基因工程哺乳动物基因工程(1)

合集下载

华中农业大学生物化学本科试题库第18章基因工程基础

华中农业大学生物化学本科试题库第18章基因工程基础

第 18 章基因工程根底单元自测题(一) 名词解释1. 遗传工程2.生物技术3.基因工程4.细胞工程5.蛋白质工程6.分子克隆7.载体8.转化和转染9.基因文库10. cDNA 文库(二) 填空1.自然界的常见基因转移方式有、、、。

2.不同DNA分子间发生的共价连接称为,有、两种方式。

3.基因工程的载体必需具备的条件有、、。

4.基因工程常用的载体DNA分子有、、和。

5.一个完整的DNA克隆过程应包括、、、、。

6.目的基因猎取的途径或来源有、、、。

7.基因工程过程中重组体直接筛选法的方式有、、。

8.基因克隆真核生物表达体系常见的有、、表达体系。

9.依据重组体DNA的性质不同,将重组体DNA导入受体细胞的方式有、、等。

10.假设M13的外源基因被插入到lac Z 基因内,则在含有X-gal 的培育基上生长时会消灭色菌落,假设在lac Z基因内无外源基因插入,在同样的条件下呈现色菌落。

11.当细胞与细胞或细菌通过菌毛相互接触时,就可以从一个细胞(细菌)转移到另一细胞(细菌),这种类型的DNA转移称为作用。

12.重组DNA 技术中常用的工具酶有、、、。

(三) 选择题1.以下那种方式保证了免疫球蛋白的多样性?A.转化B. 转染C. 转位D. 转导2.微切割技术使目的基因可来源于以下那种物质?A.真核细胞染色体DNAB.人工合成DNAC. cDNAD. G-文库3.重组DNA 技术中常用的工具酶以下那项不是:A.限制性核酸内切酶B. DNA 连接酶C. DNA 聚合酶ID. RNA 聚合酶4.DNA 致癌病毒感染宿主细胞后,使之发生癌变是由于发生了:A. 转化B. 转导C. 接合D. 转座5.关于基因工程的表达,以下哪项是错误的?A.基因工程也称基因克隆B . 只有质粒DNA 可作为载体C . 重组体DNA 转化或转染宿主细胞D. 需获得目的基因6.有关质粒的表达,以下哪项是错误的?A.pB R322 含有β-半乳糖苷酶的α片段基因B.质粒较易转化C.质粒的遗传表型可作为转化子的筛选依据D.pB R322 的分子中仅有一个E.co R I 内切酶位点7.以下哪项不是重组DNA的连接方式?A.粘性末端与粘性末端的连接 B .平端与平端的连接C . 粘性末端与平端的连接D . 人工接头连接8.有关噬菌体的表达哪项不符合?A.感染大肠杆菌时仅把D NA注入大肠杆菌内B.只有裂解一种生活方式C . 溶源和裂解两种生活方式可以相互转变D. 噬菌体是由外壳蛋白和D NA 组装而成9.D NA 克隆不包括以下哪项步骤?A. 选择一个适合的载体B . 重组体用融合法导入细胞C . 用连接酶连接载体D NA 和目的D NA,形成重组体D . 用载体的相应抗生素抗性筛选含重组体的细菌10.以下哪项不能作为表达载体导人真核细胞的方法?A.磷酸钙转染 B . 电穿孔 C . 脂质体转染 D . 氯化钙转染11.以下哪项不能作为基因工程重组体的筛选方法?A.PC R 技术B. 宿主菌的养分缺陷标志补救C . 抗药性标志选择 D. Southern 印迹12.关于转化错误的选项是:A.受体细胞获得的遗传表型B.外源D NA确定整合进受体细胞基因组C.自然界中较大的外源D NA转化几率较低D.自然界中较大的外源DNA 转化几率较高13.以下哪种酶是重组DNA 技术中最重要的?A. 反转录酶B. 碱性磷酸酶C. DNA 连接酶D. DNA 聚合酶I14.在分子生物学中,基因克隆主要指:A. DNA 的复制B. DNA 的转录C. DNA 的剪切D. RNA 的转录15.在分子生物学中,重组DNA 又称为:A. 酶工程B. 蛋白质工程C. 细胞工程D. 基因工程16.cDNA 是指:A.在体外经反转录合成的与RNA互补的DNAB.在体外经反转录合成的与DNA 互补的DNAC . 在体外经反转录合成的与RNA 互补的RNAD. 在体内经反转录合成的与RNA 互补的RNA17.聚合酶链式反响常常缩写为:A. PRCB. PERC. PC RD. B C R18.在DNA序列的状况下,猎取目的基因的最便利的方法是:A.人工化学合成B. 基因组文库法C. cDNA 文库法D. PCR 法19.用于PC R 反响的酶是:A.DNA 连接酶B. TaqDNA 聚合酶C. 逆转录酶D. 碱性磷酸酶20.在cDNA 技术中,所形成的发夹环可用A.限制性内切核酸酶切除B. 用3′外切核酸酶切除C. 用S1 核酸酶切除D. 用5′外切核酸酶切除21,cDNA 文库包括该种生物的A. 某些蛋白质的构造基因B. 全部蛋白质的构造基因C. 全部构造基因D. 内含子和调控区22.关于感受态细胞性质的描述,下面哪一种说法不正确?A.具有可诱导性B. 具有可转移性C. 细菌生长的任何时期都可以消灭D. 不同细菌消灭感受态的比例是不同的23.在简并引物的3′端尽量使用具有简并密码的氨基酸,这是由于A.Taq 酶具有确定的不准确性B. 便于排解错误碱基的掺人C. 易于退火D. 易于重组连接24.变色的酚中含有氧化物,这种酚不能用于DNA分别,缘由主要是A.氧化物会转变pH 值B.氧化物可使DNA 的磷酸二酯键断裂C. 氧化物同DNA 形成复合物D. 氧化物在DNA 分别后不易除去(四) 是非题1. 基因表达的最终产物都是蛋白质。

2022生物现代生物科技专题第1讲基因工程教案3

2022生物现代生物科技专题第1讲基因工程教案3

第1讲基因工程1.基因工程的诞生(Ⅰ)2.基因工程的原理及技术(含PCR技术)(Ⅱ)3。

基因工程的应用(Ⅱ)4.蛋白质工程(Ⅰ)1。

基因的结构与功能(生命观念)2。

基因工程的操作流程图及蛋白质的流程图等(科学思维)3。

基因工程的应用和蛋白质工程(科学探究)4.正确看待转基因生物与环境安全问题(社会责任)考点一基因工程的基本工具及基本程序1.基因工程的概念(1)概念:按照人们的愿望,进行严格的设计,并通过体外DNA重组和转基因等技术,赋予生物以新的遗传特性,从而创造出更符合人们需要的新的生物类型和生物产品。

(2)优点①与杂交育种相比:克服了远缘杂交不亲和的障碍。

②与诱变育种相比:定向改造生物的遗传性状。

2.基因工程的基本工具(1)限制性核酸内切酶(简称限制酶)。

①来源:主要来自原核生物。

②特点:具有专一性,表现在两个方面:识别——双链DNA分子的某种特定核苷酸序列.切割-—特定核苷酸序列中的特定位点。

③作用:断裂特定的两个核苷酸之间的磷酸二酯键。

④作用结果错误!—错误!(2)DNA连接酶(3)载体①种类:质粒、λ噬菌体的衍生物、动植物病毒等。

②质粒的特点错误!③运载体的作用:携带外源DNA片段进入受体细胞。

3.基因工程的基本操作程序(1)目的基因的获取①从基因文库中获取②人工合成错误!③利用PCR技术扩增(2)基因表达载体的构建—-基因工程的核心①目的:使目的基因在受体细胞中稳定存在,并且可以遗传给下一代,同时使目的基因能够表达和发挥作用。

②基因表达载体的组成(3)将目的基因导入受体细胞①转化含义:目的基因进入受体细胞内,并且在受体细胞内遗传和表达的过程.②转化方法生物类型植物动物微生物受体细胞体细胞受精卵大肠杆菌或酵母菌等(4)目的基因的检测与鉴定4。

PCR技术(1)原理:DNA复制。

(2)前提:已知目的基因的一段核苷酸序列,以便根据这一序列合成引物。

(3)条件:DNA模板、引物、热稳定DNA聚合酶和4种脱氧核苷酸.(4)扩增过程变性温度上升到90~95 ℃左右,双链DNA解链为单链复性温度下降到55~60 ℃左右,两种引物通过碱基互补配对与两条单链DNA结合延伸温度上升到70~75 ℃左右,Taq 酶从引物起始合成互补链,可使新链由5′端向3′端延伸(5)结果:上述三步反应完成后,一个DNA分子就变成了两个DNA分子,随着重复次数的增多,DNA分子就以2n的形式增加.PCR的反应过程都是在PCR扩增仪中完成的。

第一章 基因工程概述

第一章 基因工程概述

或新性状的DNA体外操作程序,也称为分子克隆技术。
因此,供体、受体、载体是重组DNA技术的三大基
本元件。
基因工程的基本概念
B 基因工程的基本定义
基因工程是指重组DNA技术的产业化设计与应用,
包括上游技术和下游技术两大组成部分。上游技术指的
是基因重组、克隆和表达的设计与构建(即重组DNA技
术);而下游技术则涉及到基因工程菌或细胞的大规模
酶工程
基因工程的基本概念
D 基因工程的基本形式
第一代基因工程 蛋白多肽基因的高效表达 经典基因工程 第二代基因工程 蛋白编码基因的定向诱变 蛋白质工程
第三代基因工程 代谢信息途径的修饰重构 途径工程
第四代基因工程 基因组或染色体的转移
基因组工程
第二节 基因工程的诞生和发展
一、基因
泛基因阶段
孟德尔遗传因子阶段
(如胰岛素)、干扰素、乙肝疫苗等 研制新型疫苗(HIV、霍乱、单纯疱疹病毒等)
生产具有药用价值的生物制剂,如水蛭素等
3. 基因诊断
– 遗传性疾病的分子诊断
– 癌症的分子诊断 – DNA指纹
4. 基因治疗
是指将外源正常基因导入靶细胞,以纠正或补偿因基因缺陷和异 常引起的疾病,以达到治疗目的。
3.断裂基因
1个基因被间隔区分成不连续的若干区段,这种编码序列不连续的间断基因被称为 断裂基因。
4.假基因
不能合成出功能蛋白质的失活基因 。
5.重叠基因
不同基因的核苷酸序列有时是可以共用的 即重叠的。
现代对基因的定义是DNA分子中含有特定遗传信息的一段核苷酸序列, 是遗传物质的最小功能单位。
二、 基因工程的诞生
顺反子阶段
1957 年,本泽尔(Seymour Benzer)以T4噬菌 体为材料,在DNA分子水平上研究基因内部的精细结 构,提出了顺反子(cistron)概念。 顺反子是1个遗传功能单位,1个顺反子决定 1条多肽链。

基因工程知识点1

基因工程知识点1

基因工程知识点基因工程1、操作水平:DNA分子水平目的:定向改变遗传物质或获得基因产物。

理论基础:1)物质基础一一脱氧核甘酸2)结构基础一一规则的双螺旋结构3)中心法则,共用一套遗传密码2、基因工程(geneticengineering):指重组DNA技术的产业化设计与应用,包括上游技术和下游技术两大组成部分。

上游技术指的是基因重组、克隆和表达的设计与构建(即重组DNA技术),而下游技术则涉及到基因工程菌或细胞的大规模培养以及基因产物的分离纯化过程。

(基因操作、遗传工程、重组DNA技术)。

1973年诞生的基本用途:分离、扩增、鉴定、研究、整理生物信息资源;大规模生产生物活性物质;设计、构建生物的新性状甚至新物种。

3、重组DNA技术:是指将一种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种生物体(受体)内,使之按照人们的意愿稳定遗传并表达出新产物或新性状的DNA体外操作程序,也称为分子克隆技术其核心步骤是DNA片段之间的体外连接。

4、基因工程的基本形式:第一代基因工程蛋白多肽基因的高效表达经典基因工程第二代蛋白编码基因的定向诱变蛋白质工程第三代基因工程代谢信息途径的修饰重构途径工程第四代基因组或染色体的转移基因组工程5、基因工程诞生的理论基础:理论上的三大发现1】证实了DNA是遗传物质;2】揭示了DNA分子的双螺旋结构模型和半保留复制机理;3]遗传密码的破译和遗传信息传递方式的确定。

6、DNA双螺旋:带负电的糖一磷酸骨架在外侧,碱基在螺旋中间相互堆叠,以5'-3'方向反向平行关系。

第二章用于核酸操作的工具酶1、寄主的限制和修饰现象:[1]作用:保护自身DNA不受限制;破坏入侵的外源DNA,使之降解。

【2】入侵噬菌体的子代便能高频感染同一宿主菌,但却丧失了在其原来宿主细胞中的存活九因为它们在接受新宿主甲基化酶修饰的同时,也丧失了原宿主菌甲基化修饰的标记。

2、限制性核酸内切酶的命名:如:HindI属名(H)+种名(in)+株名(d)+类型(I)II型限制性核酸内切酶的基本特性:识别双链DNA分子中4-8对碱基的特定序列,大部分酶的切割位点在识别序列内部或两侧,识别切割序列呈典型的旋转对称型回文结构。

哺乳动物基因工程

哺乳动物基因工程
5
SV40感染猴细胞时呈裂解型,不致癌;但感染啮齿类动物后,
6
便发生非同源整合而致癌。
7
猴多瘤病毒DNA(SV40)
SV40的基因组DNA
t / T基因编码病毒的小抗原和大
SV40 DNA
ori
VP2
T
VP3
VP1
t
抗原与病毒的致癌作用密切相关
SV40在裂解宿主细胞前的晚期
SV40来源的启动子控制Neor 标记基因,以G418筛选重组子。
以此载体在人细胞系中表达b1-干扰素和单纯疱疹病毒B蛋白获得成功。
人牛痘病毒DNA
02
03
04
05
06
01
胞质中自主复制。以前外源基因插在病毒基因组的非必需区内,构建
人牛痘病毒是一个大型DNA病毒,基因组长185 kb,能在宿主细
人牛痘病毒的生物学特性
组质粒导入哺乳动物受体细胞,此时外源基因整合在受体细胞染色体 DNA上,并在T7RNA聚合酶的作用下表达出重组蛋白。 人囊状纤维化基因就是采用这种战略高效表达的。
量表达T7RNA聚合酶,然后再将含有外源基因和T7启动子的细菌型重
人牛痘病毒DNA表达载体的构建 外源基因导入受体细胞之前,先以上述的重组病毒感染细胞,使其大
DRE
MMTP
Ap r
E.coli ori
SV40 P
Neo r
删除编码病毒核心蛋白和外壳蛋白的
基因,并与大肠杆菌质粒拼接,构成
穿梭载体,它不能整合,同时也不能
形成成熟的病毒颗粒裂解受体细胞。
安装细胞色素P450 dioxin介导的增强
子DRE,控制小鼠乳腺癌启动子MMTP,由其带动外源基因的表达。
盒中不含任何病毒基因序列,这对外源基因表达产物的分离纯化减轻

基因工程细胞工程知识点汇总

基因工程细胞工程知识点汇总

基因工程细胞工程知识点汇总一、基因工程(一)基因工程的概念基因工程是指按照人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。

基因工程是在DNA 分子水平上进行设计和施工的,又叫做DNA重组技术。

(一)基因工程的基本工具1.“分子手术刀”——限制性核酸内切酶(限制酶)(1)来源:主要是从原核生物中分离纯化出来的。

(2)功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开,因此具有专一性。

(3)结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端。

2.“分子缝合针”——DNA连接酶(1)两种DNA连接酶(E·coliDNA连接酶和T4DNA连接酶)的比较:①相同点:都缝合磷酸二酯键。

②区别:E·coliDNA连接酶来源于T4噬菌体,只能将双链DNA片段互补的黏性末端之间的磷酸二酯键连接起来;而T4DNA连接酶能缝合两种末端,但连接平末端的之间的效率较低。

(2)与DNA聚合酶作用的异同: DNA聚合酶只能将单个核苷酸加到已有的核苷酸片段的末端,形成磷酸二酯键。

DNA连接酶是连接两个DNA片段的末端,形成磷酸二酯键。

3.“分子运输车”——载体(1)载体具备的条件:①能在受体细胞中复制并稳定保存。

②具有一至多个限制酶切点,供外源DNA片段插入。

③具有标记基因,供重组DNA的鉴定和选择。

(2)最常用的载体是质粒,它是一种裸露的、结构简单的、独立于细菌染色体之外,并具有自我复制能力的双链环状DNA分子。

(3)其它载体:噬菌体的衍生物、动植物病毒(二)基因工程的基本操作程序第一步:目的基因的获取1.目的基因是指:编码蛋白质的结构基因。

2.原核基因采取直接分离获得,真核基因是人工合成。

人工合成目的基因的常用方法有反转录法_和化学合成法_。

技术扩增目的基因(1)原理:DNA双链复制(2)过程:第一步:加热至90~95℃DNA解链;第二步:冷却到55~60℃,引物结合到互补DNA链;第三步:加热至70~75℃,热稳定DNA聚合酶从引物起始互补链的合成。

第3章基因工程(单元知识清单)(答案版)

第3章基因工程(单元知识清单)(答案版)

第三章基因工程知识清单第1节重组DNA技术的基本工具一、重组DNA技术的基本工具1.基因工程的概念(1)肺炎链球菌转化实验不仅证明DNA是遗传物质,还证明了DNA可在同种生物不同个体之间转移。

(2)DNA双螺旋结构的提出和半保留复制的证明。

(3)中心法则的确立。

(4)遗传密码的破译。

(5)基因转移载体和限制酶、DN连接酶和逆转录酶的发现为DNA的切割、连接以及功能基因的获得创造了条件。

(6)DNA体外重组的实现。

(7)重组DNA表达实验的成功。

(8)DNA测序和合成技术的发明。

(9)PCR技术的发明。

(10)基因组编辑技术可以实现对特定基因的定点插入、敲除或替换。

3.重组DNA技术的基本工具(1)限制性内切核酸酶(也称“限制酶”)—“分子手术刀”●已知限制酶Eco R Ⅰ和SmaⅠ识别的碱基序列和酶切位点分别为G↓AATTC和CCC↓GGG,在图中写出两种限制酶切割DNA后产生的末端并写出末端的种类。

Eco R Ⅰ限制酶和SmaⅠ限制酶识别的碱基序列不同,切割位点不同(填“相同”或“不同”),说明限制酶具有专一性。

(2)DNA连接酶—“分子缝合针”①作用:DNA连接酶能够将DNA片段连接起来。

②分类:基因工程常用的DNA连接酶有两种:● E.coli DNA连接酶:连接互补的黏性末端,不能连接平末端。

● T4 DNA连接酶:连接互补的黏性末端和平末端。

(3)载体——“分子运输车”①基因工程通常利用质粒作为载体将基因送入细胞。

质粒是独立于细胞核或拟核DNA之外,具有自我复制能力的环状DNA分子。

●质粒DNA分子上有一个或多个限制酶切割位点,可供外源基因插入其中。

●携带外援DNA片段的质粒进入受体细胞后,能够在细胞中进行自我复制,或整合到受体DNA上,随受体DNA的同步复制。

质粒上常有特殊的标记基因,如抗性基因,便于重组DNA分子的筛选。

②基因工程常用的载体除质粒外,还有噬菌体、动物病毒等。

二、DNA的粗提取与鉴定和DNA片段的扩增与电泳鉴定1.DNA的粗提取与鉴定实验原理(1)DNA不溶于酒精,蛋白质溶于酒精。

实验一-哺乳动物基因组DNA的提取及纯化

实验一-哺乳动物基因组DNA的提取及纯化

细胞裂解缓冲液(核酸酶抑制剂)、蛋白质酶K、TE缓冲
液(pH8.0)、酚:氯仿:异戊醇(25:24:1)抽提液、 氯仿:异戊醇(24:1)抽提液、5.2mol/L醋酸钠、异丙 醇、无水乙醇、70%(V/V)乙醇、灭菌水
移液枪的使用
样品准备 设定体积 装枪头
吸液
放液 使用完毕
将刻度调至最大量程,让弹簧恢复原形, 延长移液枪的使用寿命
二、实验原理 基因组DNA的特性:分子量较大、易断 如何保证DNA分子的完整性 DNA抽提思路:
破碎组织细胞
匀浆或液氮研磨 蛋白、多糖、脂类、RNA和小分子物质 所提取的DNA片段的大小:100 ~150kb DNA
二、实验原理 真核生物DNA以染色体形式位于细胞核内,因此,制备DNA的原 是既要将DNA与蛋白质、脂类和糖类等分离,又要保持DNA的完 整。 SDS可破坏细胞膜、核膜,并使组织蛋白质与DNA分离,
DNA纯化
加等体积氯仿/异戊醇(24:1),慢慢颠倒混匀,冰上平倒静置10min(40C 冰箱) 40C,12000rpm离心10min,用扩口枪头取出上清
பைடு நூலகம்
上清加等体积氯仿/异戊醇(24:1),慢慢颠倒混匀 40C,12000rpm,5min,用扩口枪头取上清 上清加1/10体积的3mol/L NaAc(pH5.2)和加2倍体积的无水乙醇 慢慢混匀,-200C静置一周 12000rpm离心10min,弃上清 沉淀用1mL 70%冷乙醇洗两次,每次12000rpm离心5min,弃上清 超净台中干燥加 100~200uL TE, 40C溶解过夜,-200C保存 (可进一步通过凝胶电泳检测所获取基因组DNA质量)
【实验流程】 材料 蛋白酶K 醇沉淀

基因工程1

基因工程1

第四章酶同尾酶:有一类限制性内切核酸酶,他们来源各异,识别的靶序列也不同,但切割后能产生相同的粘性末端,称为同尾酶。

同裂酶:是一类来源于不同的微生物,能识别相同的靶序列的限制性内切核酸酶。

首次发现的酶叫原型酶,而后发现的与原型酶识别序列相同的酶叫做原型酶的同裂酶。

其中,识别序列相同、而切割位点与原型酶不同的酶叫做新裂酶。

Klenow酶:枯草杆菌蛋白酶可以将DNA聚合酶Ⅰ水解为N端的小片段和C端的大片段。

其中的大片段被称为Klenow片段。

它保留了DNA聚合酶Ⅰ的5'→3'聚合酶活性和3'→5'外切酶活性,但缺少完整的Klenow酶的5'→3'外切酶活性。

Klenow酶的3'→5'外切酶活性保证了其合成DNA时的准确性。

反转录酶:即依赖于RNA的DNA聚合酶,具有5′→3′DNA合成活性和很强的RNAaseH活性,但是无3′→5′外切活性。

反转录酶能以RNA为模板指导三磷酸脱氧核苷酸合成互补DNA(cDNA)。

限制性核酸内切酶:是一类能够识别双链DNA分子中某种特定核苷酸序列,并切割DNA双链结构的内切核酸酶。

DNA连接酶:是能催化双链DNA片段靠在一起的3‘-OH末端与5’-P末端之间通过生成磷酸二酯键,使两末端连接的一种核酸酶黏性末端:指DNA分子在限制性内切核酸酶的作用下形成的具有互补碱基的单链延伸形成的末端结构,他们能够通过互补碱基间的配对而重新连接起来。

平末端:平末端指DNA分子两条链在限制性内切酶作用下断裂的位置是处在一个对称结构的中心,形成的一种平齐的末端结构类型。

星号活性(staractivity):也称星活性,同一类限制性内切酶在某些反应条件变化时酶的专一性发生改变,许多酶的识别位点会改变,导致识别与切割序列的非特异性,最值这种现象称为星号活性。

限制与修饰现象:限制作用:即在一种宿主细胞生长良好的入噬菌体,但在另一种宿主细胞中生长很差。

基因工程基本操作步骤

基因工程基本操作步骤

基因工程基本操作步骤
1、目标基因的选择。

这是进行基因工程的第一步,目标基因可以是已知的具有特定功能的基因,也可以是未知的探索性研究对象,在选择时需要考虑多个方面,如所需功能、适用范围、安全性等。

2、克隆目标基因。

这一步骤包括提取DNA、使用限制性内切酶将DNA切割成特定长度、连接载体(如质粒、病毒等)以及转化宿主细胞(如大肠杆菌、哺乳动物细胞等)。

3、构建重组表达载体。

这一步骤包括选择合适的载体、插入目标基因、调节表达(如调节启动子和终止子)等,重组表达载体是将目标基因嵌入到载体中,使其能够在宿主细胞中表达。

4、转染宿主细胞。

这一步骤包括选择合适的宿主细胞、转染重组表达载体、筛选阳性克隆等,转染宿主细胞是将构建好的重组表达载体转移到宿主细胞中,使其能够在宿主细胞中进行表达。

5、目的基因的检测与鉴定。

这一步骤包括分子水平上的检测(如DNA分子杂交技术、分子杂交技术、抗原-抗体杂交技术)和个体水平上的鉴定(如抗虫鉴定、抗病鉴定、活性鉴定等)。

6、分离和纯化目标蛋白。

这一步骤包括破碎宿主细胞、
使用不同的技术对混合物进行分离(如层析、电泳等)。

现代生物技术(书名:生物技术概论)作业课后习题解答

现代生物技术(书名:生物技术概论)作业课后习题解答
11.有什么方法可以去除革兰阳性细菌、革兰阳性细菌和真菌的细胞壁? 革兰阳性细菌:植物细胞壁用纤维素酶和果胶酶;真菌:用溶菌酶
四、发酵工程 1.微生物发酵产物有哪几种类型?
酒类、醋、酱油、酸奶、醪糟、面包、糖果、果汁、罐头
2.发酵培养基有哪些成分组成? 发酵培养基的组成应丰富、完全,碳、氮源要注意速效和迟效的互相搭配,
少用速效营养,多加迟效营养;还要考虑适当的碳氮比,加缓冲剂稳定 pH 值; 并且还要有菌体生长所需的生长因子和产物合成所需要的元素、前体和促进剂 等。除有菌体生长所必需的元素和化合物外,还要有产物所需的特定元素、前体 和促进剂等。
3.比较分批发酵、连续发酵和补料分批发酵的优缺点? 分批发酵:能迅速获得足够量的菌体细胞后,延长稳定期,从而提高产量; 连续发酵: 优点:1.维持低基质浓度:可以除去ห้องสมุดไป่ตู้速利用碳源的阻遏效应,并维持适当
后,将骨髓瘤细胞和脾细胞以聚乙二醇法进行融合。再帅选出合适的杂合细胞进 行繁殖。
9.如何用体细胞克隆出一只哺乳动物?克隆动物有什么积极意义? 先将含有遗传物质的供体细胞的核移植到去除了细胞核的卵细胞中,利用
微电流刺激等使两者融合为一体,然后促使这一新细胞分裂繁殖发育成胚胎,当 胚胎发育到一定程度后,再被植入动物子宫中使动物怀孕,便可产下与提供细胞 核者基因相同的动物。
三、细胞工程 1.如何从一片嫩叶经组织培养出众多的完整植株?
首先,将嫩叶细胞成为一个原生质体,然后脱分化,再进行再分化,在良好 的环境中进行培育,得到完整的植株。
2.如何从植物细胞培养中获得较高的次生代谢物产量? 1.选择良好的外植体;2.高产细胞系的选育;3.培养条件的优化;4.提高培养
技术水平;5.前体物的适当添加;6.抑制剂的适量使用。

基因工程名词解释

基因工程名词解释

基因工程:按照预先设计好的蓝图,利用现代分子生物学技术,特别是酶学技术,对遗传物质DNA直接进行体外重组操作与改造,将一种生物(供体)的基因转移到另外一种生物(受体)中去,从而实现受体生物的定向改造与改良。

遗传工程:广义:指以改变生物有机体性状为目标,采用类似工程技术手段而进行的对遗传物质的操作,以改良品质或创造新品种。

包括细胞工程、染色体工程、细胞器工程和基因工程等不同的技术层次。

狭义:基因工程。

限制性核酸内切酶:是可以识别DNA的特异序列,并在识别位点或其周围切割双链DNA的一类内切酶,简称限制酶回文结构:每条单链以任一方向阅读时都与另一条链以相同方向阅读时的序列是一致的,例如5'GGTACC3' 3'CCATGG5'.同裂酶(isoschizomer)或异源同工酶:不同来源的限制酶可切割同一靶序列(BamH I 和Bst I具有相同的识别序列G↓GATGC)同尾酶(isocaudiners):来源不同、识别序列不同,但产生相同粘性末端的酶。

两个同尾酶形成的黏性末端连接之后,一般情况下连接处不能够再被其任何一种同尾酶识别。

BamH I 识别序列: G↓GATCCBgl II 识别序列: A↓GATCT黏性末端 (cohesive terminus/sticky ends):DNA末端一条链突出的几个核苷酸能与另一个具有突出单链的DNA末端通过互补配对粘合,这样的DNA末端,称为黏性末端。

平末端(blunt ends): DNA片段的末端是平齐的。

星活性(star activity):指限制性内切酶在非标准条件下,对与识别序列相似的其它序列也进行切割反应,导致出现非特异性的DNA片段的现象。

易产生星活性的内切酶用*标记。

如:EcoR I*底物位点优势效应:酶对同一个DNA底物上的不同酶切位点的切割速率不同。

连杆/衔接物(linker):化学合成的8~12个核苷酸组成的寡核苷酸片段。

基因工程精选全文完整版

基因工程精选全文完整版
成mRNA,并最终以蛋白质的形式 在宿主细胞中表达 原核表达载体:有两类
– 可直接表达不含任何原核序列的外源 蛋白(原核表达载体)
– 以融合蛋白的形式进行表达(原核基 因融合表达载体)
表达载体
真核表达载体含有:
– 原核基因序列 – 真核转录单位
真核表达载体:有两类
– 不带病毒复制子 – 带病毒复制子
质粒(plasmid)
存在于细菌等细胞质中 双链环状DNA分子 大约 1-200 Kb 具有自主复制和转录能力 不能独立存活 在子细胞中保持恒定的拷贝数 并表达其遗传信息
质粒(plasmid)
在细胞内的复制分两种类型
严密控制型
松弛控制型
(stringent control) (relaxed control)
基因工程操作流程
基因重组示意图
基因工程上游技术基本过程
选择载体 获得目的基因 目的基因与载体的重组 重组载体的转化 重组子的筛选与鉴定
载体(vector)
质粒(plasmid) 噬菌体(phage) 病毒(virus)
载体的条件
分子小( 10 Kb) 有限制酶酶切位点 可自主复制 有足够的copy数 带筛选的标志
法将允许克隆人体器官
法国总理若斯潘(2000年9月28日) 表示:
– 法国政府将允许对人体器官克隆技术 进行用于医疗目的的研究
基因工程技术
上游技术(upstream)
– 重组子的构建 – 工程菌的构建及高效表达
下游技术(downstream)
– 工程菌大规模发酵最佳参数的确定 – 新型生物反应器的研制 – 高效分离介质及装置的开发 – 分离纯化的优化控制 – 生物反应器等一系列仪器、仪表的设计制造 – 超滤、反渗透技术的应用

高中生物 第3章 基因工程 第1节 基因工程概述案 苏教3

高中生物 第3章 基因工程 第1节 基因工程概述案 苏教3

第一节受精和胚胎发育1.掌握哺乳动物的精子和卵子的发生过程。

(重、难点)2.了解哺乳动物受精作用过程.(重、难点)3.掌握哺乳动物胚胎发育的基本过程及主要特点.(重点)哺乳动物生殖细胞的发生和体内受精1.精子的发生(1)场所:睾丸的曲细精管。

(2)时期:动物性成熟后。

(3)过程。

1个初级精母细胞错误!2个次级精母细胞错误!4个精细胞错误!4个精子。

(4)营养供应:曲细精管的支持细胞.(5)储存:精子形成后进入曲细精管的管腔中。

2.卵子的发生(1)场所:卵巢。

(2)过程。

(3)结果:一个初级卵母细胞最终产生1个卵子和3个极体。

(4)时期。

①卵子发生的第一个阶段是胎儿期,部分卵原细胞发育为初级卵母细胞,被卵泡细胞所包围,形成卵泡。

②初情期后继续发育,在精子入卵后,才能完成减数第二次分裂,形成真正意义上的卵子。

3.体内受精(1)场所:输卵管。

(2)精子的准备:成熟与获能。

①成熟:在附睾中完成。

②获能:成熟的精子必须在雌性动物的生殖道(子宫和输卵管)中经历一段时间才能获得受精能力的过程.卵泡液、输卵管分泌物、血清等液体可使精子获能。

(3)过程①精、卵细胞膜融合:获能的精子穿过次级卵母细胞的透明带,两细胞的细胞膜融合,精子的遗传物质进入卵细胞。

②两个重要反应:卵子外面的透明带和卵细胞膜发生变化不再接受其他精子进入,阻止多个精子同时受精;激活次级卵母细胞继续完成减数第二次分裂。

(4)核融合:卵子的细胞核与精子的细胞核融合便形成了一个单细胞受精卵。

[合作探讨]请结合卵子受精的图片探究以下问题.探讨错误!:精子和卵子在发生上的重要区别是什么?提示:精子和卵子在发生上的重要区别是哺乳动物卵泡的形成和在卵巢内的储备是在胎儿出生前完成的,而精子是从性成熟后开始的.探讨错误!:卵子发育过程中细胞质不均等分配的意义是什么?提示:保证了受精卵能有充足的营养物质满足早期胚胎发育的需要。

探讨3:受精过程中有防止多精入卵的两道屏障,其意义是什么?雌、雄原核与卵子、精子原来的核是什么关系?提示:保证子代细胞中染色体数目正常.雌、雄原核不能理解成卵子、精子原来的核,而是在原来细胞核的基础上形成的新核,原核膜已破裂。

高中生物22基因工程(一)基因的结构和基因工程的基本工具-知识讲解

高中生物22基因工程(一)基因的结构和基因工程的基本工具-知识讲解

基因工程(一)基因的结构和基因工程的基本工具编稿:闫敏敏审稿:宋辰霞【学习目标】1、了解基因工程的诞生及概念。

2、知道基因的结构。

3、简述DNA重组技术所需三种基本工具及其应用(重点、难点)。

【要点梳理】要点一、基因工程概述要点二、基因工程的诞生【高清课程:基因工程(一)基因的结构和基因工程的基本工具 369163 基因工程的诞生】1.遗传基础理论的重大突破艾弗里、赫尔希、蔡斯等人证明DNA是遗传物质1953年,沃森和克里克提出DNA双螺旋结构1958年,梅塞尔森和斯塔尔证明DNA的半保留复制1963~1967年,尼伦伯格、马太、霍拉纳破译遗传密码中心法则的提出和完善指出遗传信息在大分子间的传递2.技术发明使基因工程的实施成为可能技术上三大发明:⑴基因转移载体的发现——1967年,T.F.Roth(罗思)&D.R.Helinski(海林斯基)发现质粒的自我复制能力,并能够在细菌之间转移。

⑵工具酶的发现——1972年, H.C. Smith 、W.Arber & D.Nathans从流感嗜血杆菌中分离得到限制性内切酶;1970年,逆转录酶的发现使真核细胞的基因制备成为可能;此后,多种限制酶和连接酶被发现。

⑶DNA体外重组的实现—1972年,美国 Berg 第一次构建出了体外重组DNA分子。

重组DNA表达实验的成功—1973年,H.Boyer & S.Cohen选用仅含单一EcoRI酶切位点的载体质粒pSC101,使之与非洲爪蟾核糖体蛋白基因的DNA片段重组。

重组的DNA转入大肠杆菌DNA中,转录出相应的mRNA。

3.技术进一步推动基因工程的发展:⑴第一例转基因动物和转基因植物问世1980 年,科学家通过显微注射培育出世界第一个转基因小鼠。

1983年,科学家采用农杆菌转化法,培育出世界上第一例转基因烟草。

⑵PCR技术的发明1988年,美 K.Mullis发明PCR技术,使基因工程进一步发展。

名词解释(基因工程)

名词解释(基因工程)

名词解释1细胞工程:指以生物细胞或组织为研究对象,按照人们的意愿进行工程学操作,从而改变生物性状,以获得生物产品,为人类生产和生活服务的科学。

2去分化(脱分化):在某些特定条件下,分化细胞的表型不稳定,基因活动模式发生可逆的变化,细胞脱离原状态回复到分生状态3再分化:脱分化细胞失去分化特征,但在某些特定条件诱导下,可再次开始新的分化发育进程,最终形成各种组织、器官或胚状体等。

4污染:在组织培养过程中,培养基和培养材料滋生杂菌,导致培养失败的现象。

5褐变:是指组织培养中,由于材料被切割而使多酚氧化酶活化将组织中的酚类物质氧化形成棕褐色的醌类物质,并向培养基中扩散,抑制培养物生长甚至导致其死亡的现象。

6玻璃化:也称超水化作用,是离体培养过程中试管苗发生形态、生理和代谢异常的现象。

7植物细胞培养:在离体条件下对植物单个细胞或小的细胞团进行培养并使其增殖的技术。

8看护培养:在培养中用一块活跃生长的愈伤组织来哺育单细胞,从而使其正常分裂、增殖的方法。

9植物原生质体:是指除去细胞壁后裸露的具有生命活力的原生质团。

10条件培养法:在进行花粉培养时,利用预先培养过花药的液体培养基,或加入失活的花药提取物的合成培养基进行花粉培养的方法。

11植物胚胎培养:是指在无菌条件下,对植物的胚及胚器官如子房、胚珠和胚乳进行离体培养的技术。

12种质:指亲代通过生殖细胞或体细胞直接传递给子代并决定固有生物性状的遗传物质。

13种质保存:指利用天然或人工创造的适宜环境,借以保存种质资源,使个体中所含有的遗传物质保持其遗传完整性,并且有强的生活力,能通过繁殖将其遗传特性传递下去。

14种质资源的离体保存:指对离体小植株、器官、组织、细胞或原生质体等材料,采用限制、延缓或停止其生长的处理措施使之保存,在需要时可重新恢复其生长,并再生植株的方法。

15同核体:由同一个生物个体的亲本细胞融合形成的含有同型细胞核的融合细胞。

16异核体:由不同种属或同一种属的不同个体的亲本细胞发生融合所形成的含有不同细胞核的融合细胞。

基因工程 名词解释 (1)

基因工程 名词解释 (1)

1.基因工程:是指将一种或多种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种生物体(受体)内,使之按照人们的意愿稳定遗传并表达出新产物或新性状的DNA体外操作程序。

2.限制性内切核酸酶:是一类能够识别双链DNA分子中的某种特定核苷酸序列,并由此处切割DNA双链的核酸内切酶。

3.粘性末端:指DNA分子在限制酶的作用下形成的含有几个核苷酸单链的末端,它们能够通过互补碱基间的配对而重新环化起来4.平末端:当限制酶从识别序列的中心轴线处切开时,切开的DNA两条单链的切口,是平整的,这样的切口叫平末端5.酶的星号活性:极度非标准反应条件下,当条件改变时许多限制酶的识别位点会改变,导致与切割序列的非特异性,这种现象称为星号活性6.载体:将外源DNA或基因携带进入宿主细胞进行扩增或表达的工具7.质粒的不相容性:两种质粒在同一宿主细胞中不能共存的现象8.PCR引物:在PCR反应中,与待扩增的DNA两侧碱基互补的寡核苷酸片段,其本质是单链DNA9.cDNA文库:指将某种生物体基因组转录的全部mRNA经反转录产生的cDNA片段,分别与克隆载体重组,储存于某种受体菌中,该群体就称该生物基因组的cDNA 文库10.基因组文库:指将某种生物体的全部基因组DNA用限制性内切酶或机械力量切割成一定长度范围的DNA片段,在与合适的载体在体外重组,并转化相应的宿主细胞,获得的所有阳性菌落,这个群体就称为该生物基因组文库11.DNA体外重组:将外源DNA用DNA连接酶在体外连接到合适的载体DNA上12.感受态细胞:经过适当处理后容易接受外源DNA进入的细胞13.受体细胞:从实验技术上讲是能摄取外源DNA并使其稳定维持的细胞14.报告基因:一种编码可被检测的蛋白质或酶的基因,也就是说是一-个其表达产物非常容易被鉴定的基因。

把它的编码序列和基因表达调节顺序相融合形成嵌合基因,或与其它目的基因相融合,在调控序.列控制下进行表达,从而利用它的表达产物来标定目的基因的表达调控,筛选得到7转化体15.简并序列:分子生物学中,同-种氨基酸具有两个或更多个密码子现象称为密码子的简并性,这样的序列就叫兼并序列16.目的基因:那些已被或者准备要分离、改造、扩增或表达的特定基因或DNA 片段17.同尾酶:来源不同,识别靶序列不同,但产生相同的粘性末端的核酸内切酶。

生物工程概论复习提纲

生物工程概论复习提纲

五大工程的定义、研究内容。

1.基因工程:在基因水平上操作并改变生物遗传特性的技术。

即按照人们的需要,用类似工程设计的方法将不同来源的DNA分子在体外构建成重组DNA分子,然后导入受体细胞,并在受体细胞内复制、转录和表达。

2.细胞工程:以细胞为基本单位,在体外条件下进行培养、繁殖或人为地使细胞某些生物学特性按人们的意愿发生改变,达到改良生物品种和创造新品种的目的,从而加速繁育动植物个体,或获得某种有用物质。

3.蛋白质工程:以蛋白质结构和功能的研究为基础,运用遗传工程的方法,借助计算机信息处理技术,从改变和合成基因入手,定向改造天然蛋白质或设计全新的蛋白质,使之具有特定的结构、性质和功能,更好地为人类服务。

4.发酵工程:利用包括工程微生物在内的某些微生物或动、植物细胞及其特定功能,通过现代工程技术手段生产各种特定的有用物质;或者把微生物直接用于某些工业化生产。

5.酶工程:利用酶、细胞器或细胞所具有的特异催化功能,以及对酶的修饰改造,借助于生物反应器,生产人类所需产品。

基因工程研究的理论依据是什么?1.不同基因具有相同的物质基础;2.基因是可以切割的;3.基因是可以转移的;4.多肽与基因之间存在对应关系;5.遗传密码是通用的;6.基因可以通过复制把遗传信息传递给下一代。

基因工程的工具酶有哪些?其作用是什么?1.限制性核酸内切酶,一类识别双链DNA分子中的某种特定核苷酸序列,并由此切割DNA双链结构的核苷酸内切酶;2.DNA连接酶,催化双链DNA片段紧靠在一起的3'-OH与5'-P基团之间形成磷酸二酯键,连接两末端的酶;3.DNA聚合酶,能够催化DNA复制和修复DNA分子损伤的一类酶;4.碱性磷酸酶,用于脱去DNA(RNA)5'末端的磷酸根,使5'-P成为5'-OH,此过程称核酸分子的脱磷酸作用;5.S1核酸酶,水解单链DNA或RNA,产生带5'-P的单核苷酸或寡核苷酸。

基因工程细胞工程知识点汇总

基因工程细胞工程知识点汇总

基因工程细胞工程知识点汇总一、基因工程(一)基因工程的概念基因工程是指按照人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。

基因工程是在DNA 分子水平上进行设计和施工的,又叫做DNA重组技术。

(一)基因工程的基本工具1.“分子手术刀”——限制性核酸内切酶(限制酶)(1)来源:主要是从原核生物中分离纯化出来的。

(2)功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开,因此具有专一性。

(3)结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端。

2.“分子缝合针”——DNA连接酶(1)两种DNA连接酶(E·coliDNA连接酶和T4DNA连接酶)的比较:①相同点:都缝合磷酸二酯键。

②区别:E·coliDNA连接酶来源于T4噬菌体,只能将双链DNA片段互补的黏性末端之间的磷酸二酯键连接起来;而T4DNA连接酶能缝合两种末端,但连接平末端的之间的效率较低。

(2)与DNA聚合酶作用的异同:DNA聚合酶只能将单个核苷酸加到已有的核苷酸片段的末端,形成磷酸二酯键。

DNA连接酶是连接两个DNA片段的末端,形成磷酸二酯键。

3.“分子运输车”——载体(1)载体具备的条件:①能在受体细胞中复制并稳定保存。

②具有一至多个限制酶切点,供外源DNA片段插入。

③具有标记基因,供重组DNA的鉴定和选择。

(2)最常用的载体是质粒,它是一种裸露的、结构简单的、独立于细菌染色体之外,并具有自我复制能力的双链环状DNA分子。

(3)其它载体:噬菌体的衍生物、动植物病毒(二)基因工程的基本操作程序第一步:目的基因的获取1.目的基因是指:编码蛋白质的结构基因。

2.原核基因采取直接分离获得,真核基因是人工合成。

人工合成目的基因的常用方法有反转录法_和化学合成法_。

3.PCR技术扩增目的基因(1)原理:DNA双链复制(2)过程:第一步:加热至90~95℃DNA解链;第二步:冷却到55~60℃,引物结合到互补DNA链;第三步:加热至70~75℃,热稳定DNA聚合酶从引物起始互补链的合成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

态称为细胞系形成,此时的细胞成为细胞系。
(二) 高等哺乳动物受体细胞的条件
以高效表达外源基因为目标的高等哺乳动物受体细胞应具备下列条件
细胞系特征 遗传稳定性 合适的标记 生长快且齐 安全性能好
丧失细胞接触抑制性和锚地依赖性特征,便于大 规模培养 外源基因多次传代后不至于丢失,易于长期保存 便于转化株的筛选和维持 分裂周期短,生长均一,便于控制 不合成分泌致病物质,不致癌
(二)猴多瘤病毒DNA(SV40)
1.SV40的生物学特性
SV40属于乳多瘤病毒科多瘤病毒属,呈小型二十面体,由VP1 、 VP2、VP3三种衣壳蛋白包装而成,基因组为5224bp的双链环状DNA SV40可以与所有哺乳动物宿主细胞中的组蛋白H2、H3、H4结合, 从 而使其DNA形成类似核小体的微型染色体结构。
氨基喋呤(AP)
GMP
次黄嘌呤核苷一磷酸(HMP)
AMP
胸腺嘧啶核苷一磷酸(TMP)
(HPRT) 补救合成途径 次黄嘌呤核苷(HR)
次黄嘌呤磷酸 核糖转移酶
(TK)
胸腺嘧啶 核苷激酶
胸腺嘧啶核苷(TR)
胸腺嘧啶核苷激酶(TK)缺陷型受体细胞(tk -): 不能在含有次黄嘌呤核苷、氨基喋呤、胸腺嘧啶核苷的培
锚地依赖性:细胞必须附在固体上或固定的表面才能生长分裂 血清依赖性:细胞必须具有生长因子才能生长 接触抑制性:细胞与细胞接触后,生长便受到抑制 形态依赖性:细胞称扁平状,并有长纤维网状结构 上述特征使得正常的哺乳动物细胞在体外培养中,一般只能存活50代 且在培养皿上以平面的形式生长,即单层细胞生长。有时,正常细胞 会改变某些特征而越过生理临界点,继续增殖并无限制分裂,这种状
动物工程细胞 蛋白多肽物质大规模生产
药物筛选研究评价模型
人体基因治疗
药物筛选研究评价模型
B 高等哺乳动物的受体系统
高等哺乳动物细胞的生长特性 高等哺乳动物受体细胞的条件
高等哺乳动物受体细胞的遗传标记
常用的高等哺乳动物受体细胞
(一) 高等哺乳动物细胞的生长特性
正常的哺乳类动物细胞具有下列四大生物学特征:
(一) 人腺病毒DNA
1. 腺病毒的生物学特性
腺病毒科为线状双链DNA病毒,无包膜,呈二十面体,共有93 个 成员,分哺乳动物腺病毒和禽腺病毒两个属。目前已鉴定的人腺病毒
有6个亚属,其中常用来构建载体的主要是C亚属的2型(Ad2)和5型
(Ad5)病毒。 腺病毒感染人细胞时呈裂解型,不致癌;但对啮齿目动物来说, 绝大多数的腺病毒成员均能致癌。
大多数正常的高等哺乳动物细胞并不能同时具备上述条件,癌细胞能 满足上述前四项要求,但在安全性能上有欠缺。
(三)高等哺乳动物受体细胞的遗传标记
1. 营养缺陷型的哺乳动物受体细胞
嘌呤核苷酸生物合成途径
5-磷酸核糖-1-焦磷酸(PRPP)
嘧啶核苷酸生物合成途径
从头合成途径
氨基喋呤(AP)
尿嘧啶核苷一磷酸(UMP)
2. 腺病毒的基因组DNA
IVa2 ITR VA L1 L2 L3 L4 L5 ITR
E1
E2
E3
E4
腺病毒基因组DNA全长36
kb,其包装上限为原基因组的105%, DNA
两端各有一个反向重复序列(ITR);
E1-E4为早期基因,与病毒基因组的复制及晚期基因的表达调控有关,
其中E3编码晚期基因的调控因子;
VP1
表达外源蛋白
3. SV40 DNA-质粒DNA杂合载体的构建
重组的SV40 DNA分子必须经过包装后才具有感染能力,
因此,插入的外源DNA片段不能太大。为了尽量提高SV40 的装载量,必须删除一些基因片段,因此重组的SV40分子 必须与野生型病毒共感染受体细胞,才能形成有感染力的 重组病毒颗粒。
的高等哺乳动物受体细胞主要还是中国仓鼠卵巢细胞(CHO),其 优 势有如下几个方面: 遗传背景清楚,生理代谢稳定
与人的亲缘关系接近,外源蛋白修饰准确 基因转移和载体表达系统完善 耐受剪切力,便于大规模培养 被美国FDA确认为安全的基因工程受体细胞(GRAS)
C 高等哺乳动物的载体系统
人腺病毒DNA 猴空泡病毒DNA(SV40) 人乳多瘤病毒DNA(BKV) 人牛痘病毒DNA
L1-L5为编码病毒包装蛋白的晚期基因;
IVa2和VA均为病毒RNA聚合酶的亚基编码基因。
3. 腺病毒DNA载体的特点
基因重排低
外源基因与病毒DNA重组后能稳定复制几 不整合人的染色体DNA,不会导致恶性肿瘤 对受体细胞是否处于分裂期要求不严格
个周期
安全性能好 宿主范围广 使用效果好
外源基因在载体上容易高效表达
8 哺乳动物基因工程
A 高等哺乳动物基因工程的基本概念 B 高等哺乳动物的受体系统 C 高等哺乳动物的载体系统 D 高等哺乳动物的基因转移 E 利用哺乳动物工程细胞生产重组蛋白
A 高等哺乳动物基因工程的基本概念
高等哺乳动物基因工程
高等哺乳动物转基因技术
高等哺乳动物细胞基因表达技术
转基因动物个体 哺乳动物遗传性状改良
SV40感染猴细胞时呈裂解型,不致癌;但感染啮齿类动物后,
便发生非同源整合而致癌。
2.SV40的基因组DNA
t / T基因编码病毒的小抗原和大
ori t
VP2
VP3
Hale Waihona Puke 抗原与病毒的致癌作用密切相关
SV40在裂解宿主细胞前的晚期
T
SV40 DNA
状态时,每个宿主细胞含有105个病
毒DNA拷贝,因此十分适合用于高效
HPHTK-
潮霉素B磷酸转移酶
胸腺嘧啶核苷激酶
潮霉素B
氨基喋呤 霉酚酸
HPH灭活潮霉素B
TK合成TMP XGPRT合成GMP
XGPT- 黄嘌呤鸟嘌呤磷酸核糖转移酶 ADA腺嘌呤核苷脱氨酶
腺嘌呤木酮糖苷 ADA灭活Xyl-A
(四) 常用的高等哺乳动物受体细胞
迄今为止,用于医疗用品(药物、抗体、诊断试剂)大规模生产
养基上(HAT培养基)生长,载体上的标记基因tk能与之遗传 互补;
次黄嘌呤磷酸核糖转移酶(HPRT)缺陷型受体细胞(hprt
-):
不能在含有次黄嘌呤核苷、氨基喋呤、胸腺嘧啶核苷的培
养基上(HAT培养基)生长,载体上的标记基因hprt与之遗传 互补。
2. 哺乳动物受体细胞常见的遗传选择标记
遗传标记 APHDHFR 编码产物 氨基糖苷磷酸转移酶 二氢叶酸还原酶 筛选药物 G418 氨甲喋呤 作用机理 APH灭活G418 DHFR变体抗氨甲喋呤
相关文档
最新文档