九年级数学上册 几何模型压轴题综合测试卷(word含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学上册几何模型压轴题综合测试卷(word含答案)
一、初三数学旋转易错题压轴题(难)
1.在Rt△ACB和Rt△AEF中,∠ACB=∠AEF=90°,若点P是BF的中点,连接PC,PE.
(1) 如图1,若点E,F分别落在边AB,AC上,求证:PC=PE;
(2) 如图2,把图1中的△AEF绕着点A顺时针旋转,当点E落在边CA的延长线上时,探索PC与PE的数量关系,并说明理由.
(3) 如图3,把图2中的△AEF绕着点A顺时针旋转,点F落在边AB上.其他条件不变,问题(2)中的结论是否发生变化?如果不变,请加以证明;如果变化,请说明理由.
【答案】(1)见解析;(2)PC=PE,理由见解析;(3)成立,理由见解析
【解析】
【分析】
(1)利用直角三角形斜边的中线等于斜边的一半,即可;
(2)先判断△CBP≌△HPF,再利用直角三角形斜边的中线等于斜边的一半;
(3)先判断△DAF≌△EAF,再判断△DAP≌△EAP,然后用比例式即可;
【详解】
解:(1)证明:如图:
∵∠ACB=∠AEF=90°,
∴△FCB和△BEF都为直角三角形.
∵点P是BF的中点,
∴CP=1
2BF,EP=
1
2
BF,
∴PC=PE.
(2)PC=PE理由如下:
如图2,延长CP,EF交于点H,
∵∠ACB=∠AEF=90°,
∴EH//CB,
∴∠CBP=∠PFH,∠H=∠BCP,
∵点P是BF的中点,
∴PF=PB,
∴△CBP≌△HFP(AAS),
∴PC=PH,
∵∠AEF=90°,
∴在Rt△CEH中,EP=1
2
CH,
∴PC=PE.
(3)(2)中的结论,仍然成立,即PC=PE,理由如下:
如图3,过点F作FD⊥AC于点D,过点P作PM⊥AC于点M,连接PD,
∵∠DAF=∠EAF,∠FDA=∠FEA=90°,
在△DAF和△EAF中,
DAF,
,
,
EAF
FDA FEA
AF AF
∠=∠


∠=∠

⎪=

∴△DAF≌△EAF(AAS),
∴AD=AE,
在△DAP≌△EAP中,
,
,
,
AD AE
DAP EAP
AP AP
=


∠=∠

⎪=

∴△DAP≌△EAP (SAS),
∴PD=PF,
∵FD⊥AC,BC⊥AC,PM⊥AC,
∴FD//BC//PM,
∴DM FP
MC PB
=,
∵点P 是BF 的中点,
∴DM =MC ,
又∵PM ⊥AC ,
∴PC =PD , 又∵PD =PE ,
∴PC =PE . 【点睛】
此题是几何变换综合题,主要考查了直角三角形斜边的中线等于斜边一半,全等三角形的性质和判定,相似三角形的性质和判定,作出辅助线是解本题的关键也是难点.
2.已知如图1,在ABC 中,90ABC ∠=︒,BC AB =,点D 在AC 上,DF AC ⊥交BC 于F ,点E 是AF 的中点.
(1)写出线段ED 与线段EB 的关系并证明;
(2)如图2,将CDF 绕点C 逆时针旋转()
090a α︒<<︒,其它条件不变,线段ED 与线段EB 的关系是否变化,写出你的结论并证明;
(3)将CDF 绕点C 逆时针旋转一周,如果6BC =,32CF =,直接写出线段CE 的范围.
【答案】(1)ED EB =,DE BE ⊥,证明见解析;(2)结论不变,理由见解析;(3)最大值92=
最小值32= 【解析】
【分析】
(1)在Rt △ADF 中,可得DE=AE=EF ,在Rt △ABF 中,可得BE=EF=EA ,得证ED=EB ;然后利用等腰三角形的性质以及四边形ADFB 的内角和为180°,可推导得出∠DEB=90°; (2)如下图,先证四边形MFBA 是平行四边形,再证△DCB ≌△DFM ,从而推导出△DMB 是等腰直角三角形,最后得出结论;
(3)如下图,当点F 在AC 上时,CE 有最大值;当点F 在AC 延长线上时,CE 有最小值.
【详解】
(1)∵DF⊥AC,点E是AF的中点
∴DE=AE=EF,∠EDF=∠DFE
∵∠ABC=90°,点E是AF的中点
∴BE=AE=EF,∠EFB=∠EBF
∴DE=EB
∵AB=BC,
∴∠DAB=45°
∴在四边形ABFD中,∠DFB=360°-90°-45°-90°=135°
∠DEB=∠DEF+∠FEB=180°-2∠EFD+180°-2∠EFB=360°-2(∠EFD+∠EFB)
=360°-2×135°=90°
∴DE⊥EB
(2)如下图,延长BE至点M处,使得ME=EB,连接MA、ME、MF、MD、FB、DB,延长MF交CB于点H
∵ME=EB,点E是AF的中点
∴四边形MFBA是平行四边形
∴MF∥AB,MF=AB
∴∠MHB=180°-∠ABC=90°
∵∠DCA=∠FCB=a
∴∠DCB=45°+a,∠CFH=90°-a
∵∠DCF=45°,∠CDF=90°
∴∠DFC=45°,△DCF是等腰直角三角形
∴∠DFM=180°-∠DFC-∠CFH=45°+a
∴∠DCB=∠DFM
∵△ABC和△CDF都是等腰直角三角形
∴DC=DF,BC=AB=MF
∴△DCB≌△DFM(SAS)
∴∠MDF=∠BDC,DB=DM
∴∠MDF+∠FDB=∠BDC+∠FDB=90°
∴△DMB是等腰直角三角形
∵点E是MB的中点
∴DE=EB,DE⊥EB
(3)当点F在AC上时,CF有最大值,图形如下:
∵BC=6,∴在等腰直角△ABC中,AC=62
∵CF=32,∴AF=32
∴CE=CF+FE=CF+1
2AF92
=
当点F在AC延长线上时,CE有最小值,图形如下:
同理,CE=EF-CF
32 =
【点睛】
本题考查三角形的旋转变换,用到了等腰直角三角形的性质和平行四边形的性质,解题关
键是构造并证明△BDM是等腰直角三角形.
3.(1)观察猜想
如图(1),在△ABC中,∠BAC=90°,AB=AC,点D是BC的中点.以点D为顶点作正方形DEFG,使点A,C分别在DG和DE上,连接AE,BG,则线段BG和AE的数量关系是_____;
(2)拓展探究
将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图2,则(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由.
(3)解决问题
若BC=DE=2,在(2)的旋转过程中,当AE为最大值时,直接写出AF的值.
【答案】(1)BG=AE.
(2)成立.
如图②,
连接AD.∵△ABC是等腰三直角角形,∠BAC=90°,点D是BC的中点.
∴∠ADB=90°,且BD=AD.
∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,DG=DE.
∴△BDG≌△ADE,∴BG=AE.…………………………………………7分
(3)由(2)知,BG=AE,故当BG最大时,AE也最大.
正方形DEFG绕点D逆时针方向旋转270°时,BG最大,如图③.
若BC=DE=2,则AD=1,EF=2.
在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=(1+2)2+22=13.
∴AF=
【解析】
解:(1)BG=AE.
(2)成立.
如图②,连接AD.
∵△ABC是等腰三直角角形,∠BAC=90°,点D是BC的中点.
∴∠ADB=90°,且BD=AD.
∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,DG=DE.
∴△BDG≌△ADE,∴BG=AE.
(3)由(2)知,BG=AE,故当BG最大时,AE也最大.Z+X+X+K]
因为正方形DEFG在绕点D旋转的过程中,G点运动的图形是以点D为圆心,DG为半径的圆,故当正方形DEFG旋转到G点位于BC的延长线上(即正方形DEFG绕点D逆时针方向旋转270°)时,BG最大,如图③.
若BC=DE=2,则AD=1,EF=2.
在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=(1+2)2+22=13.
∴AF=.
即在正方形DEFG旋转过程中,当AE为最大值时,AF=.
4.(特例发现)如图1,在△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB,AC 为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.求证:EP=FQ.
(延伸拓展)如图2,在△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB,AC为直角边,向△ABC外作Rt△ABE和Rt△ACF,射线GA交EF于点H.若AB=kAE,AC=kAF,请思考HE与HF之间的数量关系,并直接写出你的结论.
(深入探究)如图3,在△ABC中,G是BC边上任意一点,以A为顶点,向△ABC外作任意△ABE和△ACF,射线GA交EF于点H.若∠EAB=∠AGB,∠FAC=∠AGC,AB=kAE,
AC=kAF,上一问的结论还成立吗?并证明你的结论.
(应用推广)在上一问的条件下,设大小恒定的角∠IHJ分别与△AEF的两边AE、AF分别交于点M、N,若△ABC为腰长等于4的等腰三角形,其中∠BAC=120°,且
∠IHJ=∠AGB=θ=60°,k=2;
求证:当∠IHJ在旋转过程中,△EMH、△HMN和△FNH均相似,并直接写出线段MN的最小值(请在答题卡的备用图中补全作图).
【答案】(1)证明参见解析;(2)HE=HF;(3)成立,证明参见解析;(4)证明参见解析,MN最小值为1.
【解析】
试题分析:(1)特例发现:易证△AEP≌△BAG,△AFQ≌△CAG,即可求得EP=AG,
FQ=AG,即可解题;(2)延伸拓展:过点E、F作射线GA的垂线,垂足分别为P、Q.易证
△ABG∽△EAP,△ACG∽△FAQ,得到PE=AG,FQ=AG,∴PE=FQ,然后证明
△EPH≌△FQH,即可得出HE=HF;(3)深入探究:判断△PEA∽△GAB,得到PE=AG,
△AQF∽△CGA,FQ=,得到FQ=AG,再判断△EPH≌△FQH,即可得出HE=HF;(4)应用推广:由前一个结论得到△AEF为正三角形,再依次判断△MHN∽△HFN∽△MEH,即可得出结论.
试题解析:(1)特例发现,如图:
∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,
∵∠EPA=∠AGB,AE=AB,∴△PEA≌△GAB,∴PE=AG,同理,△QFA≌△GAC,
∴FQ=AG,∴PE=FQ;
(2)延伸拓展,如图:
∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,∴∠EPA=∠AGB,
∴△PEA∽△GAB,∴,∵AB=kAE,∴,∴PE=AG,同理,
△QFA∽△GAC,∴,∵AC=kAF,∴FQ=AG,∴PE=FQ,∵EP∥FQ,
∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;
(3)深入探究,如图2,
在直线AG上取一点P,使得∠EPA═∠AGB,作FQ∥PE,∵∠EAP+∠BAG=180°﹣∠AGB,
∠ABG+∠BAG=180°﹣∠AGB,∴∠EAP=∠ABG,∵∠EPA=∠AGB,∴△APE∽△BGA,
∴,∵AB=kAE,∴PE=AG,由于∠FQA=∠FAC=∠AGC=180°﹣∠AGB,同理可得,
△AQF∽△CGA,∴,∵AC=kAF,∴FQ=AG,∴EP=FQ,∵EP∥FQ,
∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;
(4)应用推广,如图3,
在前面条件及结论,得到,点H是EF中点,∴AE=AF,∵∠EAB=∠AGB,
∠FAC=∠AGC∴∠EAB+∠FAC=180°∴∠EAF=360°﹣(∠EAB+∠FAC)﹣∠BAC=60°,∴△AEF 为正三角形.又H为EF中点,∴∠EHM+∠IHJ=120°,∠IHJ+∠FHN=120°,
∴∠EHM=∠FHN.∵∠AEF=∠AFE,∴△HEM∽△HFN,∴,∵EH=FH,
∴,且∠MHN=∠HFN=60°,∴△MHN∽△HFN,∴△MHN∽△HFN∽△MEH,在△HMN中,∠MHN=60°,根据三角形中大边对大角,∴要MN最小,只有△HMN是等边三角形,∴∠AMN=60°,∵∠AEF=60°,MN∴MN∥EF,∵△AEF为等边三角形,∴MN为
△AEF的中位线,∴MN min=EF=×2=1.
考点:1.几何变换综合题;2.三角形全等及相似的判定性质.
5.在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(5,0),点B(0,3).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F.
(1)如图①,当点D落在BC边上时,求点D的坐标;
(2)如图②,当点D落在线段BE上时,AD与BC交于点H.
①求证△ADB≌△AOB;
②求点H的坐标.
(3)记K为矩形AOBC对角线的交点,S为△KDE的面积,求S的取值范围(直接写出结果即可).
【答案】(1)D(1,3);(2)①详见解析;②H(17
5
,3);(3)
30334
-
≤S≤30334
+

【解析】
【分析】
(1)如图①,在Rt△ACD中求出CD即可解决问题;
(2)①根据HL证明即可;
②,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,根据AH2=HC2+AC2,构建方程求出m即可解决问题;
(3)如图③中,当点D在线段BK上时,△DEK的面积最小,当点D在BA的延长线上时,△D′E′K的面积最大,求出面积的最小值以及最大值即可解决问题;
【详解】
(1)如图①中,
∵A(5,0),B(0,3),
∴OA=5,OB=3,
∵四边形AOBC是矩形,
∴AC=OB=3,OA=BC=5,∠OBC=∠C=90°,
∵矩形ADEF是由矩形AOBC旋转得到,
∴AD=AO=5,
在Rt△ADC中,CD22
AD AC
-,
∴BD=BC-CD=1,
∴D(1,3).
(2)①如图②中,
由四边形ADEF是矩形,得到∠ADE=90°,
∵点D在线段BE上,
∴∠ADB=90°,
由(1)可知,AD=AO,又AB=AB,∠AOB=90°,
∴Rt△ADB≌Rt△AOB(HL).
②如图②中,由△ADB≌△AOB,得到∠BAD=∠BAO,又在矩形AOBC中,OA∥BC,
∴∠CBA=∠OAB,
∴∠BAD=∠CBA,
∴BH=AH,设AH=BH=m,则HC=BC-BH=5-m,
在Rt△AHC中,∵AH2=HC2+AC2,
∴m2=32+(5-m)2,
∴m=17
5

∴BH=17
5

∴H(17
5
,3).
(3)如图③中,当点D在线段BK上时,△DEK的面积最小,最小值
=1
2
•DE•DK=
1
2
×3×(5-
34)=30334
-,
当点D在BA的延长线上时,△D′E′K的面积最大,最大面积
=1
2
×D′E′×KD′=
1
2
×3×(
3430334
+
综上所述,30334
4
-
≤S≤
30334
4
+.
【点睛】
本题考查四边形综合题、矩形的性质、勾股定理、全等三角形的判定和性质、旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用参数构建方程解决问题.
6.在平面直角坐标系中,O为原点,点A(8,0),点B(0,6),把△ABO绕点B逆时针旋转得△A′B′O′,点A、O旋转后的对应点为A′、O′,记旋转角为α.
(1)如图1,若α=90°,则AB= ,并求AA′的长;
(2)如图2,若α=120°,求点O′的坐标;
(3)在(2)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,直接写出点P′的坐标.
【答案】(1)10,102;(2)(33,9);(3)12354 55
(,)
【解析】
试题分析:(1)、如图①,先利用勾股定理计算出AB=5,再根据旋转的性质得BA=BA′,∠ABA′=90°,则可判定△ABA′为等腰直角三角形,然后根据等腰直角三角形的性质求AA′的长;(2)、作O′H⊥y轴于H,如图②,利用旋转的性质得BO=BO′=3,∠OBO′=120°,则
∠HBO′=60°,再在Rt△BHO′中利用含30度的直角三角形三边的关系可计算出BH和O′H的长,然后利用坐标的表示方法写出O′点的坐标;(3)、由旋转的性质得BP=BP′,则
O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,易得O′P+BP=O′C,利用两点之间线段最短可判断此时O′P+BP的值最小,接着利用待定系数法求
出直线O′C的解析式为y=x﹣3,从而得到P(,0),则O′P′=OP=,作
P′D⊥O′H于D,然后确定∠DP′O′=30°后利用含30度的直角三角形三边的关系可计算出P′D 和DO′的长,从而可得到P′点的坐标.
试题解析:(1)、如图①,∵点A(4,0),点B(0,3),∴OA=4,OB=3,
∴AB==5,
∵△ABO绕点B逆时针旋转90°,得△A′BO′,∴BA=BA′,∠ABA′=90°,
∴△ABA′为等腰直角三角形,∴AA′=BA=5;
(2)、作O′H⊥y轴于H,如图②,∵△ABO绕点B逆时针旋转120°,得△A′BO′,
∴BO=BO′=3,∠OBO′=120°,∴∠HBO′=60°,在Rt△BHO′中,∵∠BO′H=90°﹣
∠HBO′=30°,
∴BH=BO′=,O′H=BH=,∴OH=OB+BH=3+,∴O′点的坐标为
();
(3)∵△ABO绕点B逆时针旋转120°,得△A′BO′,点P的对应点为P′,∴BP=BP′,
∴O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,
则O′P+BP=O′P+PC=O′C,此时O′P+BP的值最小,∵点C与点B关于x轴对称,∴C(0,﹣3),
设直线O′C的解析式为y=kx+b,
把O′(),C(0,﹣3)代入得,解得,
∴直线O′C的解析式为y=x﹣3,当y=0时,x﹣3=0,解得x=,则P
(,0),
∴OP=,∴O′P′=OP=,作P′D⊥O′H于D,
∵∠BO′A=∠BOA=90°,∠BO′H=30°,∴∠DP′O′=30°,
∴O′D=O′P′=,P′D=,∴DH=O′H﹣O′,
∴P′点的坐标为(,).
考点:几何变换综合题
7.如图1,点O是正方形ABCD两对角线的交点. 分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.
(1)求证:DE⊥AG;
(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转角(0°< <360°)得到正方形
,如图2.
①在旋转过程中,当∠是直角时,求的度数;(注明:当直角边为斜边一半时,这条直角边所对的锐角为30度)
②若正方形ABCD的边长为1,在旋转过程中,求长的最大值和此时的度数,直接写出结果不必说明理由.
【答案】(1)DE⊥AG (2)①当∠为直角时,α=30°或150°.②315°
【解析】
分析:(1)延长ED交AG于点H,证明≌,根据等量代换证明结论;(2)根据题意和锐角正弦的概念以及特殊角的三角函数值得到,分两种情况求出的度数;
(3)根据正方形的性质分别求出OA和OF的长,根据旋转变换的性质求出AF′长的最大值和此时的度数.
详解:如图1,延长ED交AG于点H,
点O是正方形ABCD两对角线的交点,


在和中,

≌,




即;
在旋转过程中,成为直角有两种情况:
Ⅰ由增大到过程中,当时,

在中,sin∠AGO=,




即;
Ⅱ由增大到过程中,当时,
同理可求,

综上所述,当时,或.如图3,
当旋转到A、O、在一条直线上时,的长最大,
正方形ABCD的边长为1,


, ,


此时

点睛:考查了正方形的性质,全等三角形的判定与性质,锐角三角形函数,旋转变换的性质的综合应用,有一定的综合性,注意分类讨论的思想.
8.已知ABC ∆是边长为4的等边三角形,点D 是射线BC 上的动点,将AD 绕点A 逆时针方向旋转60得到AE ,连接DE .
(1).如图,猜想ADE ∆是_______三角形;(直接写出结果) (2).如图,猜想线段CA 、CE 、CD 之间的数量关系,并证明你的结论; (3).①当BD=___________时,30DEC ∠=;(直接写出结果)
②点D 在运动过程中,DEC ∆的周长是否存在最小值?若存在.请直接写出DEC ∆周长的最小值;若不存在,请说明理由.
【答案】(1)等边三角形;(2)AC CD CE +=,证明见解析;(3)①BD 为2或8时,30DEC ∠=;②最小值为423+ 【解析】 【分析】
(1)根据旋转的性质得到,60AD AE DAE =∠=,根据等边三角形的判定定理解答; (2)证明ABD ACE ∆≅∆,根据全等三角形的性质得到BD CE =,结合图形计算即可; (3)①分点D 在线段BC 上和点D 在线段BC 的延长线上两种情况,根据直角三角形的性质解答;②根据ABD ACE ∆≅∆得到CE BD =,根据垂线段最短解答. 【详解】
解:(1)由旋转变换的性质可知,,60AD AE DAE =∠=,
ADE ∴∆是等边三角形, 故答案为等边三角形; (2)AC CD CE +=,
证明:由旋转的性质可知,60,DAE AD AE ∠==,
ABC ∆是等边三角形
60AB AC BC BAC ∴∠︒==,=, 60BAC DAE ∴∠∠︒==,
BAC DAC DAE DAC ∴∠+∠∠+∠=,即BAD CAE ∠∠=, 在ABD ∆和ACE ∆中, AB AC BAD CAE AD AE =⎧⎪
∠=∠⎨⎪=⎩
, ABD ACE SAS ∴∆∆≌()
BD CE ∴=,
CE BD CB CD CA CD ∴++===;
(3)①BD 为2或8时,30DEC ∠=, 当点D 在线段BC 上时,
3060DEC AED ∠︒∠︒=,=,
90AEC ∴∠︒=, ABD ACE ∆∆≌,
9060ADB AEC B ∴∠∠︒∠︒==,又=,
30BAD ∴∠︒=,
1
22
BD AB ∴==,
当点D 在线段BC 的延长线上时,3060DEC AED ∠︒∠︒=,=, 30AEC ∴∠︒=, ABD ACE ∆∆≌,
3060ADB AEC B ∴∠∠︒∠︒==,又=,
90BAD ∴∠︒=, 28BD AB ∴==,
BD ∴为2或8时,30DEC ∠︒=;
②点D 在运动过程中,DEC ∆
的周长存在最小值,最小值为4+
理由如下:
ABD ACE ∆∆≌,
CE BD ∴=,
则DEC ∆的周长DE CE DC BD CD DE BC DE +++++===, 当CE 最小时,DEC ∆的周长最小, ADE ∆为等边三角形, DE AD ∴=,
AD
的最小值为
DEC ∴∆
的周长的最小值为4+
【点睛】
本题考查的是旋转变换的性质、全等三角形的判定和性质、直角三角形的性质,掌握全等三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键.
二、初三数学 圆易错题压轴题(难)
9.如图,二次函数y=x 2-2mx+8m 的图象与x 轴交于A 、B 两点(点A 在点B 的左边且OA≠OB ),交y 轴于点C ,且经过点(m ,9m ),⊙E 过A 、B 、C 三点。

(1)求这条抛物线的解析式; (2)求点E 的坐标;
(3)过抛物线上一点P (点P 不与B 、C 重合)作PQ ⊥x 轴于点Q ,是否存在这样的点P 使△PBQ 和△BOC 相似?如果存在,求出点P 的坐标;如果不存在,说明理由
【答案】(1)y=x 2
+2x-8(2)(-1,-
72)(3)(-8,40),(-15
4,-1316),(-174
,-25
16
) 【解析】
分析:(1)把(),9m m 代入解析式,得:22289m m m m -+=,解这个方程可求出m 的值;
(2)分别令y =0和x =0,求出OA ,OB ,O C 及AB 的长,过点E 作EG x ⊥轴于点
G ,EF y ⊥轴于点F ,连接CE ,AE ,设OF =GE =a ,根据AE CE = ,列方过程求出a 的值,
从而求出点E 的坐标;
(3)设点P (a , a 2+2a -8), 则2
28,2PQ a a BQ a =+-=-,然后分PBQ ∽CBO 时
和PBQ ∽BCO 时两种情况,列比例式求出a 的值,从而求出点P 的坐标.
详解:(1)把(),9m m 代入解析式,得:22289m m m m -+= 解得:121,0m m =-=(舍去) ∴228y x x =+-
(2)由(1)可得:2
28y x x =+-,当0y =时,124,2x x =-=;
∵点A 在点B 的左边 ∴42OA OB ,== , ∴6AB OA OB =+=, 当0x =时,8y =-, ∴8OC =
过点E 作EG x ⊥轴于点G ,EF y ⊥轴于点F ,连接CE ,,
则11
6322
AG AB =
=⨯= ,

,则
, 在Rt AGE ∆中,,

中,
()2
22218CE EF CF a =+=+-,
∵AE CE = ,
∴()2
2918a a +=+- ,
解得:7
2a =
, ∴712E ⎛
⎫-- ⎪⎝


; (3)设点()2,28a a a P +-,
则2
28,2PQ a a BQ a =+-=-, a.当PBQ ∆∽CBO ∆时,
PQ CO
BQ OB =,即228822
a a a +-=-, 解得:10a =(舍去);
22a =(舍去);38a =- , ∴()18,40P - ;
b.当PBQ ∆∽BCO ∆时,
PQ BO BQ CO =,即228228
a a a +-=-, 解得:12a =(舍去),2154a =-
;3174a =- , ∴21523,416P ⎛⎫-- ⎪⎝⎭;31725416P ⎛⎫- ⎪⎝⎭
, ; 综上所述,点P 的坐标为:()18,40P -,21523,416P ⎛⎫--
⎪⎝⎭,31725416P ⎛⎫- ⎪⎝⎭, 点睛:本题考查了二次函数的图像与性质,二次函数与坐标轴的交点,垂径定理,勾股定理,相似三角形的性质和分类讨论的数学思想,熟练掌握二次函数与一元二次方程的关系、相似三角形的性质是解答本题的关键.
10.如图①,已知Rt △ABC 中,∠ACB =90°,AC =8,AB =10,点D 是AC 边上一点(不与C 重合),以AD 为直径作⊙O ,过C 作CE 切⊙O 于E ,交AB 于F .
(1)若⊙O 半径为2,求线段CE 的长;
(2)若AF =BF ,求⊙O 的半径;
(3)如图②,若CE =CB ,点B 关于AC 的对称点为点G ,试求G 、E 两点之间的距离.
【答案】(1)CE =2;(2)⊙O 的半径为3;(3)G 、E 两点之间的距离为9.6
【解析】
【分析】
(1)根据切线的性质得出∠OEC=90°,然后根据勾股定理即可求得;
(2)由勾股定理求得BC ,然后通过证得△OEC ∽△BCA ,得到
OE OC BC BA =,即8610r r -= 解得即可;
(3)证得D 和M 重合,E 和F 重合后,通过证得△GBE ∽△ABC ,GB GE AB AC
=,即
12108
GE =,解得即可. 【详解】 解:(1)如图①,连接OE ,
∵CE 切⊙O 于E ,
∴∠OEC =90°,
∵AC =8,⊙O 的半径为2,
∴OC =6,OE =2,
∴CE =2242OC OE -= ;
(2)设⊙O 的半径为r ,
在Rt △ABC 中,∠ACB =90°,AB =10,AC =8,
∴BC 22AB A C -=6,
∵AF =BF ,
∴AF =CF =BF ,
∴∠ACF =∠CAF ,
∵CE 切⊙O 于E ,
∴∠OEC =90°,
∴∠OEC =∠ACB ,
∴△OEC ∽△BCA ,

OE OC BC BA =,即8610
r r -= 解得r =3,
∴⊙O 的半径为3;
(3)如图②,连接BG ,OE ,设EG 交AC 于点M ,
由对称性可知,CB=CG,
∵CE=CG,
∴∠EGC=∠GEC,
∵CE切⊙O于E,
∴∠GEC+∠OEG=90°,
∵∠EGC+∠GMC=90°,
∴∠OEG=∠GMC,
∵∠GMC=∠OME,
∴∠OEG=∠OME,
∴OM=OE,
∴点M和点D重合,
∴G、D、E三点在同一直线上,
连接AE、BE,
∵AD是直径,
∴∠AED=90°,即∠AEG=90°,
又CE=CB=CG,
∴∠BEG=90°,
∴∠AEB=∠AEG+∠BEG=180°,
∴A、E、B三点在同一条直线上,∴E、F两点重合,
∵∠GEB=∠ACB=90°,∠B=∠B,∴△GBE∽△ABC,
∴GB GE
AB AC
=,即
12
108
GE
=
∴GE=9.6,
故G、E两点之间的距离为9.6.
【点睛】
本题考查了切线的判定,轴的性质,勾股定理的应用以及三角形相似的判定和性质,证得G、D、E三点共线以及A、E、B三点在同一条直线上是解题的关
11.在直角坐标系中,⊙C过原点O,交x轴于点A(2,0),交y轴于点B(0,).
(1)求圆心C的坐标.
(2)抛物线y=ax2+bx+c过O,A两点,且顶点在正比例函数y=-的图象上,求抛物线的解析式.
(3)过圆心C作平行于x轴的直线DE,交⊙C于D,E两点,试判断D,E两点是否在(2)中的抛物线上.
(4)若(2)中的抛物线上存在点P(x0,y0),满足∠APB为钝角,求x0的取值范围.
【答案】(1)圆心C的坐标为(1,);
(2)抛物线的解析式为y=x2﹣x;
(3)点D、E均在抛物线上;
(4)﹣1<x0<0,或2<x0<3.
【解析】
试题分析:(1)如图线段AB是圆C的直径,因为点A、B的坐标已知,根据平行线的性质即可求得点C的坐标;
(2)因为抛物线过点A、O,所以可求得对称轴,即可求得与直线y=﹣x的交点,即是二次函数的顶点坐标,利用顶点式或者一般式,采用待定系数法即可求得抛物线的解析式;
(3)因为DE∥x轴,且过点C,所以可得D、E的纵坐标为,求得直径AB的长,可得D、E的横坐标,代入解析式即可判断;
(4)因为AB为直径,所以当抛物线上的点P在⊙C的内部时,满足∠APB为钝角,所以﹣1<x0<0,或2<x0<3.
试题分析:(1)∵⊙C经过原点O
∴AB为⊙C的直径
∴C为AB的中点
过点C作CH垂直x轴于点H,则有CH=OB=,OH=OA=1
∴圆心C的坐标为(1,).
(2)∵抛物线过O、A两点,
∴抛物线的对称轴为x=1,
∵抛物线的顶点在直线y=﹣x上,
∴顶点坐标为(1,﹣).
把这三点的坐标代入抛物线y=ax2+bx+c,得,
解得,
∴抛物线的解析式为y=x2﹣x.
(3)∵OA=2,OB=2,
∴AB==4,即⊙C的半径r=2,
∴D(3,),E(﹣1,),
代入y=x2﹣x检验,知点D、E均在抛物线上.
(4)∵AB为直径,
∴当抛物线上的点P在⊙C的内部时,满足∠APB为钝角,
∴﹣1<x0<0,或2<x0<3.
考点:二次函数综合题.
12.如图,在平面直角坐标系中,O为坐标原点,△ABC的边BC在y轴的正半轴上,点A在x 轴的正半轴上,点C的坐标为(0,8),将△ABC沿直线AB折叠,点C落在x轴的负半轴D(−4,0)处.
(1)求直线AB的解析式;
(2)点P从点A出发以每秒45个单位长度的速度沿射线AB方向运动,过点P作PQ⊥AB,交x轴于点Q,PR∥AC交x轴于点R,设点P运动时间为t(秒),线段QR长为d,求d与t的函数关系式(不要求写出自变量t的取值范围);
(3)在(2)的条件下,点N是射线AB上一点,以点N为圆心,同时经过R、Q两点作⊙N,⊙N交y轴于点E,F.是否存在t,使得EF=RQ?若存在,求出t的值,并求出圆心N的坐标;若不存在,说明理由.
【答案】(1)
1
3
2
y x
=-+(2)d=5t (3)故当 t=
8
5
,或8
15
,时,QR=EF,N(-
6,6)或(2,2).【解析】
试题分析:(1)由C
(0,8),D (-4,0),可求得OC ,OD 的长,然后设OB=a ,则BC=8-a ,在Rt △BOD 中,由勾股定理可得方程:(8-
a )2=a 2+42,解此方程即可求得B 的坐标,然后由三角函数的求得点A 的坐标,再利用待定系数法求得直线AB 的解析式;
(2)在Rt △AOB 中,由勾股定理可求得AB 的长,继而求得∠BAO 的正切与余弦,由PR//AC 与折叠的性质,易证得RQ=AR ,则可求得d 与t 的函数关系式;
(3)首先过点分别作NT ⊥RQ 于T ,NS ⊥EF 于S ,易证得四边形NTOS 是正方形,然后分别从点N 在第二象限与点N 在第一象限去分析求解即可求解;
试题解析:
(1)∵C (0,8),D (-4,0),
∴OC=8,OD=4,
设OB=a ,则BC=8-a ,
由折叠的性质可得:BD=BC=8-a ,
在Rt △BOD 中,∠BOD=90°,DB 2=OB 2+OD 2,
则(8-a )2=a 2+42,
解得:a=3,
则OB=3,
则B (0,3),
tan ∠ODB=34
OB OD = , 在Rt △AOC 中,∠AOC=90°,tan ∠ACB=
34
OA OC = , 则OA=6,
则A (6,0),
设直线AB 的解析式为:y=kx+b , 则60{3k b b +== ,解得:1{23
k b =-= , 故直线AB 的解析式为:y=-
12
x +3; (2)如图所示:
在Rt △AOB 中,∠AOB=90°,OB=3,OA=6,
则AB=22135,tan 2OB OB OA BAO OA +=∠== ,255OA cos BAO AB
∠==, 在Rt △PQA 中,9045APQ AP t ∠=︒=,,
则AQ=
10cos AP t BAO
=∠ , ∵PR ∥AC ,
∴∠APR=∠CAB , 由折叠的性质得:∠BAO=∠CAB ,
∴∠BAO=∠APR ,
∴PR=AR ,
∵∠RAP+∠PQA=∠APR+∠QPR=90°,
∴∠PQA=∠QPR ,
∴RP=RQ ,
∴RQ=AR ,
∴QR=
12
AQ=5t, 即d=5t; (3)过点分别作NT ⊥RQ 于T ,NS ⊥EF 于S ,
∵EF=QR ,
∴NS=NT ,
∴四边形NTOS 是正方形,
则TQ=TR=
1522
QR t = , ∴1115151022224
NT AT AQ TQ t t t ==-=-=()() , 分两种情况,
若点N 在第二象限,则设N (n ,-n ),
点N 在直线132y x =-
+ 上, 则132
n n -=-+ , 解得:n=-6,
故N (-6,6),NT=6,
即1564t = , 解得:85t = ; 若点N 在第一象限,设N (N ,N ),
可得:132
n n =-
+ , 解得:n=2,
故N (2,2),NT=2, 即
1524
t =, 解得:t=815
∴当 t =85,或815,时,QR =EF ,N (-6,6)或(2,2)。

点睛:此题考查了折叠的性质、待定系数法求一次函数的解析式、正方形的判定与性质、等腰三角形的性质、平行线的性质以及三角函数等知识.此题难度较大,注意掌握辅助线的作法,注意数形结合思想与方程思想的应用。

13.如图,在Rt △ABC 中,∠B=90°,∠BAC 的平分线交BC 于点D ,以D 为圆心,D 长为半径作作⊙D .
⑴求证:AC 是⊙D 的切线.
⑵设AC 与⊙D 切于点E ,DB=1,连接DE ,BF ,EF.
①当∠BAD= 时,四边形BDEF 为菱形;
②当AB= 时,△CDE 为等腰三角形.
【答案】(1)见解析;(2)①30°2+1
【解析】
【分析】
(1) 作DE ⊥AC 于M,由∠ABC=90°,进一步说明DM=DB ,即DB 是⊙D 的半径,即可完成证明;
(2)①先说明△BDF 是等边三角形,再运用直角三角形的内角和定理解答即可;②先说明DE=CE=BD=1,再设AB=x ,则AE=x ,分别表示出AC 、BC 、AB 的长,然后再运用 勾股定理
解答即可.
【详解】
⑴证明:如图:作DE⊥AC于M,
∵∠ABC=90°,∠BAC的平分线交BC于点D,∴DE=DB.
∴DM是⊙D的半径,
∴AC是⊙D的切线;
⑵①如图:
∵四边形BDEF为菱形;
∴△BDF是等边三角形
∴∠ADB=60°
∴∠BAD=90°-60°=30°
∴当∠BAD=30°时,四边形BDEF为菱形;
②∵△CDE为等腰三角形.
∴DE=CE=BD=1,
∴2
设AB=x,则AE=x
∴在Rt△ABC中,AB=x,AC=1+x,BC=1+2
∴()2
22
(12)1
x x
++=+,解得x=2+1
∴当AB=2+1时,△CDE为等腰三角形.
【点睛】
本题考查的是切线的判定、菱形的性质和判定、等腰三角形的判定与性质以及勾股定理的灵活运用;熟练掌握切线的判定方法和灵活应该勾股定理是解答本题的关键.
14.在平面直角坐标系xOy中,⊙C的半径为r(r>1),点P是圆内与圆心C不重合的点,⊙C的“完美点”的定义如下:过圆心C的任意直线CP与⊙C交于点A,B,若满足|PA﹣PB|=2,则称点P为⊙C的“完美点”,如图点P为⊙C的一个“完美点”.
(1)当⊙O的半径为2时
①点M(3
2
,0)⊙O的“完美点”,点(﹣
3
,﹣
1
2
)⊙O的“完美点”;(填
“是”或者“不是”)
②若⊙O的“完美点”P在直线y=3
4
x上,求PO的长及点P的坐标;
(2)设圆心C的坐标为(s,t),且在直线y=﹣2x+1上,⊙C半径为r,若y轴上存在⊙C的“完美点”,求t的取值范围.
【答案】(1)①不是,是;②PO的长为1,点P的坐标为(4
5

3
5
)或(﹣
4
5
,﹣
3
5
);(2)t的
取值范围为﹣1≤t≤3.
【解析】
【分析】
(1)①利用圆的“完美点”的定义直接判断即可得出结论.②先确定出满足圆的“完美点”的OP的长度,然后分情况讨论计算即可得出结论;(2)先判断出圆的“完美点”的轨迹,然后确定出取极值时OC与y轴的位置关系即可得出结论.
【详解】
解:(1)①∵点M(3
2
,0),
∴设⊙O与x轴的交点为A,B,∵⊙O的半径为2,
∴取A(﹣2,0),B(2,0),
∴|MA﹣MB|=|(3
2
+2)﹣(2﹣
3
2
)|=3≠2,
∴点M不是⊙O的“完美点”,
同理:点(﹣3
,﹣
1
2
)是⊙O的“完美点”.
故答案为不是,是.
②如图1,
根据题意,|PA﹣PB|=2,
∴|OP+2﹣(2﹣OP)|=2,
∴OP=1.
若点P在第一象限内,作PQ⊥x轴于点Q,
∵点P在直线y=3
4
x上,OP=1,

43
,
55 OQ PQ
==.
∴P(43
,
55
).
若点P在第三象限内,根据对称性可知其坐标为(﹣4
5
,﹣
3
5
).
综上所述,PO的长为1,点P的坐标为(43
,
55
)或(
43
,
55
--)).
(2)对于⊙C的任意一个“完美点”P都有|PA﹣PB|=2,
∴|CP+r﹣(r﹣CP)|=2.
∴CP=1.
∴对于任意的点P,满足CP=1,都有|CP+r﹣(r﹣CP)|=2,∴|PA﹣PB|=2,故此时点P为⊙C的“完美点”.
因此,⊙C的“完美点”是以点C为圆心,1为半径的圆.
设直线y=﹣2x+1与y轴交于点D,如图2,
当⊙C移动到与y轴相切且切点在点D的上方时,t的值最大.设切点为E,连接CE,
∵⊙C的圆心在直线y=﹣2x+1上,
∴此直线和y轴,x轴的交点D(0,1),F(1
2
,0),
∴OF=1
2
,OD=1,
∵CE∥OF,
∴△DOF∽△DEC,
∴OD OF DE CE
=,

11
2 DE
=,
∴DE=2,
∴OE=3,
t的最大值为3,
当⊙C移动到与y轴相切且切点在点D的下方时,t的值最小.
同理可得t的最小值为﹣1.
综上所述,t的取值范围为﹣1≤t≤3.
【点睛】
此题是圆的综合题,主要考查了新定义,相似三角形的性质和判定,直线和圆的位置关系,解本题的关键是理解新定义的基础上,会用新定义,是一道比中等难度的中考常考题.
15.如图,PA,PB分别与O相切于点A和点B,点C为弧AB上一点,连接PC并延长交O于点F,D为弧AF上的一点,连接BD交FC于点E,连接AD,且2180
APB PEB
∠+∠=︒.
(1)如图1,求证://PF AD ;
(2)如图2,连接AE ,若90APB ∠=︒,求证:PE 平分AEB ∠;
(3)如图3,在(2)的条件下,连接AB 交PE 于点H ,连接OE ,8AD =,4sin 5
ABD ∠=,求PH 的长. 【答案】(1)见解析;(2)见解析;(3)
257 【解析】
【分析】
(1)连接OA 、OB ,由切线的性质可得90OAP OBP ∠=∠=︒,由四边形内角和是360︒,得180∠+∠=︒P AOB ,由同弧所对的圆心角是圆周角的一半,得到
2AOB ADB ∠=∠,等量代换得到ADB PEB ∠=∠,由同位角相等两直线平行,得到//PF AD ;
(2)过点P 做PK PF ⊥交EB 延长线于点K ,由90APB ∠=︒得290PEB ∠=︒,从而45PEB ∠=︒,由切线的性质,得PA PB =,由PK PE ⊥,45PEK ∠=︒,得PE PK =,从而90APE EPB ︒∠=-∠,进而APE BPK ∠=∠,即可证得
APE BPK ∆∆≌由此45K AEP ∠=∠=︒,得到AEP PEB ∠=∠,即可证得PE 平分AEB ∠;
(3)连接AO 并延长交圆O 于点M ,连接OB 、OH 、OP 、OD 、DM ,由
45ADE ∠=︒,90AED ∠=︒,可得DE AE =,由OA 、OD 为半径,可得OA OD =,即可证出DEO AEO ∆∆≌,由直径所对的圆周角是直角,可得90ADM ∠=︒,在Rt ADM ∆中,由正弦定义可得10AM =,由此5OA OB ==,由OAPB 为正方形,对角线AB 垂直平分OP ,从而,OH PH =.在Rt OAP ∆中,252OP OA ==.延长EO 交AD 于K ,在Rt OEP ∆中,由勾股定理得7PE =,在Rt OEH ∆中,由勾股定理得
257
PH =
. 【详解】 (1)连接OA 、OB
∵PA 、PB 与圆O 相切于点A 、B ,且OA 、OB 为半径,
∴OA AP ⊥,OB BP ⊥,
∴90OAP OBP ∠=∠=︒,
∴在四边形AOBP 中,360180180P AOB ∠+∠=︒-︒=︒,
∵AB AB =,
∴2AOB ADB ∠=∠,
∴2180P ADB ∠+∠=︒,
∵2180P PEB ∠+∠=︒,
∴ADB PEB ∠=∠,
∴//PF AD
(2)过点P 做PK PF ⊥交EB 延长线于点K
∵90APB ∠=︒,
∴21809090PEB ∠=︒-︒=︒, ∴45PEB ∠=︒,
∵PA 、PB 为圆O 的切线,
∴PA PB =,
∵PK PE ⊥,45PEK ∠=︒,
∴PE PK = ,
∵9090APE EPB KPB EPB ︒︒∠=-∠=∠=-∠,
∴APE BPK ∠=∠,
∴APE BPK ∆∆≌,
∴45K AEP ∠=∠=︒,
∴AEP PEB ∠=∠,
∴PE 平分AEB ∠;
(3)连接AO 并延长交圆O 于点M ,连接OB 、OH 、OP 、OD 、DM
∵45ADE ∠=︒,90AED ∠=︒,
∴DE AE =,
∵OA 、OD 为半径,
∴OA OD =,
∵OE OE =,
∴DEO AEO ∆∆≌, ∴1452AEO OED AED ∠=∠=
∠=︒, ∴90OEP ∠=︒,
∵AM 为圆O 的直径,
∴90ADM ∠=︒,
∵弧AD =弧AD ,
∴ABD AMD ∠=∠,
在Rt ADM ∆中,8AD =,4sin 5AMD ∠=
,则10AM =, ∴5OA OB ==,
由题易证四边形OAPB 为正方形,
∴对角线AB 垂直平分OP ,AB OP =,
∵H 在AB 上,
∴OH PH =,
在Rt OAP ∆中,OP =
=
延长EO 交AD 于K ,
∵DE AE =,可证OK AD ⊥,DOK ABD ∠=∠,
∴4DK KE ==,3OK =,1OE =
∴在Rt OEP ∆中,7PE ==
在Rt OEH ∆中,222OH OE EH =+
∵OH PH =,7EH PE HP PH =-=-
∴()22217PH PH =+- ∴257
PH =
. 【点睛】 本题考查了圆的综合题,圆的性质,等腰三角形的性质,相交弦定理,正弦定理,勾股定理,灵活运用这些性质定理解决问题是本题的关键.
16.(1)如图1,A 是⊙O 上一动点,P 是⊙O 外一点,在图中作出PA 最小时的点A . (2)如图2,Rt △ABC 中,∠C =90°,AC =8,BC =6,以点C 为圆心的⊙C 的半径是3.6,Q 是⊙C 上一动点,在线段AB 上确定点P 的位置,使PQ 的长最小,并求出其最小值. (3)如图3,矩形ABCD 中,AB =6,BC =9,以D 为圆心,3为半径作⊙D ,E 为⊙D 上一。

相关文档
最新文档