备战高考物理 法拉第电磁感应定律推断题综合试题含详细答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、法拉第电磁感应定律
1.如图所示,正方形单匝线框bcde边长L=0.4 m,每边电阻相同,总电阻R=0.16 Ω.一根足够长的绝缘轻质细绳跨过两个轻小光滑定滑轮,一端连接正方形线框,另一端连接物体P,手持物体P使二者在空中保持静止,线框处在竖直面内.线框的正上方有一有界匀强磁场,磁场区域的上、下边界水平平行,间距也为L=0.4 m,磁感线方向垂直于线框所在平面向里,磁感应强度大小B=1.0 T,磁场的下边界与线框的上边eb相距h=1.6 m.现将系统由静止释放,线框向上运动过程中始终在同一竖直面内,eb边保持水平,刚好以v =4.0 m/s的速度进入磁场并匀速穿过磁场区,重力加速度g=10 m/s2,不计空气阻力.
(1)线框eb边进入磁场中运动时,e、b两点间的电势差U eb为多少?
(2)线框匀速穿过磁场区域的过程中产生的焦耳热Q为多少?
(3)若在线框eb边刚进入磁场时,立即给物体P施加一竖直向下的力F,使线框保持进入磁场前的加速度匀加速运动穿过磁场区域,已知此过程中力F做功W F=3.6 J,求eb边上产生的焦耳Q eb为多少?
【答案】(1)1.2 V(2)3.2 J(3)0.9 J
【解析】
【详解】
(1)线框eb边以v=4.0 m/s的速度进入磁场并匀速运动,产生的感应电动势为:
10.44V=1.6 V
E BLv
==⨯⨯
因为e、b两点间作为等效电源,则e、b两点间的电势差为外电压:
U eb=3
4
E=1.2 V.
(2)线框进入磁场后立即做匀速运动,并匀速穿过磁场区,线框受安培力:
F安=BLI
根据闭合电路欧姆定律有:
I=E R
联立解得解得F安=4 N
所以克服安培力做功:
=2=420.4J=3.2J W F L ⨯⨯⨯安安
而Q =W 安,故该过程中产生的焦耳热Q =3.2 J
(3)设线框出磁场区域的速度大小为v 1,则根据运动学关系有:
22122v v a L -=
而根据牛顿运动定律可知:
()M m g
a M m
-=
+
联立整理得:
1
2
(M+m )( 21v -v 2)=(M-m )g ·2L 线框穿过磁场区域过程中,力F 和安培力都是变力,根据动能定理有:
W F -W'安+(M-m )g ·2L =
1
2
(M+m )( 21v -v 2) 联立解得:
W F -W'安=0
而W'安= Q',故Q'=3.6 J
又因为线框每边产生的热量相等,故eb 边上产生的焦耳热:
Q eb =
1
4
Q'=0.9 J. 答:(1)线框eb 边进入磁场中运动时,e 、b 两点间的电势差U eb =1.2 V. (2)线框匀速穿过磁场区域的过程中产生的焦耳热Q =3.2 J. (3) eb 边上产生的焦耳Q eb =0.9J.
2.如图甲所示,一个圆形线圈的匝数n =100,线圈面积S =200cm 2,线圈的电阻r =1Ω,线圈外接一个阻值R =4Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间变化规律如图乙所示。

求:
(1)线圈中的感应电流的大小和方向; (2)电阻R 两端电压及消耗的功率; (3)前4s 内通过R 的电荷量。

【答案】(1)0﹣4s 内,线圈中的感应电流的大小为0.02A ,方向沿逆时针方向。

4﹣6s 内,线圈中的感应电流大小为0.08A ,方向沿顺时针方向;(2)0﹣4s 内,R 两端的电压是0.08V ;4﹣6s 内,R 两端的电压是0.32V ,R 消耗的总功率为0.0272W ;(3)前4s 内通
过R 的电荷量是8×10﹣2C 。

【解析】 【详解】
(1)0﹣4s 内,由法拉第电磁感应定律有:
线圈中的感应电流大小为:
由楞次定律知感应电流方向沿逆时针方向。

4﹣6s 内,由法拉第电磁感应定律有:
线圈中的感应电流大小为:,方向沿顺时针方向。

(2)0﹣4s 内,R 两端的电压为:
消耗的功率为:
4﹣6s 内,R 两端的电压为: 消耗的功率为: 故R 消耗的总功率为:
(3)前4s 内通过R 的电荷量为:
3.如图所示,面积为0.2m 2的100匝线圈处在匀强磁场中,磁场方向垂直于线圈平面。

已知磁感应强度随时间变化的规律为B =(2+0.2t )T ,定值电阻R 1=6 Ω,线圈电阻R 2=4Ω求:
(1)磁通量变化率,回路的感应电动势。

(2)a 、b 两点间电压U ab 。

【答案】(1)0.04Wb/s 4V (2)2.4V 【解析】 【详解】
(1)由B =(2+0.2t )T 得磁场的变化率为
0.2T/s B
t
∆=∆ 则磁通量的变化率为:
0.04Wb/s B
S t t
∆Φ∆==∆∆ 根据E n
t
∆Φ
=∆可知回路中的感应电动势为: 4V B
E n
nS t t
∆Φ∆===∆∆ (2)线圈相当于电源,U ab 是外电压,根据电路分压原理可知:
112
2.4V ab E
R R R U =+=
答:(1)磁通量变化率为0.04Wb/s ,回路的感应电动势为4V 。

(2)a 、b 两点间电压U ab 为2.4V 。

4.如图(a )所示,间距为l 、电阻不计的光滑导轨固定在倾角为θ的斜面上。

在区域I 内有方向垂直于斜面的匀强磁场,磁感应强度为B ;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度B t 的大小随时间t 变化的规律如图(b )所示。

t =0时刻在轨道上端的金属细棒ab 从如图位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd 在位于区域I 内的导轨上由静止释放。

在ab 棒运动到区域Ⅱ的下边界EF 处之前,cd 棒始终静止不动,两棒均与导轨接触良好。

已知cd 棒的质量为m 、电阻为R ,ab 棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l ,在t =t x 时刻(t x 未知)ab 棒恰进入区域Ⅱ,重力加速度为g 。

求:
(1)通过cd 棒电流的方向和区域I 内磁场的方向; (2)ab 棒开始下滑的位置离EF 的距离;
(3)ab 棒开始下滑至EF 的过程中回路中产生的热量。

【答案】(1)通过cd 棒电流的方向从d 到c ,区域I 内磁场的方向垂直于斜面向上;(2)3l (3)4mgl sin θ。

【解析】 【详解】
(1)由楞次定律可知,流过cd 的电流方向为从d 到c ,cd 所受安培力沿导轨向上,由左手定则可知,I 内磁场垂直于斜面向上,故区域I 内磁场的方向垂直于斜面向上。

(2)ab 棒在到达区域Ⅱ前做匀加速直线运动,
a =
sin mg m
θ
=gs in θ cd 棒始终静止不动,ab 棒在到达区域Ⅱ前、后,回路中产生的感应电动势不变,则ab 棒
在区域Ⅱ中一定做匀速直线运动,可得:
1Blv t
∆Φ
=∆ 2(
sin )x x
B l I
BI g t t θ⋅⋅= 解得
2sin x l
t g θ
=
ab 棒在区域Ⅱ中做匀速直线运动的速度
12sin v gl θ=
则ab 棒开始下滑的位置离EF 的距离
2
1232
x h at l l =
+= (3)ab 棒在区域Ⅱ中运动时间
222sin x
l l
t v g θ=
= ab 棒从开始下滑至EF 的总时间
222
sin x l
t t t g θ
=+= 感应电动势:
12sin E Blv Bl gl θ==
ab 棒开始下滑至EF 的过程中回路中产生的热量:
Q =EIt =4mgl sin θ
5.如图所示,在倾角30o θ=的光滑斜面上,存在着两个磁感应强度大小相等、方向分别垂直斜面向上和垂直斜面向下的匀强磁场,两磁场宽度均为L 。

一质量为m 、边长为L 的正方形线框距磁场上边界L 处由静止沿斜面下滑,ab 边刚进入上侧磁场时,线框恰好做匀速直线运动。

ab 边进入下侧磁场运动一段时间后也做匀速度直线运动。

重力加速度为g 。

求:
(1)线框ab 边刚越过两磁场的分界线ff′时受到的安培力; (2)线框穿过上侧磁场的过程中产生的热量Q 和所用的时间t 。

【答案】(1)安培力大小2mg ,方向沿斜面向上(2)4732mgL Q = t = 【解析】 【详解】
(1)线框开始时沿斜面做匀加速运动,根据机械能守恒有
2
1sin 302
mgL mv ︒=
, 则线框进入磁场时的速度
v ==
线框ab 边进入磁场时产生的电动势E =BLv 线框中电流
E I R
=
ab 边受到的安培力
22B L v
F BIL R
== 线框匀速进入磁场,则有
22sin 30B L v
mg R
︒= ab 边刚越过ff '时,cd 也同时越过了ee ',则线框上产生的电动势E '=2BLv 线框所受的安培力变为
22422B L v
F BI L mg R
==''=
方向沿斜面向上
(2)设线框再次做匀速运动时速度为v ',则
224sin 30B L v mg R
︒=
'
解得
4v v =
'=根据能量守恒定律有
2211
sin 30222
mg L mv mv Q ︒'⨯+=+
解得4732
mgL
Q =
线框ab 边在上侧磁扬中运动的过程所用的时间1L t v
=
设线框ab 通过ff '后开始做匀速时到gg '的距离为0x ,由动量定理可知:
22sin 302mg t BLIt mv mv ︒-='-
其中
()022BL L
x I t R
-=
联立以上两式解得
()02432L x v t v
g
-=
-
线框ab 在下侧磁场匀速运动的过程中,有
00
34x x t v v
='=
所以线框穿过上侧磁场所用的总时间为
12372L
t t t t g
=++=
6.如图所示,两平行光滑的金属导轨MN 、PQ 固定在水平面上,相距为L ,处于竖直向下的磁场中,整个磁场由n 个宽度皆为x0的条形匀强磁场区域1、2、3、…n 组成,从左向右依次排列,磁感应强度的大小分别为B 、2B 、3B 、…nB ,两导轨左端MP 间接入电阻R ,一质量为m 的金属棒ab 垂直于MN 、PQ 放在水平导轨上,与导轨电接触良好,不计导轨和金属棒的电阻。

(1)对导体棒ab 施加水平向右的力,使其从图示位置开始运动并穿过n 个磁场区,求导体棒穿越磁场区1的过程中,通过电阻R 的电荷量q 。

(2)对导体棒ab 施加水平向右的恒力F0,让它从磁场1左侧边界处开始运动,当向右运动距离为时做匀速运动,求棒通过磁场区1所用的时间t 。

(3)对导体棒ab 施加水平向右的恒定拉力F1,让它从距离磁场区1左侧x=x0的位置由静止开始做匀加速运动,当棒ab 进入磁场区1时开始做匀速运动,此后在不同的磁场区施加不同的水平拉力,使棒ab 保持该匀速运动穿过整个磁场区,求棒ab 通过第i 磁场区时的水平拉力Fi 和棒ab 通过整个磁场区过程中回路产生的电热Q 。

【答案】⑴;⑵;⑶
【解析】
试题分析:⑴电路中产生的感应电动势。

通过电阻的电荷量。

导体棒穿过1区过程。

解得
(2)棒匀速运动的速度为v,则
设棒在前x0/2距离运动的时间为t1,则
由动量定律:F0 t1-BqL=mv;解得:
设棒在后x0/2匀速运动的时间为t2,则
所以棒通过区域1所用的总时间:
(3)进入1区时拉力为,速度,则有。

解得;。

进入i区时的拉力。

导体棒以后通过每区都以速度做匀速运动,由功能关系有
解得。

考点:动能定理的应用;导体切割磁感线时的感应电动势;电磁感应中的能量转化
7.如图所示,ACD、EFG为两根相距L=0.5m的足够长的金属直角导轨,它们被竖直固定在绝缘水平面上,CDGF面与水平面夹角θ=300.两导轨所在空间存在垂直于CDGF平面向上的匀强磁场,磁感应强度大小为B`=1T.两根长度也均为L=0.5m的金属细杆ab、cd与导轨垂直接触形成闭合回路,ab杆的质量m1未知,cd杆的质量m2=0.1kg,两杆与导轨之间的
动摩擦因数均为μ=
3
6
,两金属细杆的电阻均为R=0.5Ω,导轨电阻不计.当ab以速度v1
沿导轨向下匀速运动时,cd杆正好也向下匀速运动,重力加速度g取10m/s2.
(1)金属杆cd 中电流的方向和大小 (2)金属杆ab 匀速运动的速度v 1 和质量m 1
【答案】I =5A 电流方向为由d 流向c; v 1=10m/s m 1=1kg 【解析】 【详解】
(1)由右手定则可知cd 中电流方向为由d 流向c
对cd 杆由平衡条件可得:μ
=+00
22安sin 60(cos 60)m g m g F
=安F BLI
联立可得:I =5A (2) 对ab: 由 =12BLv IR
得 1
10m/s v = 分析ab 受力可得: 0011sin 30cos 30m g BLI m g μ=+
解得: m 1=1kg
8.如图所示,两根足够长、电阻不计的光滑平行金属导轨相距为L =1m ,导轨平面与水平面成θ=30︒角,上端连接 1.5R =Ω的电阻.质量为m =0.2kg 、阻值0.5r =Ω的金属棒ab 放在两导轨上,与导轨垂直并接触良好,距离导轨最上端d =4m ,整个装置处于匀强磁场中,磁场的方向垂直导轨平面向上.
(1)若磁感应强度B=0.5T ,将金属棒释放,求金属棒匀速下滑时电阻R 两端的电压; (2)若磁感应强度的大小与时间成正比,在外力作用下ab 棒保持静止,当t =2s 时外力恰好为零.求ab 棒的热功率;
(3)若磁感应强度随时间变化的规律是()0.05cos100B t T π=,在平行于导轨平面的外力F 作用下ab 棒保持静止,求此外力F 的最大值。

【答案】(1)3V (2)0.5W (3)(1)(1)44
N F N π
π
-
≤≤+
【解析】 【分析】
本题考查的是导体棒切割磁感线的动力学问题,我们首先把导体棒的运动情况和受力情况分析清楚,然后结合相应规律即可求出相应参量。

【详解】
(1)匀速时,导体棒收到的安培力等于重力的下滑分力,可得:E
BL=mgsin θR+r
,求出电动势为E=4V ,所以金属棒匀速下滑时电阻R 两端的电压U=3V (2)设磁感应强度随时间变化的规律为B=kt ,则电路中产生的电动势为
ΔΦΔB E=n =S =kS Δt Δt ,安培力的大小为kS
F =kt L R+r
安,当t=2s 时,外力等于零,可得:kS
2k
L=mgsin θR+r
,解出k=0.5T/s ,最后可得P=I 2R=0.5W 。

(3)根据法拉第电磁感应定律可得:ΔΦΔB
E=
=S Δt Δt
,根据F =BIL 安可得,E F =BL
R+r 安,最后化简可得π
F =-sin200πt(N)4
安,所以外力F 的取值范围ππ
1-N F 1+N 44
≤≤()()
【点睛】
过程比较复杂的问题关键在于过程分析,对运动和受力进行分析。

9.在如图所示的电路中,螺线管上线圈的匝数n=1500匝,横截面积.螺线管上
线圈的电阻r=1.0Ω,定值电阻

,电容器的电容C=30μF.在一段时间
内,螺线管中磁场的磁感应强度B 按如图所示的规律变化.
(1)求螺线管中产生的感应电动势.
(2)闭合开关S ,电路中的电流稳定后,求电阻的电功率.
(3)开关S 断开后,求流经电阻的电荷量. 【答案】(1)1.2V (2) (3)
【解析】 【详解】
(1)根据法拉第电磁感应定律得
(2)根据闭合电路欧姆定律得
电阻的电功率.
(3)开关S 断开后,流经电阻
的电荷量即为S 闭合时电容器所带的电荷量. 电容器两端的电压
流经电阻的电荷量.
故本题答案是:(1)1.2V (2)
(3)
【点睛】 根据法拉第电磁感应定律求出回路中的电动势,在结合闭合电路欧姆定律求电流,即可求解别的物理量。

10.如图所示,光滑、足够长的平行金属导轨MN 、PQ 的间距为l ,所在平面与水平面成θ角,处于磁感应强度为B 、方向垂直于导轨平面向上的匀强磁场中.两导轨的一端接有阻值为R 的电阻.质量为m 、电阻为r 的金属棒ab 垂直放置于导轨上,且m 由一根轻绳通过一个定滑轮与质量为M 的静止物块相连,物块被释放后,拉动金属棒ab 加速运动H 距离后,金属棒以速度v 匀速运动.求:(导轨电阻不计)
(1)金属棒αb 以速度v 匀速运动时两端的电势差U ab ;
(2)物块运动H 距离过程中电阻R 产生的焦耳热Q R .
【答案】1)ab BlvR U R r =
+(2)()()21sin 2R Q M m gH M m v R r θ⎡⎤=--+⎢⎥+⎣⎦ 【解析】
(1)金属棒ab 以速度v 匀速运动时,产生的感应电动势大小为:E =Blv
由闭合电路欧姆定律得: E I R r
=+ 金属棒αb 两端的电压大小为:U =IR
解得: BlvR U R r
=+ 由右手定则可得金属棒ab 中的电流方向由a 到b , 可知U ab 为负值,故: ab BlvR U R r =
+ (2)物块运动H 距离过程中,设整个回路产生的焦耳热为Q , 由能量守恒定律得:2211sin 22
MgH mgH mv Mv Q θ=+++
由焦耳定律得:2()Q I R r t =+
2R Q I Rt = 解得:21[(sin )()]2R Q M m gH M m v R r
θ=--++ 【点睛】本题是一道电磁感应与电路、运动学相结合的综合题,分析清楚棒的运动过程、找出电流的房你想、应用能量守恒和功能关系等相关知识,是正确解题的关键.
11.如图甲所示是航空母舰上一种弹射装置的模型,“E”字形铁芯长为l 的三个柱脚的两条缝中存在正对的由B 指向A 、C 的磁场,该磁场任意时刻均可视为处处大小相等方向相同(如图乙所示),初始时缝中有剩余磁场,磁感应强度为B 0;绕在B 柱底部的多匝线圈P 用于改变缝中磁场的强弱,已知通过线圈P 加在缝中的磁场与线圈中的电流大小存在关系B=k 1I .Q 为套在B 柱上的宽为x 、高为y 的线圈共n 匝,质量为m ,电阻为R ,它在外力作用下可沿B 柱表面无摩擦地滑动,现在线圈P 中通以I=k 2t 的电流,发现Q 立即获得方向向右大小为a 的加速度,则
(1)线圈P 的电流应从a 、b 中的哪一端注入?t=0时刻线圈Q 中的感应电流大小I 0。

(2)为了使Q 向右运动的加速度保持a 不变,试求Q 中磁通量的变化率与时间t 的函数关系
(3)若在线圈Q 从靠近线圈P 处开始向右以加速度a 匀加速直到飞离B 柱的整个过程中,可将Q 中的感应电流等效为某一恒定电流I ,则此过程磁场对线圈Q 做的功为多少?
【答案】(1)a 入b 出、I 0=
(2)(3)mal+I 2R 【解析】
试题分析:1)a 入b 出
F=ma
F=2nI 0LB 0
得:I 0=
2)E=I=
F=2nILB B=B 0+k 1k 2t
可得:=
3)W=ΔE k +Q=mal+I 2R
考点:考查了法拉第电磁感应定理
12.如图甲所示,光滑的平行金属导轨水平放置,导轨间距L =1 m ,左侧接一阻值为R =0.5 Ω的电阻.在MN 与PQ 之间存在垂直轨道平面的有界匀强磁场,磁场宽度d =1 m .一质量m =1 kg 的金属棒a b 置于导轨上,与导轨垂直且接触良好,不计导轨和金属棒的电阻.金属棒ab 受水平力F 的作用从磁场的左边界MN 由静止开始运动,其中,F 与x (x 为金属棒距MN 的距离)的关系如图乙所示.通过电压传感器测得电阻R 两端电压随时间均匀增大.则:
(1)金属棒刚开始运动时的加速度为多少?
(2)磁感应强度B 的大小为多少?
(3)若某时刻撤去外力F 后金属棒的速度v 随位移s 的变化规律满足v =v 0﹣22
B L mR
s (v 0为撤去外力时的速度,s 为撤去外力F 后的位移),且棒运动到PQ 处时恰好静止,则金属棒从MN 运动到PQ 的整个过程中通过左侧电阻R 的电荷量为多少?外力F 作用的时间为多少?
【答案】(1)a=0.4m/s 2;(2)B=0.5T ;(3)t=1s
【解析】
【详解】
解:(1)金属棒开始运动时,0x =,0v =,金属棒不受安培力作用
金属棒所受合力为:0.4N F = 由牛顿第二定律得:20.4m/s F a m
== (2)由题意可知,电阻R 两端电压随时间均匀增大,即金属棒切割磁感线产生的感应电动势随时间均匀增大,由E BLv =可知,金属棒的速度v 随时间t 均匀增大,则金属棒做初速度为零的匀加速运动.加速度:20.4m/s a =
由匀变速直线运动的位移公式可得:22v ax =
由图乙所示图象可知,0.8m x =时,0.8N F = 由牛顿第二定律得:22B L v F ma R
-=
解得:0.5T B =
(3)金属棒经过磁场的过程中,感应电动势的平均值: B S BLd E t t t ϕ∆∆===∆∆∆ 感应电流的平均值:E I R
= 通过电阻R 的电荷量:q I t =∆
解得:1C BLd q R R ϕ∆=== 设外力F 的作用时间为t ,力F 作用时金属棒的位移为:212x at =
撤去外力后,金属棒的速度为:022
B s v v L Rm
=- 到PQ 恰好静止,0v =
则撤去外力后金属棒运动的距离为:22
mR at B L s •= 则 22
212B L at at d Rm
+•= 解得:1s t =
13.如图所示,一个单匝矩形线圈水平放在桌面上,在线圈中心上方有一竖直的条形磁体,此时线圈内的磁通量为0.05Wb.在0.5s 的时间内,将该条形磁体从图示位置竖放到线圈内的桌面上,此时线圈内的磁通量为0.10Wb ,试求此过程:
(1)线圈内磁通量的变化量;
(2)线圈中产生的感应电动势大小。

【答案】(1)0.05Wb (2)0.1V
【解析】
【详解】
(1)磁通量的变化为:
△Φ=Φ′-Φ=0.10-0.05=0.05Wb ;
(2)由法拉第电磁感应定律可得感应电动势为:
0.0510.1V 0.5
E n t ∆Φ==⨯=V
14.两根足够长的平行光滑金属导轨MN 、PQ 相距为d ,导轨平面与水平面的夹角θ=30°,导轨电阻不计.磁感应强度为B 的匀强磁场垂直于导轨平面向上,长为d 的金属棒ab 垂直于MN 、PQ 放置于导轨上,且始终与导轨接触良好,金属棒的质量为m 、电阻为R .两金属导轨的上端连接一个阻值也为R 的定值电阻,重力加速度为g .现闭合开关S ,给金属棒施加一个方向垂直于棒且平行于导轨平面向上、大小为mg 的恒力F ,使金属棒由静止开始运动.求:
(1)金属棒能达到的最大速度v m ;
(2)金属棒达到最大速度一半时的加速度;
(3)若金属棒上滑距离为L 时速度恰达到最大,则金属棒由静止开始上滑4L 的过程中,金属棒上产生的电热Q 0.
【答案】(1) 22mgR B d ;(2)14g ;(3) 322
444m g R mgL B d
- 【解析】
【详解】
(1)设最大速度为m v ,此时加速度为0,平行斜面方向有:F mgsin BId θ=+ 据题知:2E I R
= m E Bdv = 已知F mg =,联解得:22m mgR v B d =
(2)当金属棒的速度2m v v =时,则:2
I I '= 由牛顿第二定律有:sin F BdI mg ma θ'--= 解得:14
a g = (3)设整个电路放出的热量为Q ,由能量守恒定律有:214sin 42m F L Q mg L mv θ⋅=+⋅+ 又:r R =,02
Q Q = 所以金属棒上产生的电热:322
044
4m g R Q mgL B d =-
15.如图所示,水平放置的平行金属导轨宽度为d =1 m ,导轨间接有一个阻值为R =2 Ω的灯泡,一质量为m =1 kg 的金属棒跨接在导轨之上,其电阻为r =1 Ω,且和导轨始终接触良好.整个装置放在磁感应强度为B =2 T 的匀强磁场中,磁场方向垂直导轨平面向下.金属棒与导轨间的动摩擦因数为μ=0.2,现对金属棒施加一水平向右的拉力F =10 N ,使金属棒从静止开始向右运动.求:
则金属棒达到的稳定速度v 是多少?此时灯泡的实际功率P 是多少?
【答案】6 m/s 32W
【解析】 由1Bdv I R r
=+和F 安=BId 可得221B d v F R r
=+安 根据平衡条件可得F =μmg +F 安
解得v 1=6 m/s
由P=I 2R 得P=32W。

相关文档
最新文档