重庆市长寿区2019-2020学年中考四诊数学试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆市长寿区2019-2020学年中考四诊数学试题
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.把6800000,用科学记数法表示为( )
A .6.8×105
B .6.8×106
C .6.8×107
D .6.8×108
2.一个圆锥的侧面积是12π,它的底面半径是3,则它的母线长等于( )
A .2
B .3
C .4
D .6
3.2017年牡丹区政府工作报告指出:2012年以来牡丹区经济社会发展取得显著成就,综合实力明显提升,地区生产总值由156.3亿元增加到338亿元,年均可比增长11.4%,338亿用科学记数法表示为( ) A .3.38×107 B .33.8×109 C .0.338×109 D .3.38×1010
4.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙)。
那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( )
A .()222a b a b -=-
B .()2222a b a ab b +=++
C .()2222a b a ab b -=-+
D .()()22a b a b a b -=+- 5.对于反比例函数2y x
=,下列说法不正确的是( ) A .点(﹣2,﹣1)在它的图象上 B .它的图象在第一、三象限
C .当x >0时,y 随x 的增大而增大
D .当x <0时,y 随x 的增大而减小 6.已知x 2+mx+25是完全平方式,则m 的值为( )
A .10
B .±10
C .20
D .±20
7.如图,△ABC 中AB 两个顶点在x 轴的上方,点C 的坐标是(﹣1,0),以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A′B′C′,且△A′B′C′与△ABC 的位似比为2:1.设点B 的对应点B′的横坐标是a ,则点B 的横坐标是( )
A .1a -
B .1(1)a -+
C .1(1)a --
D .1(3)a -+
A.
2
2
B.
3
3
C.
1
2
D.
3
2
9.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=()
A.20°B.30°C.40°D.50°
10.下列图形中既是中心对称图形又是轴对称图形的是( )
A.B.C.D.
11.如图,半径为1的圆O1与半径为3的圆O2相内切,如果半径为2的圆与圆O1和圆O2都相切,那么这样的圆的个数是()
A.1 B.2 C.3 D.4
12.下列判断错误的是()
A.对角线相等的四边形是矩形
B.对角线相互垂直平分的四边形是菱形
C.对角线相互垂直且相等的平行四边形是正方形
D.对角线相互平分的四边形是平行四边形
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.据报道,截止2018年2月,我国在澳大利亚的留学生已经达到17.3万人,将17.3万用科学记数法表示为__________.
14.如图,以锐角△ABC的边AB为直径作⊙O,分别交AC,BC于E、D两点,若AC=14,CD=4,7sinC=3tanB,则BD=_____.
15.△ABC 的顶点都在方格纸的格点上,则sinA =_ ▲ .
16.如图,∠1,∠2是四边形ABCD 的两个外角,且∠1+∠2=210°,则∠A+∠D =____度.
17.如图,在平面直角坐标系中,将矩形AOCD 沿直线AE 折叠(点E 在边DC 上),折叠后顶点D 恰好落在边OC 上的点F 处.若点D 的坐标为(10,8),则点E 的坐标为 .
18.已知二次函数24y x x k =-+的图像与x 轴交点的横坐标是1x 和2x ,且128x x -=,则k =________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)2018年4月12日上午,新中国历史上最大规模的海上阅兵在南海海域隆重举行,中国人解放军海军多艘战舰、多架战机和1万余名官兵参加了海上阅兵式,已知战舰和战机总数是124,战数的3倍比战机数的2倍少8.问有多少艘战舰和多少架战机参加了此次阅兵.
20.(6分)(14分)如图,在平面直角坐标系中,抛物线y=mx 2﹣8mx+4m+2(m >2)与y 轴的交点为A ,与x 轴的交点分别为B (x 1,0),C (x 2,0),且x 2﹣x 1=4,直线AD ∥x 轴,在x 轴上有一动点E (t ,0)过点E 作平行于y 轴的直线l 与抛物线、直线AD 的交点分别为P 、Q .
(1)求抛物线的解析式;
(2)当0<t≤8时,求△APC 面积的最大值;
(3)当t >2时,是否存在点P ,使以A 、P 、Q 为顶点的三角形与△AOB 相似?若存在,求出此时t 的值;若不存在,请说明理由.
21.(6分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每
10本,设每本书上涨了x元.请解答以下问题:
(1)填空:每天可售出书本(用含x的代数式表示);
(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?
22.(8分)先化简(
3
1
a+
-a+1)÷
244
1
a a
a
-+
+
,并从0,-1,2中选一个合适的数作为a的值代入求值.
23.(8分)计算:(﹣3)0﹣|﹣3|+(﹣1)2015+(1
2
)﹣1.
24.(10分)如图,Rt V ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,过点D作⊙O的切线交CB的延长线于点E,交AC于点F.
(1)求证:点F是AC的中点;
(2)若∠A=30°,AF=3,求图中阴影部分的面积.
25.(10分)已知,抛物线L:y=x2+bx+c与x轴交于点A和点B(-3,0),与y轴交于点C(0,3).(1)求抛物线L的顶点坐标和A点坐标.
(2)如何平移抛物线L得到抛物线L1,使得平移后的抛物线L1的顶点与抛物线L的顶点关于原点对称?(3)将抛物线L平移,使其经过点C得到抛物线L2,点P(m,n)(m>0)是抛物线L2上的一点,是否存在点P,使得△PAC为等腰直角三角形,若存在,请直接写出抛物线L2的表达式,若不存在,请说明理由.
26.(12分)如图,BD是矩形ABCD的一条对角线.
(1)作BD的垂直平分线EF,分别交AD、BC于点E、F,垂足为点O.(要求用尺规作图,保留作图痕迹,不要求写作法);
(2)求证:DE=BF.
27.(12分)如图1,已知直线y=kx与抛物线y=交于点A(3,6).
(2)点P为抛物线第一象限内的动点,过点P作直线PM,交x轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴于点N.试探究:线段QM与线段QN的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;
(3)如图2,若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且满足∠BAE=∠BED=∠AOD.继续探究:m在什么范围时,符合条件的E 点的个数分别是1个、2个?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.B
【解析】
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.
详解:把6800000用科学记数法表示为6.8×1.
故选B.
点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
2.C
【解析】
设母线长为R,底面半径是3cm,则底面周长=6π,侧面积=3πR=12π,
∴R=4cm.
【解析】
【分析】
根据科学记数法的定义可得到答案.
【详解】
338亿=33800000000=10
⨯,
3.3810
故选D.
【点睛】
a⨯的形式,其中1≤|a|<10,这种记数法叫做科学记数法.
把一个大于10或者小于1的数表示为10n
4.D
【解析】
【分析】
分别根据正方形及平行四边形的面积公式求得甲、乙中阴影部分的面积,从而得到可以验证成立的公式.【详解】
阴影部分的面积相等,即甲的面积=a2﹣b2,乙的面积=(a+b)(a﹣b).
即:a2﹣b2=(a+b)(a﹣b).
所以验证成立的公式为:a2﹣b2=(a+b)(a﹣b).
故选:D.
【点睛】
考点:等腰梯形的性质;平方差公式的几何背景;平行四边形的性质.
5.C
【解析】
【详解】
由题意分析可知,一个点在函数图像上则代入该点必定满足该函数解析式,点(-2,-1)代入可得,x=-2时,y=-1,所以该点在函数图象上,A正确;因为2大于0所以该函数图象在第一,三象限,所以B正确;C中,因为2大于0,所以该函数在x>0时,y随x的增大而减小,所以C错误;D中,当x<0时,y 随x的增大而减小,正确,
故选C.
考点:反比例函数
【点睛】
本题属于对反比例函数的基本性质以及反比例函数的在各个象限单调性的变化
6.B
根据完全平方式的特点求解:a2±2ab+b2.
【详解】
∵x2+mx+25是完全平方式,
∴m=±10,
故选B.
【点睛】
本题考查了完全平方公式:a2±2ab+b2,其特点是首平方,尾平方,首尾积的两倍在中央,这里首末两项是x 和1的平方,那么中间项为加上或减去x和1的乘积的2倍.
7.D
【解析】
【分析】
设点B的横坐标为x,然后表示出BC、B′C的横坐标的距离,再根据位似变换的概念列式计算.
【详解】
设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为a+1,
∵△ABC放大到原来的2倍得到△A′B′C,
∴2(﹣1﹣x)=a+1,
解得x=﹣1
2
(a+3),
故选:D.
【点睛】
本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.
8.D
【解析】
【分析】
根据特殊角三角函数值,可得答案.
【详解】
解:30
cos︒=,
故选:D.
【点睛】
本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.
9.C
【分析】
由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.
【详解】
∵∠1=50°,
∴∠3=∠1=50°,
∴∠2=90°−50°=40°.
故选C.
【点睛】
本题主要考查平行线的性质,熟悉掌握性质是关键.
10.C
【解析】
【分析】
根据轴对称图形和中心对称图形的概念,对各个选项进行判断,即可得到答案.
【详解】
解:A、是轴对称图形,不是中心对称图形,故A错误;
B、是轴对称图形,不是中心对称图形,故B错误;
C、既是轴对称图形,也是中心对称图形,故C正确;
D、既不是轴对称图形,也不是中心对称图形,故D错误;
故选:C.
【点睛】
本题考查了轴对称图形和中心对称图形的概念,解题的关键是熟练掌握概念进行分析判断.
11.C
【解析】
分析:
过O1、O2作直线,以O1O2上一点为圆心作一半径为2的圆,将这个圆从左侧与圆O1、圆O2同时外切的位置(即圆O3)开始向右平移,观察图形,并结合三个圆的半径进行分析即可得到符合要求的圆的个数. 详解:如下图,(1)当半径为2的圆同时和圆O1、圆O2外切时,该圆在圆O3的位置;
(2)当半径为2的圆和圆O1、圆O2都内切时,该圆在圆O4的位置;
综上所述,符合要求的半径为2的圆共有3个.
故选C.
点睛:保持圆O1、圆O2的位置不动,以直线O1O2上一个点为圆心作一个半径为2的圆,观察其从左至右平移过程中与圆O1、圆O2的位置关系,结合三个圆的半径大小即可得到本题所求答案.
12.A
【解析】
【分析】
利用菱形的判定定理、矩形的判定定理、平行四边形的判定定理、正方形的判定定理分别对每个选项进行判断后即可确定正确的选项.
【详解】
解:A、对角线相等的四边形是矩形,错误;
B、对角线相互垂直平分的四边形是菱形,正确;
C、对角线相互垂直且相等的平行四边形是正方形,正确;
D、对角线相互平分的四边形是平行四边形,正确;
故选:A.
【点睛】
本题考查了命题与定理的知识,解题的关键是能够了解矩形和菱形的判定定理,难度不大.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.1.73×1.
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
将17.3万用科学记数法表示为1.73×1.
故答案为1.73×1.
本题考查了正整数指数科学计数法,根据科学计算法的要求,正确确定出a和n的值是解答本题的关键. 14.1
【解析】
如图,连接AD,根据圆周角定理可得AD⊥BC.在Rt△ADC中,sinC=;在Rt△ABD中,tanB=.已知7sinC=3tanB,所以7×=3×,又因AC=14,即可求得BD=1.
点睛:此题主要考查的是圆周角定理和锐角三角函数的定义,以公共边AD为桥梁,利用锐角三角函数的定义得到tanB和sinC的式子是解决问题的关键.
15.
5
【解析】
【分析】
在直角△ABD中利用勾股定理求得AD的长,然后利用正弦的定义求解.
【详解】
在直角△ABD中,BD=1,AB=2,
则22
AB BD
+22
21
+5
则sinA=BD
AD5
5
.
5
.
16.210.
【解析】
【分析】
利用邻补角的定义求出∠ABC+∠BCD,再利用四边形内角和定理求得∠A+∠D.。