江苏省徐州市高中物理速度选择器和回旋加速器压轴题易错题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省徐州市高中物理速度选择器和回旋加速器压轴题易错题
一、高中物理解题方法:速度选择器和回旋加速器
1.如图所示的直角坐标系xOy ,在其第二象限内有垂直纸面向里的匀强磁场和沿y 轴负方向的匀强电场。
虚线OA 位于第一象限,与y 轴正半轴的夹角θ=60°,在此角范围内有垂直纸面向外的匀强磁场;OA 与y 轴负半轴所夹空间里存在与OA 平行的匀强电场,电场强度大小E =10N/C 。
一比荷q =1×106C/kg 的带电粒子从第二象限内M 点以速度v =2.0×103m/s 沿x 轴正方向射出,M 点到x 轴距离d =1.0m ,粒子在第二象限内做直线运动;粒子进入第一象限后从直线OA 上的P 点(P 点图中未画出)离开磁场,且OP =d 。
不计粒子重力。
(1)求第二象限中电场强度和磁感应强度的比值0
E B ;
(2)求第一象限内磁场的磁感应强度大小B ;
(3)粒子离开磁场后在电场中运动是否通过x 轴?如果通过x 轴,求其坐标;如果不通过x 轴,求粒子到x 轴的最小距离。
【答案】(1)32.010m/s ⨯;(2)3210T -⨯;(3)不会通过,0.2m 【解析】 【详解】
(1)由题意可知,粒子在第二象限内做匀速直线运动,根据力的平衡有
00qvB qE =
解得
30
2.010m/s E B =⨯ (2)粒子在第二象限的磁场中做匀速圆周运动,由题意可知圆周运动半径
1.0m R d ==
根据洛伦兹力提供向心力有
2
v qvB m R
=
解得磁感应强度大小
3210T B -=⨯
(3)粒子离开磁场时速度方向与直线OA 垂直,粒子在匀强电场中做曲线运动,粒子沿y 轴负方向做匀减速直线运动,粒子在P 点沿y 轴负方向的速度大小
sin y v v θ=
粒子在电场中沿y 轴方向的加速度大小
cos y qE a m
θ
=
设经过t ∆时间,粒子沿y 轴方向的速度大小为零,根据运动学公式有
y y
v t a ∆=
t ∆时间内,粒子沿y 轴方向通过的位移大小
2
y v y t ∆=
⋅∆
联立解得
0.3m y ∆=
由于
cos y d θ∆<
故带电粒子离开磁场后不会通过x 轴,带电粒子到x 轴的最小距离
cos 0.2m d d y θ'=-∆=
2.某粒子源向周围空间辐射带电粒子,工作人员欲通过质谱仪测量粒子的比荷,如图所示,其中S 为粒子源,A 为速度选择器,当磁感应强度为B 1,两板间电压为U ,板间距离为d 时,仅有沿轴线方向射出的粒子通过挡板P 上的狭缝进入偏转磁场,磁场的方向垂直于纸面向外,磁感应强度大小为B 2,磁场右边界MN 平行于挡板,挡板与竖直方向夹角为α,最终打在胶片上离狭缝距离为L 的D 点,不计粒子重力。
求: (1)射出粒子的速率; (2)射出粒子的比荷;
(3)MN 与挡板之间的最小距离。
【答案】(1)1U B d (2)22cos v B L α(3)(1sin )
2cos L αα
-
【解析】 【详解】
(1)粒子在速度选择器中做匀速直线运动, 由平衡条件得:
qυB 1=q
U
d
解得υ=
1U
B d
; (2)粒子在磁场中做匀速圆周运动,运动轨迹如图所示:
由几何知识得:
r =2cos L
α
=2cos L
α
粒子在磁场中做圆周运动,由牛顿第二定律得qυB 2=m 2
r
υ,解得:
q m
=22cos v B L
α
(3)MN 与挡板之间的最小距离:
d =r ﹣r sin α=
(1sin )
2cos L αα
-
答:(1)射出粒子的速率为
1U
B d
;(2)射出粒子的比荷为22cos v B L α;
(3)MN 与挡板之间的最小距离为
(1sin )
2cos L αα
-。
3.如图所示,两平行金属板水平放置,间距为d ,两极板接在电压可调的电源上。
两板之间存在着方向垂直纸面向里的匀强磁场,磁感应强度的大小为B 。
金属板右侧有一边界宽度为d 的无限长匀强磁场区域,磁感应强度的大小为B 、方向垂直纸面向里,磁场边界与水平方向的夹角为60°。
平行金属板中间有一粒子发射源,可以沿水平方向发射出电性不同的两种带电粒子,改变电源电压,当电源电压为U 时,粒子恰好能沿直线飞出平行金属板,粒子离开平行金属板后进入有界磁场后分成两束,经磁场偏转后恰好同时从两边界离开磁场,而且从磁场右边界离开的粒子的运动方向恰好与磁场边界垂直,粒子之间的相互作用不计,粒子的重力不计,试求: (1)带电粒子从发射源发出时的速度; (2)两种粒子的比荷11q m 和22q
m
分别是多少;
(3)带正电粒子在磁场中做圆周运动的轨道半径。
【答案】(1)U dB (2)222v d B 222U
d B (3)2
d
【解析】 【详解】
(1)根据题意,带电粒子在平行金属板间做直线运动时,所受电场力与洛伦兹力大小相等,由平衡条件可得
q
U
d =qvB 解得:
v =
U dB
(2)根据题意可知,带正电粒子进入磁场后沿逆时针方向运动,带负电粒子进入磁场后沿顺时针方向运动,作出粒子在磁场中的运动轨迹如图所示,带负电粒子在刚进入磁场时速度沿水平方向,离开磁场时速度方向垂直磁场边界,根据图中几何关系可知,带负电粒子在磁场中做圆周运动的偏转角为
θ1=30°=
6
π 带负电粒子在磁场中做圆周运动的轨道半径为:
r 1=
sin 30d
︒
=2d 带负电粒子在磁场中运动时洛伦兹力提供向心力,有:
q 1vB =2
11
m v r
联立解得:
11q m =222v d B
根据带正电粒子的运动轨迹及几何关系可知,带正电粒子在磁场中的偏转角为:
θ2=120°=
23
π
根据带电粒子在磁场中做圆周运动的周期公式:
T =
2m
qB
π 可得带负电粒子在磁场中运动的时间为:
t 1=
11
1m q B
θ
带正电粒子在磁场中运动的时间为:
t 2=
22
2m q B
θ 根据题意可知:
t 1=t 2
联立以上各式,可得
22q m =114q m =222U d B
(3)带正电粒子在磁场中做圆周运动的轨道半径为:
r 2=
22m v
q B
解得:
r 2=
2
d
4.如图所示,在直角坐标系xOy 平面内有一个电场强度大小为E 、方向沿-y 方向的匀强电场,同时在以坐标原点O 为圆心、半径为R 的圆形区域内,有垂直于xOy 平面的匀强磁场,该圆周与x 轴的交点分别为P 点和Q 点,M 点和N 点也是圆周上的两点,OM 和ON 的连线与+x 方向的夹角均为θ=60°。
现让一个α粒子从P 点沿+x 方向以初速度v 0射入,α粒子恰好做匀速直线运动,不计α粒子的重力。
(1)求匀强磁场的磁感应强度的大小和方向;
(2)若只是把匀强电场撤去,α粒子仍从P 点以同样的速度射入,从M 点离开圆形区域,求α粒子的比荷
q m
; (3)若把匀强磁场撤去,α粒子的比荷
q
m
不变,α粒子仍从P 点沿+x 方向射入,从N 点离开圆形区域,求α粒子在P 点的速度大小。
【答案】(1)0E v ,方向垂直纸面向里03BR 3
v 0 【解析】 【详解】
(1)由题可知电场力与洛伦兹力平衡,即
qE =Bqv 0
解得
B =0
E v 由左手定则可知磁感应强度的方向垂直纸面向里。
(2)粒子在磁场中的运动轨迹如图所示,
设带电粒子在磁场中的轨迹半径为r ,根据洛伦兹力充当向心力得
Bqv 0=m 20
v r
由几何关系可知
r 3,
联立得
q m 03BR
(3)粒子从P 到N 做类平抛运动,根据几何关系可得
x =3
2
R =vt y =
32
R =12×qE m t 2 又
qE =Bqv 0
联立解得
v =
3
2
03Bqv R m
30
5.某速度选择器结构如图所示,三块平行金属板Ⅰ、Ⅱ、Ⅲ水平放置,它们之间距离均为d ,三金属板上小孔O 1、O 2、O 3在同一竖直线上,Ⅰ、Ⅱ间有竖直方向匀强电场
E 1,Ⅱ、Ⅲ间有水平向左电场强度为E 2的匀强电场及垂直于纸面向里磁感应强度为B 2的匀强磁场.一质子由金属板I 上端O 1点静止释放,经电场E 1加速,经过O 2进入E 2、B 2的复合场中,最终从Ⅲ的下端O 3射出,已知质子带电量为e ,质量为m .则
A .O 3处出射时粒子速度为2
22
E v B = B .Ⅰ、Ⅱ两板间电压2
12
2mE U eB =
C .粒子通过Ⅰ、Ⅱ金属板和Ⅱ、Ⅲ金属板的时间之比为1︰1
D .把质子换成α粒子,则α粒子也能从O 3射出 【答案】AB 【解析】 【详解】
A .经过O 2点进入E 2、
B 2的复合场中,最终沿直线从Ⅲ的下端O 3点射出,因质子受到电场力与洛伦兹力,只要当两者大小相等时,才能做直线运动,且速度不变的,依据
qE 2=B 2qv
解得:
v=22
E B
故A 正确;
B .质子在Ⅰ、Ⅱ两板间,在电场力作用下,做匀加速直线运动,根据动能定理,即为
qU 1=12
mv 2
,而质子以相同的速度进入Ⅱ、Ⅲ金属板做匀速直线运动,则有v =22 E B ,那么Ⅰ、Ⅱ两板间电压
U 1=2
22
2 2mE eB 故B 正确;
C .粒子通过Ⅰ、Ⅱ金属板做匀加速直线运动,而在Ⅱ、Ⅲ金属板做匀速直线运动,依据运动学公式,即有
d =10
2
v
t +⋅ 而d =vt 2,那么它们的时间之比为2:1,故C 错误; D .若将质子换成α粒子,根据
qU 1=
12
mv 2
导致粒子的比荷发生变化,从而影响α粒子在Ⅱ、Ⅲ金属板做匀速直线运动,因此α粒子不能从O3射出,故D错误;
故选AB.
【点睛】
考查粒子在复合场中做直线运动时,一定是匀速直线运动,并掌握动能定理与运动学公式的应用,注意粒子何时匀加速直线运动与匀速直线运动是解题的关键.
6.1932年美国物理学家劳伦斯发明了回旋加速器,巧妙地利用带电粒子在磁场中运动特点,解决了粒子的加速问题。
现在回旋加速器被广泛应用于科学研究和恢学设备中。
回旋加速器的工作原理如图甲所,置于真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计。
磁感应强度为B的匀强磁场与盒面垂直,加速器按一定频率的高频交流电源,保证粒子每次经过电场都被加速,加速电压为U。
D形金属盒中心粒子源产生的粒子,初速度不计,在加速器中被加速,加速过程中不考虑相对论效应和重力作用。
(1)求把质量为m、电荷量为q的静止粒子加速到最大动能所需时间;
(2)若此回旋加速器原来加速质量为2m,带电荷量为q的α粒子(4
2
He),获得的最大动
能为E km,现改为加速氘核(2
1
H),它获得的最大动能为多少?要想使氘核获得与α粒子相同的动能,请你通过分析,提出一种简单可行的办法;
(3)已知两D形盒间的交变电压如图乙所示,设α粒子在此回旋加速器中运行的周期为T,
若存在一种带电荷量为q′、质量为m′的粒子201
100X,在
4
T
t=时进入加速电场,该粒子在加
速器中能获得的最大动能?(在此过程中,粒子未飞出D形盒)
【答案】(1)
2
π
2
BR
U
;(2
2
3)
100q U'
【解析】
【分析】
【详解】
(1)由洛伦兹力提供向心力得
2m
m mv qv B R
= 粒子每旋转一周动能增加2qU ,则旋转周数
22
4qB R n mU
=
周期
2m
R
T v π=
粒子在磁场中运动的时间
2
π=2BR t nT U
=磁 一般地可忽略粒子在电场中的运动时间,t 磁可视为总时间 (2)对α粒子,由速度
2m qBR
v m
α=
得其最大动能为
2222
1224km
m q B R E mv m
α=⨯=
对氘核,最大动能为
222222
22()112228km mH q
B R q B R E mv m m m
'==⨯⨯= 若两者有相同的动能,设磁感应强度变为B′、由α粒子换成氘核,有
222222
=
48q B R q B R m m
'
解得B '=
高频交流电源的原来周期
4m
T qB
π=
故
242
m m T q qB B
ππ'=
===' 由α
粒子换为氘核时,交流电源的周期应为原来的2
(3)对粒子201
100X 分析,其在磁场中的周期
12201200m T T q B
π'=='
每次加速偏移的时间差为
1=
2400
T T T T -∆= 加速次数
4100
T
n T
==∆
所以获得的最大动能
00100km E nq U q U ''==
7.当今医学成像诊断设备PET/CT 堪称“现代医学高科技之冠”,它在医疗诊断中,常利用能放射电子的同位素碳11作为示踪原子,碳11是由小型回旋加速器输出的高速质子轰击氮14获得的.加速质子的回旋加速器如图甲所示,D 形盒装在真空容器中,两D 形盒内匀强磁场的磁感应强度为B ,两D 形盒间的交变电压的大小为U .若在左侧D 1盒圆心处放有粒子源S 不断产生质子,质子质量为m ,电荷量为q .质子从粒子源S 进入加速电场时的初速度不计,不计质子所受重力,忽略相对论效应.
(1)质子第一次被加速后的速度大小v 1是多大?
(2)若质子在D 形盒中做圆周运动的最大半径为R ,且D 形盒间的狭缝很窄,质子在加速电场中的运动时间可忽略不计.那么,质子在回旋加速器中运动的总时间t 总是多少? (3)要把质子从加速器中引出,可以采用静电偏转法.引出器原理如图乙所示,一对圆弧形金属板组成弧形引出通道,内、外侧圆弧形金属板分别为两同心圆的一部分,圆心位于O ′点.内侧圆弧的半径为r 0,外侧圆弧的半径为r 0+d .在内、外金属板间加直流电压,忽略边缘效应,两板间产生径向电场,该电场可以等效为放置在O ′处的点电荷Q 在两圆弧之间区域产生的电场,该区域内某点的电势可表示为φ=k (r 为该点到圆心O ′点的距离).质子从M 点进入圆弧通道,质子在D 形盒中运动的最大半径R 对应的圆周与圆弧通道正中央的圆弧相切于M 点.若质子从圆弧通道外侧边缘的N 点射出,则质子射出时的动能E k 是多少?要改变质子从圆弧通道中射出时的位置,可以采取哪些办法?
【答案】2qU
m
(2)
2
2
BR
U
π
(3)kQq
00
21
2r d r d
⎛⎫
-
⎪
++
⎝⎭
+
222
2
q B R
m
【解析】
【详解】
(1)质子第一次被加速,由动能定理:
qU=1
2
mv12
解得:
v1=2qU m
(2)质子在磁场中做圆周运动时,洛伦兹力提供向心力:
qvB=m
2 v R
质子做圆周运动的周期为:
T=2πR
v
=
2πm
Bq
设质子从D形盒射出前被电场加速了n次,由动能定理:
nqU=1
2
mv2
质子在磁场中做圆周运动的周期恒定,在回旋加速器中运动的总时间为:
t总=1 2 T
解得:
t总=
2π
2 BR U
(3)设M、N两点的电势分别为φ1、φ2,则
φ1=k
1 2 Q
r d
+,φ2=k
Q n d +
由能量守恒定律得
qφ1+
12
mv 2
=qφ2+E k 解得:
E k =kQq 00212r d r d ⎛⎫- ⎪++⎝⎭
+
222
2q B R m 改变圆弧通道内、外金属板间所加直流电压的大小(改变圆弧通道内电场的强弱),或者改变圆弧通道内磁场的强弱,可以改变质子从圆弧通道中射出的位置.
8.1930年,Earnest O. Lawrence 提出了回旋加速器的理论,他设想用磁场使带电粒子沿圆弧形轨道旋转,多次反复地通过高频加速电场,直至达到高能量。
题图甲为Earnest O. Lawrence 设计的回旋加速器的示意图。
它由两个铝制D 型金属扁盒组成,两个D 形盒正中间开有一条狭缝;两个D 型盒处在匀强磁场中并接有高频交变电压。
图乙为俯视图,在D 型盒上半面中心S 处有一正离子源,它发出的正离子,经狭缝电压加速后,进入D 型盒中。
在磁场力的作用下运动半周,再经狭缝电压加速;为保证粒子每次经过狭缝都被加速,应设法使交变电压的周期与粒子在狭缝及磁场中运动的周期一致。
如此周而复始,最后到达D 型盒的边缘,获得最大速度后被束流提取装置提取出。
已知正离子的电荷量为q ,质量为m ,加速时电极间电压大小恒为U ,磁场的磁感应强度为B ,D 型盒的半径为R ,狭缝之间的距离为d 。
设正离子从离子源出发时的初速度为零。
(1)试计算上述正离子从离子源出发被第一次加速后进入下半盒中运动的轨道半径; (2)设该正离子在电场中的加速次数与回旋半周的次数相同,试推证当R>>d 时,正离子在电场中加速的总时间相对于在D 形盒中回旋的时间可忽略不计(正离子在电场中运动时,不考虑磁场的影响)。
(3)若此回旋加速器原来加速的是α粒子(
),现改为加速氘核(
),要想使氘核
获得与α粒子相同的动能,请你通过分析,提出一种简单可行的办法。
【答案】(1)(2)见解析(3)
【解析】 【详解】
(1)设质子经过窄缝被第n 次加速后速度为v n ,由动能定理 nqU=mv n 2
第n次加速后质子在磁场中做匀速圆周运动的半径为R n,由牛顿第二定律 Bqv n=m
由以上两式解得
则R1=;
(2)在电场中加速的总时间为:
在D形盒中回旋的时间为t2=
故≪1
即只有当R≫d时,质子在电场中加速的总时间相对于在D形盒中回旋的时间可忽略不计.
(3)若加速氘核,氘核从D盒边缘离开时的动能为E k′则:E k′==E km
联立解得 B1= B
即磁感应强度需增大为原来的倍;高频交流电源的周期T=,由α粒子换为氘核
时,交流电源的周期应为原来的倍.
【点睛】
解决本题的关键知道回旋加强器的工作原理,利用磁场偏转,电场加速.以及知道回旋加强器加速粒子的最大动能与什么因素有关.粒子离开加速器时圆周运动的轨道半径等于D 形盒的半径,在电场中的总的运动可以看做连续的匀加速直线运动.
9.回旋加速器是加速带电粒子的常用仪器,其结构示意图如图甲所示,其中置于高真空中的金属D形盒的半径为R,两盒间距极小,在左侧D形盒圆心处放有粒子源S,匀强磁场的磁感应强度为B,方向如图乙所示(俯视).设带电粒子质量为m,电荷量为+q,该粒子从粒子源S进入加速电场时的初速度不计,两金属盒狭缝处加高频交变电压,加速电压大小U可视为不变,粒子重力不计,粒子在电场中的加速次数等于回旋半周的次数,求:
(1)粒子在回旋加速器中经过第一次加速可以达到的速度和第一次在磁场中的回旋半径;
(2)粒子在第n次通过狭缝前后的半径之比;
(3)粒子若能从上侧边缘的引出装置处导出,则R与U、B、n之间应满足什么条件?
【答案】2Uq m 2Uqm 1n n -qBR m 2nUq
m
【解析】
(1)粒子在加速电场中做匀加速运动,在磁场中做匀速圆周运动, 根据Uq =
2
112
mv v 12Uq
m
根据2
v qvB m r
=
12Uqm
r =
(2)根据nUq =212
n mv v n 2nUq
m
根据2
v qvB m r
=
2n nUqm
r =
粒子在第n 1n n -(3)根据2
v qvB m r
=
nUq =
212
n mv 知v m =
2qBR nqU
m m
=
10.如图所示,以两虚线为边界,中间存在平行纸面且与边界垂直的水平电场,宽度为
d,两侧为相同的匀强磁场,方向垂直纸面向里.一质量为m、带电量q+、重力不计的带电粒子,以初速度
1
v垂直边界射入磁场做匀速圆周运动,后进入电场做匀加速运动,然后第二次进入磁场中运动,此后粒子在电场和磁场中交替运动.已知粒子第二次在磁场中运动的半径是第一次的二倍,第三次是第一次的三倍,以此类推.求:
(1)粒子第一次经过电场的过程中电场力所做的功
1
W
(2)粒子第n次经过电场时电场强度的大小n E
(3)粒子第n次经过电场所用的时间n t
(4)假设粒子在磁场中运动时,电场区域场强为零.请画出从粒子第一次射入磁场至第三次离开电场的过程中,电场强度随时间变化的关系图线(不要求写出推导过程,不要求标明坐标刻度值).
【答案】(1)
2
1
1
3
2
mv
W=(2)
2
1
(21)
2
n
n mv
E
qd
+
=(3)
1
2
(21)
n
d
t
n v
=
+
(4)如图;
【解析】
(1)根据
mv
r
qB
=,因为
21
2
r r
=,所以
21
2
v v
=,所以22
121
11
22
W mv mv
=-,
(2)=,,所以.
(3),,所以.
(4)。