【精选】小学六年级数学经典奥数题训练50(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【精选】小学六年级数学经典奥数题训练50(含答案)
一、拓展提优试题
1.A,B两校的男、女生人数的比分别为8:7和30:31,两校合并后男、女生人数的比是27:26,则A,B两校合并前人数比是.
2.某小学的六年级有学生152人,从中选男生人数的和5名女生去参加演出,该年级剩下的男、女生人数恰好相等,则该小学的六年级共有男生名.
3.小红整理零钱包时发现,包中有面值为1分,2分,5分的硬币共有25枚,总值为0.60元,则5分的硬币最多有枚.
4.把一个自然数分解质因数,若所有质因数每个数位上的数字的和等于原数每个数位上的数字的和,则称这样的数为“史密斯书数”如:27=3×3×3.3+3+3=2+7,即27是史密斯数,那么,在4,32,58,65,94中,史密斯数有个.
5.有两辆火车,车长分别是125米和115米,车速分别是22米/秒和18米/秒,两车相向行驶,从两车车头相遇到车尾分开需要秒.
6.(15分)欢欢、乐乐、洋洋参加希望之星决赛,有200位评委为他们投了票,每位评委只投一票.如果欢欢与乐乐所得票数的比是3:2,乐乐与洋洋所得票数的比是6:5,那么欢欢、乐乐、洋洋各得多少票?
7.一列快车从甲地开往乙地需要5小时,一列慢车从乙地开往甲地所需时间比快车多,两车同时从甲乙两地相对开出2小时后,慢车停止前进,快车继续行驶40千米后恰与慢车相遇,则甲乙两地相距千米.
8.小强和小林共有邮票400多张,如果小强给小林一些邮票,小强的邮票就比小林的少;如果小林给小强同样多的邮票,则小林的邮票就比小强的少,那么,小强原有227张邮票,小林原有张邮票.
9.如图是甲乙丙三人单独完成某项工程所需天数的统计图,根据图中信息计算,若甲先做2天,接着乙丙两人合作了4天,最后余下的工程由丙1人完成,则完成这项工程共用天.
10.根据图中的信息可知,这本故事书有页
页.
11.被11除余7,被7除余5,并且不大于200的所有自然数的和
是.
12.如图,一个长方形的长和宽的比是5:3.如果长方形的长减少5厘米,宽增加3厘米,那么这个长方形边长一个正方形.原长方形的面积是平方厘米.
13.如图,已知AB=2,BG=3,GE=4,DE=5,△BCG和△EFG的面积和是24,△AGF和△CDG的面积和是51.那么,△ABC和△DEF的面积和
是.
14.a,b,c是三个互不相等的自然数,且a+b+c=48,那么a,b,c的乘积最大是.
15.如图,将1个大长方形分成了9个小长方形,其中位于角上的3个小长方形的面积分别为9,15和12,由第4个角上的小长方形的面积等于.
【参考答案】
一、拓展提优试题
1.解:设A、B两校的男生、女生人数分别为8a、7a、30b、31b,
由题意得:
(8a+30b):(7a+31b)=27:26,
27×(7a+31b)=26×(8a+30b),
189a+837b=208a+780b,
837b﹣780b=208a﹣189a,
57b=19a,
所以a=3b,
所以A、B两校合并前人数的比是:
(8a+7a):(30b+31b),
=15a:61b,
=45b:61b,
=(45b÷b):(61b÷b)
=45:61;
答:A,B两校合并前人数比是45:61.
故答案为:45:61.
2.解:设男生有x人,
(1﹣)x=152﹣x﹣5,
x+x=147﹣x+x,
x=147,
x=77,
答:该小学的六年级共有男生77名.
故应填:77.
3.解:因为0.60元=60分,
设1分,2分,5分的硬币各有x枚、y枚和z枚,则有x+y+z=25,x+2y+5z=60,
把上面的两个式子相减得出y+4z=35,要使5分的硬币最大,即Z最大,y最小,
因为35是奇数,所以y必须是奇数,
当y=1时,z的值不是整数,
当y=3时,z=8,
所以z=8;
答:5分的硬币最多有8枚;
故答案为:8.
4.解:4=2×2,
2+2=4,
所以4是史密斯数;
32=2×2×2×2×2;
2+2+2+2+2=10,而3+2=5;
10≠5,32不是史密斯数;
58=2×29,
2+2+9=13=13;
所以58是史密斯数;
65=5×13;
5+1+3=9;
6+5=11;
9≠11,65不是史密斯数;
94=2×47
2+4+7=13=9+4;
所以94是史密斯数.
史密斯数有4,58,94一共是3个.
故答案为:3.
5.解:(125+115)÷(22+18)
=240÷40
=6(秒);
答:从两车头相遇到车尾分开需要6秒钟.
故答案为:6.
6.解:根据欢欢与乐乐所得票数的比是3:2,乐乐与洋洋所得票数的比是6:5,
可以求出欢欢、乐乐、洋洋所得票数的比9:6:5,
200×=90(票)
200×=60(票)
200×=50(票)
答:欢欢所得票数是90票,乐乐所得票数是60票,洋洋所得票数是50票.7.解:慢车行完全程需要:
5×(1+),
=5×,
=6(小时);
全程为:
40÷[1﹣(+)×2],
=40÷[1﹣],
=40÷,
=40×,
=150(千米);
答:甲乙两地相距150千米.
故答案为:150.
8.解:(1﹣):1=13:19,13+19=32;
1:(1﹣)=17:11,17+11=28,
32与28的最小公倍数是224,小强和小林共有邮票400多张,所以共有224×2=448张,
448÷32×13=182,448÷28×17=272.
小强:(182+272)÷2=227张
小林:448﹣227=221.
故答案为:227,221.
9.解:依题意可知:
甲乙丙的工作效率分别为:,,;
甲乙工作总量为:×2+×4=;
丙的工作天数为:(1﹣)=3(天);
共工作2+4+3=9
故答案为:9
10.解:(10+5)÷(1﹣×2)
=15÷
=25(页)
答:这本故事书有25页;
故答案为:25.
11.解:不大于200的所有自然数被11除余7的数是:18,29,40,62,73,84,95,106,117,128,139,150,161,172,183,194;
不大于200的所有自然数被7除余5的是:12,19,26,33,40,47,54,61,68,75…;
同时被11除余7,被7除余5的最小数是40,[11,7]=77,依次是117、194;
满足条件不大于200的所有自然数的和是:40+117+194=351.
故答案为:351.
12.解:先求出一份的长:
(5+3)÷(5﹣3)
=8÷2
=4(厘米)
长是:4×5=20(厘米)
宽是:4×3=12(厘米)
原来的面积是:
20×12=240(平方厘米);
答:原来长方形的面积是240平方厘米.
故答案为:240.
13.解:作CM⊥AD,垂足为M,作FN⊥AD,垂足为N,设CM=x,FN=y.
由题意得方程组,解方程组得,
所以△ABC与△DEF的面积和是:
AB•CM+DE•FN=×2×8+×5×6=8+15=23.
故答案为:23.
14.解:48÷3=16,
16﹣1=15,
16+1=17,
所以,a,b,c的乘积最大是:15×16×17=4080.
故答案为:4080.
15.解:如图,
设D的面积为x,
9:12=15:x
9x=12×15
x=
x=20
答:第4个角上的小长方形的面积等于20.故答案为:20.。