sn 取得最大值的序号n 的值为() A .7B .8C .7或8D .8或9【答案】C6.《莱因德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包给5个人,使每人所得成等差数列,且使较大的三份之和的17是较小的两份之和,则最小的一份为 ()A.53B.103C.56D.116【答案】A7.设Sn 为等差数列{an}的前n 项和,(n +1)Sn <nSn +1(n ∈N*).若a8a7<-1,则 () A .Sn 的最大值是S8 B .Sn 的最小值是S8 C .Sn 的最大值是S7D .Sn 的最小值是S7【答案】D8.在等差数列{an}中,a15=33,a25=66,则a35=________.【答案】999.设Sn为等差数列{an}的前n项和,S2=S6,a4=1,则a5=________.【答案】-110.已知等差数列{an}中,S3=9,S6=36,则a7+a8+a9=________.【答案】4511.设等差数列{an}的前n项和为Sn,若a1<0,S2 015=0.(1)求Sn的最小值及此时n的值;(2)求n的取值集合,使an≥Sn.12.已知等差数列的前三项依次为a ,4,3a ,前n 项和为Sn ,且Sk =110. (1)求a 及k 的值;(2)设数列{bn}的通项bn =Snn ,证明数列{bn}是等差数列,并求其前n 项和Tn.高考模拟复习试卷试题模拟卷。
高考数学模拟复习试卷试题模拟卷第八章 直线与圆0061199
![高考数学模拟复习试卷试题模拟卷第八章 直线与圆0061199](https://img.taocdn.com/s3/m/62364cd1cc17552706220898.png)
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【高频考点解读】1.结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.2.根据具体函数的图象,能够用二分法求相应方程的近似解.【热点题型】题型一函数零点的判断与求解【例1】 (1)设f(x)=ex+x-4,则函数f(x)的零点位于区间()A.(-1,0) B.(0,1) C.(1,2) D.(2,3)(2)已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-3x.则函数g(x)=f(x)-x+3的零点的集合为()A.{1,3} B.{-3,-1,1,3}C.{2-7,1,3} D.{-2-7,1,3}解析(1)∵f(x)=ex+x-4,∴f′(x)=ex+1>0,∴函数f(x)在R上单调递增,对于A项,f(-1)=e-1+(-1)-4=-5+e-1<0,f(0)=-3<0,f(-1)f(0)>0,A不正确;同理可验证B,D不正确,对于C项,∵f(1)=e+1-4=e-3<0,f(2)=e2+2-4=e2-2>0,f(1)f(2)<0.故f(x)的零点位于区间(1,2).(2)当x≥0时,f(x)=x2-3x,令g(x)=x2-3x-x+3=0,得x1=3,x2=1.当x<0时,-x>0,∴f(-x)=(-x)2-3(-x),∴-f(x)=x2+3x,∴f(x)=-x2-3x.令g(x)=-x2-3x-x+3=0,得x3=-2-7,x4=-2+7>0(舍),∴函数g(x)=f(x)-x+3的零点的集合是{-2-7,1,3},故选D.答案(1)C(2)D【提分秘籍】(1)确定函数的零点所在的区间时,通常利用零点存在性定理,转化为确定区间两端点对应的函数值的符号是否相反.(2)根据函数的零点与相应方程根的关系可知,求函数的零点与求相应方程的根是等价的.对于求方程f(x)=g(x)的根,可以构造函数F(x)=f(x)-g(x),函数F(x)的零点即方程f(x)=g(x)的根.【举一反三】已知函数f(x)=⎩⎪⎨⎪⎧2x -1,x≤1,1+log2x ,x >1,则函数f(x)的零点为()A.12,0 B .-2,0 C.12 D .0解析 当x≤1时,由f(x)=2x -1=0,解得x =0;当x >1时,由f(x)=1+log2x =0,解得x =12,又因为x >1,所以此时方程无解.综上,函数f(x)的零点只有0.答案 D题型二根据函数零点的存在情况,求参数的值【例2】已知函数f(x)=-x2+2ex +m -1,g(x)=x +e2x (x >0). (1)若y =g(x)-m 有零点,求m 的取值范围;(2)确定m 的取值范围,使得g(x)-f(x)=0有两个相异实根. 解 (1)法一 ∵g(x)=x +e2x ≥2e2=2e ,图1等号成立的条件是x =e ,故g(x)的值域是[2e ,+∞),因而只需m≥2e ,则y =g(x)-m 就有零点. 法二 作出g(x)=x +e2x (x >0)的大致图象如图1. 可知若使y =g(x)-m 有零点,则只需m≥2e. (2)若g(x)-f(x)=0有两个相异实根,即y =g(x)与y =f(x)的图象有两个不同的交点,图2在同一坐标系中,作出g(x)=x +e2x (x >0)与f(x)=-x2+2ex +m -1的大致图象如图2. ∵f(x)=-x2+2ex +m -1=-(x -e)2+m -1+e2.∴其图象的对称轴为x =e ,开口向下,最大值为m -1+e2.故当m -1+e2>2e ,即m >-e2+2e +1时,y =g(x)与y =f(x)有两个交点,即g(x)-f(x)=0有两个相异实根.∴m 的取值范围是(-e2+2e +1,+∞). 【提分秘籍】函数零点的应用主要表现在利用零点求参数范围,若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.【举一反三】(1)函数f(x)=2x -2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是() A .(1,3) B .(1,2) C .(0,3) D .(0,2)(2)已知函数f(x)=⎩⎪⎨⎪⎧|2x -1|,x <2,3x -1,x≥2,若方程f(x)-a =0有三个不同的实数根,则实数a 的取值范围是()A .(1,3)B .(0,3)C .(0,2)D .(0,1)答案 (1)C(2)D题型三与二次函数有关的零点问题【例3】是否存在这样的实数a ,使函数f(x)=x2+(3a -2)x +a -1在区间[-1,3]上恒有一个零点,且只有一个零点?若存在,求出a 的取值范围;若不存在,说明理由.(2)当f(3)=0时,a =-15, 此时f(x)=x2-135x -65. 令f(x)=0,即x2-135x -65=0, 解得x =-25或x =3.方程在[-1,3]上有两个实数根, 不合题意,故a≠-15.综上所述,a 的取值范围是⎝⎛⎭⎫-∞,-15∪(1,+∞).【提分秘籍】解决与二次函数有关的零点问题:(1)可利用一元二次方程的求根公式;(2)可用一元二次方程的判别式及根与系数之间的关系;(3)利用二次函数的图象列不等式组.【举一反三】已知f(x)=x2+(a2-1)x +(a -2)的一个零点比1大,一个零点比1小,求实数a 的取值范围. 解 法一 设方程x2+(a2-1)x +(a -2)=0的两根分别为x1,x2(x1<x2),则(x1-1)(x2-1)<0, ∴x1x2-(x1+x2)+1<0, 由根与系数的关系, 得(a -2)+(a2-1)+1<0,即a2+a -2<0,∴-2<a <1.法二 函数图象大致如图,则有f(1)<0,即1+(a2-1)+a -2<0,∴-2<a <1. 故实数a 的取值范围是(-2,1). 【高考风向标】【高考安徽,文14】在平面直角坐标系xOy 中,若直线a y 2=与函数1||--=a x y 的图像只有一个交点,则a 的值为.【答案】12-【解析】在同一直角坐标系内,作出12--==a x y a y 与的大致图像,如下图:由题意,可知2112-=⇒-=a a 【高考湖北,文13】函数2π()2sin sin()2f x x x x =+-的零点个数为_________.【答案】2.【解析】函数2π()2sin sin()2f x x x x =+-的零点个数等价于方程2π2sin sin()02x x x +-=的根的个数,即函数π()2sin sin()2sinxcosx sin 2x 2g x x x =+==与2h(x)x =的图像交点个数.于是,分别画出其函数图像如下图所示,由图可知,函数()g x 与h(x)的图像有2个交点.【高考湖南,文14】若函数()|22|xf x b =--有两个零点,则实数b 的取值范围是_____. 【答案】02b <<【解析】由函数()|22|xf x b =--有两个零点,可得|22|xb -=有两个不等的根,从而可得函数|22|x y =-函数y b =的图象有两个交点,结合函数的图象可得,02b <<,故答案为:02b <<.【高考山东,文10】设函数3,1()2,1xx b x f x x -<⎧=⎨≥⎩,若5(())46f f =,则b = ( ) (A )1 (B )78 (C )34 (D)12【答案】D【解析】由题意,555()3,662f b b =⨯-=-由5(())46f f =得,51253()42b b b ⎧-<⎪⎪⎨⎪--=⎪⎩或5251224bb -⎧-≥⎪⎨⎪=⎩,解得12b =,故选D. (·北京卷)已知函数f(x)=6x -log2x ,在下列区间中,包含f(x)的零点的区间是()A .(0,1)B .(1,2)C .(2,4)D .(4,+∞) 【答案】C【解析】方法一:对于函数f(x)=6x -log2x ,因为f(2)=2>0,f(4)=-0.5<0,根据零点的存在性定理知选C.方法二:在同一坐标系中作出函数h(x)=6x 与g(x)=log2x 的大致图像,如图所示,可得f(x)的零点所在的区间为(2,4).(·浙江卷)已知函数f(x)=x3+ax2+bx +c ,且0<f(-1)=f(-2)=f(-3)≤3,则() A .c≤3 B .3<c≤6 C .6<c≤9 D .c >9 【答案】C【解析】由f(-1)=f(-2)=f(-3)得⎩⎪⎨⎪⎧-1+a -b +c =-8+4a -2b +c ,-8+4a -2b +c =-27+9a -3b +c ⇒⎩⎪⎨⎪⎧-7+3a -b =0,19-5a +b =0⇒⎩⎪⎨⎪⎧a =6,b =11, 则f(x)=x3+6x2+11x +c ,而0<f(-1)≤3,故0<-6+c≤3,∴6<c≤9,故选C.(·重庆卷)已知函数f(x)=⎩⎪⎨⎪⎧1x +1-3,x ∈(-1,0],x ,x ∈(0,1],且g(x)=f(x)-mx -m 在(-1,1]内有且仅有两个不同的零点,则实数m 的取值范围是()A.⎝⎛⎦⎤-94,-2∪⎝⎛⎦⎤0,12 B.⎝⎛⎦⎤-114,-2∪⎝⎛⎦⎤0,12C.⎝⎛⎦⎤-94,-2∪⎝⎛⎦⎤0,23D.⎝⎛⎦⎤-114,-2∪⎝⎛⎦⎤0,23【答案】A(·福建卷)函数f(x)=⎩⎪⎨⎪⎧x2-2,x≤0,2x -6+ln x ,x >0的零点个数是________.【答案】2【解析】当x≤0时,f(x)=x2-2, 令x2-2=0,得x =2(舍)或x =-2, 即在区间(-∞,0)上,函数只有一个零点. 当x>0时,f(x)=2x -6+ln x , 令2x -6+ln x =0,得ln x =6-2x.作出函数y =ln x 与y =6-2x 在区间(0,+∞)上的图像,则两函数图像只有一个交点,即函数f(x)=2x -6+ln x(x>0)只有一个零点. 综上可知,函数f(x)的零点的个数是2.(·湖北卷)已知f(x)是定义在R 上的奇函数,当x≥0时,f(x)=x2-3x ,则函数g(x)=f(x)-x +3的零点的集合为()A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3} 【答案】D【解析】设x<0,则-x>0,所以f(x)=-f(-x)=-[(-x)2-3(-x)]=-x2-3x . 求函数g(x)=f(x)-x +3的零点等价于求方程f(x)=-3+x 的解.当x≥0时,x2-3x =-3+x ,解得x1=3,x2=1; 当x<0时,-x2-3x =-3+x ,解得x3=-2-7.故选D.(·江苏卷)已知f(x)是定义在R 上且周期为3的函数,当x ∈[0,3)时,f(x)=⎪⎪⎪⎪x2-2x +12.若函数y =f(x)-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是________.【答案】.⎝⎛⎭⎫0,12(·江西卷)已知函数f(x)=⎩⎪⎨⎪⎧a·2x ,x≥0,2-x ,x<0(a ∈R).若f[f(-1)]=1,则a =() A.14 B.12 C .1 D .2 【答案】A【解析】因为f(-1)=21=2,f(2)=a·22=4a =1,所以a =14.(·浙江卷)设函数f(x)=⎩⎪⎨⎪⎧x2+2x +2,x≤0,-x2,x >0.若f(f(a))=2,则a =________.【答案】2【解析】令t =f(a),若f(t)=2,则t2+2t +2=2 满足条件,此时t =0或t =-2,所以f(a)=0或f(a)=-2,只有-a2=-2满足条件,故a = 2.(·全国卷)函数f(x)=ax3+3x 2+3x(a≠0). (1)讨论f(x)的单调性;(2)若f(x)在区间(1,2)是增函数,求a 的取值范围.【解析】解:(1)f′(x)=3ax2+6x +3,f′(x)=0的判别式Δ=36(1-a).(i)若a≥1,则f′(x)≥0,且f′(x)=0当且仅当a =1,x =-1时成立.故此时f(x)在R 上是增函数. (ii)由于a≠0,故当a <1时,f′(x)=0有两个根; x1=-1+1-a a ,x2=-1-1-a a. 若0<a <1,则当x ∈(-∞,x2)或x ∈(x1,+∞)时,f′(x)>0,故f(x)分别在(-∞,x2),(x1,+∞)是增函数;当x ∈(x2,x1)时,f′(x)<0,故f(x)在(x2,x1)是减函数.若a <0,则当x ∈(-∞,x1)或(x2,+∞)时,f′(x)<0,故f(x)分别在(-∞,x1),(x2,+∞)是减函数; 当x ∈(x1,x2)时f′(x)>0,故f(x)在(x1,x2)是增函数.(2)当a >0,x >0时,f′(x)=3ax2+6x +3>0,故当a >0时,f(x)在区间(1,2)是增函数. 当a <0时,f(x)在区间(1,2)是增函数当且仅当f′(1)≥0且f′(2)≥0,解得-54≤a <0.综上,a 的取值范围是⎣⎡⎭⎫-54,0∪(0,+∞). (·天津卷)已知函数f(x)=⎩⎪⎨⎪⎧|x2+5x +4|,x≤0,2|x -2|,x >0.若函数y =f(x)-a|x|恰有4个零点,则实数a 的取值范围为________.【答案】(1,2)【解析】在同一坐标系内分别作出y =f(x)与y =a|x|的图像,如图所示,当y =a|x|与y =f(x)的图像相切时,联立⎩⎪⎨⎪⎧-ax =-x2-5x -4,a>0,整理得x2+(5-a)x +4=0,则Δ=(5-a)2-4×1×4=0,解得a =1或a =9(舍去),∴当y =a|x|与y =f(x)的图像有四个交点时,有1<a<2.【高考押题】1.函数f(x)=2x +x3-2在区间(0,2)内的零点个数是 () A .0B .1C .2D .3解析 因为函数y =2x ,y =x3在R 上均为增函数,故函数f(x)=2x +x3-2在R 上为增函数,又f(0)<0,f(2)>0,故函数f(x)=2x +x 3-2在区间(0,2)内只有一个零点,故选B.答案 B2.函数y =ln(x +1)与y =1x 的图象交点的横坐标所在区间为() A .(0,1)B .(1,2)C .(2,3)D .(3,4)解析 函数y =ln(x +1)与y =1x 的图象交点的横坐标,即为函数f(x)=ln(x +1)-1x 的零点,∵f(x)在(0,+∞)上为增函数,且f(1)=ln 2-1<0,f(2)=ln 3-12>0,∴f(x)的零点所在区间为(1,2).答案 B3.若a <b <c ,则函数f(x)=(x -a)(x -b)+(x -b)(x -c)+(x -c)(x -a)的两个零点分别位于区间 () A .(a ,b)和(b ,c)内B .(-∞,a)和(a ,b)内C .(b ,c)和(c ,+∞)内D .(-∞,a)和(c ,+∞)内解析 依题意,注意到f(a)=(a -b)(a -c)>0,f(b)=(b -c)·(b -a)<0,f(c)=(c -b)(c -a)>0,因此由零点的存在性定理知函数f(x)的零点位于区间(a ,b)和(b ,c)内,故选A.答案 A4.若函数f(x)=3ax +1-2a 在区间(-1,1)内存在一个零点,则a 的取值范围是 ()A.⎝⎛⎭⎫15,+∞ B .(-∞,-1)∪⎝⎛⎭⎫15,+∞C.⎝⎛⎭⎫-1,15D .(-∞,-1)解析 当a =0时,f(x)=1与x 轴无交点,不合题意,所以a≠0;函数f(x)=3ax +1-2a 在区间(-1,1)内是单调函数,所以f(-1)·f(1)<0,即(5a -1)(a +1)>0,解得a <-1或a >15.答案 B5.已知函数f(x)=x +2x ,g(x)=x +ln x ,h(x)=x -x -1的零点分别为x1,x2,x3,则x1,x2,x3的大小关系是()A .x2<x1<x3B .x1<x2<x3C .x1<x3<x2D .x3<x2<x1解析 依据零点的意义,转化为函数y =x 分别和y =-2x ,y =-ln x ,y =x +1的交点的横坐标大小问题,作出草图,易得x1<0<x2<1<x3.答案 B6.函数f (x)=x -ln(x +1)-1的零点个数是________.解析 函数f(x)=x -ln(x +1)-1的零点个数,即为函数y =ln(x +1)与y =x -1图象的交点个数. 在同一坐标系内分别作出函数y =ln(x +1)与y =x -1的图象,如图,由图可知函数f(x)=x -ln(x +1)-1的零点个数是2. 答案 27.函数f(x)=3x -7+ln x 的零点位于区间(n ,n +1)(n ∈N)内,则n =________.8.已知函数f(x)=⎩⎪⎨⎪⎧2x -1,x >0,-x2-2x ,x≤0,若函数g(x)=f(x)-m 有3个零点,则实数m 的取值范围是________.解析 画出f(x)=⎩⎪⎨⎪⎧2x -1,x >0,-x2-2x ,x≤0的图象,如图.由函数g(x)=f(x)-m 有3个零点,结合图象得:0<m <1,即m ∈(0,1). 答案 (0,1)9.若关于x 的方程22x +2xa +a +1=0有实根,求实数a 的取值范围. 解 法一 (换元法)设t =2x(t>0),则原方程可变为t2+at +a +1=0,(*) 原方程有实根,即方程(*)有正根. 令f(t)=t2+at +a +1.法二 (分离变量法)由方程,解得a =-22x +12x +1,设t =2x(t>0),则a =-t2+1t +1=-⎝⎛⎭⎫t +2t +1-1=2-⎣⎡⎦⎤(t +1)+2t +1,其中t +1>1,由基本不等式,得(t +1)+2t +1≥22,当且仅当t =2-1时取等号,故a≤2-2 2.综上,a 的取值范围是(-∞,2-22].10.已知关于x 的二次方程x2+2mx +2m +1=0有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的取值范围.解 由条件,抛物线f(x)=x2+2mx +2m +1与x 轴的交点分别在区间(-1,0)和(1,2)内,如图所示,得⎩⎪⎨⎪⎧ f (0)=2m +1<0,f (-1)=2>0,f (1)=4m +2<0,f (2)=6m +5>0⇒⎩⎪⎨⎪⎧m<-12,m ∈R ,m<-12,m>-56.即-56<m<-12. 故m的取值范围是⎝⎛⎭⎫-56,-12.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.了解平面向量基本定理及其意义.2.掌握平面向量的正交分解及坐标表示.3.会用坐标表示平面向量的加法、减法与数乘运算.4.理解用坐标表示的平面向量共线的条件. 【热点题型】题型一 平面向量基本定理的应用例1 (1)在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点,若AB →=λAM →+μAN →,则λ+μ等于( )A.15B.25C.35D.45(2)如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________.【提分秘籍】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.【举一反三】已知△ABC 中,点D 在BC 边上,且CD →=2DB →,CD →=rAB →+sAC →,则r +s 的值是( ) A.23B.43 C .-3D .0题型二平面向量的坐标运算例2 已知A(-2,4),B(3,-1),C(-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN →=-2b ,(1)求3a +b -3c ;(2)求满足a =mb +nc 的实数m ,n ; (3)求M 、N 的坐标及向量MN →的坐标. 【提分秘籍】向量的坐标运算主要是利用加、减、数乘运算法则进行.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则.【举一反三】(1)已知平面向量a =(1,1),b =(1,-1),则向量12a -32b 等于( ) A .(-2,-1) B .(-2,1) C .(-1,0) D .(-1,2)(2)已知A(7,1)、B(1,4),直线y =12ax 与线段AB 交于C ,且AC →=2CB →,则实数a =________. 题型三向量共线的坐标表示例3 (1)已知平面向量a =(1,2),b =(-2,m),且a ∥b ,则2a +3b =________. (2)(·陕西)设0<θ<π2,向量a =(sin2θ,c osθ),b =(cosθ,1),若a ∥b ,则tanθ=________. 【提分秘籍】(1)两平面向量共线的充要条件有两种形式:①若a =(x1,y1),b =(x2,y2),则a ∥b 的充要条件是x1y2-x2y1=0;②若a ∥b(b≠0),则a =λb.(2)向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例来求解.【举一反三】(1)已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A(1,2),B(2,1),C(4,2),则点D 的坐标为________.(2)△ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若p =(a +c ,b),q =(b -a ,c -a),且p ∥q ,则角C =________.【高考风向标】1.【高考新课标1,文2】已知点(0,1),(3,2)A B ,向量(4,3)AC =--,则向量BC =( )(A )(7,4)--(B )(7,4)(C )(1,4)-(D )(1,4)1.(·重庆卷) 已知向量a =(k ,3),b =(1,4),c =(2,1),且(2a -3b)⊥c ,则实数k =( )A .-92 B .0 C .3 D.1522.(·福建卷) 在下列向量组中,可以把向量a =(3,2)表示出来的是( ) A .e1=(0,0),e2=(1,2) B .e1=(-1,2),e2=(5,-2) C .e1=(3,5),e2=(6,10) D .e1=(2,-3),e2=(-2,3)3.(·山东卷) 已知向量a =(m ,cos 2x),b =(sin 2x ,n),函数f(x)=a·b ,且y =f(x)的图像过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2. (1)求m ,n 的值;(2)将y =f(x)的图像向左平移φ(0<φ<π)个单位后得到函数y =g(x)的图像,若y =g(x)图像上各最高点到点(0,3)的距离的最小值为1,求y =g(x)的单调递增区间.4.(·陕西卷) 设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________. 5.(·陕西卷) 在直角坐标系xOy 中,已知点A(1,1),B(2,3),C(3,2),点P(x ,y)在△ABC 三边围成的区域(含边界)上.(1)若PA →+PB →+PC →=0,求|OP →|;(2)设OP →=mAB →+nAC →(m ,n ∈R),用x ,y 表示m -n ,并求m -n 的最大值.6.(·安徽卷) 在平面直角坐标系中,O 是坐标原点,两定点A ,B 满足|OA →|=|OB →|=OA →·OB →=2,则点集{P|OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R}所表示的区域的面积是( )A .2 2B .2 3C .4 2D .4 37.(·湖南卷) 已知a ,b 是单位向量,a·b =0,若向量c 满足|c -a -b|=1,则|c|的取值范围是( )A .[2-1,2+1]B .[2-1,2+2]C .[1,2+1]D .1,2+28.(·北京卷) 向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb(λ,μ∈R),则λμ=________.图1-39.(·辽宁卷) 已知点A(1,3),B(4,-1),则与向量AB 同方向的单位向量为( ) A.⎝⎛⎭⎫35,-45 B.⎝⎛⎭⎫45,-35 C.⎝⎛⎭⎫-35,45 D.⎝⎛⎭⎫-45,35 10.(·天津卷) 在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点,若AC →·BE →=1,则AB 的长为________.11.(·新课标全国卷Ⅱ] 已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________.12.(·重庆卷) 如图1-9所示,椭圆的中心为原点O ,长轴在x 轴上,离心率e =22,过左焦点F1作x 轴的垂线交椭圆于A ,A′两点,|AA′|=4.(1)求该椭圆的标准方程;(2)取垂直于x 轴的直线与椭圆相交于不同的两点P ,P′,过P ,P′作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外,若PQ ⊥P′Q ,求圆Q 的标准方程.图1-913.(·重庆卷) 在平面上,AB1→⊥AB2→,|OB1|=|OB2→|=1,AP →=AB1→+AB2→.若|OP →|<12,则|OA →|的取值范围是( )A.⎝⎛⎦⎥⎤0,52 B.⎝ ⎛⎦⎥⎤52,72 C.⎝ ⎛⎦⎥⎤52,2 D.⎝ ⎛⎦⎥⎤72,2【高考押题】1.已知点A(1,3),B(4,-1),则与向量A B →同方向的单位向量为( ) A.⎝⎛⎭⎫35,-45B.⎝⎛⎭⎫45,-35 C.⎝⎛⎭⎫-35,45D.⎝⎛⎭⎫-45,35 2.在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若PA →=(4,3),PQ →=(1,5),则BC →等于( )A .(-2,7)B .(-6,21)C .(2,-7)D .(6,-21)3.已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb)∥c ,则λ等于( ) A.14B.12C .1D .24.已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m ,使得AB →+AC →=mAM →成立,则m 等于( )A .2B .3C .4D .55.如图,在△OAB 中,P 为线段AB 上的一点,OP →=xOA →+yOB →,且BP →=2PA →,则( )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =146.若三点A(2,2),B(a,0),C(0,b) (ab≠0)共线,则1a +1b 的值为________.7.已知向量OA →=(1,-3),OB →=(2,-1),OC →=(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 应满足的条件是________.8.已知A(-3,0),B(0,3),O 为坐标原点,C 在第二象限,且∠AOC =30°,OC →=λOA →+OB →,则实数λ的值为________.9.已知A(1,1)、B(3,-1)、C(a ,b).(1)若A 、B 、C 三点共线,求a 、b 的关系式;(2)若AC →=2AB →,求点C 的坐标.10.已知O(0,0),A(1,2),B(4,5)及OP →=OA →+tAB →,试问:(1)t 为何值时,P 在x 轴上?在y 轴上?在第三象限?(2)四边形OABP 能否成为平行四边形,若能,求出相应的t 值;若不能,请说明理由.高考模拟复习试卷试题模拟卷。
高考数学模拟复习试卷试题模拟卷第八章 直线与圆006630
![高考数学模拟复习试卷试题模拟卷第八章 直线与圆006630](https://img.taocdn.com/s3/m/886a44db76c66137ef061968.png)
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【高频考点解读】1.了解函数y =Asin(ωx +φ)的物理意义;能画出y =Asin(ωx +φ)的图象,了解参数A ,ω,φ对函数图象变化的影响;2.了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题. 【热点题型】题型一 函数y =Asin(ωx +φ)的图象及变换【例1】 设函数f(x)=sin ωx +3cos ωx(ω>0)的周期为π. (1)求它的振幅、初相;(2)用五点法作出它在长度为一个周期的闭区间上的图象;(3)说明函数f(x)的图象可由y =sin x 的图象经过怎样的变换而得到. 解 (1)f(x)=sin ωx +3cos ωx=2⎝ ⎛⎭⎪⎫12sin ωx +32cos ωx =2sin ⎝⎛⎭⎫ωx +π3, 又∵T =π,∴2πω=π,即ω=2.∴f(x)=2sin ⎝⎛⎭⎫2x +π3.∴函数f(x)=sin ωx +3cos ωx 的振幅为2,初相为π3. (2)令X =2x +π3,则y =2sin ⎝⎛⎭⎫2x +π3=2sin X.列表,并描点画出图象:x -π6 π12 π3 7π12 5π6 X 0 π2 π 3π2 2π y =sin X 01 0 -1 0 y =2sin ⎝⎛⎭⎫2x +π32-2【提分秘籍】作函数y =Asin(ωx +φ)(A >0,ω>0)的图象常用如下两种方法:(1)五点法作图法,用“五点法”作y =Asin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象;(2)图象的变换法,由函数y =sin x 的图象通过变换得到y =Asin(ωx +φ)的图象有两种途径:“先平移后伸缩”与“先伸缩后平移”.【举一反三】设函数f(x)=cos(ωx +φ)⎝⎛⎭⎫ω>0,-π2<φ<0的最小正周期为π,且f ⎝⎛⎭⎫π4=32.(1)求ω和φ的值;(2)在给定坐标系中作出函数f(x)在[0,π]上的图象.解 (1)∵T =2πω=π,ω=2,又f ⎝⎛⎭⎫π4=cos ⎝⎛⎭⎫2×π4+φ=32,∴sin φ=-32,又-π2<φ<0,∴φ=-π3.(2)由(1)得f(x)=cos ⎝⎛⎭⎫2x -π3,列表: 2x -π3-π3π2π32π53πx 0 π6 512π 23π 1112π π f(x)121-112图象如图.题型二利用三角函数图象求其解析式例2、(1)已知函数f(x)=Acos(ωx +φ)的图象如图所示,f ⎝⎛⎭⎫π2=-23,则f(0)=( )A .-23B .-12 C.23 D.12(2)函数f(x)=Asin(ωx +φ)(A >0,ω>0,|φ|<π)的部分图象如图所示,则函数f(x)的解析式为________.解析 (1)由三角函数图象得 T 2=11π12-7π12=π3, 即T =2π3,所以ω=2πT =3.又x =7π12是函数单调增区间中的一个零点, 所以3×7π12+φ=3π2+2kπ, 解得φ=-π4+2kπ,k ∈Z , 所以f(x)=Acos ⎝⎛⎭⎫3x -π4.由f ⎝⎛⎭⎫π2=-23,得A =223,所以f(x)=223cos ⎝⎛⎭⎫3x -π4,所以f(0)=223·cos ⎝⎛⎭⎫-π4=23.法二 以⎝⎛⎭⎫π3,0为第二个“零点”,⎝⎛⎭⎫7π12,-2为最小值点,列方程组⎩⎨⎧ω·π3+φ=π,ω·7π12+φ=3π2,解得⎩⎪⎨⎪⎧ω=2,φ=π3,故f(x)=2sin ⎝⎛⎭⎫2x +π3.答案 (1)C (2)f(x)=2sin ⎝⎛⎭⎫2x +π3 【提分秘籍】已知f(x)=Asin(ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)五点法,由ω=2πT 即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x0,则令ωx0+φ=0(或ωx0+φ=π),即可求出φ;(2)代入法,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.【举一反三】(1)已知函数f(x)=Acos(ωx +φ)(A >0,ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,△EFG 是边长为2的等边三角形,则f(1)的值为( )A .-32B .-62 C.3 D .- 3(2)函数f(x)=Asin(ω+φ)(A ,ω,φ为常数,A >0,ω>0,0<φ<π)的图象如图所示,则f ⎝⎛⎭⎫π3的值为______.解析 (1)由题意得f(0)=0, 即Acos φ=0,因为0<φ<π,A >0,所以φ=π2,由FG =2, 得T 2=πω=2,即ω=π2,E 的纵坐标为yE =2sin 60°=3, 所以A =3,故f(x)=3cos ⎝⎛⎭⎫π2x +π2=-3sin π2x ,所以f(1)=- 3.故选D.(2)由三角函数图象可得A =2,34T =11π12-π6=34π,所以周期 T =π=2πω,解得ω=2.又函数图象过点⎝⎛⎭⎫π6,2所以f ⎝⎛⎭⎫π6=2sin ⎝⎛⎭⎫2×π6+φ=2,0<φ<π,解得φ=π6, 所以f(x)=2sin ⎝⎛⎭⎫2x +π6,f ⎝⎛⎭⎫π3=2sin ⎝⎛⎭⎫2π3+π6=1.答案 (1)D (2)1题型三函数y =Asi n(ωx +φ)的性质应用【例3】已知向量a =(m ,cos 2x ),b =(sin 2x ,n),函数f(x)=a·b ,且y =f(x)的图象过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2.(1)求m ,n 的值;(2)将y =f(x)的图象向左平移φ(0<φ<π)个单位后得到函数y =g(x)的图象,若y =g(x)图象上各最高点到点(0,3)的距离的最小值为1,求y =g(x)的单调递增区间.(2)由(1)知f(x)=3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6.由题意知g(x)=f(x +φ)=2sin ⎝⎛⎭⎫2x +2φ+π6.设y =g(x)的图象上符合题意的最高点为(x0,2), 由题意知x20+1=1,所以x0=0,即到点(0,3)的距离为1的最高点为(0,2). 将其代入y =g(x)得sin ⎝⎛⎭⎫2φ+π6=1,因为0<φ<π,所以φ=π6. 因此g(x)=2sin ⎝⎛⎭⎫2x +π2=2cos 2x.由2kπ-π≤2x≤2kπ,k ∈Z 得kπ-π2≤x≤kπ,k ∈Z. 所以函数y =g(x)的单调递增区间为⎣⎡⎦⎤kπ-π2,kπ,k ∈Z.【提分秘籍】解决三角函数图象与性质综合问题的方法:先将y =f(x)化为y =asin x +bcos x 的形式,然后用辅助角公式化为y =Asin(ωx +φ)+b 的形式,再借助y =Asin(ωx +φ)的性质(如周期性、对称性、单调性等)解决相关问题.【举一反三】已知函数f(x)=3sin(ωx +φ)-cos(ωx +φ)(0<φ<π,ω>0)为偶函数,且函数y =f(x)图象的两相邻对称轴间的距离为π2.(1)求f ⎝⎛⎭⎫π8的值; (2)求函数y =f(x)+f ⎝⎛⎭⎫x +π4的最大值及对应的x 的值.解 (1)f(x)=3sin(ωx +φ)-cos(ωx +φ) =2⎣⎢⎡⎦⎥⎤32sin (ωx +φ)-12cos (ωx +φ) =2sin ⎝⎛⎭⎫ωx +φ-π6.因为f(x)为偶函数,则φ-π6=π2+kπ(k ∈Z),所以φ=2π3+kπ(k ∈Z), 又因为0<φ<π,所以φ=2π3, 所以f(x)=2sin ⎝⎛⎭⎫ωx +π2=2cos ωx.由题意得2πω=2·π2,所以ω=2. 故f(x)=2cos 2x.因此f ⎝⎛⎭⎫π8=2cos π4= 2.(2)y =2cos 2x +2cos 2⎝⎛⎭⎫x +π4=2cos 2x +2cos ⎝⎛⎭⎫2x +π2=2cos 2x -2sin 2x=22sin ⎝⎛⎭⎫π4-2x . 令π4-2x =2kπ+π2(k ∈Z),y 有最大值22, 所以当x =-kπ-π8(k ∈Z)时,y 有最大值2 2. 【高考风向标】【高考山东,文4】要得到函数4y sin x =-(3π)的图象,只需要将函数4y sin x =的图象() (A )向左平移12π个单位 (B )向右平移12π个单位(C )向左平移3π个单位 (D )向右平移3π个单位 【答案】B【解析】因为sin(4)sin 4()312y x x ππ=-=-,所以,只需要将函数4y sin x =的图象向右平移12π个单位,故选B.【高考湖北,文18】某同学用“五点法”画函数π()sin()(0,||)2f x A x ωϕωϕ=+><在某一个周期内的图象时,列表并填入了部分数据,如下表:x ωϕ+0 π2 π3π2 2πxπ35π6sin()A x ωϕ+55-(Ⅰ 析式;(Ⅱ)将()y f x =图象上所有点向左平行移动π6个单位长度,得到()y g x =图象,求 ()y g x =的图象离原点O 最近的对称中心.【答案】(Ⅰ)根据表中已知数据,解得π5,2,6A ωϕ===-.数据补全如下表:x ωϕ+π2π3π22πxπ12 π3 7π12 5π6 13π12sin()A x ωϕ+0 5 0 5- 0且函数表达式为π()5sin(2)6f x x =-;(Ⅱ)离原点O 最近的对称中心为π(,0)12-.1.(·天津卷) 已知函数f(x)=3sin ωx +cos ωx(ω>0),x ∈R.在曲线y =f(x)与直线y =1的交点中,若相邻交点距离的最小值为π3,则f(x)的最小正周期为( )A.π2B.2π3 C .π D .2π【答案】C 【解析】∵f(x)=2sin ⎝⎛⎭⎫ωx +π6=1,∴sin ⎝⎛⎭⎫ωx +π6=12,∴ωx1+π6=π6+2k1π(k1∈Z)或 ωx2+π6=5π6+2k2π(k2∈Z),则ω(x2-x1)=2π3+2(k2-k1)π.又∵相邻交点距离的最小值为π3,∴ω=2,∴T =π.2.(·安徽卷) 若将函数f(x)=sin 2x +cos 2x 的图像向右平移φ个单位,所得图像关于y 轴对称,则φ的最小正值是( )A.π8B.π4C.3π8D.3π4 【答案】C【解析】方法一:将f(x)=2sin ⎝⎛⎭⎫2x +π4的图像向右平移φ个单位,得到y =2sin ⎝⎛⎭⎫2x +π4-2φ的图像,由所得图像关于y 轴对称,可知sin ⎝⎛⎭⎫π4-2φ=±1,即sin ⎝⎛⎭⎫2φ-π4=±1,故2φ-π4=kπ+π2,k ∈Z ,即φ=kπ2+3π8,k ∈Z ,又φ>0,所以φmin =3π8.3.(·重庆卷) 将函数f(x)=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ<π2图像上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图像,则f ⎝⎛⎭⎫π6=________.【答案】224.(·北京卷) 函数f(x)=3sin ⎝⎛⎭⎫2x +π6的部分图像如图1-4所示.图1-4(1)写出f(x)的最小正周期及图中x0,y0的值; (2)求f(x)在区间⎣⎡⎦⎤-π2,-π12上的最大值和最小值.【解析】(1)f(x)的最小正周期为π. x0=7π6,y0=3.(2)因为x ∈⎣⎡⎦⎤-π2,-π12,所以2x +π6∈⎣⎡⎦⎤-5π6,0.于是,当2x +π6=0,即x =-π12时,f(x)取得最大值0; 当2x +π6=-π2,即x =-π3时,f(x)取得最小值-3.5.(·福建卷) 已知函数f(x)=2cos x(sin x +cos x).(1)求f ⎝⎛⎭⎫5π4的值;(2)求函数f(x)的最小正周期及单调递增区间. 【解析】方法一:(1)f ⎝⎛⎭⎫5π4=2cos 5π4⎝⎛⎭⎫sin 5π4+cos 5π4=-2cos π4⎝⎛⎭⎫-sin π4-cos π4=2.方法二:f(x)=2sin xcos x +2cos2x =sin 2x +cos 2x +1 =2sin ⎝⎛⎭⎫2x +π4+1.(1)f ⎝⎛⎭⎫5π4=2sin 11π4+1=2sin π4+1 =2.(2)因为T =2π2=π,所以函数f(x)的最小正周期为π. 由2kπ-π2≤2x +π4≤2kπ+π2,k ∈Z ,得kπ-3π8≤x≤kπ+π8,k ∈Z.所以f(x)的单调递增区间为⎣⎡⎦⎤kπ-3π8,kπ+π8,k ∈Z.6.(·广东卷) 若空间中四条两两不同的直线l1,l2,l3,l4满足l1⊥l2,l2∥l3,l3⊥l4,则下列结论一定正确的是( )A .l1⊥l4B .l1∥l4C .l1与l4既不垂直也不平行D .l1与l4的位置关系不确定 【答案】D【解析】本题考查空间中直线的位置关系,构造正方体进行判断即可.如图所示,在正方体ABCD-A1B1C1D1中,设BB1是直线l1,BC 是直线l2,AD 是直线l3,则DD1是直线l4,此时l1∥l4;设BB1是直线l1,BC 是直线l2,A1D1是直线l3,则C1D1是直线l4,此时l1⊥l4.故l1与l4的位置关系不确定.7.(·湖北卷) 某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系: f(t)=10-3cos π12t -sin π12t ,t ∈[0,24). (1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差.【答案】(1)f(8)=10-3cos ⎝⎛⎭⎫π12×8-sin ⎝⎛⎭⎫π12×8=10-3cos 2π3-sin 2π3=10-3×⎝⎛⎭⎫-12-32=10.故实验室上午8时的温度为10 ℃.8.(·辽宁卷) 将函数y =3sin ⎝⎛⎭⎫2x +π3的图像向右平移π2个单位长度,所得图像对应的函数( )A .在区间⎣⎡⎦⎤π12,7π12上单调递减B .在区间⎣⎡⎦⎤π12,7π12上单调递增C .在区间⎣⎡⎦⎤-π6,π3上单调递减D .在区间⎣⎡⎦⎤-π6,π3上单调递增 【答案】B【解析】将函数y =3sin ⎝⎛⎭⎫2x +π3的图像向右平移π2个单位长度,得到y =3sin ⎝⎛⎭⎫2x -23π的图像 ,函数单调递增,则-π2+2kπ≤2x -23π≤π2+2kπ,k ∈Z ,即π12+kπ≤x≤7π12+kπ,k ∈Z ,即函数y =3sin ⎝⎛⎭⎫2x -23π的单调递增区间为⎣⎡⎦⎤π12+kπ,7π12+kπ,k ∈Z ,当k =0时,可知函数在区间⎣⎡⎦⎤π12,7π12上单调递增.9.(·新课标全国卷Ⅱ] 函数f(x)=sin(x +φ)-2sin φcos x 的最大值为________. 【答案】1【解析】 f(x)=sin(x +φ)-2s in φcos x =sin xcos φ+cos xsin φ-2sin φcos x =sin xcos φ-cos xsin φ=sin(x -φ),其最大值为1.10.(·全国新课标卷Ⅰ] 在函数①y =cos|2x|,②y =|cos x|,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③ 【答案】A11.(·山东卷) 函数y =32sin 2x +cos2x 的最小正周期为________. 【答案】π【解析】因为y =32sin 2x +1+cos 2x 2= sin ⎝⎛⎭⎫2x +π6+12,所以该函数的最小正周期T =2π2=π .12.(·陕西卷) 函数f(x)=cos ⎝⎛⎭⎫2x +π4的最小正周期是( )A.π2 B .π C .2π D .4π 【答案】B 【解析】T =2π2=π.134.(·浙江卷) 为了得到函数y =sin 3x +cos 3x 的图像,可以将函数y =2cos 3x 的图像( ) A .向右平移π12个单位 B .向右平移π4个单位 C .向左平移π12个单位 D .向左平移π4个单位 【答案】A【解析】y =sin 3x +cos 3x =2cos ⎝⎛⎭⎫3x -π4=2cos ⎣⎡⎦⎤3⎝⎛⎭⎫x -π12,故将函数y =2cos 3x 的图像向右平移π12个单位可以得到函数y =sin 3x +cos 3x 的图像,故选A.14.(·四川卷) 为了得到函数y =sin(x +1)的图像,只需把函数y =sin x 的图像上所有的点( )A .向左平行移动1个单位长度B .向右平行移动1个单位长度C .向左平行移动π个单位长度D .向右平行移动π个单位长度 【答案】A【解析】由函数y =sin x 的图像变换得到函数y =sin(x +1)的图像,应该将函数y =sin x 图像上所有的点向左平行移动1个单位长度,故选A.15.(·四川卷) 已知函数f(x)=sin ⎝⎛⎭⎫3x +π4. (1)求f(x)的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值.【解析】(1)因为函数y =sin x 的单调递增区间为⎣⎡⎦⎤-π2+2kπ,π2+2kπ,k ∈Z ,由-π2+2kπ≤3x +π4≤π2+2kπ,k ∈Z ,得-π4+2kπ3≤x≤π12+2kπ3,k ∈Z ,所以函数f(x)的单调递增区间为⎣⎡⎦⎤-π4+2kπ3,π12+2kπ3,k ∈Z. (2)由已知,得sin ⎝⎛⎭⎫α+π4=45cos ⎝⎛⎭⎫α+π4(cos2α-sin2α).所以sin αcos π4+cos αsin π4=45⎝⎛⎭⎫cos αco s π4-sin αsi n π4(cos2α-sin2α), 即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时,由α在第二象限内,得α=3π4+2kπ,k ∈Z. 此时,cos α-sin α=- 2.当sin α+cos α≠0时,(cos α-sin α)2=54.由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-52. 综上所述,cos α-sin α=-2或-52. 【高考押题】1.函数f(x)=3sin ⎝⎛⎭⎫x 2-π4,x ∈R 的最小正周期为( )A.π2B .πC .2πD .4π解析 最小正周期为T =2π12=4π.答案D2.将函数y =cos 2x +1的图象向右平移π4个单位,再向下平移1个单位后得到的函数图象对应的表达式为( )A .y =sin 2xB .y =sin 2x +2C .y =cos 2xD .y =cos ⎝⎛⎭⎫2x -π4 解析 将函数y =cos 2x +1的图象向右平移π4个单位得到y =cos 2⎝⎛⎭⎫x -π4+1=sin 2x +1,再向下平移1个单位得到y =sin 2x ,故选A.答案 A3.为了得到函数y =sin 3x +cos 3x 的图象,可以将函数y =2cos 3x 的图象 ( ) A .向右平移π12个单位B .向右平移π4个单位C .向左平移π12个单位D .向左平移π4个单位解析 ∵y =sin 3x +cos 3x =2cos ⎝⎛⎭⎫3x -π4=2cos ⎣⎡⎦⎤3⎝⎛⎭⎫x -π12,将y =2cos 3x 的图象向右平移π12个单位即可得到y =2cos ⎣⎡⎦⎤3⎝⎛⎭⎫x -π12的图象,故选A.答案 A4.函数f(x)=2sin(ωx +φ)(ω>0,-π2<φ<π2)的部分图象如图所示,则ω,φ的值分别是( )A .2,-π3B .2,-π6C .4,-π6D .4,π3解析 由图象知f(x)的周期T =2⎝⎛⎭⎫11π12-5π12=π,又T =2πω,ω>0,∴ω=2.由于f(x)=2sin(ωx +φ)(ω>0,-π2<φ<π2)的一个最高点为⎝⎛⎭⎫5π12,2,故有2×5π12+φ=2kπ+π2(k ∈Z),即φ=2kπ-π3,又-π2<φ<π2,∴φ=-π3,选A.答案 A5.将函数y =sin x 的图象向左平移π2个单位,得到函数y =f(x)的图象,则下列说法正确的是( ) A .y =f(x)是奇函数 B .y =f(x)的周期为πC .y =f(x)的图象关于直线x =π2对称D .y =f(x)的图象关于点⎝⎛⎭⎫-π2,0对称6.将函数f(x)=s in(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ<π2图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图象,则f ⎝⎛⎭⎫π6=______.即f(x)=sin ⎝⎛⎭⎫12x +π6, ∴f ⎝⎛⎭⎫π6=sin ⎝⎛⎭⎫π12+π6=sin π4=22.答案 227.已知函数f(x)=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ≤π2的图象上的两个相邻的最高点和最低点的距离为22,且过点⎝⎛⎭⎫2,-12,则函数解析式f(x)=________.解析 据已知两个相邻最高和最低点距离为22,可得⎝⎛⎭⎫T 22+(1+1)2=22,解得T =4,故ω=2πT =π2,即f(x)=sin ⎝⎛⎭⎫πx 2+φ,又函数图象过点⎝⎛⎭⎫2,-12,故f(2)=sin ⎝⎛⎭⎫π2×2+φ=-sin φ=-12,又-π2≤φ≤π2,解得φ=π6,故f(x)=sin ⎝⎛⎭⎫πx 2+π6.答案 sin ⎝⎛⎭⎫πx 2+π68.设函数f(x)=Asin(ωx +φ)(A ,ω,φ是常数,A>0,ω>0).若f(x)在区间⎣⎡⎦⎤π6,π2上具有单调性,且f⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3=-f ⎝⎛⎭⎫π6,则f(x)的最小正周期为________.9.已知函数f(x)=4cos x·sin ⎝⎛⎭⎫x +π6+a 的最大值为2.(1)求a 的值及f(x)的最小正周期; (2)在坐标系上作出f(x)在[0,π]上的图象.解 (1)f(x)=4cos xsin ⎝⎛⎭⎫x +π6+a =4cos x·⎝ ⎛⎭⎪⎫32sin x +12cos x +a =3sin 2x +2cos2x +a =3sin 2x +cos 2x+1+a =2sin ⎝⎛⎭⎫2x +π6+1+a 的最大值为2,∴a =-1,最小正周期T =2π2=π.(2)列表:x 0 π6 5π12 2π3 11π12 π 2x +π6π6π2 π 3π2 2π 13π6 f(x)=2sin ⎝⎛⎭⎫2x +π612-21画图如下:10.某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系: f(t)=10-3cos π12t -sin π12t ,t ∈[0,24). (1)求实验室这一天的最大温差;(2)若要求实验室温度不高于11 ℃,则在哪段时间实验室需要降温? 解 (1)因为f(t)=10-2⎝⎛⎭⎪⎫32cos π12t +12sin π12t =10-2sin ⎝⎛⎭⎫π12t +π3,又0≤t<24, 所以π3≤π12t +π3<7π3,-1≤sin ⎝⎛⎭⎫π12t +π3≤1.当t =2时,sin ⎝⎛⎭⎫π12t +π3=1;当t =14时,sin ⎝⎛⎭⎫π12t +π3=-1. 于是f(x)在[0,24)上取得最大值12,取得最小值8.故实验室这一天最高温度为12℃,最低温度为8 ℃,最大温差为4 ℃. (2)依题意,当f(t )>11时实验室需要降温.由(1)得f(t)=10-2sin ⎝⎛⎭⎫π12t +π3,故有10-2sin ⎝⎛⎭⎫π12t +π3>11, 即sin ⎝⎛⎭⎫π12t +π3<-12.又0≤t<24,因此7π6<π12t +π3<11π6,即10<t<18.所以在10时至18时实验室需要降温.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【考情解读】1.掌握确定圆的几何要素,掌握圆的标准方程与一般方程.2.初步了解用代数方法处理几何问题的思想.【重点知识梳理】1.圆的定义和圆的方程定义平面内到定点的距离等于定长的点的轨迹叫做圆方程标准(x-a)2+(y-b)2=r2(r>0)圆心C(a,b)半径为r一般x2+y2+Dx+Ey+F=0充要条件:D2+E2-4F>0圆心坐标:⎝⎛⎭⎫-D2,-E2半径r=12D2+E2-4F平面上的一点M(x0,y0)与圆C:(x-a)2+(y-b)2=r2之间存在着下列关系:(1)d>r⇔M在圆外,即(x0-a)2+(y0-b)2>r2⇔M在圆外;(2)d=r⇔M在圆上,即(x0-a)2+(y0-b)2=r2⇔M在圆上;(3)d<r⇔M在圆内,即(x0-a)2+(y0-b)2<r2⇔M在圆内.【高频考点突破】考点一圆的方程的求法【例1】 (1)经过点P(-2,4),Q(3,-1)两点,并且在x轴上截得的弦长等于6的圆的方程为________.(2)已知圆C与直线x-y=0及x-y-4=0都相切,圆心在直线x+y=0上,则圆C的方程为()A.(x+1)2+(y-1)2=2B.(x-1)2+(y+1)2=2C.(x-1)2+(y-1)2=2D.(x+1)2+(y+1)2=2【变式探究】 (1)过点A(4,1)的圆C与直线x-y-1=0相切于点B(2,1),则圆C的方程为________.(2)在平面直角坐标系xOy中,曲线y=x2-6x+1与坐标轴的交点都在圆C上.则圆C的方程为________.考点二与圆有关的最值问题【例2】已知实数x,y满足方程x2+y2-4x+1=0.(1)求yx 的最大值和最小值; (2)求y -x 的最大值和最小值; (3)求x2+y2的最大值和最小值.【变式探究】设P 为直线3x +4y +3=0上的动点,过点P 作圆C :x2+y2-2x -2y +1=0的两条切线,切点分别为A ,B ,则四边形PACB 的面积的最小值为________.考点三 与圆有关的轨迹问题【例3】 已知圆x2+y2=4上一定点A(2,0),B(1,1)为圆内一点,P ,Q 为圆上的动点. (1)求线段A P 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程.【变式探究】 设定点M(-3,4),动点N 在圆x2+y2=4上运动,以OM ,ON 为邻边作平行四边形MONP ,求点P 的轨迹.【真题感悟】1.【高考北京,文2】圆心为()1,1且过原点的圆的方程是() A .()()22111x y -+-= B .()()22111x y +++= C .()()22112x y +++= D .()()22112x y -+-=2.【高考重庆,文12】若点在以坐标原点为圆心的圆上,则该圆在点P 处的切线方程为________.3.【高考湖北,文16】如图,已知圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点A ,B (B 在A 的上方),且2AB =.(Ⅰ)圆C 的标准方程为_________;(Ⅱ)圆C 在点B 处的切线在x 轴上的截距为_________.3.【高考广东,文20】(本小题满分14分)已知过原点的动直线l 与圆1C :22650x y x +-+=相交于不同的两点A ,B .(1)求圆1C 的圆心坐标;xO y TCA B(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L:()4y k x =-与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.1.(·福建卷)设P ,Q 分别为圆x2+(y -6)2=2和椭圆x210+y2=1上的点,则P ,Q 两点间的最大距离是( )A .5 2 B.46+2 C .7+ 2 D .622.(·新课标全国卷Ⅰ)已知圆M :(x +1)2+y2=1,圆N :(x -1)2+y2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C.(1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB|.3.(·重庆卷)如图1-9所示,椭圆的中心为原点O ,长轴在x 轴上,离心率e =22,过左焦点F1作x 轴的垂线交椭圆于A ,A′两点,|AA′|=4.(1)求该椭圆的标准方程;(2)取垂直于x 轴的直线与椭圆相交于不同的两点P ,P′,过P ,P′作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外,若PQ ⊥P′Q ,求圆Q 的标准方程.图1-94.(高考江西卷)若圆C 经过坐标原点和点(4,0),且与直线y =1相切,则圆C 的方程是________.【押题专练】1.已知点A(1,-1),B(-1,1),则以线段AB 为直径的圆的方程是 ( )A .x2+y2=2B .x2+y2=2C .x2+y2=1D .x2+y2=42.方程x2+y2+ax +2ay +2a2+a -1=0表示圆,则a 的取值范围是( )A .(-∞,-2)∪⎝⎛⎭⎫23+∞ B.⎝⎛⎭⎫-23,0C .(-2,0)D.⎝⎛⎭⎫-2,233.设圆的方程是x2+y2+2ax +2y +(a -1)2=0,若0<a<1,则原点与圆的位置关系是 ( ) A .原点在圆上 B .原点在圆外 C .原点在圆内D .不确定4.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( )A .x2+(y -2)2=1B .x2+(y +2)2=1C .(x -1)2+(y -3)2=1D .x2+(y -3)2=15.点P(4,-2)与圆x2+y2=4上任一点连线的中点的轨迹方程是 ( )A .(x -2)2+(y +1)2=1B .(x -2)2+(y +1)2=4C .(x +4)2+(y -2)2=4D .(x +2)2+(y -1)2=16.已知圆心(a ,b)(a <0,b <0)在直线y =2x +1上的圆,其圆心到x 轴的距离恰好等于圆的半径,在y 轴上截得的弦长为25,则圆的方程为( )A .(x +2)2+(y +3)2=9B .(x +3)2+(y +5)2=25C .(x +6)2+⎝⎛⎭⎫y +732=499D.⎝⎛⎭⎫x +232+⎝⎛⎭⎫y +732=499 7.已知圆C 的圆心在曲线y =2x 上,圆C 过坐标原点O ,且分别与x 轴、y 轴交于A ,B 两点,则△OAB 的面积等于( ) A .2B .3C .4D .88.已知点M(1,0)是圆C :x2+y2-4x -2y =0内的一点,那么过点M 的最短弦所在直线的方程是________.9.已知直线l :x -y +4=0与圆C :(x -1)2+(y -1)2=2,则圆C 上各点到l 的距离的最小值为______.解析 由题意得C 上各点到直线l 的距离的最小值等于圆心(1,1)到直线l 的距离减去半径,即|1-1+4|2-2= 2.答案 210.已知平面区域⎩⎪⎨⎪⎧x≥0,y≥0,x +2y -4≤0恰好被面积最小的圆C :(x -a)2+(y -b)2=r2及其内部所覆盖,则圆C的方程为________.11.若圆x2+(y -1)2=1上任意一点(x ,y)都使不等式x +y +m≥0恒成立,则实数m 的取值范围是________.12.一圆经过A(4,2),B(-1,3)两点,且在两坐标轴上的四个截距的和为2,求此圆的方程. 13.求适合下列条件的圆的方程:(1)圆心在直线y =-4x 上,且与直线l :x +y -1=0相切于点P(3,-2); (2)过三点A(1,12),B(7,10),C(-9,2).14.在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为2 3. (1)求圆心P 的轨迹方程;(2)若P 点到直线y =x 的距离为22,求圆P 的方程. 高考模拟复习试卷试题模拟卷。
高考数学模拟复习试卷试题模拟卷第八章 直线与圆006350
![高考数学模拟复习试卷试题模拟卷第八章 直线与圆006350](https://img.taocdn.com/s3/m/8f2e4acbb7360b4c2f3f64b5.png)
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【高频考点解读】1.了解函数y =Asin(ωx +φ)的物理意义;能画出y =Asin(ωx +φ)的图象,了解参数A ,ω,φ对函数图象变化的影响;2.了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题. 【热点题型】题型一 函数y =Asin(ωx +φ)的图象及变换【例1】 设函数f(x)=sin ωx +3cos ωx(ω>0)的周期为π. (1)求它的振幅、初相;(2)用五点法作出它在长度为一个周期的闭区间上的图象;(3)说明函数f(x)的图象可由y =sin x 的图象经过怎样的变换而得到.【提分秘籍】作函数y =Asin(ωx +φ)(A >0,ω>0)的图象常用如下两种方法:(1)五点法作图法,用“五点法”作y =Asin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象;(2)图象的变换法,由函数y =sin x 的图象通过变换得到y =Asin(ωx +φ)的图象有两种途径:“先平移后伸缩”与“先伸缩后平移”.【举一反三】设函数f(x)=cos(ωx +φ)⎝⎛⎭⎫ω>0,-π2<φ<0的最小正周期为π,且f ⎝⎛⎭⎫π4=32.(1)求ω和φ的值;(2)在给定坐标系中作出函数f(x)在[0,π]上的图象.题型二利用三角函数图象求其解析式例2、(1)已知函数f(x)=Acos(ωx +φ)的图象如图所示,f ⎝⎛⎭⎫π2=-23,则f(0)=( )A .-23B .-12 C.23 D.12(2)函数f(x)=Asin(ωx +φ)(A >0,ω>0,|φ|<π)的部分图象如图所示,则函数f(x)的解析式为________.【提分秘籍】已知f(x)=Asin(ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)五点法,由ω=2πT 即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x0,则令ωx0+φ=0(或ωx0+φ=π),即可求出φ;(2)代入法,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.【举一反三】(1)已知函数f(x)=Acos(ωx +φ)(A >0,ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,△EFG 是边长为2的等边三角形,则f(1)的值为( )A .-32B .-62 C.3 D .- 3(2)函数f(x)=Asin(ω+φ)(A ,ω,φ为常数,A >0,ω>0,0<φ<π)的图象如图所示,则f ⎝⎛⎭⎫π3的值为______.题型三函数y =Asin(ωx +φ)的性质应用【例3】已知向量a =(m ,cos 2x),b =(sin 2x ,n),函数f(x)=a·b ,且y =f(x)的图象过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2.(1)求m ,n 的值;(2)将y =f(x)的图象向左平移φ(0<φ<π)个单位后得到函数y =g(x)的图象,若y =g(x)图象上各最高点到点(0,3)的距离的最小值为1,求y =g(x)的单调递增区间.【提分秘籍】解决三角函数图象与性质综合问题的方法:先将y =f(x)化为y =asin x +bcos x 的形式,然后用辅助角公式化为y =Asin(ωx +φ)+b 的形式,再借助y =Asin(ωx +φ)的性质(如周期性、对称性、单调性等)解决相关问题.【举一反三】已知函数f(x)=3sin(ωx +φ)-cos(ωx +φ)(0<φ<π,ω>0)为偶函数,且函数y =f(x)图象的两相邻对称轴间的距离为π2.(1)求f ⎝⎛⎭⎫π8的值; (2)求函数y =f(x)+f⎝⎛⎭⎫x +π4的最大值及对应的x 的值. 【高考风向标】【高考山东,文4】要得到函数4y sin x =-(3π)的图象,只需要将函数4y sin x =的图象()(A )向左平移12π个单位 (B )向右平移12π个单位(C )向左平移3π个单位 (D )向右平移3π个单位 【高考湖北,文18】某同学用“五点法”画函数π()sin()(0,||)2f x A x ωϕωϕ=+><在某一个周期内的图象时,列表并填入了部分数据,如下表:x ωϕ+0 π2 π3π2 2πxπ35π6sin()A x ωϕ+55-(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数()f x 的解 析式;(Ⅱ)将()y f x =图象上所有点向左平行移动π6个单位长度,得到()y g x =图象,求 ()y g x =的图象离原点最近的对称中心.5A =,32ππωϕ+=,5362ππωϕ+=,1.(·天津卷) 已知函数f(x)=3sin ωx +cos ωx(ω>0),x ∈R.在曲线y =f(x)与直线y =1的交点中,若相邻交点距离的最小值为π3,则f(x)的最小正周期为( )A.π2B.2π3 C .π D .2π2.(·安徽卷) 若将函数f(x)=sin 2x +cos 2x 的图像向右平移φ个单位,所得图像关于y 轴对称,则φ的最小正值是( )A.π8B.π4C.3π8D.3π43.(·重庆卷) 将函数f(x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ<π2图像上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图像,则f ⎝⎛⎭⎫π6=________.4.(·北京卷) 函数f(x)=3sin ⎝⎛⎭⎫2x +π6的部分图像如图1-4所示.图1-4(1)写出f(x)的最小正周期及图中x0,y0的值; (2)求f(x)在区间⎣⎡⎦⎤-π2,-π12上的最大值和最小值..5.(·福建卷) 已知函数f(x)=2cos x(s in x +cos x).(1)求f ⎝⎛⎭⎫5π4的值;(2)求函数f(x)的最小正周期及单调递增区间.6.(·广东卷) 若空间中四条两两不同的直线l1,l2,l3,l4满足l1⊥l2,l2∥l3,l3⊥l4,则下列结论一定正确的是( )A .l1⊥l4B .l1∥l4C .l1与l4既不垂直也不平行D .l1与l4的位置关系不确定7.(·湖北卷) 某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系: f(t)=10-3cos π12t -sin π12t ,t ∈[0,24). (1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差.8.(·辽宁卷) 将函数y =3sin ⎝⎛⎭⎫2x +π3的图像向右平移π2个单位长度,所得图像对应的函数( )A .在区间⎣⎡⎦⎤π12,7π12上单调递减B .在区间⎣⎡⎦⎤π12,7π12上单调递增C .在区间⎣⎡⎦⎤-π6,π3上单调递减 D .在区间⎣⎡⎦⎤-π6,π3上单调递增 9.(·新课标全国卷Ⅱ] 函数f(x)=sin(x +φ)-2sin φcos x 的最大值为________. 10.(·全国新课标卷Ⅰ] 在函数①y =cos|2x|,②y =|cos x|,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③11.(·山东卷) 函数y =32sin 2x +cos2x 的最小正周期为________. sin ⎝⎛⎭⎫2x +π6+12,所以该函数的最小正周期T =2π2=π .12.(·陕西卷) 函数f(x)=cos ⎝⎛⎭⎫2x +π4的最小正周期是( )A.π2 B .π C .2π D .4π134.(·浙江卷) 为了得到函数y =sin 3x +cos 3x 的图像,可以将函数y =2cos 3x 的图像( ) A .向右平移π12个单位 B .向右平移π4个单位 C .向左平移π12个单位 D .向左平移π4个单位14.(·四川卷) 为了得到函数y =sin(x +1)的图像,只需把函数y =sin x 的图像上所有的点( ) A .向左平行移动1个单位长度 B .向右平行移动1个单位长度 C .向左平行移动π个单位长度 D .向右平行移动π个单位长度15.(·四川卷) 已知函数f(x)=sin ⎝⎛⎭⎫3x +π4. (1)求f(x)的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值. 【高考押题】1.函数f(x)=3sin ⎝⎛⎭⎫x 2-π4,x ∈R 的最小正周期为( ) A.π2B .πC .2πD .4π2.将函数y =cos 2x +1的图象向右平移π4个单位,再向下平移1个单位后得到的函数图象对应的表达式为( )A .y =sin 2xB .y =sin 2x +2C .y =cos 2xD .y =cos ⎝⎛⎭⎫2x -π43.为了得到函数y =sin 3x +cos 3x 的图象,可以将函数y =2cos 3x 的图象 ( ) A .向右平移π12个单位B .向右平移π4个单位C .向左平移π12个单位D .向左平移π4个单位4.函数f(x)=2sin(ωx +φ)(ω>0,-π2<φ<π2)的部分图象如图所示,则ω,φ的值分别是( )A .2,-π3B .2,-π6 C .4,-π6D .4,π3解析 由图象知f(x)的周期T =2⎝⎛⎭⎫11π12-5π12=π,又T =2πω,ω>0,∴ω=2.由于f(x)=2sin(ωx +φ)(ω>0,-π2<φ<π2)的一个最高点为⎝⎛⎭⎫5π12,2,故有2×5π12+φ=2kπ+π2(k ∈Z),即φ=2kπ-π3,又-π2<φ<π2,∴φ=-π3,选A.答案 A5.将函数y =sin x 的图象向左平移π2个单位,得到函数y =f(x)的图象,则下列说法正确的是( ) A .y =f(x)是奇函数 B .y =f(x)的周期为πC .y =f(x)的图象关于直线x =π2对称 D .y =f(x)的图象关于点⎝⎛⎭⎫-π2,0对称 6.将函数f(x)=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ<π2图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图象,则f ⎝⎛⎭⎫π6=______.7.已知函数f(x)=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ≤π2的图象上的两个相邻的最高点和最低点的距离为22,且过点⎝⎛⎭⎫2,-12,则函数解析式f(x)=________.8.设函数f(x)=Asin(ωx +φ)(A ,ω,φ是常数,A>0,ω>0).若f(x)在区间⎣⎡⎦⎤π6,π2上具有单调性,且f⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3=-f ⎝⎛⎭⎫π6,则f(x)的最小正周期为________.9.已知函数f(x)=4cos x·sin ⎝⎛⎭⎫x +π6+a 的最大值为2.(1)求a 的值及f(x)的最小正周期; (2)在坐标系上作出f(x)在[0,π]上的图象.10.某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系: f(t)=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天的最大温差;(2)若要求实验室温度不高于11 ℃,则在哪段时间实验室需要降温?高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题;2.能够运用正弦定理、余弦定理等知识解决一些与测量和几何计算有关的实际问题.【热点题型】题型一 正、余弦定理的简单运用【例1】 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.(1)若a =23,b =6,A =45°,则c =________.(2)若(a +b +c)(a -b +c)=ac ,则B =________.【提分秘籍】(1)在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.(2)解题中注意三角形内角和定理的应用及角的范围限制.【举一反三】(1)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2c2=2a2+2b2+ab ,则△ABC 是( )A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形(2)在△ABC 中,A =60°,b =1,S △ABC =3,则a +b +c sin A +sin B +sin C=________. 题型二正、余弦定理的综合运用【例2】在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c.已知a =3,cos A =63,B =A +π2.(1)求b 的值;(2)求△ABC 的面积.【提分秘籍】有关三角形面积问题的求解方法:(1)灵活运用正、余弦定理实现边角转化;(2)合理运用三角函数公式,如同角三角函数的基本关系、两角和与差的正弦、余弦公式、二倍角公式等.【举一反三】在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且a +b +c =8.(1)若a =2,b =52,求cos C 的值;(2)若sin Acos2B 2+sin Bcos2A 2=2sin C ,且△ABC 的面积S =92sin C ,求a 和b 的值.题型三正、余弦定理在实际问题中的应用【例3】 如图,在海岸A 处,发现北偏东45°方向距A 为(3-1)海里的B 处有一艘走私船,在A 处北偏西75°方向,距A 为2海里的C 处的缉私船奉命以103海里/时的速度追截走私船.此时走私船正以10海里/时的速度从B 处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?并求出所需要的时间(注:6≈2.449).【提分秘籍】解三角形应用题的两种情形:(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解;(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.【举一反三】如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点,从A 点测得M 点的仰角∠MAN =60°,C 点的仰角∠CAB =45°以及∠MAC =75°;从C 点测得∠MCA =60°.已知山高BC =100 m ,则山高MN =________m.【高考风向标】【高考湖北,文15】如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD _________m.1006.【高考湖南,文17】(本小题满分12分)设ABC ∆的内角,,A B C 的对边分别为,,,tan a b c a b A =.(I )证明:sin cos B A =;(II) 若3sin sin cos 4C A B -=,且B 为钝角,求,,A B C .【高考陕西,文17】ABC ∆的内角,,A B C 所对的边分别为,,a b c ,向量(,3)m a b =与(cos ,sin )n A B =平行.(I)求A ;(II)若7,2a b ==求ABC ∆的面积.【高考浙江,文16】(本题满分14分)在ABC ∆中,内角A ,B ,C 所对的边分别为,,a b c .已知tan(A)24π+=.(1)求2sin 2sin 2cos AA A 的值;(2)若B ,34a π==,求ABC ∆的面积.【高考押题】1.在△ABC 中,若a =4,b =3,cos A =13,则B =( )A.π4B.π3C.π6 D.2π32.在△ABC 中,A =60°,AB =2,且△ABC 的面积为32,则BC 的长为 ( )A.32B. 3 C .2 3 D .23.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,B =π6,C =π4,则△ABC 的面积为 () A .23+2 B.3+1C .23-2 D.3-14.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则“a =2bcos C”是“△ABC 是等腰三角形”的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5.如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时气球的高是60 m ,则河流的宽度BC 等于( )A .240(3-1)mB .180(2-1)mC .120(3-1)mD .30(3+1)m6.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.若(a2+c2-b2)tan B =3ac ,则角B 的值为________.7.在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c.已知bcos C +ccos B =2b ,则a b =________.8.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =1,b =2,cos C =14,则sinB =________.9.如图,在平面四边形ABCD 中,AD =1,CD =2,AC =7.(1)求cos ∠CAD 的值;(2)若cos ∠BAD =-714,sin ∠CBA =216,求BC 的长.10.设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b =3,c =1,A =2B.(1)求a 的值;(2)求sin ⎝⎛⎭⎫A +π4的值.高考模拟复习试卷试题模拟卷。
高考数学模拟复习试卷试题模拟卷第八章 直线与圆0061 114
![高考数学模拟复习试卷试题模拟卷第八章 直线与圆0061 114](https://img.taocdn.com/s3/m/6181a6e783c4bb4cf6ecd101.png)
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷第02节 排列与组合一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.)1.【惠州市高三第一次调研考试】将甲,乙等5位同学分别保送到北京大学,上海交通大学,中山大学这3所大学就读,则每所大学至少保送1人的不同保送方法数为( )种。
高考数学模拟复习试卷试题模拟卷第八章 直线与圆00693
![高考数学模拟复习试卷试题模拟卷第八章 直线与圆00693](https://img.taocdn.com/s3/m/d7ef152c941ea76e58fa04ef.png)
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【考情解读】1.会从实际情境中抽象出二元一次不等式组;2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组;3.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.【重点知识梳理】1.二元一次不等式表示的平面区域(1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.我们把直线画成虚线以表示区域不包括边界直线.当我们在坐标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应包括边界直线,则把边界直线画成实线.(2)由于对直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得的符号都相同,所以只需在此直线的同一侧取一个特殊点(x0,y0)作为测试点,由Ax0+By0+C的符号即可判断Ax +By+C>0表示的直线是Ax+By+C=0哪一侧的平面区域.2.线性规划相关概念名称意义约束条件由变量x,y组成的一次不等式线性约束条件由x,y的一次不等式(或方程)组成的不等式组目标函数欲求最大值或最小值的函数线性目标函数关于x,y的一次解析式可行解满足线性约束条件的解可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题3.应用利用线性规划求最值,一般用图解法求解,其步骤是(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值.【高频考点突破】考点一二元一次不等式(组)表示的平面区域例1、(1)若不等式组⎩⎪⎨⎪⎧x≥0,x +3y≥4,3x +y≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是( )A.73B.37C.43D.34(2)如图阴影部分表示的区域可用二元一次不等式组表示为________.【答案】(1)A (2)⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0【特别提醒】二元一次不等式(组)表示平面区域的判断方法: 直线定界,测试点定域.注意不等式中不等号有无等号,无等号时直线画成虚线,有等号时直线画成实线.测试点可以选一个,也可以选多个,若直线不过原点,则测试点常选取原点.【变式探究】(1)在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0,ax -y +1≥0(a 为常数)所表示的平面区域的面积等于4,则a 的值为( )A .-5B .3C .5D .7(2)如图所示的平面区域(阴影部分)满足不等式________.【答案】(1)D (2)x +y -1>0 【解析】(1)考点二 求线性目标函数的最值例2 (1)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y≤x ,x +y≤1,y≥-1,且z =2x +y 的最大值和最小值分别为m 和n ,则m -n 等于( )A .5B .6C .7D .8(2)(·课标全国Ⅱ)已知a>0,x ,y 满足约束条件⎩⎪⎨⎪⎧x≥1,x +y≤3,y≥a x -3,若z =2x +y 的最小值为1,则a =________.【答案】(1)B (2)12 【解析】(1)【特别提醒】线性规划问题的解题步骤:(1)作图——画出约束条件所确定的平面区域和目标函数所表示的平行直线系中过原点的那一条直线; (2)平移——将l 平行移动,以确定最优解的对应点的位置;(3)求值——解方程组求出对应点坐标(即最优解),代入目标函数,即可求出最值.【变式探究】 (1)已知平面直角坐标系xOy 上的区域D 由不等式组⎩⎨⎧0≤x≤2,y≤2,x ≤2y给定.若M(x ,y)为D 上的动点,点A 的坐标为(2,1),则z =OM →·OA →的最大值为( )A .3B .4C .32D .42(2)(·北京)若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y≥0,且z =y -x 的最小值为-4,则k 的值为( )A .2B .-2C.12D .-12 【答案】(1)B (2)D考点三线性规划的实际应用例3、某客运公司用A、B两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A、B两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1600元/辆和2 400元/辆,公司拟组建一个不超过21辆车的客运车队,并要求B型车不多于A型车7辆.若每天运送人数不少于900,且使公司从甲地去乙地的营运成本最小,那么应配备A型车、B型车各多少辆?【特别提醒】解线性规划应用问题的一般步骤:(1)分析题意,设出未知量;(2)列出线性约束条件和目标函数;(3)作出可行域并利用数形结合求解;(4)作答.【变式探究】某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨、B原料2吨;生产每吨乙产品要用A原料1吨、B原料3吨.销售每吨甲产品可获得利润5万元、每吨乙产品可获得利润3万元,该企业在一个生产周期内消耗A原料不超过13吨、B原料不超过18吨,那么该企业可获得的最大利润是________万元.【答案】27变式四 求非线性目标函数的最值例4、(1)设实数x ,y 满足⎩⎪⎨⎪⎧x -y -2≤0,x +2y -4≥0,2y -3≤0,则yx 的最大值为________.(2)已知O 是坐标原点,点A(1,0),若点M(x ,y)为平面区域⎩⎪⎨⎪⎧x +y≥2,x≤1,y≤2上的一个动点,则|OA →+OM →|的最小值是________.【答案】(1)32 (2)322【特别提醒】常见代数式的几何意义有 (1)x2+y2表示点(x ,y)与原点(0,0)的距离; (2)x -a 2+y -b 2表示点(x ,y)与点(a ,b)之间的距离;(3)yx 表示点(x ,y)与原点(0,0)连线的斜率; (4)y -b x -a表示点(x ,y)与点(a ,b)连线的斜率. 【变式探究】(1)设不等式组⎩⎪⎨⎪⎧x≥1,x -2y +3≥0,y≥x 所表示的平面区域是Ω1,平面区域Ω2是与Ω1关于直线3x -4y -9=0对称的区域,对于Ω1中的任意一点A 与Ω2中的任意一点B ,|AB|的最小值等于( )A.285B .4C.125D .2(2)设变量x ,y 满足⎩⎪⎨⎪⎧5x +2y -18≤0,2x -y≥0,x +y -3≥0,若直线kx -y +2=0经过该可行域,则k 的最大值为________.【答案】(1)B (2)1考点五、利用线性规划思想求解非线性目标函数的最值 例5、变量x 、y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x≥1,(1)设z =yx ,求z 的最小值; (2)设z =x2+y2,求z 的取值范围;(3)设z =x2+y2+6x -4y +13,求z 的取值范围.【方法与技巧】1.平面区域的画法:线定界、点定域(注意实虚线).2.求最值:求二元一次函数z=ax+by (ab≠0)的最值,将函数z=ax+by转化为直线的斜截式:y=-a b x+zb,通过求直线的截距zb的最值间接求出z的最值.最优解在顶点或边界取得.3.解线性规划应用题,可先找出各变量之间的关系,最好列成表格,然后用字母表示变量,列出线性约束条件;写出要研究的函数,转化成线性规划问题.4.利用线性规划的思想结合代数式的几何意义可以解决一些非线性规划问题.【真题感悟】1.【高考重庆,文10】若不等式组2022020x yx yx y m+-≤⎧⎪+-≥⎨⎪-+≥⎩,表示的平面区域为三角形,且其面积等于43,则m的值为()(A)3 (B) 1 (C) 43(D)3【答案】B,2.【高考四川,文9】设实数x,y满足2102146x yx yx y+≤⎧⎪+≤⎨⎪+≥⎩,则xy的最大值为( )(A)252(B)492(C)12 (D)14【答案】A3.【高考广东,文4】若变量x,y满足约束条件224x yx yx+≤⎧⎪+≥⎨⎪≤⎩,则23z x y=+的最大值为()A.10B.8C.5D.2【答案】C4.【高考新课标1,文15】若x,y满足约束条件20210220x yx yx y+-≤⎧⎪-+≤⎨⎪-+≥⎩,则z=3x+y的最大值为.【答案】45.【高考陕西,文11】某企业生产甲乙两种产品均需用A,B两种原料,已知生产1吨每种产品需原料及每天原料的可用限额表所示,如果生产1吨甲乙产品可获利润分别为3万元.4万元,则该企业每天可获得最大利润为()A .12万元B .16万元C .17万元D .18万元 【答案】D6.【高考湖南,文4】若变量x y ,满足约束条件111x y y x x +≥⎧⎪-≤⎨⎪≤⎩,则2z x y =-的最小值为( )A 、1-B 、0C 、1D 、2 【答案】A7.【高考福建,文10】变量,x y 满足约束条件02200x y x y mx y +≥⎧⎪-+≥⎨⎪-≤⎩,若2z x y =-的最大值为2,则实数m 等于( )A .2-B .1-C .1D .2 【答案】Cx–1–2–3–41234–1–2–3–4123BOC8.【高考安徽,文5】已知x ,y 满足约束条件0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩,则y x z +-=2的最大值是( )(A )1 (B )2 (C )5 (D )1 【答案】A9.【高考山东,文12】 若,x y 满足约束条件13,1y x x y y -≤⎧⎪+≤⎨⎪≥⎩则3z x y =+的最大值为 .【答案】710.【高考浙江,文14】已知实数x ,y 满足221x y +≤,则2463x y x y +-+--的最大值是. 【答案】15 【解析】22,2224631034,22x y y xz x y x y x y y x+-≥-⎧=+-+--=⎨--<-⎩11.(·安徽卷)x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为()A.12或-1 B .2或12 C .2或1 D .2或-1 【答案】D 【解析】12.(·北京卷)若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y≥0,且z =y -x 的最小值为-4,则k 的值为() A .2 B .-2 C.12 D .-12 【答案】D13.(·福建卷)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≤0,x +2y -8≤0,x≥0,则z =3x +y 的最小值为________.【答案】114.(·广东卷)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y≤x ,x +y≤1,y≥-1,且z =2x +y 的最大值和最小值分别为m 和n ,则m -n =()A .5B .6C .7D .8 【答案】B15.(·湖南卷)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y≤x ,x +y≤4,y≥k ,且z =2x +y 的最小值为-6,则k =________.【答案】-216.(·全国卷)设x ,y 满足约束条件⎩⎪⎨⎪⎧x -y≥0,x +2y≤3,x -2y≤1,则z =x +4y 的最大值为________.【答案】517.(·新课标全国卷Ⅰ] 不等式组⎩⎪⎨⎪⎧x +y≥1,x -2y≤4的解集记为D ,有下面四个命题:p1:∀(x ,y)∈D ,x +2y≥-2, p2:∃(x ,y)∈D ,x +2y≥2, p3:∀(x ,y)∈D ,x +2y≤3, p4:∃(x ,y)∈D ,x +2y≤-1. 其中的真命题是() A .p2,p3 B .p1,p2 C .p1,p4 D .p1,p3 【答案】B18.(·新课标全国卷Ⅱ] 设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z =2x -y 的最大值为()A .10B .8C .3D .2 【答案】B19.(·山东卷)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y -1≤0,2x -y -3≥0,当目标函数z =ax +by(a >0,b >0)在该约束条件下取到最小值25时,a2+b2的最小值为()A. 5B. 4C. 5D. 2 【答案】B20.(·陕西卷)在直角坐标系xOy 中,已知点A(1,1),B(2,3),C(3,2),点P(x ,y)在△ABC 三边围成的区域(含边界)上.(1)若PA →+PB →+PC →=0,求|OP →|;(2)设OP →=mAB →+nAC →(m ,n ∈R),用x ,y 表示m -n ,并求m -n 的最大值.21.(·天津卷)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≥0,x -y -2≤0,y≥1,则目标函数z =x +2y 的最小值为()A .2B .3C .4D .5 【答案】B22.(·浙江卷)当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x≥1时,1≤ax +y≤4恒成立,则实数a 的取值范围是________.【答案】⎣⎡⎦⎤1,3223.(高考山东卷)在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x -y -2≥0,x +2y -1≥0,3x +y -8≤0所表示的区域上一动点,则直线OM 斜率的最小值为()A .2B .1C .-13D .-12【答案】C24.(高考全国新课标卷Ⅱ)已知a>0,x ,y 满足约束条件⎩⎪⎨⎪⎧x≥1,x +y≤3,y≥a x -3.若z =2x +y 的最小值为1,则a =()A.14 B.12 C .1D .2【答案】B25.(·安徽卷)在平面直角坐标系中,O 是坐标原点,两定点A ,B 满足|OA →|=|OB →|=OA →·OB →=2,则点集{P|OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R}所表示的区域的面积是()A .2 2B .2 3C .4 2D .4 3 【答案】D26.(·北京卷)设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m<0,y -m>0表示的平面区域内存在点P(x0,y0),满足x0-2y0=2,求得m 的取值范围是()A.⎝⎛⎭⎫-∞,43B.⎝⎛⎭⎫-∞,13C.⎝⎛⎭⎫-∞,-23D.⎝⎛⎭⎫-∞,-53【答案】C27.(·广东卷)给定区域D :⎩⎪⎨⎪⎧x +4y≥4,x +y≤4,x≥0,令点集T ={(x0,y0)∈D|x0,y0∈Z ,(x0,y0)是z =x +y 在D上取值最大值或最小值的点}.则T 中的点共确定________条不同的直线.【答案】628.(·湖南卷)若变量x ,y 满足结束条件⎩⎪⎨⎪⎧y≤2x ,x +y≤1,y≥-1,则x +2y 的最大值是()A .-52B .0 C.53 D.52 【答案】C29.(·江苏卷)抛物线y =x2在x =1处的切线与两坐标轴围成的三角形区域为D(包含三角形内部与边界).若点P(x ,y)是区域D 内的任意一点,则x +2y 的取值范围是________.【答案】.⎣⎡⎦⎤-2,1230.(·陕西卷)若点(x ,y)位于曲线y =|x -1|与y =2所围成的封闭区域,则2x -y 的最小值为________.【答案】-431.(·天津卷)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧3x +y -6≥0,x -y -2≤0,y -3≤0,则目标函数z =y -2x 的最小值为()A .-7B .-4C .1D .2 【答案】A32.(·浙江卷)设z =kx +y ,其中实数x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,x -2y +4≥0,2x -y -4≤0.若z 的最大值为12,则实数k =________.【答案】2【押题专练】1.不等式x -2y >0表示的平面区域是( ).【答案】D2.设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +2y -5>0,2x +y -7>0,x≥0,y≥0.若x ,y 为整数,则3x +4y 的最小值是( ).A .14B .16C .17D .19【答案】B 3.若不等式组⎩⎪⎨⎪⎧x -y +5≥0,y≥a ,0≤x≤2表示的平面区域是一个三角形,则a 的取值范围是 ( ). A .(-∞,5) B .[7,+∞) C .[5,7) D .(-∞,5)∪[7,+∞)【答案】C4.设实数x ,y 满足条件⎩⎪⎨⎪⎧4x -y -10≤0,x -2y +8≥0,x≥0,y≥0,若目标函数z =ax +by(a >0,b >0)的最大值为12,则2a +3b 的最小值为( ). A.256B.83C.113D .4【答案】A5.实数x ,y 满足⎩⎪⎨⎪⎧x≥1,y≤a a>1,x -y≤0,若目标函数z =x +y 取得最大值4,则实数a 的值为 ( ).A .4B .3C .2 D.32【答案】C6.某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克、B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( ).A .1 800元B .2 400元C .2 800元D .3 100元【答案】C7.若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≤0,x +3y -3≥0,则z =3x -y 的最小值为________.【答案】-18.若x ,y 满足约束条件⎝ ⎛x≥0,x +2y≥3,2x +y≤3,则x -y 的取值范围是________.【答案】[-3,0]9.设实数x 、y 满足⎩⎪⎨⎪⎧x -y -2≤0,x +2y -4≥0,2y -3≤0,则yx 的最大值是________.【答案】3210.设m>1,在约束条件⎩⎪⎨⎪⎧y≥x ,y≤mx ,x +y≤1下,目标函数z =x +my 的最大值小于2,则m 的取值范围为________.【答案】(1,1+2)11.设集合A={(x,y)|x,y,1-x-y是三角形的三边长}.(1)求出x,y所满足的不等式;(2)画出点(x,y)所在的平面区域.12.画出不等式组⎩⎪⎨⎪⎧x -y +5≥0,x +y≥0,x≤3表示的平面区域,并回答下列问题:(1)指出x 、y 的取值范围; (2)平面区域内有多少个整点?13.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y≥1,x -y≥-1,2x -y≤2,(1)求目标函数z =12x -y +12的最值.(2)若目标函数z =ax +2y 仅在点(1,0)处取得最小值,求a 的取值范围.14.某工厂生产甲、乙两种产品,每种产品都有一部分是一等品,其余是二等品,已知甲产品为一等品的概率比乙产品为一等品的概率多0.25,甲产品为二等品的概率比乙产品为一等品的概率少0.05.(1)分别求甲、乙产品为一等品的概率P 甲,P 乙;(2)已知生产一件产品需要用的工人数和资金数如表所示,且该厂有工人32名,可用资金55万元.设x ,y 分别表示生产甲、乙产品的数量,在(1)的条件下,求x ,y 为何值时,z =xP 甲+yP 乙最大,最大值是多少?项目 用量 产品 工人(名)资金(万元)甲420乙85高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.了解导数概念的实际背景. 2.理解导数的几何意义.3.能根据导数的定义求函数y =c(c 为常数),y =x ,y =1x ,y =x2,y =x3,y =x 的导数. 【热点题型】题型一 利用定义求函数的导数例1、用定义法求函数f(x)=x2-2x -1在x =1处的导数. 解 方法一 Δy =f(x +Δx)-f(x) =(x +Δx)2-2(x +Δx)-1-(x2-2x -1) =x2+2x·Δx +Δx2-2x -2Δx -1-x2+2x +1 =(2x -2)Δx +Δx2,所以lim Δx→0ΔyΔx =lim Δx→02x -2Δx +Δx2Δx =lim Δx→0[(2x -2)+Δx]=2x -2. 所以函数f(x)=x2-2x -1在x =1处的导数为 f′(x)|x =1=2×1-2=0. 方法二 Δy =f(1+Δx)-f(1)=(1+Δx)2-2(1+Δx)-1-(12-2×1-1) =1+2Δx +Δx2-2-2Δx -1+2 =Δx2,所以lim Δx→0Δy Δx =lim Δx→0Δx2Δx =lim Δx→0Δx =0. 故f′(x)|x =1=0. 【提分秘籍】(1)求函数f(x)的导数步骤:①求函数值的增量Δy =f(x2)-f(x1); ②计算平均变化率Δy Δx =f x2-f x1x2-x1;③计算导数f′(x)=lim Δx→0ΔyΔx .(2)利用定义法求解f′(a),可以先求出函数的导数f′(x),然后令x =a 即可求解,也可直接利用定义求解.【举一反三】(1)函数y =x +1x 在[x ,x +Δx]上的平均变化率ΔyΔx =________;该函数在x =1处的导数是____________________________________.(2)已知f(x)=1x,则f′(1)=________. 答案 (1)1-1x x +Δx 0 (2)-12解析 (1)∵Δy =(x +Δx)+1x +Δx -x -1x=Δx +1x +Δx -1x =Δx +-Δx x x +Δx .∴Δy Δx =1-1x x +Δx .y′|x =1=lim Δx→0Δy Δx =0.(2)∵Δy =f(1+Δx)-f(1)=11+Δx -1=1-1+Δx 1+Δx=1-1+Δx1+1+Δx1+Δx 1+1+Δx=-Δx1+Δx 1+1+Δx ,∴Δy Δx =-11+Δx 1+1+Δx ,∴lim Δx→0ΔyΔx =lim Δx→0-11+Δx 1+1+Δx=-12.∴f′(1)=-12. 题型二导数的运算 例2、求下列函数的导数: (1)y =ex·lnx ; (2)y =x ⎝⎛⎭⎫x2+1x +1x3.解 (1)y′=(ex·lnx)′=exlnx +ex·1x =ex(lnx +1x ).(2)∵y =x3+1+1x2,∴y′=3x2-2x3. 【提分秘籍】有的函数虽然表面形式为函数的商的形式,但在求导前利用代数或三角恒等变形将函数先化简,然后进行求导,有时可以避免使用商的求导法则,减少运算量,提高运算速度,减少差错.【举一反三】(1)f(x)=x(+lnx),若f′(x0)=,则x0等于()A.e2B.1C.ln2D.e(2)若函数f(x)=ax4+bx2+c满足f′(1)=2,则f′(-1)等于()A.-1B.-2C.2D.0答案(1)B(2)B题型三导数的几何意义例3已知函数f(x)=x3-4x2+5x-4.(1)求曲线f(x)在点(2,f(2))处的切线方程;(2)求经过点A(2,-2)的曲线f(x)的切线方程.解(1)∵f′(x)=3x2-8x+5,∴f′(2)=1,又f(2)=-2,∴曲线f(x)在点(2,f(2))处的切线方程为y-(-2)=x-2,即x-y-4=0.(2)设切点坐标为(x0,x30-4x20+5x0-4),∵f′(x0)=3x20-8x0+5,∴切线方程为y-(-2)=(3x20-8x0+5)(x-2),又切线过点(x0,x30-4x20+5x0-4),∴x30-4x20+5x0-2=(3x20-8x0+5)(x0-2),整理得(x0-2)2(x0-1)=0,解得x0=2或x0=1,∴经过A(2,-2)的曲线f(x)的切线方程为x -y -4=0或y +2=0. 【提分秘籍】利用导数研究曲线的切线问题,一定要熟练掌握以下条件:(1)函数在切点处的导数值也就是切线的斜率.即已知切点坐标可求切线斜率,已知斜率可求切点坐标.(2)切点既在曲线上,又在切线上.切线有可能和曲线还有其它的公共点. 【举一反三】在平面直角坐标系xOy 中,若曲线y =ax2+bx (a ,b 为常数)过点P(2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是______.(2)已知函数f(x)=x3-3x ,若过点A(0,16)且与曲线y =f(x)相切的直线方程为y =ax +16,则实数a 的值是________.答案 (1)-3 (2)9【高考风向标】【高考新课标1,文14】已知函数()31f x ax x =++的图像在点()()1,1f 的处的切线过点()2,7,则a =.【答案】1【高考天津,文11】已知函数()()ln ,0,f x ax x x =∈+∞ ,其中a 为实数,()f x '为()f x 的导函数,若()13f '= ,则a 的值为.【答案】3【解析】因为()()1ln f x a x '=+ ,所以()13f a '==.【高考陕西,文15】函数xy xe =在其极值点处的切线方程为____________. 【答案】1y e=-【解析】()()(1)x xy f x xe f x x e '==⇒=+,令()01f x x '=⇒=-,此时1(1)f e-=-函数xy xe =在其极值点处的切线方程为1y e=- (·陕西卷)设函数f(x)=ln x +mx ,m ∈R.(1)当m =e(e 为自然对数的底数)时,求f(x)的极小值; (2)讨论函数g(x)=f′(x)-x3零点的个数;(3)若对任意b >a >0,f (b )-f (a )b -a <1恒成立,求m 的取值范围.【解析】解:(1)由题设,当m =e 时,f(x)=ln x +ex ,则f′(x)=x -e x2, ∴当x ∈(0,e)时,f′(x)<0,f(x)在(0,e)上单调递减; 当x ∈(e ,+∞)时,f′(x)>0,f(x)在(e ,+∞)上单调递增. ∴x =e 时,f(x)取得极小值f(e)=ln e +ee =2, ∴f(x)的极小值为2.(2)由题设g(x)=f′(x)-x 3=1x -m x2-x3(x>0), 令g(x)=0,得m =-13x3+x(x>0), 设φ(x)=-13x3+x(x≥0),则φ′(x)=-x2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x)>0,φ(x)在(0,1)上单调递增; 当x ∈(1,+∞)时,φ′(x)<0,φ(x)在(1,+∞)上单调递减.∴x =1是φ(x)的唯一极值点,且是极大值点,因此x =1也是φ(x)的最大值点, ∴φ(x)的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x)的图像(如图所示),可知(3)对任意的b>a>0,f (b )-f (a )b -a <1恒成立,等价于f(b)-b <f(a)-a 恒成立.(*) 设h(x)=f(x)-x =ln x +mx -x(x>0), ∴(*)等价于h(x)在(0,+∞)上单调递减. 由h′(x)=1x -mx2-1≤0在(0,+∞)上恒成立,得m≥-x2+x =-⎝⎛⎭⎫x -122+14(x>0)恒成立,∴m≥14⎝⎛⎭⎫对m =14,h′(x )=0仅在x =12时成立,∴m 的取值范围是⎣⎡⎭⎫14,+∞.(·安徽卷)设函数f(x)=1+(1+a)x -x2-x3,其中a>0. (1)讨论f(x)在其定义域上的单调性;(2)当x ∈[0,1]时,求f(x)取得最大值和最小值时的x 的值.(2)因为a>0,所以x1<0,x2>0,①当a≥4时,x2≥1,由(1)知,f(x)在[0,1]上单调递增,所以f(x)在x =0和x =1处分别取得最小值和最大值.②当0<a<4时,x2<1,由(1)知,f(x)在[0,x2]上单调递增,在[x2,1]上单调递减, 因此f(x)在x =x2=-1+4+3a 3处取得最大值.又f(0)=1,f(1)=a , 所以当0<a<1时,f(x)在x =1处取得最小值; 当a =1时,f(x)在x =0和x =1处同时取得最小值; 当1<a<4时,f(x)在x =0处取得最小值. (·北京卷)已知函数f(x)=2x3-3x. (1)求f(x)在区间[-2,1]上的最大值;(2)若过点P(1,t)存在3条直线与曲线y =f(x)相切,求t 的取值范围;(3)问过点A(-1,2),B(2,10),C(0,2)分别存在几条直线与曲线y =f(x)相切?(只需写出结论) 【解析】解:(1)由f(x)=2x3-3x 得f′(x)=6x2-3. 令f′(x)=0,得x =-22或x =22.因为f(-2)=-10,f ⎝ ⎛⎭⎪⎫-22=2,f ⎝ ⎛⎭⎪⎫22=-2,f(1)=-1, 所以f(x)在区间[-2,1]上的最大值为f ⎝ ⎛⎭⎪⎫-22= 2.当x 变化时,g(x)与g′(x)的变化情况如下:x (-∞,0) 0 (0,1) 1 (1,+∞) g′(x) + 0 - 0 +g(x)t +3t +1所以,g(0)=t +3是g(x)的极大值,g(1)=t +1是g(x)的极小值.结合图像知,当g(x)有3个不同零点时,有⎩⎪⎨⎪⎧g (0)=t +3>0,g (1)=t +1-0,解得-3<t<-1.故当过点P(1,t)存在3条直线与曲线y =f(x)相切时,t 的取值范围是(-3,-1). (3)过点A(-1,2)存在3条直线与曲线y =f(x)相切; 过点B(2,10)存在2条直线与曲线y =f(x)相切; 过点C(0,2)存在1条直线与曲线y =f(x)相切.(·福建卷)已知函数f(x)=ex -ax(a 为常数)的图像与y 轴交于点A ,曲线y =f(x)在点A 处的切线斜率为-1.(1)求a 的值及函数f(x)的极值; (2)证明:当x >0时,x2<ex ;(3)证明:对任意给定的正数c ,总存在x0,使得当x ∈(x0,+∞)时,恒有x <cex.(2)证明:令g(x)=ex -x2,则g′(x)=ex -2x. 由(1)得,g′(x)=f(x)≥f (ln 2)=2-ln 4>0, 即g′(x)>0.所以g(x)在R 上单调递增,又g(0)=1>0, 所以当x >0时,g(x)>g(0)>0,即x2<ex. (3)证明:对任意给定的正数c ,取x0=1c , 由(2)知,当x >0时,x2<ex.所以当x >x0时,ex >x2>1c x ,即x<cex.因此,对任意给定的正数c ,总存在x0,当x ∈(x0,+∞)时,恒有x <cex. 方法二:(1)同方法一. (2)同方法一.(3)证明:令k =1c (k >0),要使不等式x <cex 成立,只要ex >kx 成立. 而要使ex >kx 成立,则只需要x>ln(kx), 即x >ln x +ln k 成立.①若0<k≤1,则ln k≤0,易知当x >0时,x >ln x≥ln x +ln k 成立. 即对任意c ∈[1,+∞),取x0=0, 当x ∈(x0,+∞)时,恒有x <cex.方法三:(1)同方法一. (2)同方法一.(3)证明:①若c≥1,取x0=0, 由(2)的证明过程知,ex >2x ,所以当x ∈(x0,+∞)时,有cex≥ex >2x >x , 即x <cex. ②若0<c <1,令h(x)=cex -x ,则h′(x)=cex -1. 令h′(x)=0得x =ln 1c .当x >ln 1c 时,h′(x)>0,h(x)单调递增. 取x0=2ln 2c ,则h(x0)=ce2ln 2c -2ln 2c =2⎝⎛⎭⎫2c -ln 2c ,易知2c -ln 2c >0,又h(x)在(x0,+∞)内单调递增, 所以当x ∈(x0,+∞)时,恒有h(x)>h(x0)>0, 即x <cex.综上,对任意给定的正数c ,总存在x0,当x ∈(x0,+∞)时,恒有x <cex. (·广东卷)曲线y =-5ex +3在点(0,-2)处的切线方程为________. 【答案】5x +y +2=0【解析】∵y′=-5ex ,∴所求切线斜是k =-5e0=-5,∴切线方程是y -(-2)=-5(x -0),即5x +y +2=0.【高考押题】1.设f(x)=xlnx ,若f′(x0)=2,则x0的值为( ) A .e2B .eC.ln22D .ln2 答案 B解析 由f(x)=xlnx 得f′(x)=lnx +1.根据题意知lnx0+1=2,所以lnx0=1,因此x0=e.2.已知函数f(x)的导函数为f′(x),且满足f(x)=2x·f′(1)+lnx ,则f′(1)等于( ) A .-eB .-1 C .1D .e 答案 B解析 由f(x)=2xf′(1)+lnx ,得f′(x)=2f′(1)+1x . ∴f′(1)=2f′(1)+1, 则f′(1)=-1.3.设函数f(x)=g(x)+x2,曲线y =g(x)在点(1,g(1))处的切线方程为y =2x +1,则曲线y =f(x)在点(1,f(1))处的切线的斜率为( )A .4B .-14C .2D .-12 答案 A解析 由条件知g′(1)=2,又∵f′(x)=[g(x)+x2]′=g′(x)+2x ,∴f′(1)=g′(1)+2=2+2=4. 4.与直线2x -y +4=0平行的抛物线y =x2的切线方程是( ) A .2x -y +3=0B .2x -y -3=0 C .2x -y +1=0D .2x -y -1=0 答案 D解析 对y =x2求导得y′=2x.设切点坐标为(x0,x20),则切线斜率为k =2x0. 由2x0=2得x0=1,故切线方程为y -1=2(x -1),即2x -y -1=0.5.曲线y =x3在点(1,1)处的切线与x 轴及直线x =1所围成的三角形的面积为( ) A.112B.16C.13D.12 答案 B解析 求导得y′=3x2,所以y′|x =1=3, 所以曲线y =x3在点(1,1)处的切线方程为y -1=3(x -1),结合图象易知所围成的三角形是直角三角形, 三个交点的坐标分别是(23,0),(1,0),(1,1), 于是三角形的面积为12×(1-23)×1=16,故选B.6.已知函数f(x)的导函数为f′(x),且满足f(x)=3x2+2x·f′(2),则f′(5)=________. 答案 6解析 对f(x)=3x2+2xf′(2)求导, 得f′(x)=6x +2f′(2). 令x =2,得f′(2)=-12.再令x =5,得f′(5)=6×5+2f′(2)=6.7.已知函数y =f(x)及其导函数y =f′(x)的图象如图所示,则曲线y =f(x)在点P 处的切线方程是__________.答案 x -y -2=0解析 根据导数的几何意义及图象可知,曲线y =f(x)在点P 处的切线的斜率k =f′(2)=1,又过点P(2,0),所以切线方程为x -y -2=0.8.已知曲线y =x3+x -2在点P0处的切线l1平行于直线4x -y -1=0,且点P0在第三象限. (1)求P0的坐标;(2)若直线l ⊥l1,且l 也过切点P0,求直线l 的方程. 解 (1)由y =x3+x -2,得y′=3x2+1, 由已知令3x 2+1=4,解之得x =±1.当x=1时,y=0;当x=-1时,y=-4.又∵点P0在第三象限,∴切点P0的坐标为(-1,-4).(2)∵直线l⊥l1,l1的斜率为4,∴直线l的斜率为-14.∵l过切点P0,点P0的坐标为(-1,-4),∴直线l的方程为y+4=-14(x+1),即x+4y+17=0.9.已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线的方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标.解(1)可判定点(2,-6)在曲线y=f(x)上.∵f′(x)=(x3+x-16)′=3x2+1.∴f(x)在点(2,-6)处的切线的斜率为k=f′(2)=13.∴切线的方程为y+6=13(x-2)即y=13x-32.高考模拟复习试卷试题模拟卷。
高考数学模拟复习试卷试题模拟卷第八章 直线与圆0065160
![高考数学模拟复习试卷试题模拟卷第八章 直线与圆0065160](https://img.taocdn.com/s3/m/d13f7da9a26925c52dc5bf50.png)
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【考情解读】1. 掌握数列的求和方法:(1) 直接利用等差、等比数列求和公式;(2) 通过适当变形(构造)将未知数列转化为等差、等比数列,再用公式求和;(3) 根据数列特征,采用累加、累乘、错位相减、逆序相加等方法求和;(4) 通过分组、拆项、裂项等手段分别求和;(5) 在证明有关数列和的不等式时要能用放缩的思想来解题(如n(n -1)<n2<n(n +1),能用函数的单调性(定义法)来求数列和的最值问题及恒成立问题.2. 数列是特殊的函数,这部分内容中蕴含的数学思想方法有函数与方程思想、分类讨论思想、化归转化思想、数形结合思想等,高考题中所涉及的知识综合性很强,既有较繁的运算又有一定的技巧,在解题时要注意从整体去把握.【高频考点突破】考点一等差、等比数列求和公式及利用例1 已知{a n}是等差数列,满足a1=3,a4=12,数列{bn}满足b1=4,b4=20,且{bn -an}为等比数列.(1) 求数列{an}和{bn}的通项公式; (2) 求数列{bn}的前n 项和.考点二可转化为等差、等比数列求和例2 已知数列{an}的前n 项和Sn =n2+n2,n ∈N*. (1) 求数列{an}的通项公式;(2) 设bn =2an +(-1)nan ,求数列{bn}的前2n 项和.考点三根据数列特征,用适当的方法求和例3 已知数列{an}的前n 项和Sn =-12n2+kn(k ∈N*),且Sn 的最大值为8. (1) 确定常数k ,求an ;(2) 求数列⎩⎨⎧⎭⎬⎫9-2an 2n 的前n 项和Tn.【变式探究】已知数列{an}和{bn}满足a1=1,a2=2,an>0,bn =anan +1(n ∈N*),且{bn}是以q 为公比的等比数列.(1) 证明:an +2=anq2;(2) 若cn =a2n -1+2a2n ,证明:数列{cn}是等比数列; (3) 求和:1a1+1a2+1a3+1a4+…+1a2n -1+1a2n .考点四数列求和的综合应用例4 将数列{an}中的所有项按每一行比上一行多一项的规则排成如下数表: a1 a2a3 a4a5a6 a7a8a9a10 …记表中的第一列数a1,a2,a4,a7,…构成的数列为{bn},b1=a1=1,Sn 为数列{bn}的前n 项和,且满足2bnbnSn -S2n =1(n≥2).【真题感悟】【高考四川,文16】设数列{an}(n =1,2,3…)的前n 项和Sn 满足Sn =2an -a3,且a1,a2+1,a3成等差数列.(Ⅰ)求数列的通项公式; (Ⅱ)设数列1{}na 的前n 项和为Tn ,求Tn. .【高考浙江,文17】(本题满分15分)已知数列n a 和nb 满足,*1112,1,2(n N ),n n a b a a +===∈*12311111(n N )23n n b b b b b n+++++=-∈. (1)求n a 与n b ;(2)记数列n n a b 的前n 项和为n T ,求n T .1.(·湖南卷) 已知数列{an}满足a1=1,|an +1-an|=pn ,n ∈N*. (1)若{an}是递增数列,且a1,2a2,3a3成等差数列,求p 的值;(2)若p =12,且{a2n -1}是递增数列,{a2n}是递减数列,求数列{an}的通项公式. 2.(·安徽卷) 设实数c >0,整数p >1,n ∈N*. (1)证明:当x >-1且x≠0时,(1+x)p >1+px ;(2)数列{an}满足a1>c 1p ,an +1=p -1p an +c p a1-p n ,证明:an >an +1>c 1p .3.(·湖北卷) 已知等差数列{an}满足:a1=2,且a1,a2,a5成等比数列. (1)求数列{an}的通项公式.(2)记Sn 为数列{an}的前n 项和,是否存在正整数n ,使得Sn>60n +800?若存在,求n 的最小值;若不存在,说明理由.4.(·江西卷) 已知首项都是1的两个数列{an},{bn}(bn≠0,n ∈N*)满足anbn +1-an +1bn +2bn +1bn =0.(1)令cn =anbn ,求数列{cn}的通项公式; (2)若bn =3n -1,求数列{an}的前n 项和Sn.5.(·新课标全国卷Ⅱ] 已知数列{an}满足a1=1,an +1=3an +1.(1)证明⎩⎨⎧⎭⎬⎫an +12是等比数列,并求{an}的通项公式;(2)证明1a1+1a2+…+1an <32.6.(·四川卷) 设等差数列{an}的公差为d ,点(an ,bn)在函数f(x)=2x 的图像上(n ∈N*). (1)若a1=-2,点(a8,4b7)在函数f(x)的图像上,求数列{an}的前n 项和Sn ;(2)若a1=1,函数f(x)的图像在点(a2,b2)处的切线在x 轴上的截距为2-1ln 2,求数列⎩⎨⎧⎭⎬⎫an bn 的前n项和Tn.7.(·浙江卷) 已知数列{an}和{bn}满足a1a2a3…an =(2)bn(n ∈N*).若{an}为等比数列,且a1=2,b3=6+b2.(1)求an 与bn.(2)设cn =1an -1bn (n ∈N*).记数列{cn}的前n 项和为Sn. (i)求Sn ;(i i)求正整数k ,使得对任意n ∈均有Sk≥Sn.8.(高考辽宁卷)下面是关于公差d>0的等差数列{an}的四个命题: P1:数列{an}是递增数列; P2:数列{nan}是递增数列; P3:数列{ann }是递增数列; P4:数列{an +3nd}是递增数列. 其中的真命题为() A .p1,p2B .p3,p4C .p2,p3D .p1,p49.(高考重庆卷)已知{an}是等差数列,a1=1,公差d≠0,Sn 为其前n 项和,若a1,a2,a5成等比数列,则S8=________.10. (高考广东卷)设数列{an}的前n 项和为Sn.已知a1=1,2Sn n =an +1-13n2-n -23,n ∈N*. (1)求a2的值;(2)求数列{an}的通项公式;(3)证明:对一切正整数n ,有1a1+1a2+…+1an <74.【押题专练】1. 两个正数a 、b 的等差中项是52,一个等比中项是6,且a >b ,则双曲线x2a2-y2b2=1的离心率e =________.2. 在等比数列{an}中,前n 项和为Sn ,若Sm ,Sm +2,Sm +1成等差数列,则am ,am +2,am +1成等差数列.(1) 写出这个命题的逆命题;(2) 判断逆命题是否为真,并给出证明.3. 已知等差数列{an}满足a3+a6=-13,a1·a8=-43,a1>a8. (1) 求数列{an}的通项公式;(2) 把数列{an}的第1项、第4项、第7项、…、第3n -2项、…分别作为数列{bn}的第1项、第2项、第3项、…、第n 项、…,求数列{2bn}的前n 项之和;(3) 设数列{cn}的通项为cn =n·2bn ,试比较(n +1)(n +2)cn +n(n +1)cn +2与2n(n +2)cn +1的大小.4.已知数列{an}满足an =2an -1+2n -1(n≥2),且a4=81. (1) 求数列{an}的前三项a1,a2,a3;(2)求证:数列⎩⎨⎧⎭⎬⎫an -12n 为等差数列,并求an.5.已知二次函数y =f(x)的图象经过坐标原点,其导函数为f′(x)=6x -2,数列{an}的前n 项和为Sn ,点(n ,Sn)(n ∈N*)均在函数y =f(x)的图象上.(1) 求数列{an}的通项公式;(2) 设bn =3anan +1,Tn 是数列{bn}的前n 项和,求使得Tn <m20对所有n ∈N*都成立的最小正整数m.6.各项均为正数的数列{an}中,设Sn =a1+a2+…+an ,Tn =1a1+1a2+…+1an ,且(2-Sn)(1+Tn)=2,n ∈N*.(1) 设bn =2-Sn ,证明数列{bn}是等比数列;(2) 设cn =12nan ,求集合{(m ,k ,r)|cm +cr =2ck ,m<k<r ,m ,k ,r ∈N*}.7. 设函数f(x)=sinxcosx -3cos(x +π)cosx(x ∈R). (1) 求f(x)的最小正周期;(2) 若函数y =f(x)的图象向右平移π4个单位后再向上平移32个单位得到函数y =g(x)的图象,求y =g(x)在⎣⎡⎦⎤0,π4上的最大值.8. 某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2 000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年资金年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d万元,并将剩余资金全部投入下一年生产.设第n年年底企业上缴资金后的剩余资金为an万元.(1) 用d表示a1、a2,并写出an+1与an的关系式;(2) 若公司希望经过m(m≥3)年使企业的剩余资金为4 000万元,试确定企业每年上缴资金d的值(用m 表示).9. 已知函数f(x)=lnx-ax+1,a∈R是常数.(1) 求函数y=f(x)的图象在点P(1,f(1))处的切线l的方程;(2) 证明函数y=f(x)(x≠1)的图象在直线l的下方;(3) 讨论函数y=f(x)零点的个数.10. 设数列{an}的前n项积为Tn,已知对n,m∈N*,当n>m时,总有TnTm=Tn-m·q(n-m)m(q>0是常数).(1) 求证:数列{an}是等比数列;(2) 设正整数k,m,n(k<m<n)成等差数列,试比较Tn·Tk和(Tm)2的大小,并说明理由.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.理解同角三角函数的基本关系式:s in2α+cos2α=1,sin αcos α=tanα;2.能利用单位圆中的三角函数线推导出π2±α,π±α,-α的正弦、余弦、正切的诱导公式. 【热点题型】题型一 同角三角函数基本关系式及应用【例1】 (1)已知tan α=2,则2sin α-3cos α4sin α-9cos α=_______________.(2)已知tan θ=2,则sin2θ+sin θcos θ-2cos2θ=( ) A .-43 B.54C .-34 D.45【提分秘籍】若已知正切值,求一个关于正弦和余弦的齐次分式的值,则可以通过分子、分母同时除以一个余弦的齐次幂将其转化为一个关于正切的分式,代入正切值就可以求出这个分式的值,这是同角三角函数关系中的一类基本题型.【举一反三】若3sin α+cos α=0,则1cos2α+2sin αcos α的值为( )A.103B.53C.23 D .-2解析 3sin α+cos α=0⇒cos α≠0⇒tan α=-13, 1cos2α+2sin αcos α=cos2α+sin2αcos2α+2sin αcos α=1+tan2α1+2tan α=1+⎝⎛⎭⎫-1321-23=103.答案 A题型二 利用诱导公式化简三角函数式【例2】 (1)sin(-1 200°)cos 1 290°+cos(-1 020°)·sin(-1 050°) =________.(2)设f(α)=2sin (π+α)cos (π-α)-cos (π+α)1+sin2α+cos ⎝⎛⎭⎫3π2+α-sin2⎝⎛⎭⎫π2+α(1+2sin α≠0),则 f⎝⎛⎭⎫-23π6=________.解析 (1)原式=-sin 1 200°cos 1 290°-cos 1 020°sin 1 050° =-sin(3×360°+120°)cos(3×360°+210°)-cos(2×360°+300°) sin(2×360°+330°)=-sin 120°cos 210°-cos 300°sin 330°=-sin(180°-60°)cos(180°+30°)-cos(360°-60°)·sin(360°-30°)=sin 60°cos 30°+cos 60°sin 30°=32×32+12×12=1.(2)∵f(α)=(-2sin α)(-cos α)+cos α1+sin2α+sin α-cos2α=2sin αcos α+cos α2sin2α+sin α=cos α(1+2sin α)sin α(1+2sin α)=1tan α,∴f ⎝⎛⎭⎫-23π6=1tan ⎝⎛⎭⎫-23π6=1tan ⎝⎛⎭⎫-4π+π6=1tan π6= 3. 答案 (1)1 (2)3 【提分秘籍】利用诱导公式化简三角函数的基本思路和化简要求:(1)基本思路:①分析结构特点,选择恰当公式;②利用公式化成单角三角函数;③整理得最简形式.(2)化简要求:①化简过程是恒等变形;②结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值.【举一反三】(1)s in(-1 071°)sin 99°+sin(-171°)sin(-261°)+ tan(-1 089°)tan(-540°)=________.(2)化简:tan (π-α)cos (2π-α)sin ⎝⎛⎭⎫-α+3π2cos (-α-π)sin (-π-α)=________.题型三利用诱导公式求值【例3】 (1)已知sin ⎝⎛⎭⎫π3-α=12,则cos ⎝⎛⎭⎫π6+α=______. (2)已知tan ⎝⎛⎭⎫π6-α=33,则tan ⎝⎛⎭⎫56π+α=________.解析 (1)∵⎝⎛⎭⎫π3-α+⎝⎛⎭⎫π6+α=π2,∴cos ⎝⎛⎭⎫π6+α=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫π3-α=sin ⎝⎛⎭⎫π3-α=12.(2)∵⎝⎛⎭⎫π6-α+⎝⎛⎭⎫5π6+α=π,∴tan ⎝⎛⎭⎫56π+α= -tan ⎣⎡⎦⎤π-⎝⎛⎭⎫56π+α=-tan ⎝⎛⎭⎫π6-α=-33. 答案 (1)12 (2)-33 【提分秘籍】巧用相关角的关系会简化解题过程.常见的互余关系有π3-α与π6+α;π3+α与π6-α;π4+α与π4-α等,常见的互补关系有π3+θ与2π3-θ;π4+θ与3π4-θ等.【举一反三】(1)已知sin ⎝⎛⎭⎫7π12+α=23,则cos ⎝⎛⎭⎫α-11π12=________.(2)若tan(π+α)=-12,则tan(3π-α)=________.【高考风向标】【高考福建,文6】若5sin 13α=-,且α为第四象限角,则tan α的值等于( ) A .125 B .125- C .512 D .512-【答案】D【解析】由5sin 13α=-,且α为第四象限角,则212cos 1sin 13αα=-=,则sin tan cos ααα= 512=-,故选D . 【高考安徽,文16】已知函数2()(sin cos )cos 2f x x x x =++ (Ⅰ)求()f x 最小正周期; (Ⅱ)求()f x 在区间[0,]2π上的最大值和最小值.【答案】(Ⅰ)π ;(Ⅱ)最大值为120 【解析】(Ⅰ)因为x x x x x x x x f 2cos 2sin 12cos cos sin 2cos sin )(22++=+++=1)42sin(2++=πx所以函数)(x f 的最小正周期为ππ==22T . (Ⅱ)由(Ⅰ)得计算结果,1)42sin(2)(++=πx x f当]2,0[π∈x 时,]45,4[42πππ∈+x由正弦函数x y sin =在]45,4[ππ上的图象知,当242ππ=+x ,即8π=x 时,)(x f 取最大值12+;当4542ππ=+x ,即4π=x 时,)(x f 取最小值0.综上,)(x f 在[0,]2π上的最大值为12+,最小值为0.【高考四川,文19】已知A 、B 、C 为△ABC 的内角,tanA 、tanB 是关于方程x2+3px -p +1=0(p ∈R)两个实根.(Ⅰ)求C 的大小(Ⅱ)若AB =1,AC =6,求p 的值【解析】(Ⅰ)由已知,方程x2+3px -p +1=0的判别式 △=(3p)2-4(-p +1)=3p2+4p -4≥0 所以p≤-2或p≥23由韦达定理,有tanA +tanB =-3p ,tanAtanB =1-p 于是1-tanAtanB =1-(1-p)=p≠0 从而tan(A +B)=tan tan 331tan tan A B pA B +-==--所以tanC =-tan(A +B)3 所以C =60° (Ⅱ)由正弦定理,得sinB =0sin 6sin 602AC C AB ==解得B =45°或B =135°(舍去) 于是A =180°-B -C =75°则tanA=tan75°=tan(45°+30°)=000031tan45tan303231tan45tan30313++==+--所以p=-3(tanA+tanB)=-3(2+3+1)=-1-3(·福建卷) 已知函数f(x)=2cos x(sin x+cos x).(1)求f⎝⎛⎭⎫5π4的值;(2)求函数f(x)的最小正周期及单调递增区间.方法二:f(x)=2sin xcos x+2cos2x=sin 2x+cos 2x+1=2sin⎝⎛⎭⎫2x+π4+1.(1)f⎝⎛⎭⎫5π4=2sin11π4+1=2sinπ4+1=2.(2)因为T =2π2=π,所以函数f(x)的最小正周期为π. 由2kπ-π2≤2x +π4≤2kπ+π2,k ∈Z , 得kπ-3π8≤x≤kπ+π8,k ∈Z.所以f(x)的单调递增区间为⎣⎡⎦⎤kπ-3π8,kπ+π8,k ∈Z.(·全国新课标卷Ⅰ] 若tan α>0,则( ) A .sin α>0 B .cos α>0 C .sin 2α>0 D .cos 2α>0 【答案】C 【解析】因为sin 2α=2sin αcos αsin2α+cos2α=2tan α1+tan2α>0,所以选C.(·山东卷) △ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.已知a =3,cos A =63,B =A +π2. (1)求b 的值; (2)求△ABC 的面积.(2)由B =A +π2得cos B =cos ⎝⎛⎭⎫A +π2=-sin A =-33.由A +B +C =π,得C =π-(A +B), 所以sin C =sin[π-(A +B)] =sin(A +B)=sin Acos B +cos Asin B =33×⎝ ⎛⎭⎪⎫-33+63×63=13.因此△ABC 的面积S =12absin C =12×3×32×13=322.(·全国卷) 已知α是第二象限角,sin α=513,则cos α=( ) A .-1213 B .-513 C.513 D.1213 【答案】A【解析】c os α=-1-sin2 α=-1213.(·四川卷) 设sin 2α=-sin α,α∈π2,π,则tan 2α的值是________. 【答案】3【高考押题】1.1-2sin (π+2)cos (π-2)=( ) A .sin 2-cos 2B .sin 2+cos 2C .±(sin 2-cos 2)D .cos 2-sin 2解析1-2sin (π+2)cos (π-2)=1-2sin 2cos 2=(sin 2-cos 2)2=|sin 2-cos 2|=sin 2-cos 2. 答案 A2.已知sin α=55,则sin4α-cos4α的值为( ) A .-15 B .-35 C.15D.35解析 sin4α-cos4α=sin2α-cos2α=2sin2α-1=25-1=-35. 答案 B3.已知α和β的终边关于直线y =x 对称,且β=-π3,则sin α等于( ) A .-32B.32C .-12D.12解析 因为α和β的终边关于直线y =x 对称,所以α+β=2kπ+π2(k ∈Z). 又β=-π3,所以α=2kπ+5π6(k ∈Z),即得sin α=12. 答案 D4.已知sin ⎝⎛⎭⎫π2+α=35,α∈⎝⎛⎭⎫0,π2,则sin(π+α)=( ) A.35 B .-35 C.45D .-45解析 由已知sin ⎝⎛⎭⎫π2+α=35,得cos α=35,∵α∈⎝⎛⎭⎫0,π2,∴sin α=45,∴sin(π+α)=-sin α=-45.答案 D5.已知sin ⎝⎛⎭⎫α-π4=13,则cos ⎝⎛⎭⎫π4+α=( )A.223B .-223C.13D .-13解析 ∵cos ⎝⎛⎭⎫π4+α=sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫π4+α=sin ⎝⎛⎭⎫π4-α=-sin ⎝⎛⎭⎫α-π4=-13.答案 D6.如果sin(π+A)=12,那么cos ⎝⎛⎭⎫32π-A 的值是________.解析 ∵sin(π+A)=12,∴-sin A =12. ∴cos ⎝⎛⎭⎫32π-A =-sin A =12.答案 127.sin 43π·cos 56π·tan ⎝⎛⎭⎫-43π的值是________. 解析 原式=sin ⎝⎛⎭⎫π+π3·cos ⎝⎛⎭⎫π-π6·tan ⎝⎛⎭⎫-π-π3 =⎝⎛⎭⎫-sin π3·⎝⎛⎭⎫-cos π6·⎝⎛⎭⎫-tan π3=⎝ ⎛⎭⎪⎫-32×⎝ ⎛⎭⎪⎫-32×(-3)=-334. 答案 -3348.已知cos ⎝⎛⎭⎫π6-θ=a(|a|≤1),则cos ⎝⎛⎭⎫5π6+θ+sin ⎝⎛⎭⎫2π3-θ的值是________.9.已知sin θ=45,π2<θ<π. (1)求tan θ的值;(2)求sin2θ+2sin θcos θ3sin2θ+cos2θ的值.解 (1)∵sin2θ+cos2θ=1,∴cos2θ=925. 又π2<θ<π,∴cos θ=-35.∴tan θ=sin θcos θ=-43. (2)由(1)知,sin2θ+2sin θcos θ3sin2θ+cos2θ=tan2θ+2tan θ3tan2θ+1 =-857.10.已知在△ABC 中,sin A +cos A =15. (1)求sin Acos A 的值;(2)判断△ABC 是锐角三角形还是钝角三角形; (3)求tan A 的值. 解 (1)∵sin A +cos A =15,①∴两边平方得1+2sin Acos A =125, ∴sin Acos A =-1225,(2)由sin Acos A =-1225<0,且0<A <π,可知cos A <0,∴A 为钝角,∴△ABC 是钝角三角形. (3)∵(sin A -cos A)2=1-2sin Acos A =1+2425=4925, 又sin A >0,cos A <0,∴sin A -cos A >0, ∴sin A -cos A =75,②∴由①,②可得sin A =45,cos A =-35,∴tan A =sin A cos A =45-35=-43.高考模拟复习试卷试题模拟卷。
高考数学模拟复习试卷试题模拟卷第八章 直线与圆0065204
![高考数学模拟复习试卷试题模拟卷第八章 直线与圆0065204](https://img.taocdn.com/s3/m/ffc391c20b4e767f5bcfce66.png)
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【考情解读】1.掌握确定圆的几何要素,掌握圆的标准方程与一般方程.2.初步了解用代数方法处理几何问题的思想.【重点知识梳理】1.圆的定义和圆的方程定义平面内到定点的距离等于定长的点的轨迹叫做圆方程标准(x-a)2+(y-b)2=r2(r>0)圆心C(a,b)半径为r一般x2+y2+Dx+Ey+F=0充要条件:D2+E2-4F>0圆心坐标:⎝⎛⎭⎫-D2,-E2半径r=12D2+E2-4F平面上的一点M(x0,y0)与圆C:(x-a)2+(y-b)2=r2之间存在着下列关系:(1)d>r⇔M在圆外,即(x0-a)2+(y0-b)2>r2⇔M在圆外;(2)d=r⇔M在圆上,即(x0-a)2+(y0-b)2=r2⇔M在圆上;(3)d<r⇔M在圆内,即(x0-a)2+(y0-b)2<r2⇔M在圆内.【高频考点突破】考点一圆的方程的求法【例1】 (1)经过点P(-2,4),Q(3,-1)两点,并且在x轴上截得的弦长等于6的圆的方程为________.(2)已知圆C与直线x-y=0及x-y-4=0都相切,圆心在直线x+y=0上,则圆C的方程为()A.(x+1)2+(y-1)2=2B.(x-1)2+(y+1)2=2C.(x-1)2+(y-1)2=2D.(x+1)2+(y+1)2=2【变式探究】 (1)过点A(4,1)的圆C与直线x-y-1=0相切于点B(2,1),则圆C的方程为________.(2)在平面直角坐标系xOy中,曲线y=x2-6x+1与坐标轴的交点都在圆C上.则圆C的方程为________.(2)曲线y =x2-6x +1与坐标轴的交点为(0,1), (3±22,0).故可设圆的圆心坐标为(3,t), 则有32+(t -1)2=(22)2+t2,解得t =1, 则圆的半径为32+(t -1)2=3, 所以圆的方程为(x -3)2+(y -1)2=9.答案 (1)(x -3)2+y2=2 (2)(x -3)2+(y -1)2=9 考点二 与圆有关的最值问题【例2】 已知实数x ,y 满足方程x2+y2-4x +1=0. (1)求yx 的最大值和最小值; (2)求y -x 的最大值和最小值; (3)求x2+y2的最大值和最小值.学思想,其中以下几类转化极为常见:(1)形如m =y -bx -a 的最值问题,可转化为动直线斜率的最值问题;(2)形如t =ax +by 的最值问题,可转化为动直线截距的最值问题;(3)形如m =(x -a)2+(y -b)2的最值问题,可转化为两点间距离的平方的最值问题.【变式探究】设P 为直线3x +4y +3=0上的动点,过点P 作圆C :x2+y2-2x -2y +1=0的两条切线,切点分别为A ,B ,则四边形PACB 的面积的最小值为________.考点三 与圆有关的轨迹问题【例3】 已知圆x2+y2=4上一定点A(2,0),B(1,1)为圆内一点,P ,Q 为圆上的动点. (1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程.【变式探究】 设定点M(-3,4),动点N 在圆x2+y2=4上运动,以OM ,ON 为邻边作平行四边形MONP ,求点P 的轨迹.解 如图所示,设P(x ,y),N(x0,y0),则线段OP 的中点坐标为⎝⎛⎭⎫x 2,y 2,线段MN 的中点坐标为⎝⎛⎭⎫x0-32,y0+42.由于平行四边形的对角线互相平分,【真题感悟】1.【高考北京,文2】圆心为()1,1且过原点的圆的方程是() A .()()22111x y -+-= B .()()22111x y +++= C .()()22112x y +++= D .()()22112x y -+-=2.【高考重庆,文12】若点(1,2)P 在以坐标原点为圆心的圆上,则该圆在点P 处的切线方程为________.3.【高考湖北,文16】如图,已知圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点A ,B (B 在A 的上方),且2AB =.(Ⅰ)圆C 的标准方程为_________;(Ⅱ)圆C 在点B 处的切线在x 轴上的截距为_________.xO y TCA B3.【高考广东,文20】(本小题满分14分)已知过原点的动直线l 与圆1C :22650x y x +-+=相交于不同的两点A ,B .(1)求圆1C 的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L:()4y k x =-与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.1.(·福建卷)设P,Q分别为圆x2+(y-6)2=2和椭圆x210+y2=1上的点,则P,Q两点间的最大距离是()A.5 2 B.46+2C.7+ 2 D.622.(·新课标全国卷Ⅰ)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.3.(·重庆卷)如图1-9所示,椭圆的中心为原点O,长轴在x轴上,离心率e=22,过左焦点F1作x轴的垂线交椭圆于A,A′两点,|AA′|=4.(1)求该椭圆的标准方程;(2)取垂直于x轴的直线与椭圆相交于不同的两点P,P′,过P,P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外,若PQ⊥P′Q,求圆Q的标准方程.图1-94.(高考江西卷)若圆C经过坐标原点和点(4,0),且与直线y=1相切,则圆C的方程是________.【押题专练】1.已知点A(1,-1),B(-1,1),则以线段AB为直径的圆的方程是()A .x2+y2=2B .x2+y2=2C .x2+y2=1D .x2+y2=42.方程x2+y2+ax +2ay +2a2+a -1=0表示圆,则a 的取值范围是( )A .(-∞,-2)∪⎝⎛⎭⎫23+∞ B.⎝⎛⎭⎫-23,0C .(-2,0)D.⎝⎛⎭⎫-2,233.设圆的方程是x2+y2+2ax +2y +(a -1)2=0,若0<a<1,则原点与圆的位置关系是 ( ) A .原点在圆上 B .原点在圆外 C .原点在圆内D .不确定4.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( )A .x2+(y -2)2=1B .x2+(y +2)2=1C .(x -1)2+(y -3)2=1D .x2+(y -3)2=15.点P(4,-2)与圆x2+y2=4上任一点连线的中点的轨迹方程是 ( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4 D .(x +2)2+(y -1)2=1解析 设圆上任一点为Q(x0,y0),PQ 的中点为M(x ,y),则⎩⎪⎨⎪⎧x =4+x02,y =-2+y02,解得⎩⎪⎨⎪⎧x0=2x -4,y0=2y +2.因为点Q 在圆x2+y2=4上,所以x20+y20=4,即(2x -4)2+(2y +2)2=4,化简得(x -2)2+(y +1)2=1. 答案 A6.已知圆心(a ,b)(a <0,b <0)在直线y =2x +1上的圆,其圆心到x 轴的距离恰好等于圆的半径,在y 轴上截得的弦长为25,则圆的方程为( )A .(x +2)2+(y +3)2=9B .(x +3)2+(y +5)2=25C .(x +6)2+⎝⎛⎭⎫y +732=499D.⎝⎛⎭⎫x +232+⎝⎛⎭⎫y +732=4997.已知圆C 的圆心在曲线y =2x 上,圆C 过坐标原点O ,且分别与x 轴、y 轴交于A ,B 两点,则△OAB 的面积等于( ) A .2B .3C .4D .88.已知点M(1,0)是圆C :x2+y2-4x -2y =0内的一点,那么过点M 的最短弦所在直线的方程是________.解析 过点M 的最短弦与CM 垂直,圆C :x2+y2-4x -2y =0的圆心为C(2,1),∵kCM =1-02-1=1,∴最短弦所在直线的方程为y -0=-(x -1),即x +y -1=0.答案 x +y -1=09.已知直线l :x -y +4=0与圆C :(x -1)2+(y -1)2=2,则圆C 上各点到l 的距离的最小值为______.解析 由题意得C 上各点到直线l 的距离的最小值等于圆心(1,1)到直线l 的距离减去半径,即|1-1+4|2-2= 2. 答案210.已知平面区域⎩⎪⎨⎪⎧x≥0,y≥0,x +2y -4≤0恰好被面积最小的圆C :(x -a)2+(y -b)2=r2及其内部所覆盖,则圆C的方程为________.11.若圆x2+(y -1)2=1上任意一点(x ,y)都使不等式x +y +m≥0恒成立,则实数m 的取值范围是________.12.一圆经过A(4,2),B(-1,3)两点,且在两坐标轴上的四个截距的和为2,求此圆的方程.13.求适合下列条件的圆的方程:(1)圆心在直线y=-4x上,且与直线l:x+y-1=0相切于点P(3,-2);(2)过三点A(1,12),B(7,10),C(-9,2).14.在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为22,在y轴上截得线段长为2 3.(1)求圆心P的轨迹方程;(2)若P点到直线y=x的距离为22,求圆P的方程.解(1)设P(x,y),圆P的半径为r.由题设y2+2=r2,x2+3=r2,从而y2+2=x2+3.故P点的轨迹方程为y2-x2=1.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性;2.理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值以及与x 轴的交点等),理解正切函数在区间⎝⎛⎭⎫-π2,π2内的单调性. 【热点题型】题型一 三角函数的定义域、值域【例1】 (1)函数y =1tan x -1的定义域为____________.(2)函数y =2si n ⎝⎛⎭⎫πx 6-π3(0≤x≤9)的最大值与最小值之和为( ) A .2- 3 B .0 C .-1 D .-1-3 【提分秘籍】(1)求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解. (2)求解三角函数的值域(最值)常见到以下几种类型:①形如y =asin x +bcos x +c 的三角函数化为y =Asin(ωx +φ)+k 的形式,再求最值(值域);②形如y =asin2x +bsin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);③形如y =asin xcos x +b(sin x±cos x)+c 的三角函数,可先设t =sinx±cos x ,化为关于t 的二次函数求值域(最值).【举一反三】(1)函数y =sin x -cos x 的定义域为________. (2)函数y =sin x -cos x +sin xcos x 的值域为________. 题型二三角函数的奇偶性、周期性、对称性【例2】 (1)已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f(x)=sin(ωx +φ)的图象的两条相邻的对称轴,则φ=( )A.π4B.π3C.π2D.3π4(2)函数y =2cos2⎝⎛⎭⎫x -π4-1是( ) A .最小正周期为π的奇函数 B .最小正周期为π的偶函数C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数 【提分秘籍】 (1)求f(x)=Asin(ωx +φ)(ω≠0)的对称轴,只需令ωx +φ=π2+kπ(k ∈Z),求x ;求f(x)的对称中心的横坐标,只需令ωx +φ=kπ(k ∈Z)即可.(2)求最小正周期时可先把所给三角函数式化为y =Asi n(ωx +φ)或y =Acos( ωx +φ)的形式,则最小正周期为T =2π|ω|;奇偶性的判断关键是解析式是否为y =Asin ωx 或y =Acos ωx +b 的形式.【举一反三】(1)如果函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0中心对称,那么|φ|的最小值为( ) A.π6 B.π4 C.π3 D.π2(2)(·杭州模拟)若函数f(x)=sin x +φ3(φ∈[0,2π])是偶函数,则φ=( )A.π2B.2π3C.3π2D.5π3题型三 三角函数的单调性【例3】 (1)已知f(x)=2sin ⎝⎛⎭⎫x +π4,x ∈[0,π],则f(x)的单调递增区间为________. (2)已知ω>0,函数f(x)=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是( ) A.⎣⎡⎦⎤12,54 B.⎣⎡⎦⎤12,34 C.⎝⎛⎦⎤0,12 D .(0,2] 【提分秘籍】(1)求较为复杂的三角函数的单调区间时,首先化简成y =Asin(ωx +φ)形式,再求y =Asin(ωx +φ)的单调区间,只需把ωx +φ看作一个整体代入y =sin x 的相应单调区间内即可,注意要先把ω化为正数.(2)对于已知函数的单调区间的某一部分确定参数ω的范围的问题,首先,明确已知的单调区间应为函数的单调区间的子集,其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解,另外,若是选择题利用特值验证排除法求解更为简捷.【举一反三】(1)若函数f(x)=sin ωx(ω>0)在区间⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω等于( )A.23B.32 C .2 D .3(2)函数f(x)=sin ⎝⎛⎭⎫-2x +π3的单调减区间为______. 【高考风向标】【高考浙江,文11】函数()2sin sin cos 1f x x x x =++的最小正周期是,最小值是.【高考陕西,文14】如图,某港口一天6时到18时的谁深变化曲线近似满足函数y =3sin(6πx +Φ)+k ,据此函数可知,这段时间水深(单位:m)的最大值为____________.【高考湖南,文15】已知ω>0,在函数y=2sin ωx 与y=2cos ωx 的图像的交点中,距离最短的两个交点的距离为23,则ω =_____.【高考天津,文14】已知函数()()sin cos 0f x x x ωωω=+>,x ∈R ,若函数()f x 在区间(),ωω-内单调递增,且函数()f x 的图像关于直线x ω=对称,则ω的值为.【高考福建,文21】已知函数()2103cos 10cos 222x x x f x =+. (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)将函数()f x 的图象向右平移6π个单位长度,再向下平移a (0a >)个单位长度后得到函数()g x 的图象,且函数()g x 的最大值为2.(ⅰ)求函数()g x 的解析式;(ⅱ)证明:存在无穷多个互不相同的正整数0x ,使得()00g x >.【高考重庆,文18】已知函数f(x)=1232cos x . (Ⅰ)求f (x )的最小周期和最小值,(Ⅱ)将函数f (x )的图像上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g (x )的图像.当x ∈,2ππ⎡⎤⎢⎥⎣⎦时,求g(x)的值域. (·安徽卷) 设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b =3,c =1,△ABC 的面积为2.求cos A 与a 的值.(·福建卷) 将函数y =sin x 的图像向左平移π2个单位,得到函数y =f(x)的图像,则下列说法正确的是( )A .y =f(x)是奇函数B .y =f(x)的周期为πC .y =f(x)的图像关于直线x =π2对称D .y =f(x)的图像关于点⎝⎛⎭⎫-π2,0对称 (·江苏卷) 已知函数y =cos x 与y =sin(2x +φ)(0≤φ<π),它们的图像有一个横坐标为π3的交点,则φ的值是________.(·全国新课标卷Ⅰ] 在函数①y =cos|2x|,②y =|cos x|,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( ) A .①②③ B .①③④C .②④D .①③(·江苏卷) 函数y =3sin ⎝⎛⎭⎫2x +π4的最小正周期为________. (·辽宁卷) 设向量a =(3sin x ,sin x),b =(cos x ,sin x),x ∈0,π2.(1)若|a|=|b|,求x 的值;(2)设函数f(x)=a·b ,求f(x)的最大值.(·山东卷) 函数y =xcos x +sin x 的图像大致为( )图1-3(·新课标全国卷Ⅰ] 设当x =θ时,函数f(x)=si n x -2cos x 取得最大值,则cos θ=________.【高考押题】1.函数f(x)=tan ⎝⎛⎭⎫2x -π3的单调递增区间是( ) A.⎣⎡⎦⎤kπ2-π12,kπ2+5π12(k ∈Z) B.⎝⎛⎭⎫kπ2-π12,kπ2+5π12(k ∈Z) C.⎣⎡⎦⎤kπ-π12,kπ+5π12(k ∈Z) D.⎝⎛⎭⎫kπ+π6,kπ+2π3(k ∈Z) 2.在函数①y =cos|2x|,②y =|cos x|,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③3.已知函数f(x)=cos23x -12,则f(x)的图象的相邻两条对称轴之间的距离等于 ( )A.2π3B.π3C.π6D.π124.已知函数f(x)=sin(x +θ)+3cos(x +θ)⎝⎛⎭⎫θ∈⎣⎡⎦⎤-π2,π2是偶函数,则θ的值为 ( ) A .0 B.π6 C.π4 D.π35.关于函数y =tan ⎝⎛⎭⎫2x -π3,下列说法正确的是( ) A .是奇函数B .在区间⎝⎛⎭⎫0,π3上单调递减 C.⎝⎛⎭⎫π6,0为其图象的一个对称中心 D .最小正周期为π6.函数y =cos ⎝⎛⎭⎫π4-2x 的单调减区间为________. 7.函数y =lg(sin x)+cos x -12的定义域为________.8.函数y =sin2x +sin x -1的值域为________.9.已知函数f(x)=6cos4x +5sin2x -4cos 2x,求f(x)的定义域,判断它的奇偶性,并求其值域.10.已知函数f(x)=cos x·sin ⎝⎛⎭⎫x +π3-3cos2x +34,x ∈R. (1)求f(x)的最小正周期;(2)求f(x)在闭区间⎣⎡⎦⎤-π4,π4上的最大值和最小值.高考模拟复习试卷试题模拟卷。
高考数学模拟复习试卷试题模拟卷第八章 直线与圆0065140
![高考数学模拟复习试卷试题模拟卷第八章 直线与圆0065140](https://img.taocdn.com/s3/m/508c2d129ec3d5bbfc0a745b.png)
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【考情解读】1.理解复数的基本概念. 2.理解复数相等的充要条件.3.了解复数的代数表示形式及其几何意义.4.会进行复数代数形式的四则运算.5.了解复数的代数形式的加、减运算的几何意义. 【重点知识梳理】 1.复数的有关概念内容 意义备注复数的概念 形如a +bi(a ∈R ,b ∈R)的数叫复数,其中实部为a ,虚部为b若b =0,则a +bi 为实数;若a =0且b≠0,则a +bi 为纯虚数复数相等 a +bi =c +di ⇔a =c 且b =d 共轭复数a +bi 与c +di 共轭⇔a =c 且b =-d(a ,b ,c ,d ∈R)复平面建立平面直角坐标系来表示复数的平面叫做复平面,x 轴叫实轴,y 轴叫虚轴实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数,各象限内的点都表示虚数复数的模设OZ →对应的复数为z =a +bi ,则向量OZ →的长度叫做复数z =a +bi 的模|z|=|a +bi|=a2+b2 2.复数的几何意义复数集C 和复平面内所有的点组成的集合是一一对应的,复数集C 与复平面内所有以原点O 为起点的向量组成的集合也是一一对应的,即(1)复数z =a +bi复平面内的点Z(a ,b)(a ,b ∈R).(2)复数z =a +bi(a ,b ∈R)平面向量OZ →.3.复数的运算(1)复数的加、减、乘、除运算法则设z1=a +bi ,z2=c +di(a ,b ,c ,d ∈R),则 ①加法:z1+z2=(a +bi)+(c +di)=(a +c)+(b +d)i ;②减法:z1-z2=(a +bi)-(c +di)=(a -c)+(b -d)i ; ③乘法:z1·z2=(a +bi)·(c +di)=(ac -bd)+(ad +bc)i ; ④除法:z1z2=a +bi c +di =(a +bi )(c -di )(c +di )(c -di )=ac +bd +(bc -ad )ic2+d2(c +di≠0).(2)复数加法的运算定律复数的加法满足交换律、结合律,即对任何z1,z2,z3∈C ,有z1+z2=z2+z1,(z1+z2)+z3=z1+(z2+z3).(3)复数加、减法的几何意义①复数加法的几何意义:若复数z1,z2对应的向量OZ1→,OZ2→不共线,则复数z1+z2是以OZ1→,OZ2→为两邻边的平行四边形的对角线OZ →所对应的复数.②复数减法的几何意义:复数z1-z2是OZ1→-OZ2→=Z2Z1→所对应的复数. 【高频考点突破】 考点一 复数的概念【例1】 (1)设i 是虚数单位.若复数a -103-i (a ∈R)是纯虚数,则a 的值为()A .-3B .-1C .1D .3(2)若3+bi 1-i=a +bi(a ,b ∈R),则a +b =________.【答案】(1)D(2)3规律方法 处理有关复数的基本概念问题,关键是找准复数的实部和虚部,从定义出发,把复数问题转化成实数问题来处理.【变式探究】 (1)复数z 满足(z -3)(2-i)=5(i 为虚数单位),则z 的共轭复数z -为() A .2+i B .2-i C .5+i D .5-i(2)复数z =12+i(其中i 为虚数单位)的虚部为________.【答案】(1)D(2)-15 考点二 复数的运算【例2】 (1)(·安徽卷)设i 是虚数单位,z -表示复数z 的共轭复数.若z =1+i ,则z i +i·z -=() A .-2 B .-2i C .2 D .2i(2)-23+i 1+23i +⎝ ⎛⎭⎪⎫21-i 2 014=________.【答案】(1)C(2)0规律方法 (1)复数的加法、减法、乘法运算可以类比多项式运算,除法关键是分子分母同乘以分母的共轭复数,注意要把i 的幂写成最简形式.(2)记住以下结论,可提高运算速度:①(1±i)2=±2i ;②1+i1-i =i ;③1-i 1+i=-i ;④a +bi i =b -ai ;⑤i4n =1,i4n +1=i ,i4n +2=-1,i4n +3=-i(n ∈N).【变式探究】 (1)(·天津卷)i 是虚数单位,复数7+i3+4i =()A .1-iB .-1+i C.1725+3125i D .-177+257i(2)⎝ ⎛⎭⎪⎫1+i 1-i 6+2+3i 3-2i=________.【答案】(1)A(2)-1+i 考点三 复数的几何意义【例3】 (1)(·重庆卷)复平面内表示复数i(1-2i)的点位于() A .第一象限 B .第二象限 C .第三象限 D .第四象限 (2)复数z =(2-i )2i (i 为虚数单位),则|z|=() A .25 B.41 C .5 D.5【答案】(1)A(2)C规律方法 要掌握复数的几何意义就要搞清楚复数、复平面内的点以及向量三者之间的一一对应关系,从而准确理解复数的“数”与“形”的特征. 【变式探究】(1)如图,在复平面内,点A 表示复数z ,则图中表示z 的共轭复数的点是()A .AB .BC .CD .D(2)i 为虚数单位,设复数z1,z2在复平面内对应的点关于原点对称,若z1=2-3i ,则z2=________.【答案】(1)B(2)-2+3i 【真题感悟】1.【高考新课标1,文3】已知复数z 满足(1)1z i i -=+,则z =() (A )2i --(B )2i -+(C )2i -(D )2i + 【答案】C2.【高考山东,文2】若复数Z 满足1zi-i =,其中i 为虚数单位,则Z=( ) (A )1i -(B )1i +(C )1i --(D )1i -+ 【答案】A3.【高考湖南,文1】已知2(1)i z-=1i +(i 为虚数单位),则复数z = ( )A 、1i +B 、1i -C 、 1i -+D 、1i -- 【答案】D4.【高考湖北,文1】i 为虚数单位,607i =( ) A .i - B .i C .1-D .1【答案】A .5.【高考广东,文2】已知i 是虚数单位,则复数()21i +=( ) A .2-B .2C .2i -D .2i【答案】D6.【高考福建,文1】若(1)(23)i i a bi ++-=+(,,a b R i ∈是虚数单位),则,a b 的值分别等于( )A .3,2-B .3,2C .3,3-D .1,4- 【答案】A7.【高考安徽,文1】设i 是虚数单位,则复数()()112i i -+=( ) (A )3+3i (B )1+3i (3)3+i (D )1+i 【答案】C8.【高考北京,文9】复数()1i i +的实部为. 【答案】1-9.【高考重庆,文11】复数(12i)i 的实部为________. 【答案】210.【高考四川,文11】设i 是虚数单位,则复数1i i-=_________. 【答案】2i11.【高考天津,文9】i 是虚数单位,计算12i2i-+的结果为. 【答案】i12.【高考上海,文3】若复数z 满足i z z +=+13,其中i 是虚数单位,则=z . 【答案】i 2141+(·浙江卷)已知i 是虚数单位,a ,b ∈R ,得“a =b =1”是“(a +bi)2=2i”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】A(·全国卷)设z =10i 3+i ,则z 的共轭复数为( )A .-1+3iB .-1-3iC .1+3iD .1-3i 【答案】D(·北京卷)复数⎝ ⎛⎭⎪⎫1+i 1-i 2=________.【答案】-1(·福建卷)复数z =(3-2i)i 的共轭复数z 等于( ) A .-2-3i B .-2+3iC .2-3iD .2+3i 【答案】C(·广东卷)已知复数z 满足(3+4i)z =25,则z =( ) A .-3+4i B .-3-4i C .3+4i D .3-4i 【答案】D(·湖北卷)i 为虚数单位,⎝ ⎛⎭⎪⎫1-i 1+i 2=( )A .-1B .1C .-iD .i 【答案】A(·湖南卷)满足z +iz =i(i 为虚数单位)的复数z =( ) A.12+12i B.12-12i C .-12+12i D .-12-12i 【答案】B10.(·江西卷)z -是z 的共轭复数,若z +z -=2,(z -z -)i =2(i 为虚数单位),则z =( ) A .1+i B .-1-i C .-1+i D .1-i 【答案】D11.(·辽宁卷)设复数z 满足(z -2i)(2-i)=5,则z =( ) A .2+3i B .2-3i C .3+2i D .3-2i 【答案】A12.(·新课标全国卷Ⅰ] (1+i )3(1-i )2=( )A .1+iB .1-iC .-1+iD .-1-i 【答案】D13.(·新课标全国卷Ⅱ] 设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i ,则z1z2=( )A .-5B .5C .-4+iD .-4-i 【答案】A14.(·山东卷)已知a ,b ∈R ,i 是虚数单位,若a -i 与2+bi 互为共轭复数,则(a +bi)2=( ) A .5-4i B .5+4i C .3-4i D .3+4i 【答案】D15.(·四川卷)复数2-2i 1+i =________.【答案】-2i16.(·天津卷)i 是虚数单位,复数7+i3+4i=( )A .1-iB .-1+i C.1725+3125i D .-177+257i 【答案】A17.(·新课标全国卷Ⅰ] 若复数z 满足(3-4i)z =|4+3i|,则z 的虚部为( ) A .-4 B .-45 C .4 D.45 【答案】D18.(·安徽卷)设i 是虚数单位,z 是复数z 的共轭复数,若z·zi +2=2z ,则z =( ) A .1+i B .1-i C .-1+i D .-1-i 【答案】A19.(·北京卷)在复平面内,复数(2-i)2对应的点位于( ) A .第一象限B .第二象限 C .第三象限 D .第四象限 【答案】D20.(·福建卷)已知复数z 的共轭复数z =1+2i(i 为虚数单位),则z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】D21.(·广东卷)若复数iz =2+4i ,则在复平面内,z 对应的点的坐标是( ) A .(2,4) B .(2,-4) C .(4,-2) D .(4,2)【答案】C22.(·湖北卷)在复平面内,复数z =2i1+i (i 为虚数单位)的共轭复数对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D23.(·湖南卷)复数z =i·(1+i)(i 为虚数单位)在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限 【答案】B24.(·江苏卷)设z =(2-i)2(i 为虚数单位),则复数z 的模为________. 【答案】525.(·江西卷)已知集合M ={1,2,zi},i 为虚数单位,N ={3,4},M∩N ={4},则复数z =( )A .-2iB .2iC .-4iD .4i 【答案】C26.(·辽宁卷)复数z =1i -1的模为( )A.12B.22 C. 2 D .2 【答案】B27.(·全国卷)(1+3i)3=()A.-8 B.8C.-8i D.8i【答案】A28.(·山东卷)复数z满足(z-3)(2-i)=5(i为虚数单位),则z的共轭复数z为()A.2+i B.2-i C.5+i D.5-i【答案】D29.(·陕西卷)设z1,z2是复数,则下列命题中的假命题是()A.若|z1-z2|=0,则z1=z2B.若z1=z2,则z1=z2C.若|z1|=|z2|,则z1·z1=z2·z2D.若|z1|=|z2|,则z21=z22【答案】D30.(·四川卷)如图1-1所示,在复平面内,点A表示复数z,则图1-1中表示z的共轭复数的点是()A.A B.B C.C D.D【答案】B31.(·天津卷)已知a,b∈R,i是虚数单位,若(a+i)(1+i)=bi,则a+bi=________.【答案】1+2i32.(·新课标全国卷Ⅱ] 设复数z满足(1-i)z=2i,则z=()A.-1+i B.-1-iC.1+i D.1-i【答案】A33.(·浙江卷] 已知i是虚数单位,则(-1+i)(2-i)=()A.-3+i B.-1+3iC.-3+3i D.-1+i【答案】B34.(·重庆卷)已知复数z=5i1+2i(i是虚数单位),则|z|=________.【答案】5【押题专练】1.若复数z满足z(1+i)=2i(i为虚数单位),则|z|=() A.1 B.2 C. 2D.32.已知复数z =-2i ,则1z +1的虚部为() A.25i B.25 C.255iD.255【答案】B3.设z 是复数,则下列命题中的假命题是()A .若z2≥0,则z 是实数B .若z2<0,则z 是虚数C .若z 是虚数,则z2≥0D .若z 是纯虚数,则z2<0【答案】C4.设z =11+i +i ,则|z|=()A.12B.22C.32 D .2【答案】B5.已知a ,b ∈R ,i 是虚数单位.若a +i =2-bi ,则(a +bi)2=() A .3-4i B .3+4i C .4-3i D .4+3i【答案】A6.设复数z =3+i(i 为虚数单位)在复平面中对应点A ,将OA 绕原点O 逆时针旋转90°得到OB ,则点B 在() A .第一象限 B .第二象限 C .第三象限D .第四象限【答案】B7.下面是关于复数z =2-1+i 的四个命题:p1:|z|=2; p2:z2=2i ;p3:z 的共轭复数为1+i; p4:z 的虚部为-1. 其中的真命题为() A .p2,p3B .p1,p2C .p2,p4D .p3,p4【答案】C8.设f(n)=⎝ ⎛⎭⎪⎫1+i 1-i n +⎝ ⎛⎭⎪⎫1-i 1+i n(n ∈N*),则集合{f(n)}中元素的个数为() A .1B .2C .3D .无数个【答案】C9.复数3+ii2(i 为虚数单位)的实部等于______.【答案】-310.若复数(m2-5m +6)+(m2-3m)i(m 为实数,i 为虚数单位)是纯虚数,则m =________.【答案】211.已知复数z1=-2+i ,z2=a +2i(i 为虚数单位,a ∈R).若z1z2为实数,则a 的值为________.【答案】412.复数(3+i)m -(2+i)对应的点在第三象限内,则实数m 的取值范围是________.【答案】⎝⎛⎭⎫-∞,2313.已知复数z =i +i2+i3+…+i2 0141+i,则复数z 在复平面内对应的点为________.【答案】(0,1) 14.定义运算|abcd|=ad -bc.若复数x =1-i1+i ,y =|4ixi2x +i|,则y =________.高考模拟复习试卷试题模拟卷【答案】-2高考模拟复习试卷试题模拟卷【高频考点解读】 1.了解向量的实际背景;2.理解平面向量的概念,理解两个向量相等的含义;3.理解向量的几何表示;4.掌握向量加法、减法的运算,并理解其几何意义;5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义;6.了解向量线性运算的性质及其几何意义. 【热点题型】题型一平面向量的有关概念 【例1】给出下列命题: ①若|a|=|b|,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB →=DC →是四边形ABCD 为平行四边形的充要条件; ③若a =b ,b =c ,则a =c ; ④若a ∥b ,b ∥c ,则a ∥c. 其中正确命题的序号是()A .②③B .②④C .③④D .②③④【提分秘籍】(1)相等向量具有传递性,非零向量的平行也具有传递性.(2)共线向量即为平行向量,它们均与起点无关.(3)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象的移动混为一谈.(4)非零向量a 与a |a|的关系:a|a|是与a 同方向的单位向量.【举一反三】 给出下列命题:①两个具有公共终点的向量,一定是共线向量; ②两个向量不能比较大小,但它们的模能比较大小; ③若λa =0 (λ为实数),则λ必为零;④已知λ,μ为实数,若λa =μb ,则a 与b 共线. 其中错误命题的个数为() A .1 B .2 C .3 D .4解析 ①错误.两向量共线要看其方向而不是起点与终点.②正确.因为向量既有大小,又有方向,故它们不能比较大小,但它们的模均为实数,故可以比较大小.③错误.当a =0时,不论λ为何值,λa =0.④错误.当λ=μ=0时,λa =μb ,此时,a 与b 可以是任意向量. 答案 C题型二 平面向量的线性运算【例2】 (1)在△ABC 中,AB 边的高为CD ,若CB →=a ,CA →=b ,a·b =0,|a|=1,|b|=2,则AD →=() A.13a -13b B.23a -23b C.35a -35b D.45a -45b(2)如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB →+AD →=λAO →,则λ=________.解析 (1)∵a·b =0,∴∠ACB =90°,∴AB =5,CD =255, ∴BD =55,AD =455,∴AD ∶BD =4∶1. ∴AD →=45AB →=45(CB →-CA →)=45a -45b. (2)因为ABCD 为平行四边形, 所以AB →+AD →=AC →=2AO →, 已知AB →+AD →=λAO →,故λ=2.答案 (1)D(2)2 【提分秘籍】(1)解题的关键在于熟练地找出图形中的相等向量,并能熟练运用相反向量将加减法相互转化.(2)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果.【举一反三】(1)如图所示,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →=()A .a -12b B.12a -b C .a +12b D.12a +b(2)如图,D ,E ,F 分别是△ABC 的边AB ,BC ,CA 的中点,则()A.AD →+BE →+CF →=0B.BD →-CF →+DF →=0C.AD →+CE →-CF →=0D.BD →-BE →-FC →=0解析 (1)连接CD ,由点C ,D 是半圆弧的三等分点,得CD ∥AB 且CD →=12AB →=12a ,所以AD →=AC →+CD →=b +12a.(2)由题意知:AD →=FE →,BE →=DF →,CF →=ED →,而FE →+ED →+DF →=0,∴AD →+BE →+CF →=0. 答案 (1)D(2)A题型三共线向量定理的应用【例3】设两个非零向量a 与b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b).求证:A ,B ,D 三点共线; (2)试确定实数k ,使ka +b 和a +kb 共线.【提分秘籍】(1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(2)向量a ,b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立;若λ1a +λ2b =0,当且仅当λ1=λ2=0时成立,则向量a ,b 不共线.【举一反三】(1)已知向量i 与j 不共线,且AB →=i +mj ,AD →=ni +j.若A ,B ,D 三点共线,则实数m ,n 应该满足的条件是()A .m +n =1B .m +n =-1C .mn =1D .mn =-1(2)如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,则1n +1m 的值为________.解析 (1)由A ,B ,D 共线可设AB →=λAD →,于是有i +mj =λ(ni +j)=λni +λj.又i ,j 不共线,因此⎩⎪⎨⎪⎧λn =1,λ=m , 即有mn =1.(2)设OA →=a ,OB →=b ,由题意知OG →=23×12(OA →+OB →)=13(a +b),PQ →=OQ →-OP →=nb -ma ,PG →=OG →-OP →=⎝⎛⎭⎫13-m a +13b ,由P ,G ,Q 三点共线得,存在实数λ,使得PQ →=λPG →,即nb -ma =λ⎝⎛⎭⎫13-m a +13λb ,从而⎩⎨⎧-m =λ⎝⎛⎭⎫13-m ,n =13λ,消去λ得1n +1m =3.答案 (1)C(2)3 【高考风向标】1.【高考安徽,文15】ABC ∆是边长为2的等边三角形,已知向量b a 、满足a AB 2=→,b a AC+=→2,则下列结论中正确的是.(写出所有正确结论得序号)①a 为单位向量;②b 为单位向量;③b a ⊥;④→BC b // ;⑤→⊥+BC b a )4(。
高考数学模拟复习试卷试题模拟卷第八章 直线与圆0063114
![高考数学模拟复习试卷试题模拟卷第八章 直线与圆0063114](https://img.taocdn.com/s3/m/77cb09a57fd5360cbb1adb3a.png)
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【考情解读】1.了解导数概念的实际背景;2.通过函数图象直观理解导数的几何意义;3.能根据导数的定义求函数y =c(c 为常数),y =x ,y =1x ,y =x2,y =x3,y =x 的导数;4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单复合函数(仅限于形如y =f(ax +b)的复合函数)的导数.【重点知识梳理】1.函数f(x)在点x0处的导数 (1)定义函数y =f(x)在点x0的瞬时变化率lim Δx→000()()f x x f x x+-,通常称为f(x)在点x0处的导数,并记作f′(x0),即lim Δx→000()()f x x f x x+-=f′(x0).(2)几何意义函数f(x)在点x0处的导数f′(x0)的几何意义是曲线y =f(x)在点(x0,f(x0))的切线的斜率等于()'f x 2.函数f(x)的导函数如果f(x)在开区间(a ,b)内每一点x 导数都存在,则称f(x)在区间(a ,b)可导.这样,对开区间(a ,b)内每个值x ,都对应一个确定的导数f′(x).于是,在区间(a ,b)内,f′(x )构成一个新的函数,我们把这个函数称为函数y =f(x)的导函数,记为f′(x)(或y′x 、y′). 3.基本初等函数的导数公式y =f(x) y′=f′(x) y =C y =xn y =xμ (x>0,μ≠0) y =ax (a>0,a≠1)y =exy =logax(a>0,a≠1,x>0)y =ln x y =sin x y =cos xy′=0y′=nxn -1,n 为自然数 y′=μxμ-1,μ为有理数y′=axln a y′=ex y′=1xln a y′=1x y′=cos x y′=-sin x4.导数的运算法则(1)[f(x)±g(x)]′=f′(x)±g′(x); (2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);(3)⎣⎡⎦⎤f x g x ′=f′x g x -f x g′x [g x ]2 (g(x)≠0). 5.复合函数的导数复合函数y =f(g(x))的导数和函数y =f(u),u =g(x)的导数间的关系为y′x =y′u·u′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 【高频考点突破】考点一 利用定义求函数的导数例1、利用导数的定义求函数f(x)=x3在x =x0处的导数,并求曲线f(x)=x3在x =x0处的切线与曲线f(x)=x3的交点.【方法技巧】求函数f(x)的导数步骤: (1)求函数值的增量Δf =f(x2)-f(x1); (2)计算平均变化率Δf Δx =f x2-f x1x2-x1;(3)计算导数f′(x)=lim Δx→0ΔfΔx .【变式探究】利用导数的定义,求: (1)f(x)=1x在x =1处的导数; (2)f(x)=1x +2的导数.考点二 导数的运算 例2、求下列函数的导数: (1)y =11-x +11+x ;(2)y =x ⎝⎛⎭⎫x2+1x +1x3;(3)y =sin2⎝⎛⎭⎫2x +π3;(4)y =ln x2+1.【方法规律】(1)求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;(2)有的函数虽然表面形式为函数的商的形式,但在求导前利用代数或三角恒等变形将函数先化简,然后进行求导,有时可以避免使用商的求导法则,减少运算量;(3)复合函数的求导,要正确分析函数的复合层次,通过设中间变量,确定复合过程,然后求导. 【变式探究】求下列各函数的导数: (1)y =11-x +11+x ;(2)y =cos 2xsin x +cos x ;(3)y =(1+sin x)2; (4)y =ln x2+1.考点三 导数的几何意义 例3、已知曲线y =13x3+43.(1)求曲线在点P(2,4)处的切线方程; (2)求曲线过点P(2,4)的切线方程; (3)求斜率为1的曲线的切线方程.【探究提高】利用导数研究曲线的切线问题,一定要熟练掌握以下条件:(1)函数在切点处的导数值也就是切线的斜率.即已知切点坐标可求切线斜率,已知斜率可求切点坐标.(2)切点既在曲线上,又在切线上.切线有可能和曲线还有其它的公共点.【变式探究】已知抛物线y =ax2+bx +c 通过点P(1,1),且在点Q(2,-1)处与直线y =x -3相切,求实数a 、b 、c 的值.【真题感悟】【高考新课标1,文14】已知函数()31f x ax x =++的图像在点()()1,1f 的处的切线过点()2,7,则a =.【答案】1【高考天津,文11】已知函数()()ln ,0,f x ax x x =∈+∞ ,其中a 为实数,()f x '为()f x 的导函数,若()13f '= ,则a 的值为.【答案】3【高考陕西,文15】函数xy xe =在其极值点处的切线方程为____________. 【答案】1y e=-(·陕西卷)设函数f(x)=ln x +mx ,m ∈R.(1)当m =e(e 为自然对数的底数)时,求f(x)的极小值; (2)讨论函数g(x)=f′(x)-x3零点的个数;(3)若对任意b >a >0,f (b )-f (a )b -a<1恒成立,求m 的取值范围.(·安徽卷)设函数f(x)=1+(1+a)x-x2-x3,其中a>0.(1)讨论f(x)在其定义域上的单调性;(2)当x∈[0,1]时,求f(x)取得最大值和最小值时的x的值.(·北京卷)已知函数f(x)=2x3-3x.(1)求f(x)在区间[-2,1]上的最大值;(2)若过点P(1,t)存在3条直线与曲线y=f(x)相切,求t的取值范围;(3)问过点A(-1,2),B(2,10),C(0,2)分别存在几条直线与曲线y=f(x)相切?(只需写出结论)(·福建卷)已知函数f(x)=ex-ax(a为常数)的图像与y轴交于点A,曲线y=f(x)在点A处的切线斜率为-1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<ex;(3)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞)时,恒有x<cex.(·广东卷)曲线y =-5ex +3在点(0,-2)处的切线方程为________. 【答案】5x +y +2=0(·江苏卷)在平面直角坐标系xOy 中,若曲线y =ax2+b x (a ,b 为常数)过点P(2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是________.【答案】-3(·江苏卷)已知函数f0(x)=sin x x (x>0),设fn(x)为fn -1(x)的导数,n ∈N*.(1)求2f1⎝⎛⎭⎫π2+π2f2⎝⎛⎭⎫π2的值;(2)证明:对任意的n ∈N*,等式⎪⎪⎪⎪nfn -1⎝⎛⎭⎫π4+π4fn ⎝⎛⎭⎫π4=22都成立.(·全国新课标卷Ⅰ] 设函数f(x)=aln x +1-a2x2-bx(a≠1),曲线y =f(x)在点(1, f(1))处的切线斜率为0. (1)求b ;(2)若存在x0≥1,使得f(x0)<aa -1,求a 的取值范围.(·山东卷)设函数f(x)=aln x +x -1x +1,其中a 为常数.(1)若a =0,求曲线y =f(x)在点(1,f(1))处的切线方程; (2)讨论函数f(x)的单调性.(·四川卷)设等差数列{an}的公差为d,点(an,bn)在函数f(x)=2x的图像上(n∈N*).(1)证明:数列{bn}为等比数列;(2)若a1=1,函数f(x)的图像在点(a2,b2)处的切线在x轴上的截距为2-1ln 2,求数列{anb2n}的前n项和Sn.(·天津卷)已知函数f(x)=x2-23ax3(a >0),x ∈R. (1)求f(x)的单调区间和极值;(2)若对于任意的x1∈(2,+∞),都存在x2∈(1,+∞),使得f(x1)·f(x2)=1,求a 的取值范围.【押题专练】1.已知函数f(x)的导函数为f′(x),且满足f(x)=2xf ′(1)+x2,则f′(1)=() A .-1 B .-2 C .1 D .2【答案】B2.等比数列{an}中,a1=2,a8=4,函数f(x)=x(x -a1)(x -a2)…(x -a8),则f′(0)=(). A .26 B .29 C .212 D .215【答案】C3.已知f(x)=xln x ,若f′(x0)=2,则x0=(). A .e2 B .e C.ln 22 D .ln 2【答案】B4.设函数f(x)是R 上以5为周期的可导偶函数,则曲线y =f(x)在x =5处的切线的斜率为() A .-15 B .0 C.15 D .5【答案】B5.设f0(x)=sin x ,f1(x)=f′0(x),f2(x)=f′1(x),…,fn +1(x)=f′n(x),n ∈N ,则f2 013(x)等于(). A .sin x B .-sin x C .cos x D .-cos x【答案】C6.已知函数f(x )的导函数为f′(x),且满足f(x)=2xf′(1)+ln x ,则f′(1)=().A .-eB .-1C .1D .e【答案】B7.已知函数f(x)=f′⎝⎛⎭⎫π2sin x +cos x ,则f ⎝⎛⎭⎫π4=________.【答案】08.函数)()(3R x ax x x f ∈+=在1=x 处有极值,则曲线)(x f y =在原点处的切线方程是___ __.【答案】3x+y =09.若过原点作曲线y =ex 的切线,则切点的坐标为________,切线的斜率为________.【答案】(1,e)e10.已知函数f(x)在R 上满足f(x)=2f(2-x)-x2+8x -8,则曲线y =f(x)在x =1处的导数f′(1)=________.【答案】211.已知f1(x)=sin x +cos x ,记f2(x)=f1′(x),f3(x)=f2′(x),…,fn(x)=fn -1′(x)(n ∈N*,n≥2),则f1⎝⎛⎭⎫π2+f2⎝⎛⎭⎫π2+…+f2 012⎝⎛⎭⎫π2=________.【答案】012.求下列函数的导数.(1)y =x2sin x ;(2)y =ex +1ex -1; (3)y =log2(2x2+3x +1).13.求下列函数的导数:(1)y=(2x+1)n,(n∈N*);(2)y=ln(x+1+x2);(3)y=2xsin(2x+5).14.设函数f(x)=x3+2ax2+bx+a,g(x)=x2-3x+2,其中x∈R,a、b为常数,已知曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l.(1)求a、b的值,并写出切线l的方程;(2)若方程f(x)+g(x)=mx有三个互不相同的实根0、x1、x2,其中x1<x2,且对任意的x∈[x1,x2],f(x)+g(x)<m(x-1)恒成立,求实数m的取值范围.15.设函数f(x)=ax -b x ,曲线y =f(x)在点(2,f(2))处的切线方程为7x -4y -12=0.(1)求f(x)的解析式;(2)证明:曲线y =f(x)上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.高考模拟复习试卷试题模拟卷【高频考点解读】1.理解同角三角函数的基本关系式:sin2α+cos2α=1,sin αcos α=tanα;2.能利用单位圆中的三角函数线推导出π2±α,π±α,-α的正弦、余弦、正切的诱导公式.【热点题型】题型一 同角三角函数基本关系式及应用【例1】 (1)已知tan α=2,则2sin α-3cos α4sin α-9cos α=_______________. (2)已知tan θ=2,则sin2θ+sin θcos θ-2cos2θ=( )A .-43 B.54C .-34 D.45【提分秘籍】若已知正切值,求一个关于正弦和余弦的齐次分式的值,则可以通过分子、分母同时除以一个余弦的齐次幂将其转化为一个关于正切的分式,代入正切值就可以求出这个分式的值,这是同角三角函数关系中的一类基本题型.【举一反三】若3sin α+cos α=0,则1cos2α+2sin αcos α的值为( ) A.103 B.53 C.23 D .-2题型二 利用诱导公式化简三角函数式【例2】 (1)sin(-1 200°)cos 1 290°+cos(-1 020°)·sin(-1 050°)=________.(2)设f(α)=2sin (π+α)cos (π-α)-cos (π+α)1+sin2α+cos ⎝⎛⎭⎫3π2+α-sin2⎝⎛⎭⎫π2+α(1+2sin α≠0),则 f ⎝⎛⎭⎫-23π6=________. 【提分秘籍】利用诱导公式化简三角函数的基本思路和化简要求:(1)基本思路:①分析结构特点,选择恰当公式;②利用公式化成单角三角函数;③整理得最简形式.(2)化简要求:①化简过程是恒等变形;②结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值.【举一反三】(1)sin(-1 071°)sin 99°+sin(-171°)sin(-261°)+tan(-1 089°)tan(-540°)=________.(2)化简:tan (π-α)cos (2π-α)sin ⎝⎛⎭⎫-α+3π2cos (-α-π)sin (-π-α)=________. 题型三利用诱导公式求值【例3】 (1)已知sin ⎝⎛⎭⎫π3-α=12,则cos ⎝⎛⎭⎫π6+α=______. (2)已知tan ⎝⎛⎭⎫π6-α=33,则tan ⎝⎛⎭⎫56π+α=________. 【提分秘籍】巧用相关角的关系会简化解题过程.常见的互余关系有π3-α与π6+α;π3+α与π6-α;π4+α与π4-α等,常见的互补关系有π3+θ与2π3-θ;π4+θ与3π4-θ等.【举一反三】 (1)已知sin ⎝⎛⎭⎫7π12+α=23,则cos ⎝⎛⎭⎫α-11π12=________. (2)若tan(π+α)=-12,则tan(3π-α)=________.【高考风向标】【高考福建,文6】若5sin 13α=-,且α为第四象限角,则tan α的值等于( ) A .125 B .125- C .512 D .512- 【高考安徽,文16】已知函数2()(sin cos )cos 2f x x x x =++(Ⅰ)求()f x 最小正周期;(Ⅱ)求()f x 在区间[0,]2π上的最大值和最小值.ππ==22T .]45,4[ππ上的图象知, [0,]2π上的【高考四川,文19】已知A 、B 、C 为△ABC 的内角,tanA 、tanB 是关于方程x23px -p +1=0(p ∈R)两个实根.(Ⅰ)求C 的大小(Ⅱ)若AB =1,AC 6,求p 的值(·福建卷) 已知函数f(x)=2cos x(sin x +cos x).(1)求f ⎝⎛⎭⎫5π4的值; (2)求函数f(x)的最小正周期及单调递增区间. (·全国新课标卷Ⅰ] 若tan α>0,则( )A .sin α>0B .cos α>0C .sin 2α>0D .cos 2α>0(·山东卷) △ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.已知a =3,cos A =63,B =A +π2.(1)求b 的值;(2)求△ABC 的面积.(·全国卷) 已知α是第二象限角,sin α=513,则cos α=( )A .-1213B .-513 C.513 D.1213(·四川卷) 设sin 2α=-sin α,α∈π2,π,则tan 2α的值是________.【高考押题】1.1-2sin (π+2)cos (π-2)=( )A .sin 2-cos 2B .sin 2+cos 2C .±(sin 2-cos 2)D .cos 2-sin 22.已知sin α=55,则sin4α-cos4α的值为( )A .-15B .-35 C.15 D.353.已知α和β的终边关于直线y =x 对称,且β=-π3,则sin α等于( )A .-32 B.32 C .-12 D.124.已知sin ⎝⎛⎭⎫π2+α=35,α∈⎝⎛⎭⎫0,π2,则si n(π+α)=( )A.35B .-35 C.45 D .-455.已知sin ⎝⎛⎭⎫α-π4=13,则cos ⎝⎛⎭⎫π4+α=( ) A.223 B .-223 C.13 D .-13解析 ∵cos ⎝⎛⎭⎫π4+α=sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫π4+α =sin ⎝⎛⎭⎫π4-α=-sin ⎝⎛⎭⎫α-π4=-13. 答案 D6.如果sin(π+A)=12,那么cos ⎝⎛⎭⎫32π-A 的值是________. 7.sin 43π·cos 56π·tan ⎝⎛⎭⎫-43π的值是________. 8.已知cos ⎝⎛⎭⎫π6-θ=a(|a|≤1),则cos ⎝⎛⎭⎫5π6+θ+sin ⎝⎛⎭⎫2π3-θ的值是________. 9.已知sin θ=45,π2<θ<π.(1)求tan θ的值;(2)求sin2θ+2sin θcos θ3sin2θ+cos2θ的值. 解 (1)∵sin2θ+cos2θ=1,∴cos2θ=925.又π2<θ<π,∴cos θ=-35.∴tan θ=sin θcos θ=-43.(2)由(1)知,sin2θ+2sin θcos θ3sin2θ+cos2θ=tan2θ+2tan θ3tan2θ+1=-857. 10.已知在△ABC 中,sin A +cos A =15.(1)求sin Acos A 的值;(2)判断△ABC 是锐角三角形还是钝角三角形;(3)求tan A 的值.高考模拟复习试卷试题模拟卷。
高考数学模拟复习试卷试题模拟卷第八章 直线与圆0064166
![高考数学模拟复习试卷试题模拟卷第八章 直线与圆0064166](https://img.taocdn.com/s3/m/5763696ffd0a79563d1e7270.png)
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【高频考点解读】1.会用向量的数量积推导出两角差的余弦公式;2.能利用两角差的余弦公式导出两角差的正弦、正切公式;3.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;4.能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).【热点题型】题型一 三角函数式的化简与给角求值 【例1】 (1)已知α∈(0,π),化简:(1+sin α+cos α)·(cos α2-sin α2)2+2cos α=________.(2)[2sin 50°+sin 10°(1+3tan 10°)]·2sin280°=______.解析 (1)原式=⎝⎛⎭⎫2cos2α2+2sin α2cos α2·⎝⎛⎭⎫cos α2-sin α24cos2α2=cos α2⎝⎛⎭⎫cos2α2-sin2α2⎪⎪⎪⎪cos α2=cos α2cos α⎪⎪⎪⎪cos α2.因为0<α<π,所以0<α2<π2,所以cos α2>0,所以原式=cos α. (2)原式=⎝ ⎛⎭⎪⎫2sin 50°+sin 10°·cos 10°+3sin 10°cos 10°·2sin 80°=(2sin 50°+2sin 10°·12cos 10°+32sin 10°cos 10°)· 2cos 10°=22[sin 50°·cos 10°+sin 10°·cos(60°-10°)] =22sin(50°+10°)=22×32= 6. 答案 (1)cos α (2)6 【提分秘籍】(1)三角函数式的化简要遵循“三看”原则:①一看角之间的差别与联系,把角进行合理的拆分,正确使用公式;②二看函数名称之间的差异,确定使用的公式,常见的有“切化弦”;③三看结构特征,找到变形的方向,常见的有“遇到分式要通分”,“遇到根式一般要升幂”等.(2)对于给角求值问题,一般给定的角是非特殊角,这时要善于将非特殊角转化为特殊角.另外此类问题也常通过代数变形(比如:正负项相消、分子分母相约等)的方式来求值.【举一反三】(1)4cos 50°-tan 40°=( ) A. 2 B.2+32C. 3 D .22-1(2)(·临沂模拟)化简:sin2αsin2β+cos2αcos2β-12cos 2αcos 2β=________.(2)法一 (从“角”入手,复角化单角)原式=sin2αsin2β+cos2αcos2β-12(2cos2α-1)(2cos2β-1) =sin2αsin2β+cos2αcos2β-12(4cos2αcos2β-2cos2α-2cos2β+1) =sin2αsin2β-cos2αcos2β+cos2α+cos2β-12 =sin2αsin2β+cos2αsin2β+cos2β-12 =sin2β+cos2β-12 =1-12=12.法二 (从“名”入手,异名化同名)原式=sin2αsin2β+(1-sin2α)cos2β-12cos 2αcos 2β =cos2β-sin2α(cos2β-sin2β)-12cos 2αcos 2β =cos2β-cos 2β(sin2α+12cos 2α) =1+cos 2β2-12cos 2β=12.法三 (从“幂”入手,利用降幂公式先降次)原式=1-cos 2α2·1-cos 2β2+1+cos 2α2·1+cos 2β2-12cos 2α·cos 2β =14(1+cos 2α·cos 2β-cos 2α-cos 2β)+14(1+cos 2α·cos 2β+cos 2α+cos 2β)-12cos 2α·cos 2β =14+14=12.题型二三角函数的给值求值、给值求角【例2】 (1)已知0<β<π2<α<π,且cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,求cos(α+β)的值;(2)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值. 解 (1)∵0<β<π2<α<π, ∴π4<α-β2<π, -π4<α2-β<π2,∴sin ⎝⎛⎭⎫α-β2=1-cos2⎝⎛⎭⎫α-β2=459,cos ⎝⎛⎭⎫α2-β= 1-sin2⎝⎛⎭⎫α2-β=53,∴cos α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β=cos ⎝⎛⎭⎫α-β2cos ⎝⎛⎭⎫α2-β+sin ⎝⎛⎭⎫α-β2s in ⎝⎛⎭⎫α2-β=⎝⎛⎭⎫-19×53+459×23=7527, ∴cos(α+β)=2cos2α+β2-1=2×49×5729-1=-239729.【提分秘籍】(1)解题中注意变角,如本题中α+β2=⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β;(2)通过求角的某种三角函数值来求角,在选取函数时,遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是⎝⎛⎭⎫0,π2,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为⎝⎛⎭⎫-π2,π2,选正弦较好. 【举一反三】已知cos α=17,cos(α-β)=1314,且0<β<α<π2, (1)求tan 2α的值; (2)求β.解 (1)∵cos α=17,0<α<π2, ∴sin α=437,∴tan α=43, ∴tan 2α=2tan α1-tan2α=2×431-48=-8347.(2)∵0<β<α<π2,∴0<α-β<π2, ∴sin(α-β)=3314, ∴cos β=cos[α-(α-β)] =cos αcos(α-β)+sin αsin(α-β) =17×1314+437×3314=12. ∴β=π3.题型三三角变换的简单应用【例3】已知函数f(x)=Asin ⎝⎛⎭⎫x +π4,x ∈R ,且f ⎝⎛⎭⎫5π12=32.(1)求A 的值;(2)若f(θ)-f(-θ)=32,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫3π4-θ.解 (1)由f ⎝⎛⎭⎫5π12=32,得Asin 2π3=32,又sin 2π3=32,∴A = 3.(2)由(1)得f(x)=3sin ⎝⎛⎭⎫x +π4,由f(θ)+f(-θ)=32,得3sin ⎝⎛⎭⎫θ+π4+3sin ⎝⎛⎭⎫-θ+π4=32, 化简得cos θ=64,∵θ∈⎝⎛⎭⎫0,π2,∴sin θ=1-cos 2θ=1-⎝ ⎛⎭⎪⎫642=104,故f ⎝⎛⎭⎫3π4-θ=3sin ⎝⎛⎭⎫3π4-θ+π4=3sin θ=3×104=304.【提分秘籍】解三角函数问题的基本思想是“变换”,通过适当的变换达到由此及彼的目的,变换的基本方向有两个,一个是变换函数的名称,一个是变换角的形式.变换函数名称可以使用诱导公式、同角三角函数关系、二倍角的余弦公式等;变换角的形式,可以使用两角和与差的三角函数公式、倍角公式等.【举一反三】已知函数f(x)=sin ⎝⎛⎭⎫3x +π4. (1)求f(x)的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值.(2)由已知,有sin ⎝⎛⎭⎫α+π4=45cos ⎝⎛⎭⎫α+π4(cos2α-sin2α),所以sin αcos π4+cos αsin π4=45⎝⎛⎭⎫cos αcos π4-sin αsin π4(cos2α-sin2α),即sin α+cos α=45(cos α-sin α)2(sin α+cos α). 当sin α+cos α=0时,由α是第二象限角, 知α=3π4+2kπ,k ∈Z. 此时cos α-sin α=- 2.当sin α+cos α≠0时,有(cos α-sin α)2=54. 由α是第二象限角,知cos α-sin α<0,此时cos α-sin α=-52.综上所述,cos α-sin α=-2或-52. 【高考风向标】【高考重庆,文6】若11tan ,tan()32,则tan =() (A) 17 (B) 16 (C) 57 (D) 56【答案】A【解析】11tan()tan 123tan tan[()]111tan()tan 7123αβαβαβααβα-+-=+-===+++⨯,故选A.【高考上海,文1】函数x x f 2sin 31)(-=的最小正周期为.【答案】π【解析】因为x x 2cos 1sin 22-=,所以x x x f 2cos 2321)2cos 1(231)(+-=--=,所以函数)(x f 的最小正周期为ππ=22. 【高考广东,文16】(本小题满分12分)已知tan 2α=. (1)求tan 4πα⎛⎫+ ⎪⎝⎭的值; (2)求2sin 2sin sin cos cos 21ααααα+--的值. 【答案】(1)3-;(2)1. 【解析】(1)tan tantan 1214tan 341tan 121tan tan 4παπααπαα+++⎛⎫+====- ⎪--⎝⎭- (2)2sin 2sin sin cos cos 21ααααα+--()222sin cos sin sin cos 2cos 11αααααα=+--- 222sin cos sin sin cos 2cos αααααα=+-22tan tan tan 2ααα=+- 222222⨯=+- 1=1.(·广东卷) 若空间中四条两两不同的直线l1,l2,l3,l4满足l1⊥l2,l2∥l3,l3⊥l4,则下列结论一定正确的是( )A .l1⊥l4B .l1∥l4C .l1与l4既不垂直也不平行D .l1与l4的位置关系不确定 【答案】D【解析】本题考查空间中直线的位置关系,构造正方体进行判断即可.如图所示,在正方体ABCD-A1B1C1D1中,设BB1是直线l1,BC 是直线l2,AD 是直线l3,则DD1是直线l4,此时l1∥l4;设BB1是直线l1,BC 是直线l2,A1D1是直线l3,则C1D1是直线l4,此时l1⊥l4.故l1与l4的位置关系不确定.2. (·湖北卷) 某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系: f(t)=10-3cos π12t -sin π12t ,t ∈[0,24). (1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差.【解析】(1)f(8)=10-3cos ⎝⎛⎭⎫π12×8-sin ⎝⎛⎭⎫π12×8=10-3cos 2π3-sin 2π3=10-3×⎝⎛⎭⎫-12-32=10.故实验室上午8时的温度为10 ℃.3.(·湖南卷) 如图1-4所示,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC =7,EA =2,∠ADC =2π3,∠BEC =π3.(1)求sin ∠CED 的值; (2)求BE 的长.图1-4【解析】设∠CED =α.(1)在△CDE 中,由余弦定理,得 EC2=CD2+DE2-2CD·DE·cos ∠EDC ,于是由题设知,7=CD2+1+CD ,即CD2+CD - 6=0,解得CD =2(CD =-3舍去).在△CDE 中,由正弦定理,得EC sin ∠EDC =CD sin α. 于是,sin α=CD·sin 2π3EC =2×327=217,即sin ∠CED =217.(2)由题设知,0<α<π3,于是由(1)知,cos α=1-sin2α=1-2149=277.而∠AEB=2π3-α,所以cos ∠AEB =cos ⎝⎛⎭⎫2π3-α=cos 2π3cos α+sin 2π3sin α=-12cos α+32sin α =-12×277+32×217=714.在Rt △EAB 中,cos ∠AEB =EA BE =2BE ,故 BE =2cos ∠AEB =2714=47.4.(·江西卷) 已知函数f(x)=(a +2cos2x)cos(2x +θ)为奇函数,且f ⎝⎛⎭⎫π4=0,其中a ∈R ,θ∈(0,π). (1)求a ,θ的值;(2)若f ⎝⎛⎭⎫α4=-25,α∈⎝⎛⎭⎫π2,π,求sin ⎝⎛⎭⎫α+π3的值.5.(·全国卷) △ABC 的内角A ,B ,C 的对边分别为a ,b ,c.已知3acos C =2ccos A ,tan A =13,求B. 【解析】由题设和正弦定理得3sin Acos C =2sin Ccos A , 故3tan Acos C =2sin C.因为tan A =13, 所以cos C =2sin C , 所以tan C =12,所以tan B =tan[180°-(A +C)] =-tan(A +C) =tan A +tan Ctan Atan C -1=-1, 所以B =135°.6.(·新课标全国卷Ⅱ] 函数f(x)=sin(x +φ)-2sin φcos x 的最大值为________. 【答案】1【解析】 f(x)=sin(x +φ)-2sin φcos x =sin xcos φ+cos xsin φ-2sin φcos x =sin xcos φ-cos xsin φ=sin(x -φ),其最大值为1.7.(·山东卷) △ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.已知a =3,cos A =63,B =A +π2. (1)求b 的值; (2)求△ABC 的面积. 【解析】(1)在△ABC 中,由题意知,sin A =1-cos2A =33. 又因为B =A +π2,所以sin B =sin ⎝⎛⎭⎫A +π2=cos A =63.由正弦定理可得,b =asin Bsin A =3×6333=3 2.(2)由B =A +π2得cos B =cos ⎝⎛⎭⎫A +π2=-sin A =-33.由A +B +C =π,得C =π-(A +B), 所以sin C =sin[π-(A +B)] =sin(A +B)=sin Acos B +cos Asin B=33×⎝ ⎛⎭⎪⎫-33+63×63=13.因此△ABC 的面积S =12absin C =12×3×32×13=322.8.(·四川卷) 如图1-3所示,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时气球的高度是60 m ,则河流的宽度BC 等于( )图1-3A .240(3-1)mB .180(2-1)mC .120(3-1)mD .30(3+1)m 【答案】C9.(·四川卷) 已知函数f(x)=sin ⎝⎛⎭⎫3x +π4. (1)求f(x)的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值.【解析】(1)因为函数y =sin x 的单调递增区间为⎣⎡⎦⎤-π2+2kπ,π2+2kπ,k ∈Z ,由-π2+2kπ≤3x +π4≤π2+2kπ,k ∈Z ,得-π4+2kπ3≤x≤π12+2kπ3,k ∈Z ,所以函数f(x)的单调递增区间为⎣⎡⎦⎤-π4+2kπ3,π12+2kπ3,k ∈Z. (2)由已知,得sin ⎝⎛⎭⎫α+π4=45cos ⎝⎛⎭⎫α+π4(cos2α-sin2α).所以sin αcos π4+cos αsin π4=45⎝⎛⎭⎫cos αco s π4-sin αsi n π4(cos2α-sin2α), 即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时,由α在第二象限内,得α=3π4+2kπ,k ∈Z. 此时,cos α-sin α=- 2.当sin α+cos α≠0时,(co s α-sin α)2=54.由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-52. 综上所述,cos α-sin α=-2或-52.10.(·重庆卷) 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且a +b +c =8. (1)若a =2,b =52,求cos C 的值;(2)若sin Acos2B 2+sin Bcos2A 2=2sin C ,且△ABC 的面积S =92sin C ,求a 和b 的值. 【解析】(1)由题意可知c =8-(a +b)=72. 由余弦定理得cos C =a2+b2-c22ab= 22+⎝⎛⎭⎫522-⎝⎛⎭⎫7222×2×52=-15.(2)由sin Acos2B 2+sin Bcos2A2=2sin C 可得 sin A·1+cos B 2+sin B·1+cos A 2=2sin C ,化简得sin A +sin Acos B +sin B +sin Bcos A =4sin C.因为sin Acos B +cos Asin B =sin(A +B)=sin C ,所以sin A +sin B =3sin C. 由正弦定理可知a +b =3c.又a +b +c =8,所以a +b =6.由于S =12absin C =92sin C ,所以ab =9,从而a2-6a +9=0,解得a =3,所以b =3. 【高考押题】1.若tan θ=3,则sin 2θ1+cos 2θ=( )A. 3 B .-3 C.33D .-33解析sin 2θ1+cos 2θ=2sin θcos θ1+2cos2θ-1=tan θ= 3.答案 A2.已知sin α+cos α=13,则sin2⎝⎛⎭⎫π4-α=( )A.118 B.1718 C.89D.29解析 由sin α+cos α=13两边平方得1+sin 2α=19,解得sin 2α=-89,所以sin2⎝⎛⎭⎫π4-α=1-cos ⎝⎛⎭⎫π2-2α2=1-sin 2α2=1+892=1718,故选B.答案 B3.已知α∈⎝⎛⎭⎫π,32π,且cos α=-45,则tan ⎝⎛⎭⎫π4-α等于( )A .7B.17C .-17D .-7解析 因α∈⎝⎛⎭⎫π,32π,且cos α=-45,所以sin α<0,即sin α=-35,所以tan α=34.所以tan ⎝⎛⎭⎫π4-α=1-tan α1+tan α=1-341+34=17.答案 B4.已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则角β等于( ) A.5π12B.π3C.π4D.π65.设α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫0,π2,且tan α=1+sin βcos β,则 ( )A .3α-β=π2 B .2α-β=π2 C .3α+β=π2D .2α+β=π2解析 由条件得sin αcos α=1+sin βcos β,即sin α cos β=cos α(1+sin β),sin(α-β)=cos α=sin ⎝⎛⎭⎫π2-α,因为-π2<α-β<π2,0<π2-α<π2,所以α-β=π2-α,所以2α-β=π2,故选B. 答案 B6.若sin ⎝⎛⎭⎫π2+θ=35,则cos 2θ=________.解析 ∵sin ⎝⎛⎭⎫π2+θ=cos θ=35, ∴cos 2θ=2cos2θ-1=2×⎝⎛⎭⎫352-1=-725.答案 -7257.函数f(x)=sin ⎝⎛⎭⎫2x -π4-22sin2x 的最小正周期是________.解析 ∵f(x)=22sin 2x -22cos 2x -2(1-cos 2x) =22sin 2x +22cos 2x -2=sin(2x +π4)-2, ∴最小正周期T =2π2=π. 答案 π8.已知cos4α-sin4α=23,且α∈⎝⎛⎭⎫0,π2,则cos ⎝⎛⎭⎫2α+π3=________.解析 ∵cos4α-sin4α=(sin2α+cos2α)(cos2α-sin2α)=cos 2α=23,又α∈⎝⎛⎭⎫0,π2,∴2α∈(0,π),∴sin 2α=1-cos22α=53, ∴cos ⎝⎛⎭⎫2α+π3=12cos 2α-32sin 2α =12×23-32×53=2-156. 答案2-1569.已知α∈⎝⎛⎭⎫π2,π,sin α=55. (1)求sin ⎝⎛⎭⎫π4+α的值; (2)求cos ⎝⎛⎭⎫5π6-2α的值.10.已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62.(1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值.解 (1)因为sin α2+cos α2=62,两边同时平方,得sinα=12.又π2<α<π,所以cos α=-1-sin2α=-32. (2)因为π2<α<π,π2<β<π, 所以-π2<α-β<π2.又s in(α-β)=-35,得cos (α-β)=45. cos β=cos []α-(α-β) =cos αcos(α-β)+sin αsin(α-β) =-32×45+12×⎝⎛⎭⎫-35=-43+310.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.理解函数的单调性、最大值、最小值及其几何意义.2.会运用函数的图象理解和研究函数的性质.3.结合具体函数,了解函数奇偶性的含义.4.会运用函数的图象理解和研究函数的奇偶性. 【热点题型】题型一 函数单调性的判断例1、(1)下列函数f(x)中,满足“∀x1,x2∈(0,+∞)且x1≠x2,(x1-x2)[f(x1)-f(x2)]<0”的是( ) A .f(x)=2xB .f(x)=|x -1| C .f(x)=1x -xD .f(x)=ln(x +1)(2)函数y =x +2x +1在(-1,+∞)上是________(填“增函数”或“减函数”).解析 (1)由(x1-x2)[f(x1)-f(x2)]<0可知,f(x)在(0,+∞)是减函数,f(x)=1x -x 求导,f′(x)=1x2-1<0,∴f(x)=1x -x 在(0,+∞)是减函数.(2)任取x1,x2∈(-1,+∞),且x1<x2, 则y1-y2=x1+2x1+1-x2+2x2+1=x2-x1x1+1x2+1.∵x1>-1,x2>-1,∴x1+1>0,x2+1>0, 又x1<x2,∴x2-x1>0, ∴x2-x1x1+1x2+1>0,即y1-y2>0.∴y1>y2,所以函数y =x +2x +1在(-1,+∞)上是减函数.答案 (1)C(2)减函数 【提分秘籍】 (1)图象法作图象→看升降→归纳单调性区间 (2)转化法(3)导数法 求导→判断f′x 正、负→单调性区间 (4)定义法取值→作差→变形→定号→单调性区间求函数的单调区间,一定要注意定义域优先原则.【举一反三】 下列函数中,在区间(0,+∞)上为增函数的是( )A .y =x +1B .y =(x -1)2C .y =2-xD .y =log0.5(x +1)题型二求函数的单调区间例2、求下列函数的单调区间:(1)y =-x2+2|x|+1;(2)y =log 12(x2-3x +2).解析 (1)由于y=⎩⎪⎨⎪⎧ -x2+2x +1x≥0,-x2-2x +1x<0, 即y =⎩⎪⎨⎪⎧ -x -12+2x≥0,-x +12+2x<0.画出函数图象如图所示,单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞).(2)令u =x2-3x +2,则原函数可以看作y =log 12u 与u =x2-3x +2的复合函数.令u =x2-3x +2>0,则x<1或x>2.∴函数y =log 12(x2-3x +2)的定义域为(-∞,1)∪(2,+∞).又u =x2-3x +2的对称轴x =32,且开口向上.∴u =x2-3x +2在(-∞,1)上是单调减函数,在(2,+∞)上是单调增函数.而y =log 12u 在(0,+∞)上是单调减函数,∴y =log 12(x2-3x +2)的单调减区间为(2,+∞),单调增区间为(-∞,1).【提分秘籍】(1)求函数的单调区间与确定单调性的方法一致.常用的方法有:①利用已知函数的单调性,即转化为已知函数的和、差或复合函数,求单调区间.②定义法:先求定义域,再利用单调性定义确定单调区间.③图象法:如果f(x)是以图象形式给出的,或者f(x)的图象易作出,则可由图象的直观性写出它的单调区间.④导数法:利用导数取值的正负确定函数的单调区间.(2)若函数f(x)的定义域上(或某一区间上)是增函数,则f(x1)<f(x2)⇔x1<x2.利用上式,可以去掉抽象函数的符号,将函数不等式(或方程)的求解化为一般不等式(或方程)的求解,但无论如何都必须在定义域内或给定的范围内进行.【举一反三】求下列函数的单调区间,并指出其增减性.(1)y =(a>0且a≠1);(2)y =log 12(4x -x2).题型三函数单调性的应用例3、已知函数f(x)满足f(x)=f(π-x),且当x ∈⎝⎛⎭⎫-π2,π2时,f(x)=ex +sin x ,则( ) A .f(1)<f(2)<f(3)B .f(2)<f(3)<f(1)C .f(3)<f(2)<f(1)D .f(3)<f(1)<f(2)解析:由f(x)=f(π-x),得函数f(x)的图象关于直线x =π2对称,又当x ∈⎝⎛⎭⎫-π2,π2时,f′(x)=ex +cos x>0恒成立,所以f(x)在⎝⎛⎭⎫-π2,π2上为增函数,f(2)=f(π-2),f(3)=f(π-3),且0<π-3<1<π-2<π2,所以f(π-3)<f(1)<f(π-2),即f(3)<f(1)<f(2).答案:D【提分秘籍】1.高考对函数单调性的考查多以选择题、填空题的形式出现,有时也应用于解答题中的某一问中.2.高考对函数单调性的考查主要有以下几个命题角度:(1)利用函数的单调性比较大小.(2)利用函数的单调性解决与抽象函数有关的不等式问题.(3)利用函数的单调性求参数.(4)利用函数的单调性求解最值(或恒成立)问题.【方法规律】(1)含“f”号不等式的解法首先根据函数的性质把不等式转化为f(g(x))>f(h(x))的形式,然后根据函数的单调性去掉“f”号,转化为具体的不等式(组),此时要注意g(x)与h(x)的取值应在外层函数的定义域内.(2)分段函数单调性解法为了保证函数在整个定义域内是单调的,除了要分别保证各段表达式在对应区间上的单调性一致外,还要注意两段连接点的衔接.【举一反三】已知函数f(x)的定义域是(0,+∞),且满足f(xy)=f(x)+f(y),f ⎝⎛⎭⎫12=1,如果对于0<x<y ,都有f(x)>f(y).(1)求f(1)的值;(2)解不等式f(-x)+f(3-x)≥-2.解析:(1)令x =y =1,则f(1)=f(1)+f(1),f(1)=0.(2)由题意知f(x)为(0,+∞)上的减函数,且⎩⎪⎨⎪⎧-x>0,3-x>0,∴x<0, ∵f(xy)=f(x)+f(y),x 、y ∈(0,+∞)且f ⎝⎛⎭⎫12=1. ∴f(-x)+f(3-x)≥-2可化为f(-x)+f(3-x)≥-2f ⎝⎛⎭⎫12, 即f(-x)+f ⎝⎛⎭⎫12+f(3-x)+f ⎝⎛⎭⎫12≥0=f(1)⇔f ⎝⎛⎭⎫-x 2+f ⎝⎛⎭⎫3-x 2≥f(1)⇔f ⎝⎛⎭⎫-x 2·3-x 2≥f(1), 则⎩⎪⎨⎪⎧x<0,-x 2·3-x 2≤1,解得-1≤x<0.∴不等式的解集为{x|-1≤x<0}.【变式探究】已知f(x)=⎩⎪⎨⎪⎧ 3-a x -a x<1logax x≥1是(-∞,+∞)上的增函数,则a 的取值范围是( )A .(1,+∞)B .(1,3) C.⎣⎡⎭⎫32,3D.⎝⎛⎭⎫1,32题型四函数奇偶性的判定例4、(1)下列函数不具有奇偶性的有________.①f(x)=(x +1)1-x 1+x ; ②f(x)=x3-x ;③f(x)=x2+|x|-2;④f(x)=lg x2+lg 1x2;⑤f(x)=⎩⎪⎨⎪⎧x2+x x<0,-x2+x x>0 (2)对于函数y =f(x),x ∈R ,“y =|f(x)|的图象关于y 轴对称”是“y =f(x)是奇函数”的()A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件解析 (1)①由1-x 1+x≥0可得函数的定义域为(-1,1], 所以函数为非奇非偶函数.②∵x∈R,f(-x)=(-x)3-(-x)=-x3+x=-(x3-x)=-f(x).∴f(x)=x3-x是奇函数.③∵x∈R,f(-x)=(-x)2+|-x|-2=x2+|x|-2=f(x),∴f(x)=x2+|x|-2是偶函数.④定义域为(-∞,0)∪(0,+∞),f(x)=lg x2+lg 1x2=lg x2+lg(x2)-1=lg x2-lg x2=0,∴f(x)既是奇函数又是偶函数.⑤当x>0时,-x<0,f(x)=-x2+x,∴f(-x)=(-x)2-x=x2-x=-(-x2+x)=-f(x);当x<0时,-x>0,f(x)=x2+x,∴f(-x)=-(-x)2-x=-x2-x=-(x2+x)=-f(x).所以对于x∈(-∞,0)∪(0,+∞),均有f(-x)=-f(x).∴函数为奇函数.(2)若f(x)是奇函数,则对任意的x∈R,均有f(-x)=-f(x),即|f(-x)|=|-f(x)|=|f(x)|,所以y=|f(x)|是偶函数,即y=|f(x)|的图象关于y轴对称.反过来,若y=|f(x)|的图象关于y轴对称,则不能得出y=f(x)一定是奇函数,比如y=|x2|,显然,其图象关于y轴对称,但是y=x2是偶函数.故“y=|f(x)|的图象关于y轴对称”是“y=f(x)是奇函数”的必要而不充分条件.答案(1)①(2)B【提分秘籍】(1)判定函数奇偶性的常用方法及思路:①定义法:②图象法:③性质法:a.“奇+奇”是奇,“奇-奇”是奇,“奇·奇”是偶,“奇÷奇”是偶;b.“偶+偶”是偶,“偶-偶”是偶,“偶·偶”是偶,“偶÷偶”是偶;c.“奇·偶”是奇,“奇÷偶”是奇.(2)判断函数奇偶性时应注意问题:①分段函数奇偶性的判断,要注意定义域内x取值的任意性,应分段讨论,讨论时可依据x的范围取相应的解析式,判断f(x)与f(-x)的关系,得出结论,也可以利用图象作判断.②“性质法”中的结论是在两个函数的公共定义域内才成立的.③性质法在小题中可直接运用,但在解答题中应给出性质推导的过程.【举一反三】设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数解析:由题意可知f(-x)=-f(x),g(-x)=g(x),对于选项A,f(-x)·g(-x)=-f(x)·g(x),所以f(x)g(x)是奇函数,故A项错误;对于选项B,|f(-x)|g(-x)=|-f(x)|g(x)=|f(x)|g(x),所以|f(x)|g(x)是偶函数,故B项错误;对于选项C,f(-x)|g(-x)|=-f(x)|g(x)|,所以f(x)|g(x)|是奇函数,故C项正确;对于选项D,|f(-x)g(-x)|=|-f(x)g(x)|=|f(x)g(x)|,所以|f(x)g(x)|是偶函数,故D项错误,选C.答案:C题型五函数的周期性例5、已知函数f(x)是R 上的偶函数,g(x)是R 上的奇函数,且g(x)=f(x -1),若f(2)=2,则f(2 014)的值为()A .2B .0C .-2D .±2解析 ∵g(-x)=f(-x -1),∴-g(x)=f(x +1).又g(x)=f(x -1),∴f(x +1)=-f(x -1),∴f(x +2)=-f(x),f(x +4)=-f(x +2)=f(x ),则f(x)是以4为周期的周期函数,所以f(2 014)=f(2)=2.答案 A【提分秘籍】函数周期性的判断要结合周期性的定义,还可以利用图象法及总结的几个结论,如f(x +a)=-f(x)⇒T =2a.【举一反三】函数f(x)=lg|sin x|是()A .最小正周期为π的奇函数B .最小正周期为2π的奇函数C .最小正周期为π的偶函数D .最小正周期为2π的偶函数解析:易知函数的定义域为{x|x≠kπ,k ∈Z},关于原点对称,又f(-x)=lg|sin(-x)|=lg|-sin x|=lg|sin x|=f(x),所以f(x)是偶函数,又函数y =|sin x|的最小正周期为π,所以函数f(x)=lg|sin x|是最小正周期为π的偶函数.答案:C题型六函数奇偶性、周期性等性质的综合应用例6、设定义在R 上的函数f(x)同时满足以下条件:①f(x)+f(-x)=0;②f(x)=f(x +2);③当0≤x≤1时,f(x)=2x -1,则f ⎝⎛⎭⎫12+f(1)+f ⎝⎛⎭⎫32+f(2)+f ⎝⎛⎭⎫52=________. 解析:依题意知:函数f(x)为奇函数且周期为2,∴f ⎝⎛⎭⎫12+f(1)+f ⎝⎛⎭⎫32+f(2)+f ⎝⎛⎭⎫52 =f ⎝⎛⎭⎫12+f(1)+f ⎝⎛⎭⎫-12+f(0)+f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫12+f(1)-f ⎝⎛⎭⎫12+f(0)+f ⎝⎛⎭⎫12 =f ⎝⎛⎭⎫12+f(1)+f(0) =212-1+21-1+20-1= 2.答案:2【提分秘籍】1.函数的奇偶性、周期性以及单调性是函数的三大性质,在高考中常常将它们综合在一起命制试题,其中奇偶性多与单调性相结合,而周期性常与抽象函数相结合,并以结合奇偶性求函数值为主.归纳起来常见的命题角度有:(1)求函数值.(2)与函数图象有关的问题.(3)奇偶性、周期性单调性的综合.2.应用函数奇偶性可解决的问题及方法(1)已知函数的奇偶性,求函数值将待求值利用奇偶性转化为已知区间上的函数值求解.(2)已知函数的奇偶性求解析式将待求区间上的自变量,转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f(x)的方程(组),从而得到f(x)的解析式.(3)已知函数的奇偶性,求函数解析式中参数的值常常利用待定系数法:利用f(x)±f(-x)=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程求解.(4)应用奇偶性画图象和判断单调性.【举一反三】设函数f(x)是定义在R 上的偶函数,且对任意的x ∈R 恒有f(x +1)=f(x -1),已知当x ∈[0,1]时,f(x)=⎝⎛⎭⎫121-x ,则下列命题: ①2是函数f(x)的周期;②函数f(x)在(1,2)上递减,在(2,3)上递增;③函数f(x)的最大值是1,最小值是0;④当x ∈(3,4)时,f(x)=⎝⎛⎭⎫12x -3. 其中正确命题的序号是________.【高考风向标】1.【高考四川,文15】已知函数f(x)=2x ,g(x)=x2+ax(其中a ∈R).对于不相等的实数x1,x2,设m =1212()()f x f x x x --,n =1212()()g x g x x x --,现有如下命题: ①对于任意不相等的实数x1,x2,都有m >0;②对于任意的a 及任意不相等的实数x1,x2,都有n >0;③对于任意的a ,存在不相等的实数x1,x2,使得m =n ;④对于任意的a ,存在不相等的实数x1,x2,使得m =-n.其中真命题有___________________(写出所有真命题的序号).【答案】①④【解析】对于①,因为f '(x)=2xln2>0恒成立,故①正确对于②,取a =-8,即g'(x)=2x -8,当x1,x2<4时n <0,②错误对于③,令f '(x)=g'(x),即2xln2=2x +a记h(x)=2xln2-2x ,则h'(x)=2x(ln2)2-2存在x0∈(0,1),使得h(x0)=0,可知函数h(x)先减后增,有最小值.因此,对任意的a ,m =n 不一定成立.③错误对于④,由f '(x)=-g'(x),即2xln2=-2x -a令h(x)=2xln2+2x ,则h'(x)=2x(ln2)2+2>0恒成立,即h(x)是单调递增函数,当x→+∞时,h(x)→+∞当x→-∞时,h(x)→-∞因此对任意的a ,存在y =a 与函数h(x)有交点.④正确2.【高考陕西,文10】设()ln ,0f x x a b =<<,若()p f ab =,()2a b q f +=,1(()())2r f a f b =+,则下列关系式中正确的是( ) A .q r p =<B .q r p =>C .p r q =<D .p r q =>【答案】C【解析】1()ln ln 2p f ab ab ab ===;()ln 22a b a b q f ++==;11(()())ln 22r f a f b ab =+= 因为2a b ab +>,由()ln f x x =是个递增函数,()()2a b f f ab +> 所以q p r >=,故答案选C3.【高考浙江,文12】已知函数()2,166,1x x f x x x x ⎧≤⎪=⎨+->⎪⎩,则()2f f -=⎡⎤⎣⎦,()f x 的最小值是.【答案】1;2662--4.【高考上海,文20】(本题满分14分)本题共2小题,第1小题6分,第2小题8分.已知函数xax x f 1)(2+=,其中a 为实数. (1)根据a 的不同取值,判断函数)(x f 的奇偶性,并说明理由;(2)若)3,1(∈a ,判断函数)(x f 在]2,1[上的单调性,并说明理由.【答案】(1))(x f 是非奇非偶函数;(2)函数)(x f 在]2,1[上单调递增.1.(·北京卷)下列函数中,定义域是R且为增函数的是()A.y=e-x B.y=x3C.y=ln x D.y=|x|【答案】B【解析】由定义域为R,排除选项C,由函数单调递增,排除选项A,D. 2.(·湖南卷)下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是()A.f(x)=1x2 B.f(x)=x2+1C.f(x)=x3 D.f(x)=2-x【答案】A【解析】由偶函数的定义,可以排除C,D,又根据单调性,可得B不对.3.(·江苏卷)已知函数f(x)=ex+e-x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数.(2)若关于x的不等式mf(x)≤e-x+m-1在(0,+∞)上恒成立,求实数m的取值范围.(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(-x30+3x0)成立.试比较ea-1与ae-1的大小,并证明你的结论.【解析】 (1)证明:因为对任意 x ∈R ,都有f(-x)=e -x +e -(-x)=e -x +ex =f(x),所以f(x)是R 上的偶函数.(2)由条件知 m(ex +e -x -1)≤e -x -1在(0,+∞)上恒成立.令 t =ex(x>0),则 t>1,所以 m≤-t -1t2-t +1=-1t -1+1t -1+ 1对任意 t>1成立.因为t -1+1t -1+ 1≥2 (t -1)·1t - 1+1=3, 所以 -1t -1+1t -1+ 1≥-13,当且仅当 t =2, 即x = ln 2时等号成立.因此实数 m 的取值范围是⎝⎛⎦⎤-∞,-13.(3)令函数 g(x)=ex +1ex - a(-x3+3x),则g′(x) =ex -1ex +3a(x2-1).当 x≥1时,ex -1ex >0,x2-1≥0.又a>0,故 g′(x)>0,所以g(x)是[1,+∞)上的单调递增函数,因此g(x)在[1,+∞)上的最小值是 g(1)= e +e -1-2a.由于存在x0∈[1,+∞),使ex0+e -x0-a(-x30+ 3x0)<0 成立, 当且仅当最小值g(1)<0,故 e +e -1-2a<0, 即 a>e +e -12.令函数h(x) = x -(e -1)ln x -1,则 h′(x)=1-e -1x . 令 h′(x)=0, 得x =e -1.当x ∈(0,e -1)时,h′(x)<0,故h(x)是(0,e -1)上的单调递减函数;当x ∈(e -1,+∞)时,h′(x)>0,故h(x)是(e -1,+∞)上的单调递增函数.所以h(x)在(0,+∞)上的最小值是h(e -1).注意到h(1)=h(e)=0,所以当x ∈(1,e -1)⊆(0,e -1)时,h(e -1)≤h(x)<h(1)=0;当x ∈(e -1,e)⊆(e -1,+∞)时,h(x)<h(e)=0.所以h(x)<0对任意的x ∈(1,e)成立.故①当a ∈⎝⎛⎭⎫e +e -12,e ⊆(1,e)时, h(a)<0,即a -1<(e -1)ln a ,从而ea -1<ae -1;②当a =e 时,ea -1=ae -1;③当a ∈(e ,+∞)⊆(e -1,+∞)时,h(a)>h(e)=0,即a -1>(e -1)ln a ,故ea -1>ae -1.综上所述,当a ∈⎝⎛⎭⎫e +e -12,e 时,ea -1<ae -1;当a =e 时,ea -1=ae -1;当a ∈(e ,+∞)时,ea -1>ae -1.4.(·四川卷)以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M ,使得函数φ(x)的值域包含于区间[-M ,M].例如,当φ1(x)=x3,φ2(x)=sin x 时,φ1(x)∈A ,φ2(x)∈B.现有如下命题:①设函数f(x)的定义域为D ,则“f(x)∈A”的充要条件是“∀b ∈R ,∃a ∈D ,f(a)=b”;②若函数f(x)∈B ,则f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A ,g(x)∈B ,则f(x)+g(x)∈/B ;④若函数f(x)=aln(x +2)+x x2+1(x >-2,a ∈R)有最大值,则f(x)∈B. 其中的真命题有________.(写出所有真命题的序号)【答案】①③④【解析】若f(x)∈A ,则函数f(x)的值域为R ,于是,对任意的b ∈R ,一定存在a ∈D ,使得f(a)=b ,故①正确.取函数f(x)=x(-1<x <1),其值域为(-1,1),于是,存在M =1,使得函数f(x)的值域包含于[-M ,M]=[-1,1],但此时函数f(x)没有最大值和最小值,故②错误.当f(x)∈A 时,由①可知,对任意的b ∈R ,存在a ∈D ,使得f(a)=b ,所以,当g(x)∈B 时,对于函数f(x)+g(x),如果存在一个正数M ,使得f(x)+g(x)的值域包含于[-M ,M],那么对于该区间外的某一个b0∈R ,一定存在一个a0∈D ,使得f(x)+f(a0)=b0-g(a0),即f(a0)+g(a0)=b0∉[-M ,M],故③正确.对于f(x)=aln(x +2)+x x2+1(x >-2),当a >0或a <0时,函数f(x)都没有最大值.要使得函数f(x)有最大值,只有a =0,此时f(x)=x x2+1(x >-2).易知f(x)∈⎣⎡⎦⎤-12,12,所以存在正数M =12,使得f(x)∈[-M ,M],故④正确5.(·四川卷)已知函数f(x)=ex -ax2-bx -1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,证明:e -2<a <1.【解析】(1)由f(x)=ex -ax2-bx -1,得g(x)=f′(x)=ex -2ax -b ,所以g′(x)=ex -2a.当x ∈[0,1]时,g′(x)∈[1-2a ,e -2a].当a≤12时,g′(x)≥0,所以g(x)在[0,1]上单调递增,因此g(x)在[0,1]上的最小值是g(0)=1-b ;当a≥e 2时,g′(x)≤0,所以g(x)在[0,1]上单调递减,因此g(x)在[0,1]上的最小值是g(1)=e -2a -b ;当12<a <e 2时,令g′(x)=0,得x =ln(2a)∈(0,1),所以函数g(x)在区间[0,ln(2a)]上单调递减,在区间(ln(2a),1]上单调递增,于是,g(x)在[0,1]上的最小值是g(ln(2a))=2a -2aln(2a)-b.综上所述,当a≤12时,g(x)在[0,1]上的最小值是g(0)=1-b ;当12<a <e 2时,g(x)在[0,1]上的最小值是g(ln(2a))=2a -2aln(2a)-b ;当a≥e 2时,g(x)在[0,1]上的最小值是g(1)=e -2a -b.(2)证明:设x0为f(x)在区间(0,1)内的一个零点,则由f(0)=f(x0)=0可知,f(x)在区间(0,x0)上不可能单调递增,也不可能单调递减.则g(x)不可能恒为正,也不可能恒为负.故g(x)在区间(0,x0)内存在零点x1.同理g(x)在区间(x0,1)内存在零点x2.故g(x)在区间(0,1)内至少有两个零点.由(1)知,当a≤12时,g(x)在[0,1]上单调递增,故g(x)在(0,1)内至多有一个零点;当a≥e 2时,g(x)在[0,1]上单调递减,故g(x)在(0,1)内至多有一个零点,都不合题意.所以12<a <e 2.此时g(x)在区间[0,ln(2a)]上单调递减,在区间(ln(2a),1]上单调递增.因此x1∈(0,ln(2a)),x2∈(ln(2a),1),必有g(0)=1-b >0,g(1)=e -2a -b >0.由f(1)=0有a +b =e -1<2,有g(0)=a -e +2>0,g(1)=1-a>0.解得e -2<a <1.所以,函数f(x)在区间(0,1)内有零点时,e -2<a <1.6.(·北京卷)函数f(x)=⎩⎪⎨⎪⎧log 12x ,x≥1,2x ,x<1的值域为________. 【答案】(-∞,2)【解析】函数y =log 12x 在(0,+∞)上为减函数,当x≥1时,函数y =log 12x 的值域为(-∞,0];函数y=2x 在R 上是增函数,当x<1时,函数y =2x 的值域为(0,2),所以原函数的值域为(-∞,2).7.(·北京卷)下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( )A .y =1xB .y =e -xC .y =-x2+1D .y =lg |x|【答案】C【解析】对于A ,y =1x 是奇函数,排除.对于B ,y =e -x 既不是奇函数,也不是偶函数,排除.对于D ,y =lg |x|是偶函数,但在(0,+∞)上有y =lgx ,此时单调递增,排除.只有C 符合题意.8.(·新课标全国卷Ⅱ] 若存在正数x 使2x(x -a)<1成立,则a 的取值范围是( )A .(-∞,+∞)B .(-2,+∞)C .(0,+∞)D .(-1,+∞)【答案】D【解析】由题意存在正数x 使得a>x -12x 成立,即a>⎝⎛⎭⎫x -12x min.由于x -12x 是(0,+∞)上的增函数,故x -12x >0-120=-1,所以a>-1.答案为D.9.(·新课标全国卷Ⅱ] 已知函数f(x)=x3+ax2+bx +c ,下列结论中错误的是( )A .x0∈R ,f(x0)=0B .函数y =f(x)的图像是中心对称图形C .若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减D .若x0是f(x)的极值点,则f′(x0)=0【答案】C【解析】x→-∞时,f(x)<0,x→+∞时,f(x)>0,又f(x)连续,x0∈R ,f(x0)=0,A 正确.通过平移变换,函数可以化为f(x)=x3+c ,从而函数y =f(x)的图像是中心对称图形,B 正确.若x0是f(x)的极小值点,可能还有极大值点x1,若x1<x0,则f(x)在区间(x1,x0)单调递减,C 错误.D 正确.故答案为C.10.(·四川卷)已知函数f(x)=⎩⎪⎨⎪⎧x2+2x +a ,x<0,ln x ,x>0,其中a 是实数.设A(x1,f(x1)),B(x2,f(x2))为该函数图像上的两点,且x1<x2.(1)指出函数f(x)的单调区间;(2)若函数f(x)的图像在点A ,B 处的切线互相垂直,且x2<0,证明:x2-x1≥1;(3)若函数f(x)的图像在点A ,B 处的切线重合,求a 的取值范围.【解析】(1)函数f(x)的单调递减区间为(-∞,-1 ),单调递增区间为[-1,0),(0,+∞).(2)证明:由导数的几何意义可知,点A 处的切线斜率为f′(x1),点B 处的切线斜率为f′(x2).故当点A 处的切线与点B 处的切线垂直时,有f′(x1)·f′(x2)=-1.当x<0时,对函数f(x)求导,得f′(x)=2x +2.因为x1<x2<0,所以,(2x1+2)(2x2+2)=-1,所以2x1+2<0,2x2+2>0,因此x2-x1=12[-(2x1+2)+2x2+2]≥[-(2x1+2)](2x2+2)=1.当且仅当-(2x1+2)=2x2+2=1,即x1=-32且x2=-12时等号成立所以,函数f(x)的图像在点A ,B 处的切线互相垂直时,有x2-x1≥1.(3)当x1<x2<0或x2>x1>0时,f′(x1)≠f′(x2),故x1<0<x2.当x1<0时,函数f(x)的图像在点(x1,f(x1))处的切线方程为y -(x21+2x1+a)=(2x1+2)(x -x1),即y =(2x1+2)x -x21+a.当x2>0时,函数f(x)的图像在点(x2,f(x2))处的切线方程为y -ln x2=1x2(x -x2),即y =1x2·x +ln x2-1.两切线重合的充要条件是⎩⎪⎨⎪⎧1x2=2x1+2,①ln x2-1=-x21+a.② 由①及x1<0<x2知,0<1x2<2.由①②得,a =ln x2+⎝⎛⎭⎫12x2-12-1=-ln 1x2+14⎝⎛⎭⎫1x2-22-1. 令t =1x2,则0<t<2,且a =14t2-t -ln t.设h(t)=14t2-t -ln t(0<t<2).则h′(t)=12t -1-1t =(t -1)2-32t<0. 所以h(t)(0<t<2)为减函数.则h(t)>h(2)=-ln 2-1,所以a>-ln2-1,而当t ∈(0,2)且t 趋近于0时,h(t)无限增大,所以a 的取值范围是(-ln 2-1,+∞).故当函数f(x)的图像在点A ,B 处的切线重合时,a 的取值范围是(-ln 2-1,+∞).11.(·四川卷)设函数f(x)=ex +x -a(a ∈R ,e 为自然对数的底数).若存在b ∈[0,1]使f(f(b))=b 成立,则a 的取值范围是( )A .[1,e]B .[1,1+e]C .[e ,1+e]D .[0,1]【答案】A【高考押题】1.下列函数中,既是偶函数又在(0,+∞)内单调递减的函数是().A .y =x2B .y =|x|+1C .y =-lg|x|D .y =2|x|解析 对于C 中函数,当x>0时,y =-lgx ,故为(0,+∞)上的减函数,且y =-lg |x|为偶函数. 答案 C2.已知函数f(x)为R 上的减函数,则满足f(|x|)<f(1)的实数x 的取值范围是()A .(-1,1)B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)解析 ∵f(x)在R 上为减函数且f(|x|)<f(1),∴|x|>1,解得x >1或x <-1.答案 D3.若函数y =ax 与y =-b x 在(0,+∞)上都是减函数,则y =ax2+bx 在(0,+∞)上是()A .增函数B .减函数C .先增后减D .先减后增解析∵y =ax 与y =-b x 在(0,+∞)上都是减函数,∴a<0,b<0,∴y =ax2+bx 的对称轴方程x =-b 2a <0,∴y =ax2+bx 在(0,+∞)上为减函数.答案B4.设函数f(x)=⎩⎪⎨⎪⎧1,x>0,0,x =0,-1,x<0,g(x)=x2f(x -1),则函数g(x)的递减区间是 (). A .(-∞,0]B .[0,1)C .[1,+∞)D .[-1,0] 解析 g(x)=⎩⎪⎨⎪⎧x2,x>1,0,x =1,-x2,x<1.如图所示,其递减区间是[0,1).故选B.答案 B5.函数y =-x2+2x -3(x <0)的单调增区间是()A .(0,+∞)B .(-∞,1]C .(-∞,0)D .(-∞,-1]解析 二次函数的对称轴为x =1,又因为二次项系数为负数,拋物线开口向下,对称轴在定义域的右侧,所以其单调增区间为(-∞,0).。
高考数学模拟复习试卷试题模拟卷第八章 直线与圆006108
![高考数学模拟复习试卷试题模拟卷第八章 直线与圆006108](https://img.taocdn.com/s3/m/0bb4deda52ea551811a6877a.png)
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【高频考点解读】 1.了解向量的实际背景;2.理解平面向量的概念,理解两个向量相等的含义;3.理解向量的几何表示;4.掌握向量加法、减法的运算,并理解其几何意义;5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义;6.了解向量线性运算的性质及其几何意义. 【热点题型】题型一平面向量的有关概念 【例1】给出下列命题: ①若|a|=|b|,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB →=DC →是四边形ABCD 为平行四边形的充要条件; ③若a =b ,b =c ,则a =c ; ④若a ∥b ,b ∥c ,则a ∥c. 其中正确命题的序号是()A .②③B .②④C .③④D .②③④ 【提分秘籍】(1)相等向量具有传递性,非零向量的平行也具有传递性.(2)共线向量即为平行向量,它们均与起点无关.(3)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象的移动混为一谈.(4)非零向量a 与a |a|的关系:a|a|是与a 同方向的单位向量.【举一反三】 给出下列命题:①两个具有公共终点的向量,一定是共线向量; ②两个向量不能比较大小,但它们的模能比较大小; ③若λa =0 (λ为实数),则λ必为零;④已知λ,μ为实数,若λa =μb ,则a 与b 共线. 其中错误命题的个数为() A .1 B .2 C .3 D .4 题型二 平面向量的线性运算【例2】 (1)在△ABC 中,AB 边的高为CD ,若CB →=a ,CA →=b ,a·b =0,|a|=1,|b|=2,则AD →=() A.13a -13b B.23a -23b C.35a -35b D.45a -45b(2)如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB →+AD →=λAO →,则λ=________.【提分秘籍】(1)解题的关键在于熟练地找出图形中的相等向量,并能熟练运用相反向量将加减法相互转化.(2)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果.【举一反三】(1)如图所示,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →=()A .a -12b B.12a -b C .a +12b D.12a +b(2)如图,D ,E ,F 分别是△ABC 的边AB ,BC ,CA 的中点,则()A.AD →+BE →+CF →=0B.BD →-CF →+DF →=0C.AD →+CE →-CF →=0D.BD →-BE →-FC →=0题型三共线向量定理的应用【例3】设两个非零向量a 与b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b).求证:A ,B ,D 三点共线; (2)试确定实数k ,使ka +b 和a +kb 共线. 【提分秘籍】(1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(2)向量a ,b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立;若λ1a +λ2b =0,当且仅当λ1=λ2=0时成立,则向量a ,b 不共线.【举一反三】(1)已知向量i 与j 不共线,且AB →=i +mj ,AD →=ni +j.若A ,B ,D 三点共线,则实数m ,n 应该满足的条件是()A .m +n =1B .m +n =-1C .mn =1D .mn =-1(2)如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,则1n +1m 的值为________.【高考风向标】1.【高考安徽,文15】ABC ∆是边长为2的等边三角形,已知向量b a 、满足a AB2=→,b a AC+=→2,则下列结论中正确的是.(写出所有正确结论得序号)①a 为单位向量;②b 为单位向量;③b a ⊥;④→BC b // ;⑤→⊥+BC b a )4(。
高考数学模拟复习试卷试题模拟卷第八章 直线与圆006371
![高考数学模拟复习试卷试题模拟卷第八章 直线与圆006371](https://img.taocdn.com/s3/m/fdd8cd2a910ef12d2bf9e72a.png)
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【考情解读】1.能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性;2.理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值以及与x 轴的交点等),理解正切函数在区间⎝⎛⎭⎫-π2,π2内的单调性. 【重点知识梳理】1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝⎛⎭⎫π2,1,(π,0),⎝⎛⎭⎫3π2,-1,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝⎛⎭⎫π2,0,(π,-1),⎝⎛⎭⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z)函数 y =sin xy =cos xy =tan x图象定义域RR{x |x ∈R ,且x≠⎭⎬⎫kπ+π2,k ∈Z值域 [-1,1] [-1,1] R 周期性 2π 2π π 奇偶性 奇函数偶函数 奇函数递增 区间 ⎣⎡⎦⎤2kπ-π2,2kπ+π2[2kπ-π,2kπ]⎝⎛⎭⎫kπ-π2,kπ+π2递减 区间 ⎣⎡⎦⎤2kπ+π2,2kπ+3π2 [2kπ,2kπ+π]无对称 中心 (kπ,0) ⎝⎛⎭⎫kπ+π2,0⎝⎛⎭⎫kπ2,0对称轴 方程 x =kπ+π2x =kπ无【高频考点突破】考点一 三角函数的定义域、值域【例1】 (1)函数y =1tan x -1的定义域为____________.(2)函数y =2sin ⎝⎛⎭⎫πx 6-π3(0≤x≤9)的最大值与最小值之和为() A .2- 3 B .0 C .-1 D .-1-3 【规律方法】(1)求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解. (2)求解三角函数的值域(最值)常见到以下几种类型:①形如y =asin x +bcos x +c 的三角函数化为y =Asin(ωx +φ)+k 的形式,再求最值(值域);②形如y =asin2x +bsin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);③形如y =asin xcos x +b(sin x±cos x)+c 的三角函数,可先设t =sin x±cos x ,化为关于t 的二次函数求值域(最值).【变式探究】 (1)函数y =sin x -cos x 的定义域为________. (2)函数y =sin x -cos x +sin xcos x 的值域为________. 考点二 三角函数的奇偶性、周期性、对称性【例2】 (1)已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f(x)=sin(ωx +φ)的图象的两条相邻的对称轴,则φ=()A.π4B.π3C.π2D.3π4(2)函数y =2cos2⎝⎛⎭⎫x -π4-1是() A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为π2的奇函数 D .最小正周期为π2的偶函数 【规律方法】(1)求f(x)=Asin(ωx +φ)(ω≠0)的对称轴,只需令ωx +φ=π2+kπ(k ∈Z),求x ;求f(x)的对称中心的横坐标,只需令ωx +φ=kπ(k ∈Z)即可.(2)求最小正周期时可先把所给三角函数式化为y =Asin(ωx +φ)或y =Acos(ωx +φ)的形式,则最小正周期为T =2π|ω|;奇偶性的判断关键是解析式是否为y =Asin ωx 或y =Acos ωx +b 的形式.【变式探究】 (1)如果函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0中心对称,那么|φ|的最小值为() A.π6 B.π4 C.π3 D.π2(2)若函数f(x)=sin x +φ3(φ∈[0,2π])是偶函数,则φ=() A.π2 B.2π3 C.3π2 D.5π3 考点三 三角函数的单调性【例3】 (1)已知f(x)=2sin ⎝⎛⎭⎫x +π4,x ∈[0,π],则f(x)的单调递增区间为________.(2)已知ω>0,函数f(x)=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是() A.⎣⎡⎦⎤12,54 B.⎣⎡⎦⎤12,34C.⎝⎛⎦⎤0,12 D .(0,2] 【规律方法】(1)求较为复杂的三角函数的单调区间时,首先化简成y =Asin(ωx +φ)形式,再求y =Asin(ωx +φ)的单调区间,只需把ωx +φ看作一个整体代入y =sin x 的相应单调区间内即可,注意要先把ω化为正数.(2)对于已知函数的单调区间的某一部分确定参数ω的范围的问题,首先,明确已知的单调区间应为函数的单调区间的子集,其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解,另外,若是选择题利用特值验证排除法求解更为简捷.【变式探究】 (1)若函数f(x)=sin ωx(ω>0)在区间⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω等于()A.23B.32 C .2 D .3(2)函数f(x)=sin ⎝⎛⎭⎫-2x +π3的单调减区间为______. 【真题感悟】【高考浙江,文11】函数()2sin sin cos 1f x x x x =++的最小正周期是,最小值是. 【高考陕西,文14】如图,某港口一天6时到18时的谁深变化曲线近似满足函数y =3sin(6πx +Φ)+k ,据此函数可知,这段时间水深(单位:m)的最大值为____________.【高考湖南,文15】已知ω>0,在函数y=2sin ωx 与y=2cos ωx 的图像的交点中,距离最短的两个交点的距离为23,则ω =_____.【高考天津,文14】已知函数()()sin cos 0f x x x ωωω=+>,x ∈R ,若函数()f x 在区间(),ωω-内单调递增,且函数()f x 的图像关于直线x ω=对称,则ω的值为.【高考福建,文21】已知函数()2103sin cos 10cos 222x x x f x =+. (Ⅰ)求函数()f x 的最小正周期; (Ⅱ)将函数()f x 的图象向右平移6π个单位长度,再向下平移a (0a >)个单位长度后得到函数()g x 的图象,且函数()g x 的最大值为2.(ⅰ)求函数()g x 的解析式;(ⅱ)证明:存在无穷多个互不相同的正整数0x ,使得()00g x >. 【高考重庆,文18】已知函数f(x)=12sin2x 32cos x . (Ⅰ)求f (x )的最小周期和最小值,(Ⅱ)将函数f (x )的图像上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g (x )的图像.当x ∈,2ππ⎡⎤⎢⎥⎣⎦时,求g(x)的值域. (·安徽卷) 设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b =3,c =1,△ABC 的面积为 2.求cos A 与a 的值.(·福建卷) 将函数y =sin x 的图像向左平移π2个单位,得到函数y =f(x)的图像,则下列说法正确的是( )A .y =f(x)是奇函数B .y =f(x)的周期为πC .y =f(x)的图像关于直线x =π2对称D .y =f(x)的图像关于点⎝⎛⎭⎫-π2,0对称 (·江苏卷) 已知函数y =cos x 与y =sin(2x +φ)(0≤φ<π),它们的图像有一个横坐标为π3的交点,则φ的值是________.(·全国新课标卷Ⅰ] 在函数①y =cos|2x|,②y =|cos x|,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③(·江苏卷) 函数y =3sin ⎝⎛⎭⎫2x +π4的最小正周期为________.(·辽宁卷) 设向量a =(3sin x ,sin x),b =(cos x ,sin x),x ∈0,π2. (1)若|a|=|b|,求x 的值;(2)设函数f(x)=a·b ,求f(x)的最大值.(·山东卷) 函数y =xcos x +sin x 的图像大致为( )图1-3(·新课标全国卷Ⅰ] 设当x =θ时,函数f(x)=sin x -2cos x 取得最大值,则cos θ=________. 【押题专练】1.函数y =|2sin x|的最小正周期为( ) A .π B .2π C.π2D.π42.已知f(x)=cos 2x -1,g(x)=f(x +m)+n ,则使g(x)为奇函数的实数m ,n 的可能取值为( ) A .m =π2,n =-1 B .m =π2,n =1 C .m =-π4,n =-1D .m =-π4,n =13.已知函数y =sin x 的定义域为[a ,b],值域为⎣⎡⎦⎤-1,12,则b -a 的值不可能是( )A.π3B.2π3 C .π D.4π34.已知函数f(x)=sin πx 的部分图象如图1所示,则图2所示的函数的部分图象对应的函数解析式可以是( )A .y =f ⎝⎛⎭⎫2x -12B .y =f ⎝⎛⎭⎫x 2-12C .y =f(2x -1)D .y =f ⎝⎛⎭⎫x 2-1 5.定义行列式运算:⎪⎪⎪⎪⎪⎪a1a2a3a4=a1a4-a2a3,将函数f(x)=⎪⎪⎪⎪⎪⎪3 cos x 1 sin x 的图象向左平移m 个单位(m>0),若所得图象对应的函数为偶函数,则m 的最小值为( )A.π8B.π3C.56πD.2π36.已知f(x)=sin x ,x ∈R ,g(x)的图象与f(x)的图象关于点⎝⎛⎭⎫π4,0对称,则在区间[0,2π]上满足f(x)≤g(x)的x 的取值范围是( )A.⎣⎡⎦⎤π4,3π4 B .⎣⎡⎦⎤3π4,7π4C.⎣⎡⎦⎤π2,3π2D.⎣⎡⎦⎤3π4,3π2 7.若函数f(x)=sin(2x +φ)(φ∈[0,π])是偶函数,则φ=________. 8.函数f(x)=sin ⎝⎛⎭⎫2x -π4-22sin2x 的最小正周期是________.9.函数f(x)=2sin ωx(ω>0)在⎣⎡⎦⎤0,π4上单调递增,且在这个区间上的最大值是3,那么ω等于________.10.已知函数y =sin ⎝⎛⎭⎫π3-2x ,求:(1)函数的周期;(2)求函数在[-π,0]上的单调递减区间.11.已知函数f(x)=2sin2⎝⎛⎭⎫π4x +9π4. (1)求函数f(x)的最小正周期; (2)计算f(1)+f(2)+…+f(2 013)的值.12.设函数f(x)=sin(2x +φ)(-π<φ<0),y =f(x)的图象的一条对称轴是直线x =π8. (1)求φ;(2)求函数y =f(x)的单调递增区间.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.了解函数y =Asin(ωx +φ)的物理意义;能画出y =Asin(ωx +φ)的图象,了解参数A ,ω,φ对函数图象变化的影响;2.了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题. 【热点题型】题型一 函数y =Asin(ωx +φ)的图象及变换【例1】 设函数f(x)=sin ωx +3cos ωx(ω>0)的周期为π. (1)求它的振幅、初相;(2)用五点法作出它在长度为一个周期的闭区间上的图象;(3)说明函数f(x)的图象可由y =sin x 的图象经过怎样的变换而得到. 解 (1)f(x)=sin ωx +3cos ωx=2⎝ ⎛⎭⎪⎫12sin ωx +32cos ωx =2sin ⎝⎛⎭⎫ωx +π3, 又∵T =π,∴2πω=π,即ω=2.∴f(x)=2sin ⎝⎛⎭⎫2x +π3.∴函数f(x)=sin ωx +3cos ωx 的振幅为2,初相为π3. (2)令X =2x +π3,则y =2sin ⎝⎛⎭⎫2x +π3=2sin X.列表,并描点画出图象:x -π6 π12 π3 7π12 5π6 X 0 π2 π 3π2 2π y =sin X 01 0 -1 0 y =2sin ⎝⎛⎭⎫2x +π32-2【提分秘籍】作函数y =Asin(ωx +φ)(A >0,ω>0)的图象常用如下两种方法:(1)五点法作图法,用“五点法”作y =Asin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象;(2)图象的变换法,由函数y =sin x 的图象通过变换得到y =Asin(ωx +φ)的图象有两种途径:“先平移后伸缩”与“先伸缩后平移”.【举一反三】设函数f(x)=cos(ωx +φ)⎝⎛⎭⎫ω>0,-π2<φ<0的最小正周期为π,且f ⎝⎛⎭⎫π4=32.(1)求ω和φ的值;(2)在给定坐标系中作出函数f(x)在[0,π]上的图象.解 (1)∵T =2πω=π,ω=2,又f ⎝⎛⎭⎫π4=cos ⎝⎛⎭⎫2×π4+φ=32,∴sin φ=-32,又-π2<φ<0,∴φ=-π3.(2)由(1)得f(x)=cos ⎝⎛⎭⎫2x -π3,列表: 2x -π3-π3π2π32π53πx 0 π6 512π 23π 1112π π f(x)121-112图象如图.题型二利用三角函数图象求其解析式例2、(1)已知函数f(x)=Acos(ωx +φ)的图象如图所示,f ⎝⎛⎭⎫π2=-23,则f(0)=( )A .-23B .-12 C.23 D.12(2)函数f(x)=Asin(ωx +φ)(A >0,ω>0,|φ|<π)的部分图象如图所示,则函数f(x)的解析式为________.解析 (1)由三角函数图象得 T 2=11π12-7π12=π3, 即T =2π3,所以ω=2πT =3.又x =7π12是函数单调增区间中的一个零点, 所以3×7π12+φ=3π2+2kπ, 解得φ=-π4+2kπ,k ∈Z , 所以f(x)=Acos ⎝⎛⎭⎫3x -π4.由f ⎝⎛⎭⎫π2=-23,得A =223,所以f(x)=223cos ⎝⎛⎭⎫3x -π4,所以f(0)=223·cos ⎝⎛⎭⎫-π4=23.法二 以⎝⎛⎭⎫π3,0为第二个“零点”,⎝⎛⎭⎫7π12,-2为最小值点,列方程组⎩⎨⎧ω·π3+φ=π,ω·7π12+φ=3π2,解得⎩⎪⎨⎪⎧ω=2,φ=π3,故f(x)=2sin ⎝⎛⎭⎫2x +π3.答案 (1)C (2)f(x)=2sin ⎝⎛⎭⎫2x +π3 【提分秘籍】已知f(x)=Asin(ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)五点法,由ω=2πT 即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x0,则令ωx0+φ=0(或ωx0+φ=π),即可求出φ;(2)代入法,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.【举一反三】(1)已知函数f(x)=Acos(ωx +φ)(A >0,ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,△EFG 是边长为2的等边三角形,则f(1)的值为( )A .-32B .-62 C.3 D .- 3(2)函数f(x)=Asin(ω+φ)(A ,ω,φ为常数,A >0,ω>0,0<φ<π)的图象如图所示,则f ⎝⎛⎭⎫π3的值为______.解析 (1)由题意得f(0)=0, 即Acos φ=0,因为0<φ<π,A >0,所以φ=π2,由FG =2, 得T 2=πω=2,即ω=π2,E 的纵坐标为yE =2sin 60°=3, 所以A =3,故f(x)=3cos ⎝⎛⎭⎫π2x +π2=-3sin π2x ,所以f(1)=- 3.故选D.(2)由三角函数图象可得A =2,34T =11π12-π6=34π,所以周期 T =π=2πω,解得ω=2.又函数图象过点⎝⎛⎭⎫π6,2所以f ⎝⎛⎭⎫π6=2sin ⎝⎛⎭⎫2×π6+φ=2,0<φ<π,解得φ=π6, 所以f(x)=2sin ⎝⎛⎭⎫2x +π6,f ⎝⎛⎭⎫π3=2sin ⎝⎛⎭⎫2π3+π6=1.答案 (1)D (2)1题型三函数y =Asin(ωx +φ)的性质应用【例3】已知向量a =(m ,cos 2x ),b =(sin 2x ,n),函数f(x)=a·b ,且y =f(x)的图象过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2.(1)求m ,n 的值;(2)将y =f(x)的图象向左平移φ(0<φ<π)个单位后得到函数y =g(x)的图象,若y =g(x)图象上各最高点到点(0,3)的距离的最小值为1,求y =g(x)的单调递增区间.(2)由(1)知f(x)=3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6.由题意知g(x)=f(x +φ)=2sin ⎝⎛⎭⎫2x +2φ+π6.设y =g(x)的图象上符合题意的最高点为(x0,2), 由题意知x20+1=1,所以x0=0,即到点(0,3)的距离为1的最高点为(0,2). 将其代入y =g(x)得sin ⎝⎛⎭⎫2φ+π6=1,因为0<φ<π,所以φ=π6. 因此g(x)=2sin ⎝⎛⎭⎫2x +π2=2cos 2x.由2kπ-π≤2x≤2kπ,k ∈Z 得kπ-π2≤x≤kπ,k ∈Z. 所以函数y =g(x)的单调递增区间为⎣⎡⎦⎤kπ-π2,kπ,k ∈Z.【提分秘籍】解决三角函数图象与性质综合问题的方法:先将y =f(x)化为y =asin x +bcos x 的形式,然后用辅助角公式化为y =Asin(ωx +φ)+b 的形式,再借助y =Asin(ωx +φ)的性质(如周期性、对称性、单调性等)解决相关问题.【举一反三】已知函数f(x)=3sin(ωx +φ)-cos(ωx +φ)(0<φ<π,ω>0)为偶函数,且函数y =f(x)图象的两相邻对称轴间的距离为π2.(1)求f ⎝⎛⎭⎫π8的值; (2)求函数y =f(x)+f ⎝⎛⎭⎫x +π4的最大值及对应的x 的值.解 (1)f(x)=3sin(ωx +φ)-cos(ωx +φ) =2⎣⎢⎡⎦⎥⎤32sin (ωx +φ)-12cos (ωx +φ) =2sin ⎝⎛⎭⎫ωx +φ-π6.因为f(x)为偶函数,则φ-π6=π2+kπ(k ∈Z),所以φ=2π3+kπ(k ∈Z), 又因为0<φ<π,所以φ=2π3, 所以f(x)=2sin ⎝⎛⎭⎫ωx +π2=2cos ωx.由题意得2πω=2·π2,所以ω=2. 故f(x)=2cos 2x.因此f ⎝⎛⎭⎫π8=2cos π4= 2.(2)y =2cos 2x +2cos 2⎝⎛⎭⎫x +π4=2cos 2x +2cos ⎝⎛⎭⎫2x +π2=2cos 2x -2sin 2x=22sin ⎝⎛⎭⎫π4-2x . 令π4-2x =2kπ+π2(k ∈Z),y 有最大值22, 所以当x =-kπ-π8(k ∈Z)时,y 有最大值2 2. 【高考风向标】【高考山东,文4】要得到函数4y sin x =-(3π)的图象,只需要将函数4y sin x =的图象() (A )向左平移12π个单位 (B )向右平移12π个单位(C )向左平移3π个单位 (D )向右平移3π个单位 【答案】B【解析】因为sin(4)sin 4()312y x x ππ=-=-,所以,只需要将函数4y sin x =的图象向右平移12π个单位,故选B.【高考湖北,文18】某同学用“五点法”画函数π()sin()(0,||)2f x A x ωϕωϕ=+><在某一个周期内的图象时,列表并填入了部分数据,如下表:x ωϕ+0 π2 π3π2 2πxπ35π6sin()A x ωϕ+55-(Ⅰ 析式;(Ⅱ)将()y f x =图象上所有点向左平行移动π6个单位长度,得到()y g x =图象,求 ()y g x =的图象离原点O 最近的对称中心.【答案】(Ⅰ)根据表中已知数据,解得π5,2,6A ωϕ===-.数据补全如下表:x ωϕ+π2π3π22πxπ12 π3 7π12 5π6 13π12sin()A x ωϕ+0 5 0 5- 0且函数表达式为π()5sin(2)6f x x =-;(Ⅱ)离原点O 最近的对称中心为π(,0)12-.1.(·天津卷) 已知函数f(x)=3sin ωx +cos ωx(ω>0),x ∈R.在曲线y =f(x)与直线y =1的交点中,若相邻交点距离的最小值为π3,则f(x)的最小正周期为( )A.π2B.2π3 C .π D .2π【答案】C 【解析】∵f(x)=2sin ⎝⎛⎭⎫ωx +π6=1,∴sin ⎝⎛⎭⎫ωx +π6=12,∴ωx1+π6=π6+2k1π(k1∈Z)或 ωx2+π6=5π6+2k2π(k2∈Z),则ω(x2-x1)=2π3+2(k2-k1)π.又∵相邻交点距离的最小值为π3,∴ω=2,∴T =π.2.(·安徽卷) 若将函数f(x)=sin 2x +cos 2x 的图像向右平移φ个单位,所得图像关于y 轴对称,则φ的最小正值是( )A.π8B.π4C.3π8D.3π4 【答案】C【解析】方法一:将f(x)=2sin ⎝⎛⎭⎫2x +π4的图像向右平移φ个单位,得到y =2sin ⎝⎛⎭⎫2x +π4-2φ的图像,由所得图像关于y 轴对称,可知sin ⎝⎛⎭⎫π4-2φ=±1,即sin ⎝⎛⎭⎫2φ-π4=±1,故2φ-π4=kπ+π2,k ∈Z ,即φ=kπ2+3π8,k ∈Z ,又φ>0,所以φmin =3π8.3.(·重庆卷) 将函数f(x)=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ<π2图像上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图像,则f ⎝⎛⎭⎫π6=________.【答案】224.(·北京卷) 函数f(x)=3sin ⎝⎛⎭⎫2x +π6的部分图像如图1-4所示.图1-4(1)写出f(x)的最小正周期及图中x0,y0的值; (2)求f(x)在区间⎣⎡⎦⎤-π2,-π12上的最大值和最小值.【解析】(1)f(x)的最小正周期为π. x0=7π6,y0=3.(2)因为x ∈⎣⎡⎦⎤-π2,-π12,所以2x +π6∈⎣⎡⎦⎤-5π6,0.于是,当2x +π6=0,即x =-π12时,f(x)取得最大值0; 当2x +π6=-π2,即x =-π3时,f(x)取得最小值-3.5.(·福建卷) 已知函数f(x)=2cos x(sin x +cos x).(1)求f ⎝⎛⎭⎫5π4的值;(2)求函数f(x)的最小正周期及单调递增区间. 【解析】方法一:(1)f ⎝⎛⎭⎫5π4=2cos 5π4⎝⎛⎭⎫sin 5π4+cos 5π4=-2cos π4⎝⎛⎭⎫-sin π4-cos π4=2.方法二:f(x)=2sin xcos x +2cos2x =sin 2x +cos 2x +1 =2sin ⎝⎛⎭⎫2x +π4+1.(1)f ⎝⎛⎭⎫5π4=2sin 11π4+1=2sin π4+1 =2.(2)因为T =2π2=π,所以函数f(x)的最小正周期为π. 由2kπ-π2≤2x +π4≤2kπ+π2,k ∈Z ,得kπ-3π8≤x≤kπ+π8,k ∈Z.所以f(x)的单调递增区间为⎣⎡⎦⎤kπ-3π8,kπ+π8,k ∈Z.6.(·广东卷) 若空间中四条两两不同的直线l1,l2,l3,l4满足l1⊥l2,l2∥l3,l3⊥l4,则下列结论一定正确的是( )A .l1⊥l4B .l1∥l4C .l1与l4既不垂直也不平行D .l1与l4的位置关系不确定 【答案】D【解析】本题考查空间中直线的位置关系,构造正方体进行判断即可.如图所示,在正方体ABCD-A1B1C1D1中,设BB1是直线l1,BC 是直线l2,AD 是直线l3,则DD1是直线l4,此时l1∥l4;设BB1是直线l1,BC 是直线l2,A1D1是直线l3,则C1D1是直线l4,此时l1⊥l4.故l1与l4的位置关系不确定.7.(·湖北卷) 某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系: f(t)=10-3cos π12t -sin π12t ,t ∈[0,24). (1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差.【答案】(1)f(8)=10-3cos ⎝⎛⎭⎫π12×8-sin ⎝⎛⎭⎫π12×8=10-3cos 2π3-sin 2π3=10-3×⎝⎛⎭⎫-12-32=10.故实验室上午8时的温度为10 ℃.8.(·辽宁卷) 将函数y =3sin ⎝⎛⎭⎫2x +π3的图像向右平移π2个单位长度,所得图像对应的函数( )A .在区间⎣⎡⎦⎤π12,7π12上单调递减B .在区间⎣⎡⎦⎤π12,7π12上单调递增C .在区间⎣⎡⎦⎤-π6,π3上单调递减D .在区间⎣⎡⎦⎤-π6,π3上单调递增 【答案】B【解析】将函数y =3sin ⎝⎛⎭⎫2x +π3的图像向右平移π2个单位长度,得到y =3sin ⎝⎛⎭⎫2x -23π的图像 ,函数单调递增,则-π2+2kπ≤2x -23π≤π2+2kπ,k ∈Z ,即π12+kπ≤x≤7π12+kπ,k ∈Z ,即函数y =3sin ⎝⎛⎭⎫2x -23π的单调递增区间为⎣⎡⎦⎤π12+kπ,7π12+kπ,k ∈Z ,当k =0时,可知函数在区间⎣⎡⎦⎤π12,7π12上单调递增.9.(·新课标全国卷Ⅱ] 函数f(x)=sin(x +φ)-2sin φcos x 的最大值为________. 【答案】1【解析】 f(x)=sin(x +φ)-2sin φcos x =sin xcos φ+cos xsin φ-2sin φcos x =sin xcos φ-cos xsin φ=sin(x -φ),其最大值为1.10.(·全国新课标卷Ⅰ] 在函数①y =cos|2x|,②y =|cos x|,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③ 【答案】A11.(·山东卷) 函数y =32sin 2x +cos2x 的最小正周期为________. 【答案】π【解析】因为y =32sin 2x +1+cos 2x 2= sin ⎝⎛⎭⎫2x +π6+12,所以该函数的最小正周期T =2π2=π .12.(·陕西卷) 函数f(x)=cos ⎝⎛⎭⎫2x +π4的最小正周期是( )A.π2 B .π C .2π D .4π 【答案】B 【解析】T =2π2=π.134.(·浙江卷) 为了得到函数y =sin 3x +cos 3x 的图像,可以将函数y =2cos 3x 的图像( ) A .向右平移π12个单位 B .向右平移π4个单位 C .向左平移π12个单位 D .向左平移π4个单位 【答案】A【解析】y =sin 3x +cos 3x =2cos ⎝⎛⎭⎫3x -π4=2cos ⎣⎡⎦⎤3⎝⎛⎭⎫x -π12,故将函数y =2cos 3x 的图像向右平移π12个单位可以得到函数y =sin 3x +cos 3x 的图像,故选A.14.(·四川卷) 为了得到函数y =sin(x +1)的图像,只需把函数y =sin x 的图像上所有的点( )A .向左平行移动1个单位长度B .向右平行移动1个单位长度C .向左平行移动π个单位长度D .向右平行移动π个单位长度 【答案】A【解析】由函数y =sin x 的图像变换得到函数y =sin(x +1)的图像,应该将函数y =sin x 图像上所有的点向左平行移动1个单位长度,故选A.15.(·四川卷) 已知函数f(x)=sin ⎝⎛⎭⎫3x +π4. (1)求f(x)的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值.【解析】(1)因为函数y =sin x 的单调递增区间为⎣⎡⎦⎤-π2+2kπ,π2+2kπ,k ∈Z ,由-π2+2kπ≤3x +π4≤π2+2kπ,k ∈Z ,得-π4+2kπ3≤x≤π12+2kπ3,k ∈Z ,所以函数f(x)的单调递增区间为⎣⎡⎦⎤-π4+2kπ3,π12+2kπ3,k ∈Z. (2)由已知,得sin ⎝⎛⎭⎫α+π4=45cos ⎝⎛⎭⎫α+π4(cos2α-sin2α).所以sin αcos π4+cos αs in π4=45⎝⎛⎭⎫cos αco s π4-sin αsi n π4(cos2α-sin2α), 即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时,由α在第二象限内,得α=3π4+2kπ,k ∈Z. 此时,cos α-sin α=- 2.当sin α+co s α≠0时,(cos α-sin α)2=54.由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-52. 综上所述,cos α-sin α=-2或-52. 【高考押题】1.函数f(x)=3sin ⎝⎛⎭⎫x 2-π4,x ∈R 的最小正周期为( )A.π2B .πC .2πD .4π解析 最小正周期为T =2π12=4π.答案D2.将函数y =cos 2x +1的图象向右平移π4个单位,再向下平移1个单位后得到的函数图象对应的表达式为( )A .y =sin 2xB .y =sin 2x +2C .y =cos 2xD .y =cos ⎝⎛⎭⎫2x -π4 解析 将函数y =cos 2x +1的图象向右平移π4个单位得到y =cos 2⎝⎛⎭⎫x -π4+1=sin 2x +1,再向下平移1个单位得到y =sin 2x ,故选A.答案 A3.为了得到函数y =sin 3x +cos 3x 的图象,可以将函数y =2cos 3x 的图象 ( ) A .向右平移π12个单位B .向右平移π4个单位C .向左平移π12个单位D .向左平移π4个单位解析 ∵y =sin 3x +cos 3x =2cos ⎝⎛⎭⎫3x -π4=2cos ⎣⎡⎦⎤3⎝⎛⎭⎫x -π12,将y =2cos 3x 的图象向右平移π12个单位即可得到y =2cos ⎣⎡⎦⎤3⎝⎛⎭⎫x -π12的图象,故选A.答案 A4.函数f(x)=2sin(ωx +φ)(ω>0,-π2<φ<π2)的部分图象如图所示,则ω,φ的值分别是( )A .2,-π3B .2,-π6C .4,-π6D .4,π3解析 由图象知f(x)的周期T =2⎝⎛⎭⎫11π12-5π12=π,又T =2πω,ω>0,∴ω=2.由于f(x)=2sin(ωx +φ)(ω>0,-π2<φ<π2)的一个最高点为⎝⎛⎭⎫5π12,2,故有2×5π12+φ=2kπ+π2(k ∈Z),即φ=2kπ-π3,又-π2<φ<π2,∴φ=-π3,选A.答案 A5.将函数y =sin x 的图象向左平移π2个单位,得到函数y =f(x)的图象,则下列说法正确的是( ) A .y =f(x)是奇函数 B .y =f(x)的周期为πC .y =f(x)的图象关于直线x =π2对称D .y =f(x)的图象关于点⎝⎛⎭⎫-π2,0对称6.将函数f(x)=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ<π2图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图象,则f ⎝⎛⎭⎫π6=______.即f(x)=sin ⎝⎛⎭⎫12x +π6, ∴f ⎝⎛⎭⎫π6=sin ⎝⎛⎭⎫π12+π6=sin π4=22.答案 227.已知函数f(x)=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ≤π2的图象上的两个相邻的最高点和最低点的距离为22,且过点⎝⎛⎭⎫2,-12,则函数解析式f(x)=________.解析 据已知两个相邻最高和最低点距离为22,可得⎝⎛⎭⎫T 22+(1+1)2=22,解得T =4,故ω=2πT =π2,即f(x)=sin ⎝⎛⎭⎫πx 2+φ,又函数图象过点⎝⎛⎭⎫2,-12,故f(2)=sin ⎝⎛⎭⎫π2×2+φ=-sin φ=-12,又-π2≤φ≤π2,解得φ=π6,故f(x)=sin ⎝⎛⎭⎫πx 2+π6.答案 sin ⎝⎛⎭⎫πx 2+π68.设函数f(x)=Asin(ωx +φ)(A ,ω,φ是常数,A>0,ω>0).若f(x)在区间⎣⎡⎦⎤π6,π2上具有单调性,且f⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3=-f ⎝⎛⎭⎫π6,则f(x)的最小正周期为________.9.已知函数f(x)=4cos x·sin ⎝⎛⎭⎫x +π6+a 的最大值为2.(1)求a 的值及f(x)的最小正周期; (2)在坐标系上作出f(x)在[0,π]上的图象.解 (1)f(x)=4cos xsin ⎝⎛⎭⎫x +π6+a =4cos x·⎝ ⎛⎭⎪⎫32sin x +12cos x +a =3sin 2x +2cos2x +a =3sin 2x +cos 2x+1+a =2sin ⎝⎛⎭⎫2x +π6+1+a 的最大值为2,∴a =-1,最小正周期T =2π2=π.(2)列表:x 0 π6 5π12 2π3 11π12 π 2x +π6π6π2 π 3π2 2π 13π6 f(x)=2sin ⎝⎛⎭⎫2x +π612-21画图如下:10.某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系: f(t)=10-3cos π12t -sin π12t ,t ∈[0,24). (1)求实验室这一天的最大温差;(2)若要求实验室温度不高于11 ℃,则在哪段时间实验室需要降温? 解 (1)因为f(t)=10-2⎝⎛⎭⎪⎫32cos π12t +12sin π12t =10-2sin ⎝⎛⎭⎫π12t +π3,又0≤t<24, 所以π3≤π12t +π3<7π3,-1≤sin ⎝⎛⎭⎫π12t +π3≤1.当t =2时,sin ⎝⎛⎭⎫π12t +π3=1;当t =14时,sin ⎝⎛⎭⎫π12t +π3=-1. 于是f(x)在[0,24)上取得最大值12,取得最小值8.故实验室这一天最高温度为12℃,最低温度为8 ℃,最大温差为4 ℃. (2)依题意,当f(t )>11时实验室需要降温.由(1)得f(t)=10-2sin ⎝⎛⎭⎫π12t +π3,故有10-2sin ⎝⎛⎭⎫π12t +π3>11, 即sin ⎝⎛⎭⎫π12t +π3<-12.又0≤t<24,因此7π6<π12t +π3<11π6,即10<t<18.所以在10时至18时实验室需要降温.高考模拟复习试卷试题模拟卷。
高考数学模拟复习试卷试题模拟卷第八章 直线与圆0061195
![高考数学模拟复习试卷试题模拟卷第八章 直线与圆0061195](https://img.taocdn.com/s3/m/d8cbce3aaeaad1f346933fe9.png)
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【高频考点解读】1.能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性;2.理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值以及与x 轴的交点等),理解正切函数在区间⎝⎛⎭⎫-π2,π2内的单调性. 【热点题型】题型一 三角函数的定义域、值域【例1】 (1)函数y =1tan x -1的定义域为____________.(2)函数y =2si n ⎝⎛⎭⎫πx 6-π3(0≤x≤9)的最大值与最小值之和为( ) A .2- 3 B .0 C .-1 D .-1-3 【提分秘籍】(1)求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解.(2)求解三角函数的值域(最值)常见到以下几种类型:①形如y =asin x +bcos x +c 的三角函数化为y =Asin(ωx +φ)+k 的形式,再求最值(值域);②形如y =asin2x +bsin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);③形如y =asin xcos x +b(sin x±cos x)+c 的三角函数,可先设t =sinx±cos x ,化为关于t 的二次函数求值域(最值).【举一反三】(1)函数y =sin x -cos x 的定义域为________. (2)函数y =sin x -cos x +sin xcos x 的值域为________. 题型二三角函数的奇偶性、周期性、对称性【例2】 (1)已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f(x)=sin(ωx +φ)的图象的两条相邻的对称轴,则φ=( )A.π4B.π3C.π2D.3π4(2)函数y =2cos2⎝⎛⎭⎫x -π4-1是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数 D .最小正周期为π2的偶函数 【提分秘籍】(1)求f(x)=Asin(ωx +φ)(ω≠0)的对称轴,只需令ωx +φ=π2+kπ(k ∈Z),求x ;求f(x)的对称中心的横坐标,只需令ωx +φ=kπ(k ∈Z)即可.(2)求最小正周期时可先把所给三角函数式化为y =Asi n(ωx +φ)或y =Acos( ωx +φ)的形式,则最小正周期为T =2π|ω|;奇偶性的判断关键是解析式是否为y =Asin ωx 或y =Acos ωx +b 的形式.【举一反三】(1)如果函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0中心对称,那么|φ|的最小值为( ) A.π6 B.π4 C.π3 D.π2(2)(·杭州模拟)若函数f(x)=sin x +φ3(φ∈[0,2π])是偶函数,则φ=( ) A.π2 B.2π3 C.3π2 D.5π3 题型三 三角函数的单调性【例3】 (1)已知f(x)=2sin ⎝⎛⎭⎫x +π4,x ∈[0,π],则f(x)的单调递增区间为________.(2)已知ω>0,函数f(x)=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是( )A.⎣⎡⎦⎤12,54B.⎣⎡⎦⎤12,34C.⎝⎛⎦⎤0,12 D .(0,2] 【提分秘籍】(1)求较为复杂的三角函数的单调区间时,首先化简成y =Asin(ωx +φ)形式,再求y =Asin(ωx +φ)的单调区间,只需把ωx +φ看作一个整体代入y =sin x 的相应单调区间内即可,注意要先把ω化为正数.(2)对于已知函数的单调区间的某一部分确定参数ω的范围的问题,首先,明确已知的单调区间应为函数的单调区间的子集,其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解,另外,若是选择题利用特值验证排除法求解更为简捷.【举一反三】(1)若函数f(x)=sin ωx(ω>0)在区间⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω等于( )A.23B.32 C .2 D .3(2)函数f(x)=sin ⎝⎛⎭⎫-2x +π3的单调减区间为______.【高考风向标】【高考浙江,文11】函数()2sin sin cos 1f x x x x =++的最小正周期是,最小值是. 【高考陕西,文14】如图,某港口一天6时到18时的谁深变化曲线近似满足函数y =3sin(6πx +Φ)+k ,据此函数可知,这段时间水深(单位:m)的最大值为____________.【高考湖南,文15】已知ω>0,在函数y=2sin ωx 与y=2cos ωx 的图像的交点中,距离最短的两个交点的距离为23,则ω =_____.【高考天津,文14】已知函数()()sin cos 0f x x x ωωω=+>,x ∈R ,若函数()f x 在区间(),ωω-内单调递增,且函数()f x 的图像关于直线x ω=对称,则ω的值为.【高考福建,文21】已知函数()2103cos 10cos 222x x x f x =+. (Ⅰ)求函数()f x 的最小正周期; (Ⅱ)将函数()f x 的图象向右平移6π个单位长度,再向下平移a (0a >)个单位长度后得到函数()g x 的图象,且函数()g x 的最大值为2.(ⅰ)求函数()g x 的解析式;(ⅱ)证明:存在无穷多个互不相同的正整数0x ,使得()00g x >.【高考重庆,文18】已知函数f(x)=12sin2x 32cos x . (Ⅰ)求f (x )的最小周期和最小值,(Ⅱ)将函数f (x )的图像上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g (x )的图像.当x ∈,2ππ⎡⎤⎢⎥⎣⎦时,求g(x)的值域. (·安徽卷) 设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b =3,c =1,△ABC 的面积为 2.求cos A 与a 的值.(·福建卷) 将函数y =sin x 的图像向左平移π2个单位,得到函数y =f(x)的图像,则下列说法正确的是( )A .y =f(x)是奇函数B .y =f(x)的周期为πC .y =f(x)的图像关于直线x =π2对称D .y =f(x)的图像关于点⎝⎛⎭⎫-π2,0对称 (·江苏卷) 已知函数y =cos x 与y =sin(2x +φ)(0≤φ<π),它们的图像有一个横坐标为π3的交点,则φ的值是________.(·全国新课标卷Ⅰ] 在函数①y =cos|2x|,②y =|cos x|,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③(·江苏卷) 函数y =3sin ⎝⎛⎭⎫2x +π4的最小正周期为________.(·辽宁卷) 设向量a =(3sin x ,sin x),b =(cos x ,sin x),x ∈0,π2. (1)若|a|=|b|,求x 的值;(2)设函数f(x)=a·b ,求f(x)的最大值.(·山东卷) 函数y =xcos x +sin x 的图像大致为( )图1-3(·新课标全国卷Ⅰ] 设当x =θ时,函数f(x)=si n x -2cos x 取得最大值,则cos θ=________. 【高考押题】1.函数f(x)=tan ⎝⎛⎭⎫2x -π3的单调递增区间是( ) A.⎣⎡⎦⎤kπ2-π12,kπ2+5π12(k ∈Z) B.⎝⎛⎭⎫kπ2-π12,kπ2+5π12(k ∈Z) C.⎣⎡⎦⎤kπ-π12,kπ+5π12(k ∈Z) D.⎝⎛⎭⎫kπ+π6,kπ+2π3(k ∈Z)2.在函数①y =cos|2x|,②y =|cos x|,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③3.已知函数f(x)=cos23x -12,则f(x)的图象的相邻两条对称轴之间的距离等于 ( ) A.2π3B.π3C.π6D.π124.已知函数f(x)=sin(x +θ)+3cos(x +θ)⎝⎛⎭⎫θ∈⎣⎡⎦⎤-π2,π2是偶函数,则θ的值为 ( ) A .0B.π6C.π4D.π35.关于函数y =tan ⎝⎛⎭⎫2x -π3,下列说法正确的是( )A .是奇函数B .在区间⎝⎛⎭⎫0,π3上单调递减C.⎝⎛⎭⎫π6,0为其图象的一个对称中心 D .最小正周期为π6.函数y =cos ⎝⎛⎭⎫π4-2x 的单调减区间为________. 7.函数y =lg(sin x)+cos x -12的定义域为________.8.函数y =sin2x +sin x -1的值域为________.9.已知函数f(x)=6cos4x +5sin2x -4cos 2x ,求f(x)的定义域,判断它的奇偶性,并求其值域. 10.已知函数f(x)=cos x·sin ⎝⎛⎭⎫x +π3-3cos2x +34,x ∈R.(1)求f(x)的最小正周期;(2)求f(x)在闭区间⎣⎡⎦⎤-π4,π4上的最大值和最小值.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【考情解读】1.了解现实世界和日常生活中的不等关系.2.了解不等式(组)的实际背景.3.掌握不等式的性质及应用. 【重点知识梳理】 1.不等式的基本性质性质 性质内容 特别提醒对称性 a>b ⇔b<a ⇔ 传递性 a>b ,b>c ⇒a>c ⇒ 可加性a>b ⇔a +c>b +c⇔可乘性⎭⎪⎬⎪⎫a>b c>0⇒ac>bc 注意c 的符号⎭⎪⎬⎪⎫a>b c<0⇒ac<bc 同向可加性⎭⎪⎬⎪⎫a>b c>d ⇒a +c>b +d ⇒同向同正可乘性⎭⎪⎬⎪⎫a>b>0c>d>0⇒ac>bd ⇒可乘方性 a>b>0⇒an>bn(n ∈N ,n≥1) a ,b 同为正数可开方性a>b >0⇒n a>nb(n ∈N ,n≥2)2.(1)倒数的性质 ①a>b ,ab>0⇒1a <1b . ②a<0<b ⇒1a <1b . ③a>b>0,0<c<d ⇒ac >bd .④0<a<x<b 或a<x<b<0⇒1b <1x <1a . (2)有关分数的性质 若a>b>0,m>0,则①b a <b +m a +m ;b a >b -m a -m (b -m>0).②a b >a +m b +m ;a b <a -m b -m (b -m>0).【高频考点突破】考点一 用不等式(组)表示不等关系例1、某商人如果将进货单价为8元的商品按每件10元销售,每天可销售100件,现在他采用提高售价,减少进货量的办法增加利润.已知这种商品的单价每提高1元,销售量就相应减少10件.若把提价后商品的单价设为x 元,怎样用不等式表示每天的利润不低于300元?【方法技巧】对于不等式的表示问题,关键是理解题意,分清变化前后的各种量,得出相应的代数式,然后,用不等式表示.而对于涉及条件较多的实际问题,则往往需列不等式组解决.【变式探究】已知甲、乙两种食物的维生素A ,B 含量如下表:甲 乙 维生素A(单位/kg) 600 700 维生素B(单位/kg)800400设用甲、乙两种食物各xkg 56000单位维生素A 和62000单位维生素B ,则x ,y 应满足的所有不等关系为________.考点二 比较大小例2、(1)已知a1,a2∈(0,1),记M =a1a2,N =a1+a2-1,则M 与N 的大小关系是() A .M<N B .M>N C .M =ND .不确定(2)若a =ln33,b =ln44,c =ln55,则() A .a<b<c B .c<b<a C .c<a<bD .b<a<c【特别提醒】比较大小的常用方法 (1)作差法:一般步骤:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差.(2)作商法:一般步骤:①作商;②变形;③判断商与1的大小;④结论.(3)函数的单调性法:将要比较的两个数作为一个函数的两个函数值,根据函数单调性得出大小关系. 【变式探究】(1)如果a<b<0,那么下列不等式成立的是() A.1a <1bB .ab<b2C .-ab<-a2D .-1a <-1b(2)(·课标全国Ⅱ)设a =log32,b =log 52,c =log23,则()A .a>c>bB .b>c>aC .c>b>aD .c>a>b考点三 不等式性质的应用例3、已知a>b>0,给出下列四个不等式:①a2>b2;②2a>2b -1;③a -b>a -b ;④a3+b3>2a2b.其中一定成立的不等式为()A .①②③B .①②④C .①③④D .②③④【特别提醒】(1)判断不等式是否成立,需要逐一给出推理判断或反例说明.常用的推理判断需要利用不等式的性质.(2)在判断一个关于不等式的命题真假时,先把要判断的命题和不等式性质联系起来考虑,找到与命题相近的性质,并应用性质判断命题真假,当然判断的同时还要用到其他知识,比如对数函数、指数函数的性质等.【变式探究】(1)设a ,b 是非零实数,若a<b ,则下列不等式成立的是()A .a2<b2B .ab2<a2b C.1ab2<1a2b D.b a <a b (2)已知a ,b ,c ∈R ,有以下命题:①若a>b ,则ac2>bc2;②若ac2>bc2,则a>b ;③若a>b ,则a·2c>b·2c.其中正确的是________.(填上所有正确命题的序号)【真题感悟】1.【高考浙江,文6】有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:2m )分别为x ,y ,z ,且x y z <<,三种颜色涂料的粉刷费用(单位:元/2m )分别为a ,b ,c ,且a b c <<.在不同的方案中,最低的总费用(单位:元)是()A .ax by cz ++B .az by cx ++C .ay bz cx ++D .ay bx cz ++2.(·山东卷)已知实数x ,y 满足ax <ay(0<a <1),则下列关系式恒成立的是( )A. 1x2+1>1y2+1B. ln(x2+1)>ln(y2+1)C. sin x >sin yD. x3>y33.(·四川卷)若a>b>0,c<d<0,则一定有( )A.a c >b dB.a c <b dC.a d >b cD.a d <b c4.(·安徽卷)若函数f(x)=|x +1|+|2x +a|的最小值为3,则实数a 的值为( )A .5或8B .-1或5C .-1或-4D .-4或85.(·新课标全国卷Ⅱ)已知点A(-1,0),B(1,0),C(0,1),直线y =ax +b(a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( )A .(0,1) B.⎝ ⎛⎭⎪⎫1-22,12 C.⎝ ⎛⎦⎥⎤1-22,13 D.⎣⎡⎭⎫13,12 6.(·新课标全国卷Ⅱ)设a =log36,b =log510,c =log714,则( )A .c >b >aB .b >c >aC .a >c >bD .a >b >c【押题专练】1.若x >0,则x +4x 的最小值为().A .2B .3C .2 2D .42.已知a >0,b >0,a +b =2,则y =1a +4b 的最小值是(). A.72 B .4 C.92 D .53.小王从甲地到乙地的时速分别为a 和b(a<b),其全程的平均时速为v ,则().A .a<v<abB .v =ab C.ab<v<a +b 2 D .v =a +b 24.若正实数a ,b 满足a +b =1,则(). A.1a +1b 有最大值4 B .ab 有最小值14C.a +b 有最大值2D .a2+b2有最小值225.已知x>0,y>0,且2x +1y =1,若x +2y>m2+2m 恒成立,则实数m 的取值范围是(). A .(-∞,-2]∪[4,+∞) B .(-∞,-4]∪[2,+∞)C .(-2,4)D .(-4,2)6.已知两条直线l1:y =m 和l2:y =82m +1(m>0),l1与函数y =|log2x|的图象从左至右相交于点A ,B ,l2与函数y =|log2x|的图象从左至右相交于点C ,D.记线段AC 和BD 在x 轴上的投影长度分别为a ,b.当m 变化时,b a 的最小值为(). A .16 2 B .8 2 C .834D .4347.设x ,y 为实数.若4x2+y2+xy =1,则2x +y 的最大值是________.8.在平面直角坐标系xOy 中,过坐标原点的一条直线与函数f(x)=2x 的图象交于P ,Q 两点,则线段PQ 长的最小值是________.9.若正数a ,b 满足ab =a +b +3,则ab 的取值范围是________.10.已知两正数x ,y 满足x +y =1,则z =⎝⎛⎭⎫x +1x ⎝⎛⎭⎫y +1y 的最小值为________。
高考数学模拟复习试卷试题模拟卷第八章 直线与圆0063 100
![高考数学模拟复习试卷试题模拟卷第八章 直线与圆0063 100](https://img.taocdn.com/s3/m/fbcbc7f9ed630b1c59eeb5f0.png)
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515-B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫ ⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<aC .13<<-a 或23>a D .3-<a 或231<<a 2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B. 221 C. 22 D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【考情解读】1.理解空间直线、平面位置关系的定义,并了解有关的可以作为推理依据的公理和定理;2.能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.【重点知识梳理】1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.(2)公理2:过不在一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.(4)公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面. 推论2:经过两条相交直线有且只有一个平面.推论3:经过两条平行直线有且只有一个平面.2.空间中两直线的位置关系(1)位置关系的分类⎩⎪⎨⎪⎧共面直线⎩⎪⎨⎪⎧平行相交异面直线:不同在任何一个平面内(2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a′∥a ,b′∥b ,把a′与b′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).②范围:⎝⎛⎦⎤0,π2.(3)平行公理和等角定理①平行公理:平行于同一条直线的两条直线互相平行.②等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.3.空间直线与平面、平面与平面的位置关系(1)直线与平面的位置关系有相交、平行、在平面内三种情况.(2)平面与平面的位置关系有平行、相交两种情况.【高频考点突破】考点一 平面基本性质的应用【例1】 (1)以下四个命题中,正确命题的个数是()①不共面的四点中,其中任意三点不共线;②若点A ,B ,C ,D 共面,点A ,B ,C ,E 共面,则A ,B ,C ,D ,E 共面;③若直线a,b共面,直线a,c共面,则直线b,c共面;④依次首尾相接的四条线段必共面.A.0 B.1C.2 D.3(2)在正方体ABCD-A1B1C1D1中,P,Q,R分别是AB,AD,B1C1的中点,那么正方体的过P,Q,R 的截面图形是()A.三角形 B.四边形C.五边形 D.六边形【变式探究】如图所示是正方体和正四面体,P,Q,R,S分别是所在棱的中点,则四个点共面的图形的序号是________.解析可证①中的四边形PQRS为梯形;②中,如图所示,取A1A和BC的中点分别为M,N,可证明PMQNRS为平面图形,且PMQNRS为正六边形;③中,可证四边形PQRS为平行四边形;④中,可证Q点所在棱与面PRS平行,因此,P,Q,R,S四点不共面.答案①②③考点二空间两条直线的位置关系【例2】如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中,①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④D E与MN垂直.以上四个命题中,正确命题的序号是________.【变式探究】 (1)如图,在正方体ABC D-A1B1C1D1中,M,N分别是BC1,CD1的中点,则下列说法错误的是()A.MN与CC1垂直B.MN与AC垂直C.MN与BD平行D.MN与A1B1平行(2)在图中,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________(填上所有正确答案的序号).考点三求异面直线所成的角【例3】如图,在四棱锥P-ABCD中,底面是边长为2的菱形,∠DAB=60°,对角线AC与BD交于点O,PO⊥平面ABCD,PB与平面ABCD所成角为60°.(1)求四棱锥的体积;(2)若E是PB的中点,求异面直线DE与PA所成角的余弦值.解(1)在四棱锥P-ABCD中,【变式探究】已知在三棱锥A -BCD 中,AB =CD ,且点M ,N 分别是BC ,AD 的中点.(1)若直线AB 与CD 所成的角为60°,则直线AB 和MN 所成的角为________.(2)若直线AB ⊥CD ,则直线AB 与MN 所成的角为________.解析 (1)法一 如图,取AC 的中点P ,连接PM ,PN ,则PM ∥AB ,且PM =12AB ,PN ∥CD ,且PN =12CD ,答案 (1)60°或30°(2)45°【真题感悟】1.【高考广东,文18】(本小题满分14分)如图3,三角形DC P 所在的平面与长方形CD AB 所在的平面垂直,D C 4P =P =,6AB =,C 3B =.(1)证明:C//B 平面D P A ;(2)证明:C D B ⊥P ;(3)求点C 到平面D P A 的距离.所以D CD 1133S h S∆P A ∆A ⋅=⋅PE ,即CD D 136737212342S h S ∆A ∆P A ⨯⨯⨯⋅PE ===⨯⨯,所以点C 到平面D P A 的距离是3722.【高考山东,文18】 如图,三棱台DEF ABC -中,2AB DE G H =,,分别为AC BC ,的中点. (I )求证://BD 平面FGH ;(II )若CF BC AB BC ⊥⊥,,求证:平面BCD ⊥平面EGH .1.(·辽宁卷)已知m,n表示两条不同直线,α表示平面.下列说法正确的是()A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α2.(·福建卷)在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD.将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图1-5所示.(1)求证:AB⊥CD;(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.图1-5A =90°,M ,N 分别是A1B1,A1C1的中点,BC =CA =CC1,则BM 与AN 所成角的余弦值为()A.110B.25C.3010D.224.(·四川卷)三棱锥A - BCD 及其侧视图、俯视图如图1-4所示.设M ,N 分别为线段AD ,AB 的中点,P 为线段BC 上的点,且MN ⊥NP .(1)证明:P是线段BC的中点;(2)求二面角A - NP - M的余弦值.图1-4方法二:由俯视图及(1)可知,AO⊥平面BCD.因为OC,OB⊂平面BCD,所以AO⊥OC,AO⊥OB.又OC⊥OB,所以直线OA,OB,OC两两垂直.如图所示,以O为坐标原点,以OB,OC,OA的方向为x轴,y轴,z轴的正方向,建立空间直角坐标系O -xyz.则A(0,0,3),B(1,0,0),C(0,3,0),D(-1,0,0).因为M,N分别为线段AD,AB的中点,又由(1)知,P为线段BC的中点,【押题专练】1.若空间三条直线a,b,c满足a⊥b,b⊥c,则直线a与c() A.一定平行B.一定相交C.一定是异面直线D.平行、相交、是异面直线都有可能2.已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b和c,则直线b 和c的位置关系是()A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面解析依题意,直线b和c的位置关系可能是相交、平行或异面,选D.答案D3.l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1⊥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面4.在空间四边形ABCD中,AB=CD,AD=BC,AB≠AD,M,N分别是对角线AC与BD的中点,则MN与()A.AC,BD之一垂直B.AC,BD都垂直C.AC,BD都不垂直D.AC,BD不一定垂直5.两条异面直线在同一个平面上的正投影不可能是()A.两条相交直线B.两条平行直线C.两个点D.一条直线和直线外一点解析如图,在正方体ABCD-EFGH中,M,N分别为BF,DH的中点,连接MN,DE,CF,EG.当异面直线为EG,MN所在直线时,它们在底面ABCD内的射影为两条相交直线;当异面直线为DE,GF所在直线时,它们在底面ABCD内的射影分别为AD,BC,是两条平行直线;当异面直线为DE,BF所在直线时,它们在底面ABCD内的射影分别为AD和点B,是一条直线和一个点,故选C.答案C6.一个正方体的展开图如图所示,A,B,C,D为原正方体的顶点,则在原来的正方体中()A.AB∥CDB.AB与CD相交C.AB⊥CDD.AB与CD所成的角为60°7.如图所示,在空间四边形ABCD中,点E,H分别是边AB,AD的中点,点F,G分别是边BC,CD上的点,且CFCB=CGCD=23,则()A.EF与GH平行B.EF与GH异面C.EF与GH的交点M可能在直线AC上,也可能不在直线AC上D.EF与GH的交点M一定在直线AC上8.平面α,β相交,在α,β内各取两点,这四点都不在交线上,这四点能确定________个平面.解析若过四点中任意两点的连线与另外两点的连线相交或平行,则确定一个平面;否则确定四个平面.答案1或49.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线________对.10.如图,在正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:①直线AM 与CC1是相交直线; ②直线AM 与BN 是平行直线; ③直线BN 与MB1是异面直线; ④直线AM 与DD1是异面直线. 其中正确的结论为________.11.四棱锥P -ABCD 的所有侧棱长都为5,底面ABCD 是边长为2的正方形,则CD 与PA 所成角的余弦值为________.12.如图,四边形ABEF 和ABCD 都是直角梯形,∠BAD =∠FAB =90°,BC 綉12AD ,BE 綉12FA ,G ,H 分别为FA ,FD 的中点.(1)证明:四边形BCHG 是平行四边形; (2)C ,D ,F ,E 四点是否共面?为什么?13.如图,在四棱锥O-ABCD中,底面ABCD是边长为2的正方形,OA⊥底面ABCD,OA=2,M为OA的中点.(1)求四棱锥O-ABCD的体积;(2)求异面直线OC与MD所成角的正切值的大小.故异面直线OC与MD所成角的正切值为6 3.14.如图所示,正方体ABCD-A1B1C1D1中,E,F分别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题. 【热点题型】题型一 通过配凑法利用基本不等式求最值例1、(1)已知x<54,求f(x)=4x -2+14x -5的最大值;(2)已知x 为正实数且x2+y22=1,求x 1+y2的最大值; (3)求函数y =x -1x +3+x -1的最大值.(2)因为x>0,所以x 1+y2=2x212+y22≤2[x2+12+y22]2,又x2+(12+y22)=(x2+y22)+12=32, 所以x 1+y2≤2(12×32)=324, 即(x 1+y2)max =324.(3)令t =x -1≥0,则x =t2+1, 所以y =t t2+1+3+t =tt2+t +4.当t =0,即x =1时,y =0; 当t>0,即x>1时,y =1t +4t +1,因为t +4t ≥24=4(当且仅当t =2时取等号), 所以y =1t +4t +1≤15,即y 的最大值为15(当t =2,即x =5时y 取得最大值). 【提分秘籍】(1)应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件.(2)在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式.【举一反三】(1)已知0<x<1,则x(3-3x)取得最大值时x 的值为( ) A.13B.12C.34D.23(2)若函数f(x)=x +1x -2(x>2)在x =a 处取最小值,则a 等于( )A .1+2B .1+3C .3D .4 答案 (1)B (2)C题型二 通过常数代换或消元法利用基本不等式求最值例2、(1)已知x>0,y>0且x +y =1,则8x +2y 的最小值为________. (2)已知x>0,y>0,x +3y +xy =9,则x +3y 的最小值为________.答案 (1)18 (2)6 解析 (1)(常数代换法) ∵x>0,y>0,且x +y =1, ∴8x +2y =(8x +2y )(x +y) =10+8y x +2xy ≥10+28y x ·2xy =18.当且仅当8y x =2xy ,即x =2y 时等号成立, ∴当x =23,y =13时,8x +2y 有最小值18. (2)由已知得x =9-3y1+y .方法一 (消元法) ∵x>0,y>0,∴y<3, ∴x +3y =9-3y1+y +3y=121+y+(3y +3)-6≥2121+y·3y +3-6=6, 当且仅当121+y=3y +3,即y =1,x =3时,(x +3y)m in =6. 方法二 ∵x>0,y>0,9-(x +3y)=xy =13x·(3y)≤13·(x +3y2)2, 当且仅当x =3y 时等号成立. 设x +3y =t>0,则t2+12t -108≥0, ∴(t -6)(t +18)≥0, 又∵t>0,∴t≥6.故当x =3,y =1时,(x +3y)min =6. 【提分秘籍】条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值.【举一反三】(1)若两个正实数x ,y 满足2x +1y =1,并且x +2y>m2+2m 恒成立,则实数m 的取值范围是( ) A .(-∞,-2)∪[4,+∞) B .(-∞,-4]∪[2,+∞) C .(-2,4) D .(-4,2)(2)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是________. 答案 (1)D (2)5解析 (1)x +2y =(x +2y)(2x +1y )=2+4y x +xy +2≥8, 当且仅当4y x =xy ,即x =2y 时等号成立. 由x +2y>m2+2m 恒成立,可知m2+2m<8,即m2+2m -8<0,解得-4<m<2. (2)方法一 由x +3y =5xy 可得15y +35x =1, ∴3x +4y =(3x +4y)(15y +35x ) =95+45+3x 5y +12y 5x ≥135+125=5.(当且仅当3x 5y =12y 5x ,即x =1,y =12时,等号成立), ∴3x +4y 的最小值是5.题型三 基本不等式与函数的综合应用例3、(1)已知f(x)=32x -(k +1)3x +2,当x ∈R 时,f(x)恒为正值,则k 的取值范围是( ) A .(-∞,-1) B .(-∞,22-1) C .(-1,22-1) D .(-22-1,22-1)(2)已知函数f(x)=x2+ax +11x +1(a ∈R),若对于任意x ∈N*,f(x)≥3恒成立,则a 的取值范围是________.答案 (1)B (2)[-83,+∞)解析 (1)由f(x)>0得32x -(k +1)·3x +2>0,解得k +1<3x +23x ,而3x +23x ≥22(当且仅当3x =23x , 即x =log32时,等号成立), ∴k +1<22,即k<22-1.(2)对任意x ∈N*,f(x)≥3恒成立,即x2+ax +11x +1≥3恒成立,即知a≥-(x +8x )+3.设g(x)=x +8x ,x ∈N*,则g(2)=6,g(3)=173. ∵g(2)>g(3),∴g(x)min =173.∴-(x +8x )+3≤-83, ∴a≥-83,故a 的取值范围是[-83,+∞). 【提分秘籍】(1)a>f(x)恒成立⇔a>f(x)max , a<f(x)恒成立⇔a<f(x)min ;(2)求最值时要注意其中变量的条件,有些不能用基本不等式的问题可考虑利用函数的单调性. 【举一反三】已知函数f(x)=x +p x -1(p 为常数,且p>0),若f(x)在(1,+∞)上的最小值为4,则实数p 的值为________.答案 94解析 由题意得x -1>0,f(x)=x -1+px -1+1≥2p +1,当且仅当x =p +1时取等号,因为f(x)在(1,+∞)上的最小值为4,所以2p +1=4,解得p =94.题型四基本不等式的实际应用例4、某楼盘的建筑成本由土地使用权费和材料工程费构成,已知土地使用权费为2000元/m2;材料工程费在建造第一层时为400 元/m2,以后每增加一层费用增加40元/m2.要使平均每平方米建筑面积的成本费最低,则应把楼盘的楼房设计成________层.答案 10【提分秘籍】对实际问题,在审题和建模时一定不可忽略对目标函数定义域的准确挖掘,一般地,每个表示实际意义的代数式必须为正,由此可得自变量的范围,然后再利用基本不等式求最值.【举一反三】(1)某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( )A .60件B .80件C .100件D .120件(2)某种饮料分两次提价,提价方案有两种,方案甲:第一次提价p%,第二次提价q%;方案乙:每次都提价p +q2%,若p>q>0,则提价多的方案是________.答案 (1)B (2)乙解析 (1)设每件产品的平均费用为y 元,由题意得 y =800x +x 8≥2800x ·x 8=20.当且仅当800x =x8(x>0),即x =80时“=”成立,故选B. (2)设原价为1,则提价后的价格为 方案甲:(1+p%)(1+q%), 方案乙:(1+p +q2%)2, 因为1+p%1+q%≤1+p%2+1+q%2=1+p +q2%,且p>q>0,所以1+p%1+q%<1+p +q 2%,即(1+p%)(1+q%)<(1+p +q2%)2, 所以提价多的方案是乙. 【高考风向标】1.【高考湖南,文7】若实数,a b 满足12ab a b+=,则ab 的最小值为( ) A 、2 B 、2 C 、22 D 、4 【答案】C 【解析】12121220022,22ab a b ab ab a ba b a b ab+=∴=+≥⨯=∴≥,>,>,,(当且仅当2b a =时取等号),所以ab 的最小值为22,故选C.2.【高考重庆,文14】设,0,5a b a b ,则1++3a b 的最大值为________.【答案】233.【高考福建,文5】若直线1(0,0)x ya b a b+=>>过点(1,1),则a b +的最小值等于( ) A .2 B .3 C .4 D .5 【答案】C 【解析】由已知得111a b +=,则11=()()a b a b a b +++2+b aa b=+,因为0,0a b >>,所以+2b a b a a b a b ≥⋅,故4a b +≥,当=b aa b,即2a b ==时取等号. 4.(·辽宁卷)对于c>0,当非零实数a ,b 满足4a2-2ab +4b2-c =0且使|2a +b|最大时,3a -4b +5c 的最小值为________.【答案】-25.(·山东卷)若⎝⎛⎭⎫ax2+b x 6的展开式中x3项的系数为20,则a2+b2的最小值为________. 【答案】2【解析】Tr +1=Cr 6(ax2)6-r·⎝⎛⎭⎫b x r =Cr 6a6-r·brx12-3r ,令12-3r =3,得r =3,所以C36a6-3b3=20,即a3b3=1,所以ab =1,所以a2+b2≥2ab =2,当且仅当a =b ,且ab =1时,等号成立.故a2+b2的最小值是2.6.(·福建卷)要制作一个容积为4 m3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是 ( )A .80元B .120元C .160元D .240元【解析】设底面矩形的长和宽分别为a m ,b m ,则ab =4(m2).容器的总造价为20ab +2(a +b)×10=80+20(a +b)≥80+40ab =160(元)(当且仅当a =b 时等号成立).故选C.【答案】C7.(·重庆卷)若log4(3a +4b)=log2ab ,则a +b 的最小值是________. 【解析】由log4(3a +4b)=log2ab 得3a +4b =ab , 且a >0,b >0,∴4a +3b =1, ∴a +b =(a +b)·⎝⎛⎭⎫4a +3b =7+⎝⎛⎭⎫3a b +4b a ≥ 7+23a b ·4b a =7+43,当且仅当3a b =4b a 时取等号.【答案】7+438.(·四川卷)已知F 为抛物线y2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA →·OB →=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是()A .2B .3 C.1728 D.10 【答案】B【解析】由题意可知,F ⎝⎛⎭⎫14,0.设A(y21,y1),B(y22,y2),∴OA →·OB →=y1y2+y21y22=2,解得y1y2=1或y1y2=-2.又因为A ,B 两点位于x 轴两侧,所以y1y2<0,即y1y2=-2. 当y21≠y 2时,AB 所在直线方程为y -y1=y1-y2y21-y22(x -y21)=1y1+y2(x -y21),令y =0,得x =-y1y2=2,即直线AB 过定点C(2,0).于是S △ABO +S △AFO =S △ACO +S △BCO +S △AFO =12×2|y1|+12×2|y2|+12×14|y1|=18(9|y1|+8|y2|)≥18×29|y1|×8|y2|=3,当且仅当9|y1|=8|y2|且y1y2=-2时,等号成立.当y21=y22时,取y1=2,y2=-2,则AB 所在直线的方程为x =2,此时求得S △ABO +S △AFO =2×12×2×2+12×14×2=1728,而1728>3,故选B.9.(高考山东卷)设正实数x ,y ,z 满足x2-3xy +4y2-z =0,则当zxy 取得最小值时,x +2y -z 的最大值为()A .0 B.98 C .2 D.94【答案】C10.(·重庆卷)(3-a )(a +6)(-6≤a≤3)的最大值为()A .9 B.92 C .3 D.3 22【答案】B 【解析】因为-6≤a≤3,所以(3-a )(a +6)≤(3-a )+(a +6)2=92,当且仅当3-a =a +6,即a =-32时等号成立,故选B.【高考押题】1.下列不等式一定成立的是( ) A .lg(x2+14)>lgx(x>0) B .sinx +1sinx ≥2(x≠kπ,k ∈Z) C .x2+1≥2|x|(x ∈R) D.1x2+1>1(x ∈R) 答案 C解析 当x>0时,x2+14≥2·x·12=x , 所以lg(x2+14)≥lgx(x>0), 故选项A 不正确;运用基本不等式时需保证“一正”“二定“三相等”, 而当x≠kπ,k ∈Z 时,sinx 的正负不定, 故选项B 不正确;由基本不等式可知,选项C 正确;当x =0时,有1x2+1=1,故选项D 不正确.2.若a>0,b>0,且ln(a +b)=0,则1a +1b 的最小值是( ) A.14B .1C .4D .8 答案 C解析 由a>0,b>0,ln(a +b)=0得⎩⎪⎨⎪⎧a +b =1,a>0,b>0.故1a +1b =a +b ab =1ab ≥1a +b22=1122=4.当且仅当a =b =12时上式取“=”.3.已知x>0,y>0,且4xy -x -2y =4,则xy 的最小值为( ) A.22B .22C.2D .2 答案 D解析 ∵x>0,y>0,x +2y≥22xy , ∴4xy -(x +2y)≤4xy -22xy , ∴4≤4xy -22xy , 即(2xy -2)(2xy +1)≥0, ∴2xy ≥2,∴xy≥2.4.小王从甲地到乙地往返的时速分别为a 和b(a<b),其全程的平均时速为v ,则( ) A .a<v<abB .v =ab C.ab<v<a +b 2D .v =a +b2 答案 A5.设正实数x ,y ,z 满足x2-3xy +4y2-z =0.则当zxy 取得最小值时,x +2y -z 的最大值为( ) A .0B.98C .2D.94 答案 C解析 由题意知:z =x2-3xy +4y2,则z xy =x2-3xy +4y2xy =x y +4y x -3≥1,当且仅当x =2y 时取等号,此时z =xy =2y2. 所以x +2y -z =2y +2y -2y2=-2y2+4y =-2(y -1)2+2≤2.6.若对于任意x>0,xx2+3x +1≤a 恒成立,则a 的取值范围是________.答案 a≥15 解析x x2+3x +1=13+x +1x, 因为x>0,所以x +1x ≥2(当且仅当x =1时取等号), 则13+x +1x≤13+2=15,即x x2+3x +1的最大值为15,故a≥15.7.设x ,y ∈R ,且xy≠0,则(x2+1y2)(1x2+4y2)的最小值为________. 答案 9解析 (x2+1y2)(1x2+4y2)=5+1x2y2+4x2y2≥5+21x2y2·4x2y2=9,当且仅当x2y2=12时“=”成立.8.某公司一年需购买某种货物200吨,平均分成若干次进行购买,每次购买的运费为2万元,一年的总存储费用数值(单位:万元)恰好为每次的购买吨数数值,要使一年的总运费与总存储费用之和最小,则每次购买该种货物的吨数是________.答案 209.(1)当x<32时,求函数y =x +82x -3的最大值;(2)设0<x<2,求函数y =x 4-2x 的最大值. 解 (1)y =x +82x -3=-(3-2x 2+83-2x )+32.当x<32时,有3-2x>0, ∴3-2x 2+83-2x≥23-2x 2·83-2x=4, 当且仅当3-2x 2=83-2x,即x =-12时取等号.于是y≤-4+32=-52. 故函数的最大值为-52. (2)∵0<x<2,∴2-x>0,∴y =x 4-2x =2·x 2-x ≤2·x +2-x2=2,当且仅当x =2-x ,即x =1时取等号,∴当x =1时,函数y =x 4-2x 的最大值为 2.10.某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,求:仓库面积S 的最大允许值是多少?为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?高考模拟复习试卷试题模拟卷。
高考数学模拟复习试卷试题模拟卷第八章 直线与圆0061146
![高考数学模拟复习试卷试题模拟卷第八章 直线与圆0061146](https://img.taocdn.com/s3/m/d5924c384afe04a1b171deb6.png)
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【考情解读】1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题. 【重点知识梳理】 1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a>0,b>0.(2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a2+b2≥2ab(a ,b ∈R). (2)b a +ab ≥2(a ,b 同号). (3)ab≤⎝⎛⎭⎫a +b 2 2 (a ,b ∈R). (4)a2+b22≥⎝⎛⎭⎫a +b 2 2 (a ,b ∈R). 3.算术平均数与几何平均数设a>0,b>0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数.4.利用基本不等式求最值问题 已知x>0,y>0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p.(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p24.(简记:和定积最大) 【高频考点突破】考点一 利用基本不等式证明简单不等式 【例1】 已知x >0,y >0,z >0.求证:⎝⎛⎭⎫y x +z x ⎝⎛⎭⎫x y +z y ⎝⎛⎭⎫x z +y z ≥8.【规律方法】利用基本不等式证明新的不等式的基本思路是:利用基本不等式对所证明的不等式中的某些部分放大或者缩小,在含有三个字母的不等式证明中要注意利用对称性.【变式探究】 已知a >0,b >0,c >0,且a +b +c =1. 求证:1a +1b +1c ≥9.考点二 利用基本不等式求最值 【例2】 解答下列问题:(1)已知a >0,b >0,且4a +b =1,求ab 的最大值; (2)若正数x ,y 满足x +3y =5xy ,求3x +4y 的最小值; (3)已知x <54,求f(x)=4x -2+14x -5的最大值;(4)已知函数f(x)=4x +ax (x >0,a >0)在x =3时取得最小值,求a 的值.【规律方法】(1)利用基本不等式解决条件最值的关键是构造和为定值或乘积为定值,主要有两种思路:①对条件使用基本不等式,建立所求目标函数的不等式求解.②条件变形,进行“1”的代换求目标函数最值.(2)有些题目虽然不具备直接用基本不等式求最值的条件,但可以通过添项、分离常数、平方等手段使之能运用基本不等式.常用的方法还有:拆项法、变系数法、凑因子法、分离常数法、换元法、整体代换法等.【变式探究】(1)设a >0,若关于x 的不等式x +ax ≥4在x ∈(0,+∞)上恒成立,则a 的最小值为( ) A .4 B .2 C .16 D .1(2)设0<x <52,则函数y =4x(5-2x)的最大值为______.(3)设x >-1,则函数y =(x +5)(x +2)x +1的最小值为________.【答案】(1)A (2)252 (3)9 考点三 基本不等式的实际应用【例3】运货卡车以每小时x 千米的速度匀速行驶130千米,按交通法规限制50≤x≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油⎝⎛⎭⎫2+x2360升,司机的工资是每小时14元. (1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值.【规律方法】有关函数最值的实际问题的解题技巧(1)根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值;(2)设变量时一般要把求最大值或最小值的变量定义为函数;(3)解应用题时,一定要注意变量的实际意义及其取值范围;(4)在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解.【变式探究】 首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”为主题.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为y =12x2-200x +80 000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使该单位不亏损?【真题感悟】1.【高考湖南,文7】若实数,a b 满足12ab a b+=,则ab 的最小值为( ) A 、2B 、2 C 、22 D 、4 【答案】C2.【高考重庆,文14】设,0,5a b a b ,则1++3a b 的最大值为________.【答案】233.【高考福建,文5】若直线1(0,0)x ya b a b+=>>过点(1,1),则a b +的最小值等于( ) A .2 B .3 C .4 D .5 【答案】C4.(·辽宁卷)对于c>0,当非零实数a ,b 满足4a2-2ab +4b2-c =0且使|2a +b|最大时,3a -4b +5c 的最小值为________.【答案】-25.(·山东卷)若⎝⎛⎭⎫ax2+b x 6的展开式中x3项的系数为20,则a2+b2的最小值为________.【答案】26.(·福建卷)要制作一个容积为4 m3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是 ( )A .80元B .120元C .160元D .240元【答案】C7.(·重庆卷)若log4(3a +4b)=log2ab ,则a +b 的最小值是________.【答案】7+438.(·四川卷)已知F 为抛物线y2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA →·OB →=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是()A .2B .3 C.1728 D.10 【答案】B9.(高考山东卷)设正实数x ,y ,z 满足x2-3xy +4y2-z =0,则当zxy 取得最小值时,x +2y -z 的最大值为()A .0 B.98 C .2 D.94【答案】C10.(·重庆卷)(3-a )(a +6)(-6≤a≤3)的最大值为() A .9 B.92 C .3 D.3 22 【答案】B【押题专练】1.设非零实数a ,b ,则“a2+b2≥2ab”是“a b +ba ≥2”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【答案】B2.已知a >0,b >0,a +b =2,则y =1a +4b 的最小值是( )A.72B .4C.92D .5【答案】C3.若正数x ,y 满足4x2+9y2+3xy =30,则xy 的最大值是( )A.43B.53C .2D.54【答案】C4.已知a >0,b >0,a ,b 的等比中项是1,且m =b +1a ,n =a +1b ,则m +n 的最小值是 ( ) A .3B .4C .5D .6【答案】B5.设x ,y ∈R ,a >1,b >1,若ax =by =3,a +b =23,则1x +1y 的最大值为( )A .2B.32C .1D.12【答案】C6.设正实数x ,y ,z 满足x2-3xy +4y2-z =0,则当xy z 取得最大值时,2x +1y -2z 的最大值为 ( ) A .0B .1C.94D .3【答案】B7.已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________.【答案】68.已知x >0,y >0,且2x +5y =20. (1)求u =lg x +lg y 的最大值; (2)求1x +1y 的最小值.9.小王于年初用50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小王在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x年年底出售,其销售价格为(25-x)万元(国家规定大货车的报废年限为10年).(1)大货车运输到第几年年底,该车运输累计收入超过总支出?(2)在第几年年底将大货车出售,能使小王获得的年平均利润最大?(利润=累计收入+销售收入-总支出)10.函数f(x)=lgx2-x,若f(a)+f(b)=0,则3a+1b的最小值为________.【答案】2+311.某造纸厂拟建一座底面图形为矩形且面积为162平方米的三级污水处理池,池的深度一定(平面图如图所示),如果池四周围墙建造单价为400元/米,中间两道隔墙建造单价为248元/米,池底建造单价为80元/平方米,水池所有墙的厚度忽略不计.(1)试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;(2)若由于地形限制,该池的长和宽都不能超过16米,试设计污水处理池的长和宽,使总造价最低,并求出最低总造价.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】 1.了解向量的实际背景;2.理解平面向量的概念,理解两个向量相等的含义;3.理解向量的几何表示;4.掌握向量加法、减法的运算,并理解其几何意义;5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义;6.了解向量线性运算的性质及其几何意义. 【热点题型】题型一平面向量的有关概念 【例1】给出下列命题: ①若|a|=|b|,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB →=DC →是四边形ABCD 为平行四边形的充要条件; ③若a =b ,b =c ,则a =c ; ④若a ∥b ,b ∥c ,则a ∥c. 其中正确命题的序号是()A .②③B .②④C .③④D .②③④【提分秘籍】(1)相等向量具有传递性,非零向量的平行也具有传递性.(2)共线向量即为平行向量,它们均与起点无关.(3)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象的移动混为一谈.(4)非零向量a 与a |a|的关系:a|a|是与a 同方向的单位向量.【举一反三】 给出下列命题:①两个具有公共终点的向量,一定是共线向量; ②两个向量不能比较大小,但它们的模能比较大小; ③若λa =0 (λ为实数),则λ必为零;④已知λ,μ为实数,若λa =μb ,则a 与b 共线. 其中错误命题的个数为() A .1 B .2 C .3 D .4解析 ①错误.两向量共线要看其方向而不是起点与终点.②正确.因为向量既有大小,又有方向,故它们不能比较大小,但它们的模均为实数,故可以比较大小.③错误.当a =0时,不论λ为何值,λa =0.④错误.当λ=μ=0时,λa =μb ,此时,a 与b 可以是任意向量. 答案 C题型二 平面向量的线性运算【例2】 (1)在△ABC 中,AB 边的高为CD ,若CB →=a ,CA →=b ,a·b =0,|a|=1,|b|=2,则AD →=() A.13a -13b B.23a -23b C.35a -35b D.45a -45b(2)如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB →+AD →=λAO →,则λ=________.解析 (1)∵a·b =0,∴∠ACB =90°,∴AB =5,CD =255, ∴BD =55,AD =455,∴AD ∶BD =4∶1. ∴AD →=45AB →=45(CB →-CA →)=45a -45b. (2)因为ABCD 为平行四边形, 所以AB →+AD →=AC →=2AO →, 已知AB →+AD →=λAO →,故λ=2.答案 (1)D(2)2 【提分秘籍】(1)解题的关键在于熟练地找出图形中的相等向量,并能熟练运用相反向量将加减法相互转化.(2)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果.【举一反三】(1)如图所示,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →=()A .a -12b B.12a -b C .a +12b D.12a +b(2)如图,D ,E ,F 分别是△ABC 的边AB ,BC ,CA 的中点,则()A.AD →+BE →+CF →=0B.BD →-CF →+DF →=0C.AD →+CE →-CF →=0D.BD →-BE →-FC →=0解析 (1)连接CD ,由点C ,D 是半圆弧的三等分点,得CD ∥AB 且CD →=12AB →=12a ,所以AD →=AC →+CD →=b +12a.(2)由题意知:AD →=FE →,BE →=DF →,CF →=ED →,而FE →+ED →+DF →=0,∴AD →+BE →+CF →=0. 答案 (1)D(2)A题型三共线向量定理的应用【例3】设两个非零向量a 与b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b).求证:A ,B ,D 三点共线; (2)试确定实数k ,使ka +b 和a +kb 共线.【提分秘籍】(1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(2)向量a ,b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立;若λ1a +λ2b =0,当且仅当λ1=λ2=0时成立,则向量a ,b 不共线.【举一反三】(1)已知向量i 与j 不共线,且AB →=i +mj ,AD →=ni +j.若A ,B ,D 三点共线,则实数m ,n 应该满足的条件是()A .m +n =1B .m +n =-1C .mn =1D .mn =-1(2)如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,则1n +1m 的值为________.解析 (1)由A ,B ,D 共线可设AB →=λAD →,于是有i +mj =λ(ni +j)=λni +λj.又i ,j 不共线,因此⎩⎪⎨⎪⎧λn =1,λ=m , 即有mn =1.(2)设OA →=a ,OB →=b ,由题意知OG →=23×12(OA →+OB →)=13(a +b),PQ →=OQ →-OP →=nb -ma ,PG →=OG →-OP →=⎝⎛⎭⎫13-m a +13b ,由P ,G ,Q 三点共线得,存在实数λ,使得PQ →=λPG →,即nb -ma =λ⎝⎛⎭⎫13-m a +13λb ,从而⎩⎨⎧-m =λ⎝⎛⎭⎫13-m ,n =13λ,消去λ得1n +1m =3.答案 (1)C(2)3 【高考风向标】1.【高考安徽,文15】ABC ∆是边长为2的等边三角形,已知向量b a 、满足a AB 2=→,b a AC+=→2,则下列结论中正确的是.(写出所有正确结论得序号)①a 为单位向量;②b 为单位向量;③b a ⊥;④→BC b // ;⑤→⊥+BC b a )4(。
高考数学模拟复习试卷试题模拟卷第八章 直线与圆0065171
![高考数学模拟复习试卷试题模拟卷第八章 直线与圆0065171](https://img.taocdn.com/s3/m/0e628bd8ba1aa8114531d989.png)
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【考情解读】1.会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).2.会利用导数解决某些实际问题. 【重点知识梳理】1.利用导数解决生活中的优化问题的一般步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y =f(x);(2)求函数的导数f′(x),解方程f′(x)=0;(3)比较函数在区间端点和f′(x)=0的点的函数值的大小,最大(小)者为最大(小)值; (4)回归实际问题作答. 2.不等式问题(1)证明不等式时,可构造函数,将问题转化为函数的极值或最值问题.(2)求解不等式恒成立问题时,可以考虑将参数分离出来,将参数范围问题转化为研究新函数的值域问题.3.方程解的个数问题构造函数,利用导数研究函数的单调性,极值和特殊点的函数值,根据函数性质结合草图推断方程解的个数.【高频考点突破】考点一 函数的最值与导数例1、已知a ∈R ,函数f(x)=ax +ln x -1.(1)当a =1时,求曲线y =f(x)在点(2,f(2))处的切线方程; (2)求f(x)在区间(0,e]上的最小值. 【拓展提升】1.极值只能在定义域内部取得,而最值却可以在区间的端点取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点必定是极值.2.求给定区间上的函数的最值关键是判断函数在此区间上的单调性,但要注意极值点不一定是最值点,还要与端点值比较,对于含参数的函数最值,要注意分类讨论.【变式探究】已知函数f(x)=ax -2x -3ln x ,其中a 为常数.(1)当函数f(x)的图象在点⎝⎛⎭⎫23,f ⎝⎛⎭⎫23处的切线的斜率为1时,求函数f(x)在⎣⎡⎦⎤32,3上的最小值;(2)若函数f(x)在区间(0,+∞)上既有极大值又有极小值,求a 的取值范围;考点二 利用导数证明不等式例2、 已知定义在正实数集上的函数f(x)=12x2+2ax ,g(x)=3a2lnx +b ,其中a>0.设两曲线y =f(x),y =g(x)有公共点,且在该点处的切线相同.(1)用a 表示b ,并求b 的最大值; (2)求证:f(x)≥g(x)(x>0).【方法技巧】利用导数证明不等式的步骤 (1)构造新函数,并求其单调区间; (2)判断区间端点函数值与0的关系;(3)判断定义域内函数值与0的大小关系,证不等式. 【变式探究】 证明:当x ∈[0,1]时,22x≤sinx≤x. 考点三、利用导数研究函数零点问题 例3、已知函数f(x)=x2+xsinx +cosx.(1)若曲线y =f(x)在点(a ,f(a))处与直线y =b 相切,求a 与b 的值; (2)若曲线y =f(x)与直线y =b 有两个不同交点,求b 的取值范围. 【方法技巧】函数零点或函数图象交点问题的求解,一般利用导数研究函数的单调性、极值等性质,并借助函数图象,根据零点或图象的交点情况,建立含参数的方程(或不等式)组求解,实现形与数的和谐统一.【变式探究】 已知函数f(x)=x3-3ax -1,a≠0. (1)求f(x)的单调区间;(2)若f(x)在x =-1处取得极值,直线y =m 与y =f(x)的图象有三个不同的交点,求m 的取值范围. 考点四 生活中的优化问题例4、某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y =ax -3+10(x -6)2,其中3<x<6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.(1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.【方法技巧】在求实际问题中的最大值或最小值时,一般先设自变量、因变量、建立函数关系式,并确定其定义域,利用求函数最值的方法求解,注意结果应与实际情况相符合.用导数求实际问题中的最大(小)值,如果函数在区间内只有一个极值点,那么根据实际意义可知该极值点就是最值点.【变式探究】请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E,F在AB上,是被切去的一个等腰直角三角形斜边的两个端点,设AE =FB=x(cm).(1)某广告商要求包装盒的侧面积S(cm2)最大,试问x取何值?(2)某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.【真题感悟】【高考北京,文8】某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.加油时间加油量(升)加油时的累计里程(千米)2015年5月1日12350002015年5月15日4835600注:“累计里程“指汽车从出厂开始累计行驶的路程在这段时间内,该车每100千米平均耗油量为()A.6升 B.8升 C.10升 D.12升【高考福建,文22】已知函数2(1)()ln2xf x x-=-.(Ⅰ)求函数()f x 的单调递增区间; (Ⅱ)证明:当1x >时,()1f x x <-;(Ⅲ)确定实数k 的所有可能取值,使得存在01x >,当0(1,)x x ∈时,恒有()()1f x k x >-. 【高考广东,文21】(本小题满分14分)设a 为实数,函数()()()21f x x a x a a a =-+---. (1)若()01f ≤,求a 的取值范围; (2)讨论()f x 的单调性; (3)当2a ≥时,讨论()4f x x+在区间()0,+∞内的零点个数. 【高考四川,文21】已知函数f(x)=-2lnx +x2-2ax +a2,其中a>0. (Ⅰ)设g(x)为f(x)的导函数,讨论g(x)的单调性;(Ⅱ)证明:存在a ∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解. 【高考天津,文20】(本小题满分14分)已知函数4()4,,f x x x x R(I )求()f x 的单调区间; (II )设曲线()y f x 与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为()y g x ,求证:对于任意的正实数x ,都有()()f x g x ;(III )若方程()=()f x a a 为实数有两个正实数根12x x ,,且12x x ,求证:1321-43a x x . 16.【高考浙江,文20】(本题满分15分)设函数2(),(,)f x x ax b a b R =++∈.(1)当214a b时,求函数()f x 在[1,1]上的最小值()g a 的表达式; (2)已知函数()f x 在[1,1]上存在零点,021b a ≤-≤,求b 的取值范围.1.(·四川卷)已知函数f(x)=ex -ax2-bx -1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数. (1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值; (2)若f(1)=0,函数f(x)在区间(0,1)内有零点,证明:e -2<a <1. 2.(·安徽卷)若直线l 与曲线C 满足下列两个条件:(i)直线l 在点P(x0,y0)处与曲线C 相切;(ii)曲线C 在点P 附近位于直线l 的两侧.则称直线l 在点P 处“切过”曲线C.下列命题正确的是________(写出所有正确命题的编号). ①直线l :y =0在点P(0,0)处“切过”曲线C :y =x3;②直线l :x =-1在点P(-1,0)处“切过”曲线C :y =(x +1)2; ③直线l :y =x 在点P(0,0)处“切过”曲线C :y =sin x ; ④直线l :y =x 在点P(0,0)处“切过”曲线C :y =tan x ; ⑤直线l :y =x -1在点P(1,0)处“切过”曲线C :y =ln x. 3.(·安徽卷)设函数f(x)=1+(1+a)x -x2-x3,其中a>0. (1)讨论f(x)在其定义域上的单调性;(2)当x ∈[0,1]时,求f(x)取得最大值和最小值时的x 的值. 4.(·北京卷)已知函数f(x)=2x3-3x. (1)求f(x)在区间[-2,1]上的最大值;(2)若过点P(1,t)存在3条直线与曲线y =f(x)相切,求t 的取值范围;(3)问过点A(-1,2),B(2,10),C(0,2)分别存在几条直线与曲线y =f(x)相切?(只需写出结论)5.(·福建卷)已知函数f(x)=ex -ax(a 为常数)的图像与y 轴交于点A ,曲线y =f(x)在点A 处的切线斜率为-1.(1)求a 的值及函数f(x)的极值; (2)证明:当x >0时,x2<ex ;(3)证明:对任意给定的正数c ,总存在x0,使得当x ∈(x0,+∞)时,恒有x <cex. 6.(·湖北卷)π为圆周率,e =2.718 28…为自然对数的底数. (1)求函数f (x)=ln xx 的单调区间;(2)求e3,3e ,eπ,πe ,3π,π3这6个数中的最大数与最小数. 7.(·湖南卷)若0<x1<x2<1,则() A .ex2-ex1>ln x2-ln x1 B .ex2-ex1<ln x2-ln x1 C .x2ex1>x1ex2 D .x2ex1<x1ex28.(·湖南卷)已知函数f(x)=xcos x -sin x +1(x >0). (1)求f(x)的单调区间;(2)记xi 为f(x)的从小到大的第i(i ∈N*)个零点,证明:对一切n ∈N*,有1x21+1x22+…+1x2n <23.9.(·江西卷)若曲线y =xln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________. 10.(·江西卷)将连续正整数1,2,…,n(n ∈N*)从小到大排列构成一个数123…n ,F(n)为这个数的位数(如n =12时,此数为123456789101112,共有15个数字,F(12)=15),现从这个数中随机取一个数字,p(n)为恰好取到0的概率.(1)求p(100);(2)当n≤时,求F(n)的表达式;(3)令g(n)为这个数中数字0的个数,f(n)为这个数中数字9的个数,h(n)=f(n)-g(n),S ={n|h(n)=1,n≤100,n ∈N*},求当n ∈S 时p(n)的最大值.11.(·辽宁卷)当x ∈[-2,1]时,不等式ax3-x2+4x +3≥0恒成立,则实数a 的取值范围是() A .[-5,-3] B.⎣⎡⎦⎤-6,-98C .[-6,-2]D .[-4,-3]12.(·新课标全国卷Ⅱ] 若函数f(x)=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是() A .(-∞,-2] B .(-∞,-1] C .[2,+∞) D .[1,+∞)13.(·新课标全国卷Ⅱ] 已知函数f(x)=x3-3x2+ax +2,曲线y =f(x)在点(0,2)处的切线与x 轴交点的横坐标为-2.(1)求a ;(2)证明:当k <1时,曲线y =f(x)与直线y =kx -2只有一个交点.14.(·全国新课标卷Ⅰ)已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a 的取值范围是()A .(2,+∞)B .(1,+∞)C .(-∞,-2)D .(-∞,-1)15.(·全国新课标卷Ⅰ)设函数f(x)=aln x +1-a 2x2-bx(a≠1),曲线y =f(x)在点(1, f(1))处的切线斜率为0. (1)求b ;(2)若存在x0≥1,使得f(x0)<aa -1,求a 的取值范围. 16.(·山东卷)设函数f(x)=aln x +x -1x +1,其中a 为常数.(1)若a =0,求曲线y =f(x)在点(1,f(1))处的切线方程; (2)讨论函数f(x)的单调性.17.(·陕西卷)设函数f(x)=ln x +mx ,m ∈R. (1)当m =e(e 为自然对数的底数)时,求f(x)的极小值; (2)讨论函数g(x)=f′(x)-x3零点的个数;(3)若对任意b >a >0,f (b )-f (a )b -a <1恒成立,求m 的取值范围.18.(·天津卷)已知函数f(x)=x2-23ax3(a >0),x ∈R. (1)求f(x)的单调区间和极值;(2)若对于任意的x1∈(2,+∞),都存在x2∈(1,+∞),使得f(x1)·f(x2)=1,求a 的取值范围.19.(·浙江卷)已知函数f(x)=x3+3|x -a|(a >0).若f(x)在[-1,1]上的最小值记为g(a). (1)求g(a);(2)证明:当x ∈[-1,1]时,恒有f(x)≤g(a)+4.19.(·重庆卷)已知函数f(x)=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f(x)在点(1,f(1))处的切线垂直于直线y =12x.(1)求a 的值;(2)求函数f(x)的单调区间与极值. 【押题专练】1.已知函数f(x)=ax2+c ,且f′(1)=2,则a 的值为() A. 2 B .1 C .-1 D .02.曲线y =x3-2x +1在点(1,0)处的切线方程为() A .y =x -1 B .y =-x +1C .y =2x -2D .y =-2x +23.若函数f(x)的定义域为[a ,b],且b>-a>0,则函数g(x)=f(x)+f(-x)的定义域为() A .[a ,b] B .[-b ,-a] C .[-b ,b] D .[a ,-a] 4.过点(0,1)且与曲线y =x +1x -1在点(3,2)处的切线垂直的直线的方程为( ) A .2x -y +1=0 B .2x +y -1=0 C .x +2y -2=0 D .x -2y +2=05.设函数f(x)=⎩⎪⎨⎪⎧1,x>0,0,x =0,-1,x<0,g(x)=x2f(x -1),则函数g(x)的递减区间是( )A .(0,1)B .(1,+∞)C .(-∞,0)D .(0,+∞)6.定义域为R 的函数f(x)满足f(1)=1,且f(x)的导函数f′(x)>12,则满足2f(x)<x +1的x 的集合为( ) A .{x|-1<x<1} B .{x|x<1} C .{x|x<-1或x>1} D .{x|x>1}7.设f(x)=x(ax2+bx +c)(a≠0)在x =1和x =-1处有极值,则下列点中一定在x 轴上的是( ) A .(a ,b) B .(a ,c) C .(b ,c) D .(a +b ,c)8.设曲线y =xn +1(n ∈N*)在点(1,1)处的切线与x 轴的交点横坐标为xn ,则log2 012x1+log2 012x2+…+log2 012x 的值为( )A .-log2 0122 011B .-1C .-1+log2 0122 011D .19.函数f(x)=x3+ax(x ∈R)在x =1处有极值,则曲线y =f(x)在原点处的切线方程是________. 10.曲线y =x(3lnx +1)在点(1,1)处的切线方程为________.11.设f(x),g(x)分别是定义在R 上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0且g(-3)=0,则不等式f(x)g(x)<0的解集为________.12. 某商品进货价每件50元,据市场调查,当销售价格(每件x 元)为50<x≤80时,每天售出的件数为P =105(x -40)2,若要使每天获得的利润最多,销售价格每件应定为多少元?13.已知函数f(x)=ex(ax2+x +1). (1)设a>0,讨论f(x)的单调性;(2)设a =-1,证明:对任意x1,x2∈[0,1],都有|f(x1)-f(x2)|<2. 14.已知函数f(x)=ex +1x -a.(1)当a =12时,求函数f(x)在x =0处的切线方程;(2)当a>1时,判断方程f(x)=0实根的个数.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.了解平面向量基本定理及其意义.2.掌握平面向量的正交分解及坐标表示.3.会用坐标表示平面向量的加法、减法与数乘运算.4.理解用坐标表示的平面向量共线的条件. 【热点题型】题型一 平面向量基本定理的应用例1 (1)在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点,若AB →=λAM →+μAN →,则λ+μ等于( )A.15B.25C.35D.45(2)如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________.【提分秘籍】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.【举一反三】已知△ABC 中,点D 在BC 边上,且CD →=2DB →,CD →=rAB →+sAC →,则r +s 的值是( ) A.23B.43 C .-3D .0题型二平面向量的坐标运算例2 已知A(-2,4),B(3,-1),C(-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN →=-2b ,(1)求3a +b -3c ;(2)求满足a =mb +nc 的实数m ,n ; (3)求M 、N 的坐标及向量MN →的坐标. 【提分秘籍】向量的坐标运算主要是利用加、减、数乘运算法则进行.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则.【举一反三】(1)已知平面向量a =(1,1),b =(1,-1),则向量12a -32b 等于( ) A .(-2,-1) B .(-2,1) C .(-1,0) D .(-1,2)(2)已知A(7,1)、B(1,4),直线y =12ax 与线段AB 交于C ,且AC →=2CB →,则实数a =________. 题型三向量共线的坐标表示例3 (1)已知平面向量a =(1,2),b =(-2,m),且a ∥b ,则2a +3b =________. (2)(·陕西)设0<θ<π2,向量a =(si n2θ,cosθ),b =(cosθ,1),若a ∥b ,则tanθ=________. 【提分秘籍】(1)两平面向量共线的充要条件有两种形式:①若a =(x1,y1),b =(x2,y2),则a ∥b 的充要条件是x1y2-x2y1=0;②若a ∥b(b≠0),则a =λb.(2)向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例来求解.【举一反三】(1)已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A(1,2),B(2,1),C(4,2),则点D 的坐标为________.(2)△ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若p =(a +c ,b),q =(b -a ,c -a),且p ∥q ,则角C =________.【高考风向标】1.【高考新课标1,文2】已知点(0,1),(3,2)A B ,向量(4,3)AC =--,则向量BC =( )(A )(7,4)--(B )(7,4)(C )(1,4)-(D )(1,4)1.(·重庆卷) 已知向量a =(k ,3),b =(1,4),c =(2,1),且(2a -3b)⊥c ,则实数k =( )A .-92 B .0 C .3 D.1522.(·福建卷) 在下列向量组中,可以把向量a =(3,2)表示出来的是( ) A .e1=(0,0),e2=(1,2) B .e1=(-1,2),e2=(5,-2) C .e1=(3,5),e2=(6,10) D .e1=(2,-3),e2=(-2,3)3.(·山东卷) 已知向量a =(m ,cos 2x),b =(sin 2x ,n),函数f(x)=a·b ,且y =f(x)的图像过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2. (1)求m ,n 的值;(2)将y =f(x)的图像向左平移φ(0<φ<π)个单位后得到函数y =g(x)的图像,若y =g(x)图像上各最高点到点(0,3)的距离的最小值为1,求y =g(x)的单调递增区间.4.(·陕西卷) 设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________. 5.(·陕西卷) 在直角坐标系xOy 中,已知点A(1,1),B(2,3),C(3,2),点P(x ,y)在△ABC 三边围成的区域(含边界)上.(1)若PA →+PB →+PC →=0,求|OP →|;(2)设OP →=mAB →+nAC →(m ,n ∈R),用x ,y 表示m -n ,并求m -n 的最大值.6.(·安徽卷) 在平面直角坐标系中,O 是坐标原点,两定点A ,B 满足|OA →|=|OB →|=OA →·OB →=2,则点集{P|OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R}所表示的区域的面积是( )A .2 2B .2 3C .4 2D .4 37.(·湖南卷) 已知a ,b 是单位向量,a·b =0,若向量c 满足|c -a -b|=1,则|c|的取值范围是( )A .[2-1,2+1]B .[2-1,2+2]C .[1,2+1]D .1,2+28.(·北京卷) 向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb(λ,μ∈R),则λμ=________.图1-39.(·辽宁卷) 已知点A(1,3),B(4,-1),则与向量AB 同方向的单位向量为( ) A.⎝⎛⎭⎫35,-45 B.⎝⎛⎭⎫45,-35 C.⎝⎛⎭⎫-35,45 D.⎝⎛⎭⎫-45,35 10.(·天津卷) 在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点,若AC →·BE →=1,则AB 的长为________.11.(·新课标全国卷Ⅱ] 已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________.12.(·重庆卷) 如图1-9所示,椭圆的中心为原点O ,长轴在x 轴上,离心率e =22,过左焦点F1作x 轴的垂线交椭圆于A ,A′两点,|AA′|=4.(1)求该椭圆的标准方程;(2)取垂直于x 轴的直线与椭圆相交于不同的两点P ,P′,过P ,P′作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外,若PQ ⊥P′Q ,求圆Q 的标准方程.图1-913.(·重庆卷) 在平面上,AB1→⊥AB2→,|OB1|=|OB2→|=1,AP →=AB1→+AB2→.若|OP →|<12,则|OA →|的取值范围是( )A.⎝⎛⎦⎥⎤0,52 B.⎝ ⎛⎦⎥⎤52,72 C.⎝ ⎛⎦⎥⎤52,2 D.⎝ ⎛⎦⎥⎤72,2【高考押题】1.已知点A(1,3),B(4,-1),则与向量A B →同方向的单位向量为( ) A.⎝⎛⎭⎫35,-45B.⎝⎛⎭⎫45,-35 C.⎝⎛⎭⎫-35,45D.⎝⎛⎭⎫-45,35 2.在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若PA →=(4,3),PQ →=(1,5),则BC →等于( )A .(-2,7)B .(-6,21)C .(2,-7)D .(6,-21)3.已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb)∥c ,则λ等于( ) A.14B.12C .1D .24.已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m ,使得AB →+AC →=mAM →成立,则m 等于( )A .2B .3C .4D .55.如图,在△OAB 中,P 为线段AB 上的一点,OP →=xOA →+yOB →,且BP →=2PA →,则( )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =146.若三点A(2,2),B(a,0),C(0,b) (ab≠0)共线,则1a +1b 的值为________.7.已知向量OA →=(1,-3),OB →=(2,-1),OC →=(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 应满足的条件是________.8.已知A(-3,0),B(0,3),O 为坐标原点,C 在第二象限,且∠AOC =30°,OC →=λOA →+OB →,则实数λ的值为________.9.已知A(1,1)、B(3,-1)、C(a ,b). (1)若A 、B 、C 三点共线,求a 、b 的关系式; (2)若AC →=2AB →,求点C 的坐标.10.已知O(0,0),A(1,2),B(4,5)及OP →=OA →+tAB →,试问: (1)t 为何值时,P 在x 轴上?在y 轴上?在第三象限?(2)四边形OABP 能否成为平行四边形,若能,求出相应的t 值;若不能,请说明理由.高考模拟复习试卷试题模拟卷。
高考数学模拟复习试卷试题模拟卷第八章 直线与圆006260
![高考数学模拟复习试卷试题模拟卷第八章 直线与圆006260](https://img.taocdn.com/s3/m/db7f1391b307e87100f69636.png)
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【高频考点解读】1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题;2.能够运用正弦定理、余弦定理等知识解决一些与测量和几何计算有关的实际问题. 【热点题型】题型一 正、余弦定理的简单运用【例1】 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c. (1)若a =23,b =6,A =45°,则c =________. (2)若(a +b +c)(a -b +c)=ac ,则B =________.解析 (1)法一 在△ABC 中,由正弦定理得sin B =bsin A a =6×2223=12,因为b <a ,所以B <A ,所以B =30°,C =180°-A -B =105°,sin C =sin 105°=sin(45°+60°)=sin 45°cos 60°+cos 45°sin 60°=6+24. 故c =asin C sin A =23×6+2422=3+3.【提分秘籍】(1)在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.(2)解题中注意三角形内角和定理的应用及角的范围限制.【举一反三】(1)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2c2=2a2+2b2+ab ,则△ABC 是( ) A .钝角三角形 B .直角三角形 C .锐角三角形 D .等边三角形(2)在△ABC 中,A =60°,b =1,S △ABC =3,则a +b +csin A +sin B +sin C=________.题型二正、余弦定理的综合运用【例2】在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c.已知a =3,cos A =63,B =A +π2. (1)求b 的值; (2)求△ABC 的面积.解 (1)在△ABC 中,由题意知,sin A =1-cos2A =33, 因为B =A +π2,所以sin B =sin ⎝⎛⎭⎫A +π2=cosA =63.由正弦定理,得b =asin Bsin A =3×6333=3 2.(2)由B =A +π2,得cos B =cos ⎝⎛⎭⎫A +π2=-sin A =-33.由A +B +C =π,得C =π-(A +B). 所以sin C =sin[π-(A +B)]=sin(A +B)=sin Acos B +cos Asin B =33×⎝ ⎛⎭⎪⎫-33+63×63=13.因此△ABC 的面积S =12absin C =12×3×32×13 =322. 【提分秘籍】有关三角形面积问题的求解方法:(1)灵活运用正、余弦定理实现边角转化;(2)合理运用三角函数公式,如同角三角函数的基本关系、两角和与差的正弦、余弦公式、二倍角公式等.【举一反三】在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且a +b +c =8. (1)若a =2,b =52,求cos C 的值;(2)若sin Acos2B 2+sin Bcos2A 2=2sin C ,且△ABC 的面积S =92sin C ,求a 和b 的值. 解 (1)由题意可知c =8-(a +b)=72.由余弦定理得cos C =a2+b2-c22ab=22+⎝⎛⎭⎫522-⎝⎛⎭⎫7222×2×52=-15.(2)由sin Acos2B 2+sin Bcos2A2=2sin C 可得: sin A·1+cos B 2+sin B·1+cos A 2=2sinC ,化简得sin A +sin Acos B +sin B +sin Bcos A =4sin C. 因为sin Acos B +cos Asin B =sin(A +B)=sin C , 所以sin A +sin B =3sin C. 由正弦定理可知a +b =3c. 又因为a +b +c =8,故a +b =6. 由于S =12absin C =92sin C ,所以ab =9, 从而a2-6a +9=0, 解得a =3,b =3.题型三正、余弦定理在实际问题中的应用【例3】如图,在海岸A处,发现北偏东45°方向距A为(3-1)海里的B处有一艘走私船,在A处北偏西75°方向,距A为2海里的C处的缉私船奉命以103海里/时的速度追截走私船.此时走私船正以10海里/时的速度从B处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?并求出所需要的时间(注:6≈2.449).【提分秘籍】解三角形应用题的两种情形:(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解;(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.【举一反三】如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点,从A 点测得M 点的仰角∠MAN =60°,C 点的仰角∠CAB =45°以及∠MAC =75°;从C 点测得∠MCA =60°.已知山高BC =100 m ,则山高MN =________m.解析 在Rt △ABC 中,∠CAB =45°,BC =100 m ,所以AC =1002(m).在△AMC 中,∠MAC =75°,∠MCA =60°,从而∠AMC =45°,由正弦定理,得AC sin 45°=AMsin 60°,因此AM =1003(m).在Rt △MNA 中,AM =100 3 m ,∠MAN =60°,由MN AM =sin 60°,得MN =1003×32=150(m). 答案 150 【高考风向标】【高考湖北,文15】如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD =_________m.【答案】1006.【解析】在ABC ∆中,030CAB ∠=,000753045ACB ∠=-=,根据正弦定理知,sin sin BC ABBAC ACB=∠∠, 即1sin 2sin 22AB BC BAC ACB =⨯∠==∠3tan 30021006CD BC DBC =⨯∠==,故应填 6.AB C D.【高考湖南,文17】(本小题满分12分)设ABC ∆的内角,,A B C 的对边分别为,,,tan a b c a b A =. (I )证明:sin cos B A =; (II) 若3sin sin cos 4C A B -=,且B 为钝角,求,,A B C . 【答案】(I )略;(II)30,120,30.A B C ===【解析】(Ⅰ)由tan a b A =及正弦定理,得sin sin cos sin A a AA bB ==,所以sin cos B A =。
高考数学模拟复习试卷试题模拟卷第八章 直线与圆006620
![高考数学模拟复习试卷试题模拟卷第八章 直线与圆006620](https://img.taocdn.com/s3/m/7d42bf96a8956bec0875e395.png)
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【高频考点解读】1.了解函数y =Asin(ωx +φ)的物理意义;能画出y =Asin(ωx +φ)的图象,了解参数A ,ω,φ对函数图象变化的影响;2.了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题. 【热点题型】题型一 函数y =Asin(ωx +φ)的图象及变换【例1】 设函数f(x)=sin ωx +3cos ωx(ω>0)的周期为π. (1)求它的振幅、初相;(2)用五点法作出它在长度为一个周期的闭区间上的图象;(3)说明函数f(x)的图象可由y =sin x 的图象经过怎样的变换而得到.【提分秘籍】作函数y =Asin(ωx +φ)(A >0,ω>0)的图象常用如下两种方法:(1)五点法作图法,用“五点法”作y =Asin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象;(2)图象的变换法,由函数y =sin x 的图象通过变换得到y =Asin(ωx +φ)的图象有两种途径:“先平移后伸缩”与“先伸缩后平移”.【举一反三】设函数f(x)=cos(ωx +φ)⎝⎛⎭⎫ω>0,-π2<φ<0的最小正周期为π,且f ⎝⎛⎭⎫π4=32.(1)求ω和φ的值;(2)在给定坐标系中作出函数f(x)在[0,π]上的图象.题型二利用三角函数图象求其解析式例2、(1)已知函数f(x)=Acos(ωx +φ)的图象如图所示,f ⎝⎛⎭⎫π2=-23,则f(0)=( )A .-23B .-12 C.23 D.12(2)函数f(x)=Asin(ωx +φ)(A >0,ω>0,|φ|<π)的部分图象如图所示,则函数f(x)的解析式为________.【提分秘籍】已知f(x)=Asin(ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)五点法,由ω=2πT 即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x0,则令ωx0+φ=0(或ωx0+φ=π),即可求出φ;(2)代入法,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.【举一反三】(1)已知函数f(x)=Acos(ωx +φ)(A >0,ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,△EFG 是边长为2的等边三角形,则f(1)的值为( )A .-32B .-62 C.3 D .- 3(2)函数f(x)=Asin(ω+φ)(A ,ω,φ为常数,A >0,ω>0,0<φ<π)的图象如图所示,则f ⎝⎛⎭⎫π3的值为______.题型三函数y =Asin(ωx +φ)的性质应用【例3】已知向量a =(m ,cos 2x),b =(sin 2x ,n),函数f(x)=a·b ,且y =f(x)的图象过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2.(1)求m ,n 的值;(2)将y =f(x)的图象向左平移φ(0<φ<π)个单位后得到函数y =g(x)的图象,若y =g(x)图象上各最高点到点(0,3)的距离的最小值为1,求y =g(x)的单调递增区间.【提分秘籍】解决三角函数图象与性质综合问题的方法:先将y =f(x)化为y =asin x +bcos x 的形式,然后用辅助角公式化为y =Asin(ωx +φ)+b 的形式,再借助y =Asin(ωx +φ)的性质(如周期性、对称性、单调性等)解决相关问题.【举一反三】已知函数f(x)=3sin(ωx +φ)-cos(ωx +φ)(0<φ<π,ω>0)为偶函数,且函数y =f(x)图象的两相邻对称轴间的距离为π2.(1)求f ⎝⎛⎭⎫π8的值; (2)求函数y =f(x)+f⎝⎛⎭⎫x +π4的最大值及对应的x 的值. 【高考风向标】【高考山东,文4】要得到函数4y sin x =-(3π)的图象,只需要将函数4y sin x =的图象()(A )向左平移12π个单位 (B )向右平移12π个单位(C )向左平移3π个单位 (D )向右平移3π个单位 【高考湖北,文18】某同学用“五点法”画函数π()sin()(0,||)2f x A x ωϕωϕ=+><在某一个周期内的图象时,列表并填入了部分数据,如下表:x ωϕ+0 π2 π3π2 2πxπ35π6sin()A x ωϕ+55-(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数()f x 的解 析式;(Ⅱ)将()y f x =图象上所有点向左平行移动π6个单位长度,得到()y g x =图象,求 ()y g x =的图象离原点最近的对称中心.5A =,32ππωϕ+=,5362ππωϕ+=,1.(·天津卷) 已知函数f(x)=3sin ωx +cos ωx(ω>0),x ∈R.在曲线y =f(x)与直线y =1的交点中,若相邻交点距离的最小值为π3,则f(x)的最小正周期为( )A.π2B.2π3 C .π D .2π2.(·安徽卷) 若将函数f(x)=sin 2x +cos 2x 的图像向右平移φ个单位,所得图像关于y 轴对称,则φ的最小正值是( )A.π8B.π4C.3π8D.3π43.(·重庆卷) 将函数f(x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ<π2图像上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图像,则f ⎝⎛⎭⎫π6=________.4.(·北京卷) 函数f(x)=3sin ⎝⎛⎭⎫2x +π6的部分图像如图1-4所示.图1-4(1)写出f(x)的最小正周期及图中x0,y0的值; (2)求f(x)在区间⎣⎡⎦⎤-π2,-π12上的最大值和最小值..5.(·福建卷) 已知函数f(x)=2cos x(s in x +cos x).(1)求f ⎝⎛⎭⎫5π4的值;(2)求函数f(x)的最小正周期及单调递增区间.6.(·广东卷) 若空间中四条两两不同的直线l1,l2,l3,l4满足l1⊥l2,l2∥l3,l3⊥l4,则下列结论一定正确的是( )A .l1⊥l4B .l1∥l4C .l1与l4既不垂直也不平行D .l1与l4的位置关系不确定7.(·湖北卷) 某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系: f(t)=10-3cos π12t -sin π12t ,t ∈[0,24). (1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差.8.(·辽宁卷) 将函数y =3sin ⎝⎛⎭⎫2x +π3的图像向右平移π2个单位长度,所得图像对应的函数( )A .在区间⎣⎡⎦⎤π12,7π12上单调递减B .在区间⎣⎡⎦⎤π12,7π12上单调递增C .在区间⎣⎡⎦⎤-π6,π3上单调递减 D .在区间⎣⎡⎦⎤-π6,π3上单调递增 9.(·新课标全国卷Ⅱ] 函数f(x)=sin(x +φ)-2sin φcos x 的最大值为________. 10.(·全国新课标卷Ⅰ] 在函数①y =cos|2x|,②y =|cos x|,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③11.(·山东卷) 函数y =32sin 2x +cos2x 的最小正周期为________. sin ⎝⎛⎭⎫2x +π6+12,所以该函数的最小正周期T =2π2=π .12.(·陕西卷) 函数f(x)=cos ⎝⎛⎭⎫2x +π4的最小正周期是( )A.π2 B .π C .2π D .4π134.(·浙江卷) 为了得到函数y =sin 3x +cos 3x 的图像,可以将函数y =2cos 3x 的图像( ) A .向右平移π12个单位 B .向右平移π4个单位 C .向左平移π12个单位 D .向左平移π4个单位14.(·四川卷) 为了得到函数y =sin(x +1)的图像,只需把函数y =sin x 的图像上所有的点( ) A .向左平行移动1个单位长度 B .向右平行移动1个单位长度 C .向左平行移动π个单位长度 D .向右平行移动π个单位长度15.(·四川卷) 已知函数f(x)=sin ⎝⎛⎭⎫3x +π4. (1)求f(x)的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值. 【高考押题】1.函数f(x)=3sin ⎝⎛⎭⎫x 2-π4,x ∈R 的最小正周期为( ) A.π2B .πC .2πD .4π2.将函数y =cos 2x +1的图象向右平移π4个单位,再向下平移1个单位后得到的函数图象对应的表达式为( )A .y =sin 2xB .y =sin 2x +2C .y =cos 2xD .y =cos ⎝⎛⎭⎫2x -π43.为了得到函数y =sin 3x +cos 3x 的图象,可以将函数y =2cos 3x 的图象 ( ) A .向右平移π12个单位B .向右平移π4个单位C .向左平移π12个单位D .向左平移π4个单位4.函数f(x)=2sin(ωx +φ)(ω>0,-π2<φ<π2)的部分图象如图所示,则ω,φ的值分别是( )A .2,-π3B .2,-π6 C .4,-π6D .4,π3解析 由图象知f(x)的周期T =2⎝⎛⎭⎫11π12-5π12=π,又T =2πω,ω>0,∴ω=2.由于f(x)=2sin(ωx +φ)(ω>0,-π2<φ<π2)的一个最高点为⎝⎛⎭⎫5π12,2,故有2×5π12+φ=2kπ+π2(k ∈Z),即φ=2kπ-π3,又-π2<φ<π2,∴φ=-π3,选A.答案 A5.将函数y =sin x 的图象向左平移π2个单位,得到函数y =f(x)的图象,则下列说法正确的是( ) A .y =f(x)是奇函数 B .y =f(x)的周期为πC .y =f(x)的图象关于直线x =π2对称 D .y =f(x)的图象关于点⎝⎛⎭⎫-π2,0对称 6.将函数f(x)=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ<π2图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图象,则f ⎝⎛⎭⎫π6=______.7.已知函数f(x)=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ≤π2的图象上的两个相邻的最高点和最低点的距离为22,且过点⎝⎛⎭⎫2,-12,则函数解析式f(x)=________.8.设函数f(x)=Asin(ωx +φ)(A ,ω,φ是常数,A>0,ω>0).若f(x)在区间⎣⎡⎦⎤π6,π2上具有单调性,且f⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3=-f ⎝⎛⎭⎫π6,则f(x)的最小正周期为________.9.已知函数f(x)=4cos x·sin ⎝⎛⎭⎫x +π6+a 的最大值为2.(1)求a 的值及f(x)的最小正周期; (2)在坐标系上作出f(x)在[0,π]上的图象.10.某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系: f(t)=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天的最大温差;(2)若要求实验室温度不高于11 ℃,则在哪段时间实验室需要降温?高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.理解函数的单调性、最大值、最小值及其几何意义.2.会运用函数的图象理解和研究函数的性质.3.结合具体函数,了解函数奇偶性的含义.4.会运用函数的图象理解和研究函数的奇偶性.【热点题型】题型一 函数单调性的判断例1、(1)下列函数f(x)中,满足“∀x1,x2∈(0,+∞)且x1≠x2,(x1-x2)[f(x1)-f(x2)]<0”的是() A .f(x)=2xB .f(x)=|x -1|C .f(x)=1x -xD .f(x)=ln(x +1)(2)函数y =x +2x +1在(-1,+∞)上是________(填“增函数”或“减函数”).【提分秘籍】(1)图象法 作图象→看升降→归纳单调性区间(2)转化法(3)导数法求导→判断f′x 正、负→单调性区间(4)定义法取值→作差→变形→定号→单调性区间求函数的单调区间,一定要注意定义域优先原则.【举一反三】下列函数中,在区间(0,+∞)上为增函数的是( )A .y =x +1B .y =(x -1)2C .y =2-xD .y =log0.5(x +1)题型二求函数的单调区间例2、求下列函数的单调区间:(1)y =-x2+2|x|+1;(2)y =log 12(x2-3x +2).【提分秘籍】(1)求函数的单调区间与确定单调性的方法一致.常用的方法有:①利用已知函数的单调性,即转化为已知函数的和、差或复合函数,求单调区间.②定义法:先求定义域,再利用单调性定义确定单调区间.③图象法:如果f(x)是以图象形式给出的,或者f(x)的图象易作出,则可由图象的直观性写出它的单调区间.④导数法:利用导数取值的正负确定函数的单调区间.(2)若函数f(x)的定义域上(或某一区间上)是增函数,则f(x1)<f(x2)⇔x1<x2.利用上式,可以去掉抽象函数的符号,将函数不等式(或方程)的求解化为一般不等式(或方程)的求解,但无论如何都必须在定义域内或给定的范围内进行.【举一反三】求下列函数的单调区间,并指出其增减性.(1)y =(a>0且a≠1);(2)y =log 12(4x -x2).题型三函数单调性的应用例3、已知函数f(x)满足f(x)=f(π-x),且当x ∈⎝⎛⎭⎫-π2,π2时,f(x)=ex +sin x ,则( ) A .f(1)<f(2)<f(3) B .f(2)<f(3)<f(1)C .f(3)<f(2)<f(1)D .f(3)<f(1)<f(2)【提分秘籍】 1.高考对函数单调性的考查多以选择题、填空题的形式出现,有时也应用于解答题中的某一问中.2.高考对函数单调性的考查主要有以下几个命题角度:(1)利用函数的单调性比较大小.(2)利用函数的单调性解决与抽象函数有关的不等式问题.(3)利用函数的单调性求参数.(4)利用函数的单调性求解最值(或恒成立)问题.【方法规律】(1)含“f”号不等式的解法首先根据函数的性质把不等式转化为f(g(x))>f(h(x))的形式,然后根据函数的单调性去掉“f”号,转化为具体的不等式(组),此时要注意g(x)与h(x)的取值应在外层函数的定义域内.(2)分段函数单调性解法为了保证函数在整个定义域内是单调的,除了要分别保证各段表达式在对应区间上的单调性一致外,还要注意两段连接点的衔接.【举一反三】已知函数f(x)的定义域是(0,+∞),且满足f(xy)=f(x)+f(y),f ⎝⎛⎭⎫12=1,如果对于0<x<y ,都有f(x)>f(y).(1)求f(1)的值;(2)解不等式f(-x)+f(3-x)≥-2.【变式探究】 已知f(x)=⎩⎪⎨⎪⎧ 3-a x -a x<1logax x≥1是(-∞,+∞)上的增函数,则a 的取值范围是( )A .(1,+∞)B .(1,3)C.⎣⎡⎭⎫32,3D.⎝⎛⎭⎫1,32题型四函数奇偶性的判定例4、(1)下列函数不具有奇偶性的有________.①f(x)=(x +1)1-x 1+x ; ②f(x)=x3-x ;③f(x)=x2+|x|-2;④f(x)=lg x2+lg 1x2;⑤f(x)=⎩⎪⎨⎪⎧x2+x x<0,-x2+x x>0 (2)对于函数y =f(x),x ∈R ,“y =|f(x)|的图象关于y 轴对称”是“y =f(x)是奇函数”的()A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件【提分秘籍】(1)判定函数奇偶性的常用方法及思路:①定义法:②图象法:③性质法:a.“奇+奇”是奇,“奇-奇”是奇,“奇·奇”是偶,“奇÷奇”是偶;b.“偶+偶”是偶,“偶-偶”是偶,“偶·偶”是偶,“偶÷偶”是偶;c.“奇·偶”是奇,“奇÷偶”是奇.(2)判断函数奇偶性时应注意问题:①分段函数奇偶性的判断,要注意定义域内x取值的任意性,应分段讨论,讨论时可依据x的范围取相应的解析式,判断f(x)与f(-x)的关系,得出结论,也可以利用图象作判断.②“性质法”中的结论是在两个函数的公共定义域内才成立的.③性质法在小题中可直接运用,但在解答题中应给出性质推导的过程.【举一反三】设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数题型五函数的周期性例5、已知函数f(x)是R上的偶函数,g(x)是R上的奇函数,且g(x)=f(x-1),若f(2)=2,则f(2 014)的值为()A.2 B.0C.-2 D.±2【提分秘籍】函数周期性的判断要结合周期性的定义,还可以利用图象法及总结的几个结论,如f(x+a)=-f(x)⇒T=2a.【举一反三】函数f(x)=lg|sin x|是()A.最小正周期为π的奇函数B.最小正周期为2π的奇函数C .最小正周期为π的偶函数D .最小正周期为2π的偶函数题型六函数奇偶性、周期性等性质的综合应用例6、设定义在R 上的函数f(x)同时满足以下条件:①f(x)+f(-x)=0;②f(x)=f(x +2);③当0≤x≤1时,f(x)=2x -1,则f ⎝⎛⎭⎫12+f(1)+f ⎝⎛⎭⎫32+f(2)+f ⎝⎛⎭⎫52=________.【提分秘籍】1.函数的奇偶性、周期性以及单调性是函数的三大性质,在高考中常常将它们综合在一起命制试题,其中奇偶性多与单调性相结合,而周期性常与抽象函数相结合,并以结合奇偶性求函数值为主.归纳起来常见的命题角度有:(1)求函数值.(2)与函数图象有关的问题.(3)奇偶性、周期性单调性的综合.2.应用函数奇偶性可解决的问题及方法(1)已知函数的奇偶性,求函数值将待求值利用奇偶性转化为已知区间上的函数值求解.(2)已知函数的奇偶性求解析式将待求区间上的自变量,转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f(x)的方程(组),从而得到f(x)的解析式.(3)已知函数的奇偶性,求函数解析式中参数的值常常利用待定系数法:利用f(x)±f(-x)=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程求解.(4)应用奇偶性画图象和判断单调性.【举一反三】设函数f(x)是定义在R 上的偶函数,且对任意的x ∈R 恒有f(x +1)=f(x -1),已知当x ∈[0,1]时,f(x)=⎝⎛⎭⎫121-x ,则下列命题: ①2是函数f(x)的周期;②函数f(x)在(1,2)上递减,在(2,3)上递增;③函数f(x)的最大值是1,最小值是0;④当x ∈(3,4)时,f(x)=⎝⎛⎭⎫12x -3. 其中正确命题的序号是________.【高考风向标】1.【高考四川,文15】已知函数f(x)=2x ,g(x)=x2+ax(其中a ∈R).对于不相等的实数x1,x2,设m =1212()()f x f x x x --,n =1212()()g x g x x x --,现有如下命题: ①对于任意不相等的实数x1,x2,都有m >0;②对于任意的a 及任意不相等的实数x1,x2,都有n >0;③对于任意的a ,存在不相等的实数x1,x2,使得m =n ;④对于任意的a ,存在不相等的实数x1,x2,使得m =-n.其中真命题有___________________(写出所有真命题的序号).2.【高考陕西,文10】设()ln ,0f x x a b =<<,若)p f ab =,()2a b q f +=,1(()())2r f a f b =+,则下列关系式中正确的是( ) A .q r p =<B .q r p =>C .p r q =<D .p r q =>3.【高考浙江,文12】已知函数()2,166,1x x f x x x x ⎧≤⎪=⎨+->⎪⎩,则()2f f -=⎡⎤⎣⎦,()f x 的最小值是.4.【高考上海,文20】(本题满分14分)本题共2小题,第1小题6分,第2小题8分.已知函数xax x f 1)(2+=,其中a 为实数. (1)根据a 的不同取值,判断函数)(x f 的奇偶性,并说明理由;(2)若)3,1(∈a ,判断函数)(x f 在]2,1[上的单调性,并说明理由.1.(·北京卷)下列函数中,定义域是R且为增函数的是()A.y=e-x B.y=x3C.y=ln x D.y=|x|2.(·湖南卷)下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是()A.f(x)=1x2 B.f(x)=x2+1C.f(x)=x3 D.f(x)=2-x3.(·江苏卷)已知函数f(x)=ex+e-x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数.(2)若关于x的不等式mf(x)≤e-x+m-1在(0,+∞)上恒成立,求实数m的取值范围.(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(-x30+3x0)成立.试比较ea-1与ae-1的大小,并证明你的结论.4.(·四川卷)以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[-M,M].例如,当φ1(x)=x3,φ2(x)=sin x时,φ1(x)∈A,φ2(x)∈B.现有如下命题:①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”;②若函数f(x)∈B,则f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∈/B;④若函数f(x)=aln(x+2)+xx2+1(x>-2,a∈R)有最大值,则f(x)∈B.其中的真命题有________.(写出所有真命题的序号)5.(·四川卷)已知函数f(x)=ex-ax2-bx-1,其中a,b∈R,e=2.718 28…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,证明:e-2<a<1.6.(·北京卷)函数f(x)=⎩⎪⎨⎪⎧log 12x ,x≥1,2x ,x<1的值域为________.7.(·北京卷)下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( )A .y =1xB .y =e -xC .y =-x2+1D .y =lg |x|8.(·新课标全国卷Ⅱ] 若存在正数x 使2x(x -a)<1成立,则a 的取值范围是( )A .(-∞,+∞)B .(-2,+∞)C .(0,+∞)D .(-1,+∞)9.(·新课标全国卷Ⅱ] 已知函数f(x)=x3+ax2+bx +c ,下列结论中错误的是( )A .x0∈R ,f(x0)=0B .函数y =f(x)的图像是中心对称图形C .若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减D .若x0是f(x)的极值点,则f′(x0)=010.(·四川卷)已知函数f(x)=⎩⎪⎨⎪⎧x2+2x +a ,x<0,ln x ,x>0,其中a 是实数.设A(x1,f(x1)),B(x2,f(x2))为该函数图像上的两点,且x1<x2.(1)指出函数f(x)的单调区间;(2)若函数f(x)的图像在点A ,B 处的切线互相垂直,且x2<0,证明:x2-x1≥1;(3)若函数f(x)的图像在点A ,B 处的切线重合,求a 的取值范围.11.(·四川卷)设函数f(x)=ex +x -a(a ∈R ,e 为自然对数的底数).若存在b ∈[0,1]使f(f(b))=b 成立,则a 的取值范围是( )A .[1,e]B .[1,1+e]C .[e ,1+e]D .[0,1]【高考押题】1.下列函数中,既是偶函数又在(0,+∞)内单调递减的函数是().A .y =x2B .y =|x|+1C .y =-lg|x|D .y =2|x|2.已知函数f(x)为R 上的减函数,则满足f(|x|)<f(1)的实数x 的取值范围是()A .(-1,1)B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)3.若函数y =ax 与y =-b x 在(0,+∞)上都是减函数,则y =ax2+bx 在(0,+∞)上是()A .增函数B .减函数C .先增后减D .先减后增4.设函数f(x)=⎩⎪⎨⎪⎧1,x>0,0,x =0,-1,x<0,g(x)=x2f(x -1),则函数g(x)的递减区间是 (). A .(-∞,0]B .[0,1)C .[1,+∞)D .[-1,0]5.函数y =-x2+2x -3(x <0)的单调增区间是()A .(0,+∞)B .(-∞,1]C .(-∞,0)D .(-∞,-1]6.设f(x)为定义在R 上的奇函数.当x≥0时,f(x)=2x +2x +b(b 为常数),则f(-1)等于().A .3B .1C .-1D .-37.已知定义在R 上的奇函数,f(x)满足f(x +2)=-f(x),则f(6)的值为 ().A .-1B .0C .1D .28.定义在R 上的函数f(x)满足f(x)=f(x +2),当x ∈[3,5]时,f(x)=2-|x -4|,则下列不等式一定成立的是(). A .f ⎝⎛⎭⎫cos 2π3>f ⎝⎛⎭⎫sin 2π3B .f(sin 1)<f(cos 1)C .f ⎝⎛⎭⎫sin π6<f ⎝⎛⎭⎫cos π6 D .f(cos 2)>f(sin 2)9.已知函数f(x)=⎩⎪⎨⎪⎧1-2-x ,x≥0,2x -1,x<0,则该函数是 (). A .偶函数,且单调递增B .偶函数,且单调递减C .奇函数,且单调递增D .奇函数,且单调递减10.已知f(x)是定义在R 上的周期为2的周期函数,当x ∈[0,1)时,f(x)=4x -1,则f(-5.5)的值为()A .2B .-1C .-12D .111.设函数D(x)=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则下列结论错误的是 (). A .D(x)的值域为{0,1}B .D(x)是偶函数C .D(x)不是周期函数D .D(x)不是单调函数12.已知函数f(x)=x2+a x (x≠0,a ∈R).(1)判断函数f(x)的奇偶性;(2)若f(x)在区间[2,+∞)上是增函数,求实数a 的取值范围.13.已知函数f(x)=a·2x +b·3x ,其中常数a ,b 满足ab≠0.(1)若ab>0,判断函数f(x)的单调性;(2)若ab<0,求f(x +1)>f(x)时的x 的取值范围.14.函数f(x)对任意的a 、b ∈R ,都有f(a +b)=f(a)+f(b)-1,并且当x>0时,f(x)>1.(1)求证:f(x)是R 上的增函数;(2)若f(4)=5,解不等式f(3m2-m -2)<3.15.已知函数f(x)是(-∞,+∞)上的奇函数,且f(x)的图象关于x =1对称,当x ∈[0,1]时,f(x)=2x -1,(1)求证:f(x)是周期函数;(2)当x ∈[1,2]时,求f(x)的解析式;(3)计算f(0)+f(1)+f(2)+…+f()的值.16.已知函数f(x)的定义域为R ,且满足f(x +2)=-f(x).(1)求证:f(x)是周期函数;(2)若f(x)为奇函数,且当0≤x≤1时,f(x)=12x ,求使f(x)=-12在[0,2 014]上的所有x 的个数.高考模拟复习试卷试题模拟卷。
高考数学模拟复习试卷试题模拟卷第八章 直线与圆0064142
![高考数学模拟复习试卷试题模拟卷第八章 直线与圆0064142](https://img.taocdn.com/s3/m/792e98d8844769eae109edd7.png)
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【考情解读】1.熟练掌握等差、等比数列的前n 项和公式;2.掌握非等差数列、非等比数列求和的几种常见方法. 【重点知识梳理】1.求数列的前n 项和的方法 (1)公式法①等差数列的前n 项和公式 Sn =n (a1+an ) 2 =na1+n (n -1)2d . ②等比数列的前n 项和公式 (ⅰ)当q =1时,Sn =na1;(ⅱ)当q≠1时,Sn =a1(1-qn )1-q =a1-anq1-q .(2)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3)裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4)倒序相加法把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广. (5)错位相减法主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广.(6)并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如an = (-1)nf(n)类型,可采用两项合并求解.例如,Sn =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 2.常见的裂项公式 (1)1n (n +1)=1n -1n +1. (2)1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1.(3)1n +n +1=n +1-n.【高频考点突破】 考点一 分组转化法求和【例1】设数列{an}满足a1=2,a2+a4=8,且对任意n ∈N*,函数f(x)=(an -an +1+an +2)x +an +1cos x -an +2sin x 满足f′⎝⎛⎭⎫π2=0. (1)求数列{an} 的通项公式;(2)若bn =2⎝⎛⎭⎫an +12an ,求数列{bn}的前n 项和Sn.规律方法 常见可以使用公式求和的数列:(1)等差数列、等比数列以及由等差数列、等比数列通过加、减构成的数列,它们可以使用等差数列、等比数列的求和公式求解;(2)奇数项和偶数项分别构成等差数列或等比数列的,可以分项数为奇数和偶数时,分别使用等差数列或等比数列的求和公式.【变式探究】在等差数列{an}中,已知公差d =2,a2是a1与a4的等比中项. (1)求数列{an}的通项公式;(2)令bn =a n (n +1)2,记Tn =-b1+b2-b3+b4-…+(-1)nbn ,求Tn.考点二 错位相减法求和【例2】 (·江西卷)已知首项都是1的两个数列{an},{bn}(bn≠0,n ∈N*)满足anbn +1-an +1bn +2bn +1bn =0.(1)令cn =anbn ,求数列{cn}的通项公式; (2)若bn =3n -1,求数列{an}的前n 项和Sn.【规律方法】(1)一般地,如果数列{an}是等差数列,{bn}是等比数列,求数列{an·bn}的前n 项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列{bn}的公比,然后作差求解;(2)在写出“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“Sn -qSn”的表达式.【变式探究】数列{an}满足a1=1,nan +1=(n +1)an +n(n +1),n ∈N*.(1)证明:数列⎩⎨⎧⎭⎬⎫an n 是等差数列;(2)设bn =3n·an ,求数列{bn}的前n 项和Sn.考点三 裂项相消法求和【例3】正项数列{an}的前n 项和Sn 满足:S2n -(n2+n -1)Sn -(n2+n)=0. (1)求数列{an}的通项公式an ;(2)令bn =n +1(n +2)2a2n ,数列{bn}的前n 项和为Tn ,证明:对于任意的n ∈N*,都有Tn <564.规律方法 利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项,再就是将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项公式相等.【变式探究】 (·山东卷)已知等差数列{an}的公差为2,前n 项和为Sn ,且S1,S2,S4成等比数列. (1)求数列{an}的通项公式;(2)令bn =(-1)n -14nanan +1,求数列{bn}的前n 项和Tn.【真题感悟】【高考福建,文17】等差数列{}n a 中,24a =,4715a a +=. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设22n a n b n -=+,求12310b b b b +++⋅⋅⋅+的值.【高考北京,文16】(本小题满分13分)已知等差数列{}n a 满足1210a a +=,432a a -=. (I )求{}n a 的通项公式;(II )设等比数列{}n b 满足23b a =,37b a =,问:6b 与数列{}n a 的第几项相等?【高考安徽,文18】已知数列{}n a 是递增的等比数列,且14239,8.a a a a +== (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设n S 为数列{}n a 的前n 项和,11n n n n a b S S ++=,求数列{}n b 的前n 项和n T .【高考山东,文19】已知数列{}n a 是首项为正数的等差数列,数列11n n a a +⎧⎫⎨⎬•⎩⎭的前n 项和为21nn +. (I )求数列{}n a 的通项公式;(II )设()12n an n b a =+⋅,求数列{}n b 的前n 项和n T .【高考重庆,文16】已知等差数列{}n a 满足3a =2,前3项和3S =92. (Ⅰ)求{}n a 的通项公式,(Ⅱ)设等比数列{}n b 满足1b =1a ,4b =15a ,求{}n b 前n 项和n T .1.(·江西卷)已知首项都是1的两个数列{an},{bn}(bn≠0,n ∈N*)满足 anbn +1-an +1bn +2bn +1bn =0. (1)令cn =anbn ,求数列{cn}的通项公式; (2)若bn =3n -1,求数列{an}的前n 项和Sn.2.(·全国卷)等差数列{an}的前n 项和为Sn.已知a1=10,a2为整数,且Sn≤S4. (1)求{an}的通项公式;(2)设bn =1anan +1,求数列{bn}的前n 项和Tn.3.(·山东卷)已知等差数列{an}的公差为2,前n 项和为Sn ,且S1,S2,S4成等比数列. (1)求数列{an}的通项公式;(2)令bn =(-1)n -14n anan +1,求数列{bn}的前n 项和Tn.4.(·江西卷)正项数列{a n}的前n 项和Sn 满足:S2n -(n2+n -1)Sn -(n2+n)=0.(1)求数列{an}的通项公式an ;(2)令bn =n +1(n +2)2a2n ,数列{bn}的前n 项和为Tn ,证明:对于任意的n ∈N*,都有Tn<564.5.(·湖南卷)设Sn 为数列{an}的前n 项和,Sn =(-1)nan -12n ,n ∈N*,则 (1)a3=________;(2)S1+S2+…+S100=________.6.(·山东卷)设等差数列{an}的前n 项和为Sn ,且S4=4S2,a2n =2an +1. (1)求数列{an}的通项公式;(2)设数列{bn}的前n 项和为Tn ,且Tn +an +12n =λ(λ为常数),令cn =b2n(n ∈N*),求数列{cn}的前n 项和Rn.【押题专练】1.等差数列{an}的通项公式为an =2n +1,其前n 项和为Sn ,则数列⎩⎨⎧⎭⎬⎫Sn n 的前10项的和为 ()A .120B .70C .75D .1002.已知函数f(n)=⎩⎪⎨⎪⎧n2 (当n 为奇数时),-n2(当n 为偶数时),且an =f(n)+f(n +1),则a1+a2+a3+…+a100等于()A .0B .100C .-100D .10 2003.数列a1+2,…,ak +2k ,…,a10+20共有十项,且其和为240,则a1+…+ak +…+a10的值为() A .31 B .120C .130D .1854.已知数列{an}满足a1=1,an +1·an =2n(n ∈N*),则S 2 016=() A .22 016-1B .3·21 008-3C .3·21 008-1D .3·21 007-25.已知数列{an}:12,13+23,14+24+34,…,110+210+310+…+910,…,若bn =1anan +1,那么数列{bn}的前n 项和Sn 为()A.n n +1B.4n n +1C.3n n +1D.5n n +16.数列{an}满足an +an +1=12(n ∈N*),且a1=1,Sn 是数列{an}的前n 项和,则S21=() A.212B .6C .10D .117.已知函数f(n)=n2cos(nπ),且an =f(n)+f(n +1),则a1+a2+a3+…+a100= ()A .-100B .0C .100D .10 2008.设f(x)=4x 4x +2,利用倒序相加法,可求得f ⎝⎛⎭⎫111+f ⎝⎛⎭⎫211+…+f ⎝⎛⎭⎫1011的值为________.9.在等差数列{an}中,a1>0,a10·a11<0,若此数列的前10项和S10=36,前18项和S18=12,则数列{|an|}的前18项和T18的值是________.10.在数列{an}中,a1=1,an +1=(-1)n(an +1),记Sn 为{an}的前n 项和,则S2 013=________. 11.等比数列{an}的前n 项和Sn =2n -1, 则a21+a22+…+a2n =________.12.已知数列{an}的前n 项和是Sn ,且Sn +12an =1(n ∈N*). (1)求数列{an}的通项公式;(2)设bn =log 13(1-Sn +1)(n ∈N*),令Tn =1b1b2+1b2b3+…+1bnbn +1,求Tn.13.在等比数列{an}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不在下表中的同一列.第一列第二列第三列第一行 3 2 10 第二行 6 4 14 第三行9818(1)求数列{an}的通项公式;(2)若数列{bn}满足:bn =an +(-1)nln an ,求数列{bn}的前n 项和Sn. 高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】 1.了解向量的实际背景;2.理解平面向量的概念,理解两个向量相等的含义;3.理解向量的几何表示;4.掌握向量加法、减法的运算,并理解其几何意义;5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义;6.了解向量线性运算的性质及其几何意义. 【热点题型】题型一平面向量的有关概念 【例1】给出下列命题: ①若|a|=|b|,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB →=DC →是四边形ABCD 为平行四边形的充要条件; ③若a =b ,b =c ,则a =c ; ④若a ∥b ,b ∥c ,则a ∥c. 其中正确命题的序号是()A .②③B .②④C .③④D .②③④【提分秘籍】(1)相等向量具有传递性,非零向量的平行也具有传递性.(2)共线向量即为平行向量,它们均与起点无关.(3)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象的移动混为一谈.(4)非零向量a 与a |a|的关系:a|a|是与a 同方向的单位向量.【举一反三】 给出下列命题:①两个具有公共终点的向量,一定是共线向量; ②两个向量不能比较大小,但它们的模能比较大小; ③若λa =0 (λ为实数),则λ必为零;④已知λ,μ为实数,若λa =μb ,则a 与b 共线. 其中错误命题的个数为() A .1 B .2 C .3 D .4解析 ①错误.两向量共线要看其方向而不是起点与终点.②正确.因为向量既有大小,又有方向,故它们不能比较大小,但它们的模均为实数,故可以比较大小.③错误.当a =0时,不论λ为何值,λa =0.④错误.当λ=μ=0时,λa =μb ,此时,a 与b 可以是任意向量. 答案 C题型二 平面向量的线性运算【例2】 (1)在△ABC 中,AB 边的高为CD ,若CB →=a ,CA →=b ,a·b =0,|a|=1,|b|=2,则AD →=() A.13a -13b B.23a -23b C.35a -35b D.45a -45b(2)如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB →+AD →=λAO →,则λ=________.解析 (1)∵a·b =0,∴∠ACB =90°,∴AB =5,CD =255, ∴BD =55,AD =455,∴AD ∶BD =4∶1. ∴AD →=45AB →=45(CB →-CA →)=45a -45b. (2)因为ABCD 为平行四边形, 所以AB →+AD →=AC →=2AO →, 已知AB →+AD →=λAO →,故λ=2.答案 (1)D(2)2 【提分秘籍】(1)解题的关键在于熟练地找出图形中的相等向量,并能熟练运用相反向量将加减法相互转化.(2)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果.【举一反三】(1)如图所示,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →=()A .a -12b B.12a -b C .a +12b D.12a +b(2)如图,D ,E ,F 分别是△ABC 的边AB ,BC ,CA 的中点,则()A.AD →+BE →+CF →=0B.BD →-CF →+DF →=0C.AD →+CE →-CF →=0D.BD →-BE →-FC →=0解析 (1)连接CD ,由点C ,D 是半圆弧的三等分点,得CD ∥AB 且CD →=12AB →=12a ,所以AD →=AC →+CD →=b +12a.(2)由题意知:AD →=FE →,BE →=DF →,CF →=ED →,而FE →+ED →+DF →=0,∴AD →+BE →+CF →=0. 答案 (1)D(2)A题型三共线向量定理的应用【例3】设两个非零向量a 与b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b).求证:A ,B ,D 三点共线; (2)试确定实数k ,使ka +b 和a +kb 共线.【提分秘籍】(1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(2)向量a ,b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立;若λ1a +λ2b =0,当且仅当λ1=λ2=0时成立,则向量a ,b 不共线.【举一反三】(1)已知向量i 与j 不共线,且AB →=i +mj ,AD →=ni +j.若A ,B ,D 三点共线,则实数m ,n 应该满足的条件是()A .m +n =1B .m +n =-1C .mn =1D .mn =-1(2)如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,则1n +1m 的值为________.解析 (1)由A ,B ,D 共线可设AB →=λAD →,于是有i +mj =λ(ni +j)=λni +λj.又i ,j 不共线,因此⎩⎪⎨⎪⎧λn =1,λ=m , 即有mn =1.(2)设OA →=a ,OB →=b ,由题意知OG →=23×12(OA →+OB →)=13(a +b),PQ →=OQ →-OP →=nb -ma ,PG →=OG →-OP →=⎝⎛⎭⎫13-m a +13b ,由P ,G ,Q 三点共线得,存在实数λ,使得PQ →=λPG →,即nb -ma =λ⎝⎛⎭⎫13-m a +13λb ,从而⎩⎨⎧-m =λ⎝⎛⎭⎫13-m ,n =13λ,消去λ得1n +1m =3.答案 (1)C(2)3 【高考风向标】1.【高考安徽,文15】ABC ∆是边长为2的等边三角形,已知向量b a 、满足a AB 2=→,b a AC+=→2,则下列结论中正确的是.(写出所有正确结论得序号)①a 为单位向量;②b 为单位向量;③b a ⊥;④→BC b // ;⑤→⊥+BC b a )4(。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【考情解读】1.了解抛物线的实际背景,了解抛物线在刻画现实世界和解决实际问题中的作用;2.掌握抛物线的定义、几何图形、标准方程及简单几何性质.【重点知识梳理】1.抛物线的定义(1)平面内与一个定点F和一条定直线l(F∉l)的距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.(2)其数学表达式:|MF|=d(其中d为点M到准线的距离).2.抛物线的标准方程与几何性质图形标准方程y2=2px(p>0) y2=-2px(p>0) x2=2py(p>0)x2=-2py(p>0)p的几何意义:焦点F到准线l的距离性质顶点O(0,0)对称轴y=0x=0焦点F⎝⎛⎭⎫p2,0F⎝⎛⎭⎫-p2,0F⎝⎛⎭⎫0,p2F⎝⎛⎭⎫0,-p2离心率e=1准线方程x=-p2x=p2y=-p2y=p2范围x≥0,y∈R x≤0,y∈R y≥0,x∈R y≤0,x∈R 开口方向向右向左向上向下考点一抛物线的定义及应用【例1】 (1)F是抛物线y2=2x的焦点,A,B是抛物线上的两点,|AF|+|BF|=6,则线段AB的中点到y轴的距离为________.(2)已知点P是抛物线y2=4x上的动点,点P在y轴上的射影是M,点A的坐标是(4,a),则当|a|>4时,|PA|+|PM|的最小值是________.【变式探究】已知点P是抛物线y2=2x上的一个动点,则点P到点(0,2)的距离与点P到该抛物线准线的距离之和的最小值为()A.172B.3 C. 5 D.92考点二抛物线的标准方程和几何性质【例2】 (1)已知双曲线C1:x2a2-y2b2=1(a>0,b>0)的离心率为2.若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的渐近线的距离为2,则抛物线C2的方程为()A .x2=833yB .x2=1633y C .x2=8yD .x2=16y(2)过抛物线y2=4x 的焦点F 的直线交该抛物线于A ,B 两点,O 为坐标原点.若|AF|=3,则△AOB 的面积为________.【变式探究】 (1)已知点A(-2,3)在抛物线C :y2=2px 的准线上,记C 的焦点为F ,则直线AF 的斜率为( )A .-43B .-1C .-34D .-12(2)(·湖南卷)如图,正方形ABCD 和正方形DEFG 的边长分别为a ,b(a<b),原点O 为AD 的中点,抛物线y2=2px(p>0)经过C ,F 两点,则ba =________.考点三 抛物线焦点弦的性质【例3】 设抛物线y2=2px(p>0)的焦点为F ,经过点F 的直线交抛物线于A ,B 两点,点C 在抛物线的准线上,且BC ∥x 轴.证明:直线AC 经过原点O.【变式探究】 已知抛物线y2=2px(p>0)的焦点为F ,A(x1,y1),B(x2,y2)是过F 的直线与抛物线的两个交点,求证:(1)y1y2=-p2,x1x2=p24; (2)1|AF|+1|BF|为定值;(3)以AB 为直径的圆与抛物线的准线相切. 考点四 直线与抛物线的位置关系【例4】 (·大纲全国卷)已知抛物线C :y2=2px(p>0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且|QF|=54|PQ|.(1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.【变式探究】 已知一条曲线C 在y 轴右边,C 上每一点到点F(1,0)的距离减去它到y 轴距离的差都是1.(1)求曲线C 的方程;(2)是否存在正数m ,对于过点M(m ,0)且与曲线C 有两个交点A ,B 的任一直线,都有FA →·FB →<0?若存在,求出m 的取值范围;若不存在,请说明理由.【真题感悟】1.【高考新课标1,文5】已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线2:8C y x =的焦点重合,,A B 是C 的准线与E 的两个交点,则AB =( )(A )3(B )6(C )9(D )122.【高考陕西,文3】已知抛物线22(0)y px p =>的准线经过点(1,1)-,则抛物线焦点坐标为( )A .(1,0)-B .(1,0)C .(0,1)-D .(0,1)3.【高考上海,文7】抛物线)0(22>=p px y 上的动点Q 到焦点的距离的最小值为1,则=p .4.【高考福建,文19】已知点F 为抛物线2:2(0)E y px p =>的焦点,点(2,)A m 在抛物线E 上,且3AF =.(Ⅰ)求抛物线E 的方程;(Ⅱ)已知点(1,0)G -,延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.5.【高考浙江,文19】(本题满分15分)如图,已知抛物线211C 4y x =:,圆222C (1)1x y +-=:,过点P(t,0)(t>0)作不过原点O 的直线PA ,PB 分别与抛物线1C 和圆2C 相切,A ,B为切点.(1)求点A ,B 的坐标; (2)求PAB ∆的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则该直线与抛物线相切,称该公共点为切点.1.(·广东卷)曲线y =e -5x +2在点(0,3)处的切线方程为________.2.(·辽宁卷)已知点A(-2,3)在抛物线C :y2=2px 的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为()A.12B.23C.34D.433.(·新课标全国卷Ⅰ] 已知抛物线C :y2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C的一个交点.若FP →=4FQ →,则|QF|=()A.72 B .3 C.52 D .24.(·安徽卷)如图1-4,已知两条抛物线E1:y2=2p1x(p1>0)和E2:y2=2p2x(p2>0),过原点O 的两条直线l1和l2,l1与E1,E2分别交于A1,A2两点,l2与E1,E2分别交于B1,B2两点.图1-4(1)证明:A1B1∥A2B2;(2)过O 作直线l(异于l1,l2)与E1,E2分别交于C1,C2两点,记△A1B1C1与△A2B2C2的面积分别为S1与S2,求S1S2的值.5.(·湖北卷)在平面直角坐标系xOy 中,点M 到点F(1,0)的距离比它到y 轴的距离多1.记点M 的轨迹为C.(1)求轨迹C 的方程;(2)设斜率为k 的直线l 过定点P(-2,1),求直线l 与轨迹C 恰好有一个公共点、两个公共点、三个公共点时k 的相应取值范围.6.(·湖南卷)如图1-4,正方形ABCD 和正方形DEFG 的边长分别为a ,b(a <b),原点O 为AD 的中点,抛物线y2=2px(p >0)经过C ,F 两点,则ba =________.图1-47.(·全国卷)已知抛物线C :y2=2px(p>0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且|QF|=54|PQ|.(1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.8.(·新课标全国卷Ⅱ] 设F 为抛物线C :y2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为()A.334B.938C.6332D.949.(·山东卷)已知抛物线C :y2=2px(p >0)的焦点为F ,A 为C 上异于原点的任意一点,过点A 的直线l 交C 于另一点B ,交x 轴的正半轴于点D ,且有|FA|=|FD|.当点A 的横坐标为3时,△ADF 为正三角形.(1)求C 的方程.(2)若直线l1∥l ,且l1和C 有且只有一个公共点E. ①证明直线AE 过定点,并求出定点坐标.②△A BE 的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.10.(·陕西卷)如图1-5所示,曲线C 由上半椭圆C1:y2a2+x2b2=1(a>b>0,y≥0)和部分抛物线C2:y =-x2+1(y≤0)连接而成,C1与C2的公共点为A ,B ,其中C1的离心率为32.(1)求a ,b 的值;(2)过点B 的直线l 与C1,C2分别交于点P ,Q(均异于点A ,B),若AP ⊥AQ ,求直线l 的方程.图1-5【押题专练】1.抛物线x2=12y 的焦点坐标为( )A.⎝⎛⎭⎫12,0B.⎝⎛⎭⎫0,12C.⎝⎛⎭⎫18,0D.⎝⎛⎭⎫0,18 2.已知抛物线y2=2px(p >0)的准线与曲线x2+y2-4x -5=0相切,则p 的值为 ( ) A .2B .1C.12D.143.点M(5,3)到抛物线y =ax2的准线的距离为6,那么抛物线的方程是( ) A .y =12x2 B .y =12x2或y =-36x2 C .y =-36x2D .y =112x2或y =-136x24.已知抛物线y2=2px(p >0)的焦点F 与双曲线x24-y25=1的右焦点重合,抛物线的准线与x 轴的交点为K ,点A 在抛物线上且|AK|=2|AF|,则A 点的横坐标为( )A .2 2B .3C .2 3D .45.已知P 是抛物线y2=2x 上动点,A ⎝⎛⎭⎫72,4,若点P 到y 轴的距离为d1,点P 到点A 的距离为d2,则d1+d2的最小值是( )A .4B.92C .5D.1126.若抛物线y2=2px(p >0)的准线经过双曲线x2-y2=1的左顶点,则p =________.7.已知一条过点P(2,1)的直线与抛物线y2=2x 交于A ,B 两点,且P 是弦AB 的中点,则直线AB 的方程为________.8.已知抛物线y2=2px(p >0)的焦点为F ,△ABC 的顶点都在抛物线上,且满足FA →+FB →+FC →=0,则1kAB +1kBC +1kCA =________.9.如图,已知抛物线y2=2px(p>0)有一个内接直角三角形,直角顶点在原点,两直角边OA 与OB 的长分别为1和8,求抛物线的方程.10.抛物线C :x2=8y 与直线y =2x -2相交于A ,B 两点,点P 是抛物线C 上异于A ,B 的一点,若直线PA ,PB 分别与直线y =2相交于点Q ,R ,O 为坐标原点,则OP →·OQ →=________.11.已知抛物线C 的顶点为O(0,0),焦点为F(0,1). (1)求抛物线C 的方程;(2)过点F 作直线交抛物线C 于A ,B 两点.若直线AO ,BO 分别交直线l :y =x -2于M ,N 两点,求|MN|的最小值.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义;2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.【热点题型】题型一二次函数模型【例1】A,B两城相距100 km,在两城之间距A城x(km)处建一核电站给A,B两城供电,为保证城市安全,核电站距城市距离不得小于10 km.已知供电费用等于供电距离(km)的平方与供电量(亿度)之积的0.25倍,若A城供电量为每月20亿度,B城供电量为每月10亿度.(1)求x的取值范围;(2)把月供电总费用y表示成x的函数;(3)核电站建在距A城多远,才能使供电总费用y最少?【提分秘籍】实际生活中的二次函数问题(如面积、利润、产量等),可根据已知条件确定二次函数模型,结合二次函数的图象、单调性、零点解决,解题中一定注意函数的定义域.【举一反三】某汽车销售公司在A,B两地销售同一种品牌的汽车,在A地的销售利润(单位:万元)为y1=4.1x -0.1x2,在B地的销售利润(单位:万元)为y2=2x,其中x为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是()A.10.5万元 B.11万元C.43万元 D.43.025万元解析 设公司在A 地销售该品牌的汽车x 辆,则在B 地销售该品牌的汽车(16-x)辆,所以可得利润y =4.1x -0.1x2+2(16-x)=-0.1x2+2.1x +32=-0.1(x -212)2+0.1×2124+32.因为x ∈[0,16]且x ∈N ,所以当x =10或11时,总利润取得最大值43万元.答案 C题型二 指数函数、对数函数模型【例2】世界人口在过去40年翻了一番,则每年人口平均增长率是(参考数据lg 2≈0.301 0,100.007 5≈1.017)( )A .1.5%B .1.6%C .1.7%D .1.8%解析 设每年人口平均增长率为x ,则(1+x)40=2,两边取以10为底的对数,则40 lg(1+x)=lg 2,所以lg(1+x)=lg 240≈0.007 5,所以100.007 5=1+x ,得1+x =1.017,所以x =1.7%.答案 C 【提分秘籍】在实际问题中,有关人口增长、银行利率、细胞分裂等增长率问题常用指数函数模型表示.通常可以表示为y =N(1+p)x(其中N 为基础数,p 为增长率,x 为时间)的形式.解题时,往往用到对数运算,要注意与已知表格中给定的值对应求解.【举一反三】某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n 次涨停(每次上涨10%),又经历了n 次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为( )A .略有盈利B .略有亏损C .没有盈利也没有亏损D .无法判断盈亏情况解析 设该股民购这支股票的价格为a 元,则经历n 次涨停后的价格为a(1+10%)n =a×1.1n 元,经历n 次跌停后的价格为a×1.1n×(1-10%)n =a×1.1n×0.9n =a×(1.1×0.9)n =0.99n·a <a ,故该股民这支股票略有亏损.答案 B题型三 分段函数模型【例3】 某旅游景点预计1月份起前x 个月的旅游人数的和p(x)(单位:万人)与x 的关系近似地满足p(x)=12x(x +1)(39-2x)(x ∈N*,且x≤12).已知第x 个月的人均消费额q(x)(单位:元)与x 的近似关系是q(x)=⎩⎪⎨⎪⎧35-2x (x ∈N*,且1≤x≤6),160x(x ∈N*,且7≤x≤12).(1)写出第x 个月的旅游人数f(x)(单位:人)与x 的函数关系式; (2)试问第几个月旅游消费总额最大?最大月旅游消费总额为多少元? 解 (1)当x =1时,f(1)=p(1)=37, 当2≤x≤12,且x ∈N*时, f(x)=p(x)-p(x -1)=12x(x +1)(39-2x)-12(x -1)x(41-2x)=-3x2+40x , 验证x =1也满足此式,所以f(x)=-3x2+40x(x ∈N*,且1≤x≤12).【提分秘籍】(1)很多实际问题中,变量间的关系不能用一个关系式给出,这时就需要构建分段函数模型,如出租车的票价与路程的函数就是分段函数.(2)求函数最值常利用基本不等式法、导数法、函数的单调性等方法.在求分段函数的最值时,应先求每一段上的最值,然后比较得最大值、最小值.【举一反三】某建材商场国庆期间搞促销活动,规定:顾客购物总金额不超过800元,不享受任何折扣,如果顾客购物总金额超过800元,则超过800元部分享受一定的折扣优惠,按下表折扣分别累计计算.可以享受折扣优惠金额折扣率不超过500元的部分 5% 超过500元的部分10%某人在此商场购物总金额为x 元,可以获得的折扣金额为y 元,则y 关于x 的解析式为 y =⎩⎪⎨⎪⎧0,0<x≤800,5%(x -800),800<x≤1 300,10%(x -1 300)+25,x >1 300.若y =30元,则他购物实际所付金额为________元.解析 若x =1 300元,则y =5%(1 300-800)=25(元)<30(元),因此x >1 300. ∴由10%(x -1 300)+25=30,得x =1 350(元). 答案 1 350 【高考风向标】【高考上海,文21】(本小题14分)本题共2小题,第1小题6分,第2小题8分.如图,C B A ,,三地有直道相通,5=AB 千米,3=AC 千米,4=BC 千米.现甲、乙两警员同时从A 地出发匀速前往B 地,经过t 小时,他们之间的距离为)(t f (单位:千米).甲的路线是AB ,速度为5千米/小时,乙的路线是ACB ,速度为8千米/小时.乙到达B 地后原地等待.设1t t =时乙到达C 地.(1)求1t 与)(1t f 的值;(2)已知警员的对讲机的有效通话距离是3千米.当11≤≤t t 时,求)(t f 的表达式,并判断)(t f 在]1,[1t 上得最大值是否超过3?说明理由.【答案】(1)h 83,8413千米;(2)超过了3千米.【高考四川,文8】某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系kx b y e +=( 2.718...e =为自然对数的底数,,k b 为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是( )(A)16小时 (B)20小时 (C)24小时 (D)21小时 【答案】C【解析】由题意,2219248bk be e +⎧=⎪⎨=⎪⎩得1119212bk e e⎧=⎪⎨=⎪⎩,于是当x =33时,y =e33k +b =(e11k)3·eb =31()2×192=24(小时)(·北京卷)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t(单位:分钟)满足函数关系p =at2+bt +c(a ,b ,c 是常数),图1-2记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( )图1-2A .3.50分钟B .3.75分钟C .4.00分钟D .4.25分钟 【答案】B【解析】由题意得⎩⎪⎨⎪⎧0.7=9a +3b +c ,0.8=16a +4b +c ,0.5=25a +5b +c ,解之得⎩⎪⎨⎪⎧a =-0.2,b =1.5,c =-2,∴p =-0.2t2+1.5t -2=-0.2(t -3.75)2+0.8125,即当t =3.75时,p 有最大值.(·陕西卷)如图1-2所示,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图像的一部分,则该函数的解析式为( )图1-2A .y =12x3-12x2-x B .y =12x3+12x2-3x C .y =14x3-x D .y =14x3+12x2-2x【解析】由题意可知,该三次函数的图像过原点,则其常数项为0,不妨设其解析式为y =f(x)=ax3+bx2+cx ,则f′(x)=3ax2+2bx +c ,∴f′(0)=-1,f′(2)=3,可得c =-1,3a +b =1.又y =ax3+bx2+cx 过点(2,0),∴4a +2b =1,∴a =12,b =-12,c =-1,∴y =f(x)=12x3-12x2-x.【高考押题】1.下表是函数值y 随自变量x 变化的一组数据,它最可能的函数模型是 ( )x 4 5 6 7 8 9 10 y15171921232527A .一次函数模型B .幂函数模型C .指数函数模型D .对数函数模型解析 根据已知数据可知,自变量每增加1函数值增加2,因此函数值的增量是均匀的,故为一次函数模型.答案 A2.某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C 与时间t(年)的函数关系图象正确的是( )解析 前3年年产量的增长速度越来越快,说明呈高速增长,只有A ,C 图象符合要求,而后3年年产量保持不变,故选A.答案 A3.某市生产总值连续两年持续增加.第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为 ( )A.p +q 2B.(p +1)(q +1)-12C.pqD.(p +1)(q +1)-1解析 设两年前的年底该市的生产总值为a ,则第二年年底的生产总值为a(1+p)(1+q).设这两年生产总值的年平均增长率为x ,则a(1+x)2=a(1+p)(1+q),由于连续两年持续增加,所以x >0,因此x =(1+p )(1+q )-1,故选D.4.某企业投入100万元购入一套设备,该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.为使该设备年平均费用最低,该企业需要更新设备的年数为( )A .10B .11C .13D .21答案 A5.某电信公司推出两种手机收费方式:A 种方式是月租20元,B 种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差 ( )A .10元B .20元C .30元 D.403元解析 设A 种方式对应的函数解析式为s =k1t +20, B 种方式对应的函数解析式为s =k2t ,当t =100时,100k1+20=100k2,∴k2-k1=15, t =150时,150k2-150k1-20=150×15-20=10. 答案 A6. A 、B 两只船分别从在东西方向上相距145 km 的甲乙两地开出.A 从甲地自东向西行驶.B 从乙地自北向南行驶,A 的速度是40 km h ,B 的速度是 16 kmh ,经过________小时,AB 间的距离最短.解析 设经过xh ,A ,B 相距为y km ,则y =(145-40x )2+(16x )2(0≤x≤298),求得函数的最小值时x 的值为258. 答案 2587.一个容器装有细沙a cm3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为 y =ae -bt(cm3),经过 8 min 后发现容器内还有一半的沙子,则再经过________min ,容器中的沙子只有开始时的八分之一.8.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________m.解析 设内接矩形另一边长为y ,则由相似三角形性质可得x 40=40-y40,解得y =40-x ,所以面积S =x(40-x)=-x2+40x =-(x -20)2+400(0<x <40),当x =20时,Smax =400.答案 209.在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费(不计息).在甲提供的资料中:①这种消费品的进价为每件14元;②该店月销量Q(百件)与销售价格P(元)的关系如图所示;③每月需各种开支2 000元.(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;(2)企业乙只依靠该店,最早可望在几年后脱贫?10.已知某物体的温度θ(单位:摄氏度)随时间t(单位:分钟)的变化规律:θ=m·2t+21-t(t≥0,并且m>0).(1)如果m=2,求经过多少时间,物体的温度为5摄氏度;(2)若物体的温度总不低于2摄氏度,求m的取值范围.13.一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x(x ∈N*)件.当x≤ 20时,年销售总收入为(33x -x2)万元;当x >20时,年销售总收入为260万元.记该工厂生产并销售这种产品所得的年利润为y 万元,则y(万元)与x(件)的函数关系式为________,该工厂的年产量为________件时,所得年利润最大(年利润=年销售总收入-年总投资).解析 当0<x≤20时,y =(33x -x2)-x -100=-x2+32x -100;当x >20时,y =260-100-x =160-x.故y =⎩⎪⎨⎪⎧-x2+32x -100,0<x≤20,160-x ,x >20(x ∈N*). 当0<x≤20时,y =-x2+32x -100=-(x -16)2+156,x =16时,ymax =156.而当x >20时,160-x <140,故x =16时取得最大年利润.答案 y =⎩⎪⎨⎪⎧-x2+32x -100,0<x≤20,160-x ,x >20(x ∈N*) 16 14.某跳水运动员在一次跳水训练时的跳水曲线为如图所示的抛物线的一段,已知跳水板AB 长为2 m ,跳水板距水面CD 的高BC 为3 m ,CE =5 m ,CF =6 m ,为安全和空中姿态优美,训练时跳水曲线应在离起跳点h m(h≥1)时达到距水面最大高度4 m ,规定:以CD 为横轴,CB 为纵轴建立直角坐标系.(1)当h =1时,求跳水曲线所在的抛物线方程;(2)若跳水运动员在区域EF 内入水时才能达到压水花的训练要求,求达到压水花的训练要求时h 的取值范围.解 (1)由题意知最高点为(2+h ,4),h≥1,设抛物线方程为y =a[x -(2+h)]2+4,当h =1时,最高点为(3,4),方程为y =a(x -3)2+4,将A(2,3)代入,得3=a(2-3)2+4,解得a =-1.∴当h =1时,跳水曲线所在的抛物线方程为y =-(x -3)2+4.(2)将点A(2,3)代入y =a[x -(2+h)]2+4得ah2=-1,所以a =-1h2.由题意,得方程a[x -(2+h)]2+4=0在区间[5,6]内有一解.令f(x)=a[x -(2+h)]2+4=-1h2[x -(2+h)]2+4,则f(5)=-1h2(3-h)2+4≥0,且f(6)=-1h2(4-h)2+4≤0.解得1≤h≤43.达到压水花的训练要求时h 的取值范围为[1,43].高考模拟复习试卷试题模拟卷。