Low K材料
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Low-K
In semiconductor manufacturing, a Low-κ dielectric is a material with a small dielectric constant relative to silicon dioxide. Although the proper symbol for the dielectric constant is the Greek letter κ (kappa), in conversation such materials are referred to as being "low-k" (low-kay) rather than "low-κ" (low-kappa). Low-κ dielectric material implementation is one of several strategies used to allow continued scaling of microelectronic devices, colloquially referred to as extending Moore's law. In digital circuits, insulating dielectrics separate the conducting parts (wire interconnects and transistors) from one another. As components have scaled and transistors have gotten closer and closer together, the insulating dielectrics have thinned to the point where charge build up and crosstalk adversely affect the performance of the device. Replacing the silicon dioxide with a low-κ dielectric of the same thickness reduces parasitic capacitance, enabling faster switching speeds and lower heat dissipation.
Low-κ Materials
The dielectric constant of SiO2, the insulating material used in silicon chips, is 3.9. This number is the ratio of the permittivity of SiO2divided by permittivity of vacuum, εSiO2/ε0,where ε0= 8.854x10-6pF/μm [1]. There are many materials with lower dielectric constants but few of them can be suitably integrated into a manufacturing process. Development efforts have focused primarily on three classes of materials:
Fluorine Doped Silicon Dioxide
By doping SiO2 with fluorine to produce fluorinated silica glass, the dielectric constant is lowered from 3.9 to 3.5. [2]
Carbon Doped Silicon Dioxide
By doping SiO2 with carbon, the dielectric constant can be lowered to 3.0. Major products of carbon doped silicon dioxide include Black Diamond from Applied Materials, [3] Aurora from ASM International N.V.. [4] The Aurora is the low-K material used in Intel 90nm, 65nm and 45nm lines, while the Black Diamond controlled about 80% of low-K material market. [5] Novellus Systems' Coral also falls in this category.
Porous Silicon Dioxide
Various methods may be employed to create large voids or pores in a silicon dioxide dielectric. Air has a dielectric constant of roughly 1.0005, thus the dielectric constant of the porous material may be reduced by increasing the porosity of the film. Dielectric constants lower than 2.0 have been reported. Integration difficulties related to porous silicon dioxide implementation include low mechanical strength and difficult integration with etch and polish processes.
Porous Carbon doped Silicon Dioxide
By UV curing, floating methyl group in carbon doped silicon dioxide can be eliminated and pores can be introduced to the carbon doped silicon dioxide low-K materials. Products in this category
include Black Diamond II, [3] Aurora 2.7 and Aurora ULK. [4] The reported K value can be as low as 2.5.
Spin-on organic polymeric dielectrics
Polymeric dielectrics are generally deposited by a spin-on approach, such as those traditionally used to deposit photoresist, rather than chemical vapor deposition. Integration difficulties include low mechanical strength and thermal stability. SiLK from Dow Chemical is a well known example of low-K material in this category. [6] Other spin-on organic low-K include polyimide, polynorbornenes, Benzocyclobutene, PTFE
Porous SiLK
By introducing pores into the SiLK resin, the dielectric constant value can be lowered to 2.2. [7]
Spin-on silicone based polymeric dielectric
There are two kinds of silicone based polymeric dielectric materials, hydrogen silsesquioxane (HSQ) and methylsilsesquioxane (MSQ).
References。