LiDAR读出电路[实用新型专利]

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(19)中华人民共和国国家知识产权局
(12)实用新型专利
(10)授权公告号 (45)授权公告日 (21)申请号 201890000588.2
(22)申请日 2018.03.08
(30)优先权数据
15/456,193 2017.03.10 US
(85)PCT国际申请进入国家阶段日
2019.09.06
(86)PCT国际申请的申请数据
PCT/EP2018/055737 2018.03.08
(87)PCT国际申请的公布数据
WO2018/162632 EN 2018.09.13
(73)专利权人 森斯尔科技有限公司
地址 爱尔兰科克郡
(72)发明人 S ·涅基 J ·C ·杰克逊 
(74)专利代理机构 北京市中伦律师事务所 11410代理人 钟锦舜(51)Int.Cl.G01S 7/4861(2020.01)G01S 7/4865(2020.01)G01S 7/487(2006.01)G01S 7/481(2006.01)
(54)实用新型名称
LiDAR读出电路
(57)摘要
描述了一种LiDAR读出电路。

所述读出电路
包括SiPM传感器,所述SiPM传感器用于检测光子
并产生SIPM模拟输出信号。

提供多个比较器,每
个比较器具有相关联的阈值,且被配置为将所述
SiPM模拟输出信号与其相关联的阈值进行比较
并产生比较信号。

时间数字转换器被配置为从所
述多个比较器接收所述比较信号。

权利要求书1页 说明书7页 附图8页CN 211554305 U 2020.09.22
C N 211554305
U
1.一种LiDAR读出电路,其特征在于,所述LiDAR读出电路包括:
SiPM传感器,其用于检测光子并产生SiPM模拟输出信号;
多个比较器,每个比较器具有相关联的阈值,且被配置为将所述SiPM模拟输出信号与其相关联的阈值进行比较并产生比较信号;以及
时间数字转换器,其被配置为从所述多个比较器接收所述比较信号。

2.根据权利要求1所述的LiDAR读出电路,其特征在于,还包括放大器,所述放大器用于在由所述比较器接收所述SiPM模拟输出信号之前放大所述SiPM模拟输出信号。

3.根据权利要求1所述的LiDAR读出电路,其特征在于,还包括分压器,所述分压器被配置成用于设定所述比较器的相关联的阈值。

4.根据权利要求1所述的LiDAR读出电路,其特征在于,还包括阈值确定电路。

5.根据权利要求4所述的LiDAR读出电路,其特征在于,所述阈值确定电路能够操作以被选择性地激活,并且所述阈值确定电路经由开关选择性地连接到所述LiDAR读出电路。

6.根据权利要求4所述的LiDAR读出电路,其特征在于,所述阈值确定电路包括模拟数字转换器(ADC)。

7.根据权利要求6所述的LiDAR读出电路,其特征在于,所述阈值确定电路包括数字模拟转换器,DAC,所述数字模拟转换器可操作地联接于所述ADC与所述比较器中的至少一个之间。

8.根据权利要求7所述的LiDAR读出电路,其特征在于,所述DAC被配置为从所述ADC接收代表从所述SiPM输出的经测量的噪声级的数字信号。

9.根据权利要求8所述的LiDAR读出电路,其特征在于,所述DAC被进一步配置为接收任意值,所述任意值与代表所述经测量的噪声级的所述数字信号一起确定所述比较器中的至少一个的所述相关联的阈值。

10.根据权利要求1所述的LiDAR读出电路,其特征在于,所述SiPM传感器由单光子雪崩光电二极管(SPAD)传感器的总阵列形成。

权 利 要 求 书1/1页CN 211554305 U
LiDAR读出电路
技术领域
[0001]本实用新型涉及一种LiDAR读出电路。

特别地但非排他地,本公开涉及一种包括多个阈值的LiDAR读出电路。

背景技术
[0002]硅光电倍增器(SiPM)是一种光子敏感的高性能固态传感器。

它由紧密排列的单光子雪崩光电二极管(SPAD)传感器和集成的淬灭电阻的总阵列组成,从而产生紧凑传感器,所述紧凑传感器具有均在~30V的偏置电压下实现的高增益(~1×106)、高检测效率(> 50%)和快速时序(fast timing)(亚纳秒上升时间)。

[0003]传统上,具有模拟SiPM的LiDAR通过鉴别SiPM的输出与对应于N光子的固定阈值来执行,其中N通常设定为1,以允许单光子检测。

然而,在高光条件下,许多时间接近光子对输出电流/电压有贡献,增量超过固定的单光子阈值。

因此,此种贡献因鉴别器限制读出的时间戳的数量而丢失。

然而,增大阈值会导致单光子事件的信息的丢失。

这对于快速检测高光级别和低光级别(light level) 很重要。

[0004]因此,需要一种解决现有技术的至少一些缺点的LiDAR读出电路。

实用新型内容
[0005]本公开涉及一种LiDAR读出电路,其包括:
[0006]SiPM传感器,其用于检测光子并产生SIPM模拟输出信号;
[0007]多个比较器,每个比较器具有相关联的阈值,且被配置为将所述SiPM模拟输出信号与其相关联的阈值进行比较并产生比较信号;以及
[0008]时间数字转换器,其被配置为从所述多个比较器接收所述比较信号。

[0009]在一个方面中,提供放大器,所述放大器用于在由所述比较器接收所述SiPM 模拟输出信号之前放大所述SiPM模拟信号。

[0010]在另一方面中,所述放大器的输出可操作地联接到每个所述比较器。

[0011]在另一方面中,分压器被配置成用于设定所述比较器的所述相应阈值。

[0012]在示例性方面中,所述分压器可操作地联接于两个参考节点之间。

[0013]在一个方面中,所述参考节点中的一个可操作地联接到电压基准。

有利的是,所述参考节点中的另一个接地。

[0014]在另一方面中,多个电阻器可操作地联接于所述两个参考节点之间。

[0015]在另一方面中,所述分压器设定每个比较器的对应的电压阈值电平。

[0016]在示例性方面中,每个比较器的所述电压阈值电平不同。

[0017]在另一方面中,所述比较器中的两个或多个的所述电压阈值电平不同。

有利的是,其中所述相应比较器的所述阈值从低阈值到高阈值而顺序递增。

[0018]在另一方面中,基于环境光级别确定每个比较器的所述阈值。

[0019]在一个方面中,提供阈值确定电路。

[0020]在另一方面中,所述阈值确定电路能够操作以被选择性地激活。

[0021]在另一方面中,所述阈值确定电路经由开关选择性地连接到所述LiDAR读出电路。

[0022]在一个方面中,所述阈值确定电路包括模拟数字转换器。

[0023]在另一方面中,所述阈值确定电路包括数字模拟转换器(DAC),所述数字模拟转换器可操作地联接于所述ADC与所述比较器中的至少一个之间。

[0024]在示例性方面中,所述DAC被配置为从所述ADC接收代表从所述SiPM 输出的经测量的噪声级的数字信号。

[0025]在另一方面中,所述DAC被进一步配置为接收任意值,所述任意值与代表所述经测量的噪声级的所述数字信号一起确定比较器中的至少一个的所述阈值。

[0026]在另一方面中,所述SiPM传感器位于LiDAR装置上。

有利的是,所述LiDAR装置还包括激光源。

[0027]在一个方面中,所述激光源被配置为发出激光脉冲。

[0028]在另一方面中,所述LiDAR装置还包括光学器件。

[0029]在一个方面中,所述SiPM传感器是单光子传感器。

[0030]在另一方面中,所述SiPM传感器由单光子雪崩光电二极管(SPAD)传感器的总阵列形成。

[0031]在另一方面中,所述激光源是人眼安全激光源。

[0032]在一个方面中,所述SiPM传感器包括微单元的矩阵。

[0033]在另一方面中,所述数字模拟转换器被配置用成于设定所述比较器的所述相应阈值。

[0034]参考以下附图将更好地理解这些和其他特征,提供所述附图以有助于理解本教导。

附图说明
[0035]现在将参考附图描述本教导,其中:
[0036]图1说明硅光电倍增器的示例性结构。

[0037]图2是示例性硅光电倍增器的示意性电路图。

[0038]图3说明用于直接ToF测距的示例性技术。

[0039]图4说明示例性ToF测距系统。

[0040]图5说明示例性LiDAR装置。

[0041]图6说明现有技术LiDAR读出电路的示意图。

[0042]图7说明根据本教导的LiDAR读出电路的示意图。

[0043]图8A到图8C说明LiDAR输出直方图。

[0044]图9是说明用于确定阈值电平的示例性步骤的流程图。

[0045]图10是包括阈值确定电路的另一LiDAR读出电路。

[0046]图11说明根据本教导的另一LiDAR读出电路的示意图。

具体实施方式
[0047]现将参考示例性LiDAR读出电路来描述本公开。

应理解,示例性LiDAR读出电路被
提供来有助于理解本教导,并且不应被解释为以任何方式呈限制性。

此外,在不脱离本教导的精神的情况下,参考任一个附图描述的电路元件或部件可以与其他附图的那些或其他等效电路元件互换。

应理解,为了说明简单和清晰,在认为适当的情况下,可在附图中重复参考标号以指示对应或类似元件。

[0048]首先参考图1,示出了包括盖革模式(Geiger mode)光电二极管阵列的硅光电倍增器100。

如所说明的,淬灭电阻器(quench resistor)设置于可用以限制雪崩电流的每个光电二极管附近。

光电二极管通过铝或类似的导电起痕(conductive tracking)电连接到公共偏置和接地电极。

在图2中示出用于常规硅光电倍增器 200的示意性电路,其中光电二极管阵列的阳极连接到公共接地电极,并且阵列的阴极经由限流电阻器连接到公共偏置电极以跨二极管施加偏置电压。

[0049]硅光电倍增器100集成小型的、电气上和光学上隔离的盖革模式光电二极管215的密集阵列。

每个光电二极管215串联联接到淬灭电阻器220。

每个光电二极管215被称为微单元。

微单元的数目通常介于每平方毫米100与3000之间。

随后将所有微单元的信号相加以形成SiPM 200的输出。

提供简化的电路以说明图2中的概念。

每个微单元相同且独立地检测光子。

来自这些单独的二进制检测器中的每一个的放电电流的总和组合以形成准模拟输出,并且因此能够给出关于入射光子通量的量值的信息。

[0050]每当微单元经历盖革击穿时,每个微单元产生高度均匀和量子化的电荷量。

微单元(以及因此检测器)的增益被定义为输出电荷与电子上的电荷的比率。

输出电荷可以根据过电压和微单元电容计算。

[0051]
[0052]其中:
[0053]G是微单元的增益;
[0054]C是微单元的电容;
[0055]△V是过电压;并且
[0056]q是电子的电荷。

[0057]LiDAR是测距技术,其越来越多地应用于例如移动测距、汽车ADAS(高级驾驶辅助系统)、手势识别和3D绘图等应用。

采用例如光子传感器等SiPM与例如雪崩光电二极管(APD)、PIN二极管和光电倍增管(PMT)等其他传感器技术相比具有许多优势,对于移动和高容量产品尤其如此。

在图3中说明用于直接ToF测距系统的基本部件。

在直接ToF技术中,周期性激光脉冲305指向目标307。

目标307漫射并反射激光光子,并且光子中的一些被反射回到检测器 315。

检测器315将检测到的激光光子(和由于噪声引起的一些检测到的光子) 转换成电信号,所述电信号随后由计时电子装置(timing electronic)325加时间戳。

[0058]此飞行时间t可用以下方程式计算到目标的距离D。

[0059]D=c△t/2,方程式1
[0060]其中c=光速;且
[0061]Δt=飞行时间。

[0062]检测器315必须从噪声(环境光)中鉴别出返回的激光光子。

每个激光脉冲捕获至少一个时间戳。

这被称为单次测量。

当来自许多单次测量的数据被组合以产生测距测量
(ranging measurement)时,信噪比可得以显著改善,可以高精度和高准确度地从所述测距测量提取所检测的激光脉冲的时序。

[0063]现在参考图4,其示出示例性SiPM传感器400,所述SiPM传感器包括限定感测区域405的单光子雪崩光电二极管(SPAD)的阵列。

透镜410可用以提供校正光学器件。

对于透镜系统的给定焦距f,通过下式给出放置于焦点上且尺寸是L x,y的传感器的视角θx,y:
[0064]
[0065]其中:
[0066]接收器透镜的焦距:f
[0067]传感器水平和竖直长度:L x,L y
[0068]传感器视角:θx,y
[0069]图5说明示例性LiDAR装置600。

所述LiDAR装置包括用于通过发射透镜 604发射周期性激光脉冲607的激光源605。

目标608通过接收透镜610漫射并反射激光光子612,且一些光子被反射回SiPM传感器615。

SiPM传感器615将检测到的激光光子和由于噪声引起的一些检测到的光子转换成电信号,所述电信号随后由计时电子装置加时间戳。

根据入射率Φ和光子检测效率(PDE)计算典型输出脉冲宽度τ中检测到的光子k的平均数量,如下:[0070]k=Φ×PDE×τ方程式3
[0071]通常,将SiPM的数字读出的阈值设定为k,以最大化检测事件的概率。

当平均数量为k时检测X光子事件的概率由下式给出:
[0072]
[0073]当使用图6的比较器读出电路将单个阈值设定为特定值h时,每脉冲的单个事件与由如下给出的概率相符:
[0074]
[0075]当h'>h时以概率P(X≥h')发生的所有事件将不被区分,且因此不作为单独事件计数(或计时)。

[0076]参考图7,其说明根据本教导的LiDAR读出电路800。

在光子速率为高的制度中,具有多个阈值使得能够检测到更多数量的事件。

LiDAR读出电路800 被配置为通过将模拟SiPM传感器615的输出提供到被设定为处于对应于单、双、三光子阈值等的不同阈值电压的一系列鉴别器来提供多阈值系统。

这种多通道解决方案能够使TDC 720成功检测到更多事件,而无需在模拟SiPM传感器内部集成读出电路。

增大读出电路800的吞吐量(throughput)允许显著减少采集时间,这对于快速传感器至关重要。

[0077]LiDAR读出电路800包括模拟SiPM传感器615,以用于检测光子并产生模拟SIPM输出信号。

提供多个比较器715A到715D,并且每个比较器具有相关联的阈值,且被配置为将模拟SiPM输出信号与其相关联的阈值进行比较并产生指示比较的比较信号。

时间-数字转换器(TDC)720被配置为从多个比较器715A 到715D接收比较信号并对事件加时间戳。

TDC 720
可被视为非常高精度的计数器/计时器(timer),其可以将事件的时间记录成亚1纳秒分辨率。

TDC可以用于测量光子从激光脉冲到目标608并返回到SiPM传感器615的飞行时间。

[0078]提供放大器710以用于在由比较器715A到715D接收SiPM信号之前放大模拟SiPM输出信号。

放大器710的输出可操作地联接到比较器715A到715D 中的每一个。

分压器725被配置成用于设定比较器715到715D的相应阈值。

分压器725可操作地联接于两个参考节点之间。

参考节点中的一个可操作地联接到电压基准源。

参考节点中的另一个接地或是电压电平低于另一参考节点的节点。

多个电阻器735A到735D可操作地联接于两个参考节点之间。

分压器725 设定每个比较器715A到715D的对应电压电平。

每个比较器的电压阈值电平可不同。

在示例性方面中,比较器715A到715D中的两个或多个的电压电平不同。

基于环境光级别确定每个比较器715A到715D的阈值。

相应比较器的阈值从低阈值到高阈值而顺序递增。

阈值序列可包括单值、双值、三值等。

单值对应于单光子级(single photon level),而双值对应于单光子级的两倍,且三值对应于单光子级的三倍。

[0079]SiPM传感器615位于包括激光源605的LiDAR装置600上。

激光源605 被配置为发出激光脉冲。

在LiDAR装置600上还提供呈发射透镜604和接收透镜610形式的光学器件(optics)。

SiPM传感器605可以是单光子传感器。

另选地,SiPM传感器615可由单光子雪崩光电二极管(SPAD)传感器的总阵列 (summed array)形成。

激光源605可以是人眼安全激光源。

例如,在美国国家标准协会(Ansi)Z136系列或国际标准IEC60825所规定的标准中详细描述了激光源人眼安全限制。

因此,设想激光源605与Ansi Z136或IEC60825标准兼容。

可以固定激光脉冲的平均功率以满足至少一个Ansi Z136和IEC60825标准中规定的人眼安全标准。

并不旨在将本教导限制于通过示例提供的示例性人眼安全标准。

SiPM传感器615可包括微单元矩阵,如图1所说明。

[0080]根据本教导的LiDAR读出电路800的优点很多,其中一些详述如下。

在高入射光子速率的情形下,具有多个阈值消除了动态调整阈值以避免读出饱和或者在信噪比(SNR)方面选择最佳阈值的需要,将并行处理所有阈值,因此构建高SNR直方图,而无需反馈回路来确保更快采集。

对于低反射目标,其中检测到的光子数量较少会增加采集时间,较高的吞吐量允许通过改善直方图的形成来减少采集时间。

图8A的曲线图是由图6的现有技术LiDAR读出电路产生的直方图,所述读出电路具有单光子阈值比较器输出。

此LiDAR读出电路对于低反射目标的操作令人满意,这是因为返回光子(来自环境和激光两者)的数量较少。

图8B的曲线图也使用图6的现有技术LiDAR读出电路产生,所述读出电路使用具有单个阈值的单个比较器。

如所说明,所述现有技术LiDA读出电路对于高反射目标不能令人满意。

返回光子的数量远大于可能使读出链饱和的数量 (在直方图中示出为误导局部峰值中的规则图案)使得难以检测激光峰值。

图 8C的曲线图是根据本教导由图7的现有技术LiDAR读出电路产生的直方图。

图8C中的直方图使用双光子阈值比较器输出产生并且对于高反射目标操作得更好,从而降低了读出的输入事件率,因此解决了由1-光子阈值设定所示出的饱和。

因此,本领域技术人员将理解,通过具有多于单个阈值设定会允许更多光子被有效地计时和记录,而对通常包括在读出中的反馈回路的约束更少。

理想地,在具有取决于系统属性(视角、光条件等)的足够数量的阈值的情况下,通过使所有必要的阈值设定并行而可以完全消除反馈,从而使系统更快,这是因为不需要反馈,这对于快速LiDAR高帧率系统至关重要。

系统中所需的阈值数量可以根据光条件(例如户外100klux)、最大反射率、光学孔径、视角和传感
器PDE 来计算。

根据每脉冲检测到的最小-最大光子的范围,可以指定阈值的数量。

[0081]参考图9,其提供流程图1000,所述流程图说明用于确定相应比较器715A 到715D 的阈值的示例性步骤。

开始噪声级测量过程,步骤1010。

在不激活信号源(激光)的情况下测量噪声级,使得传感器仅暴露于非关联的光。

因此,它的响应是暗噪声和背景光噪声(环境光)及其相关联的散粒噪声的叠加。

放大后,来自放大器的噪声叠加到SiPM响应。

这是比较器的输入。

因此,这是必须测量以设定校正阈值的电压V噪声,步骤1020。

阈值可以设定为αV噪声,其中α是用于噪声抑制的任意值,通常>1,步骤1025。

一旦设定阈值,便可以进行实际测量,且因此可以激活激光源,步骤1030。

随后,如先前参考图8所描述地操作LiDAR系统,步骤1035。

[0082]参考图10,其说明可用以测量噪声级的示例性电路1050,如参考流程图1000 所描述的。

先前描述的部件由类似的附图标记指示。

阈值确定电路1052可操作地联接于放大器710与比较器715之间。

阈值确定电路1052包括示例性实施例中的开关1055、模拟-数字转换器(ADC)1060和数字-模拟转换器(DAC)1065。

在步骤1020期间,当主动确定噪声级时,开关1055闭合,使得ADC 1060连接到放大器710的输出。

将来自SiPM 615的代表噪声级的放大信号中继到ADC 1060,并且将代表噪声级的数字值与任意值α一起从ADC 1060输出到DAC 1065。

所述放大信号和数字值两者均被存储,直到需要下一个阈值分析。

在测量噪声级时,不激活激光源605。

在步骤1035中,断开开关1055,由此断开ADC 1060。

激活激光源605,并且将来自放大器710的放大信号中继到比较器715,所述比较器设定有如先前所确定的阈值电平。

当LiDAR系统1050扫描另一个点/目标时,通过重复步骤1020计算新的阈值电平。

[0083]在光子速率为高的制度中,具有多个阈值使得能够检测到更多数量的事件。

LiDAR读出电路800被配置为通过将模拟SiPM传感器615的输出提供到以与单、双、三光子阈值等对应的不同阈值电压而设定的一系列鉴别器来提供多阈值系统。

这种多通道解决方案能够使TDC 720成功检测到更多事件,而无需在模拟SiPM传感器内部集成读出电路。

增大读出电路800的吞吐量允许显著减少采集时间,这对于快速传感器至关重要。

[0084]LiDAR读出电路800包括模拟SiPM传感器615,以用于检测光子并产生模拟SIPM输出信号。

提供多个比较器715A到715B,且每个比较器具有相关联的阈值,且被配置为将模拟SiPM输出信号与其相关联的阈值进行比较并产生指示比较的比较信号。

时间数字转换器(TDC)720被配置为从多个比较器715A 到715D接收比较信号。

TDC 720可被视为非常高精度的计数器/计时器,其可以将事件的时间记录成亚1纳秒分辨率。

TDC可以用于测量光子从激光脉冲到目标608并返回到SiPM传感器615的飞行时间。

[0085]每当来自环境的噪声改变时,可以重复此过程。

例如,在LiDAR系统中,当传感器指向不同的目标时,它们的不同反射率决定了必须正确测量的不同噪声级。

本领域技术人员将理解,所提出的多阈值LiDAR系统通过限定数量的预设阈值的可用性消除了对单阈值设定的需要。

在设计过程中限定阈值的数量,且因此限定比较器的数量,所述过程考虑了入射光级别的范围,所述入射光级别的范围可根据其应用而按照LiDAR系统的光学设定(视角和孔径)以及最小-最大背景光级别来计算得到。

[0086]参考图11,其说明也根据本教导的另一LiDAR读出电路1100。

LiDAR读出电路1100基本上类似于LiDAR读出电路800,且相同部件由类似附图标记表示。

所述读出电路之间的主要区别在于,使用数字模拟转换器(DAC)1105而非使用分压器来设定LiDAR读出电路1100
中的阈值。

否则,LiDAR读出电路 1100的操作基本上类似于LiDAR读出电路800的操作。

[0087]本领域技术人员将理解,在不脱离本实用新型的范围的情况下,可以对上述实施例进行各种修改。

以这种方式,应理解,仅在根据所附权利要求认为必要的范围内限制教导。

术语半导体光电倍增器旨在覆盖任何固态光电倍增器装置,例如硅光电倍增器[SiPM]、微像素光子计数器[MPPC]、微像素雪崩光电二极管 [MAPD],但不限于此。

[0088]类似地,当在说明书中使用时,措辞“包括”用于指出存在所述特征、整数、步骤或部件,但不排除存在或添加一个或多个附加特征、整数、步骤、部件或其群组。

图1
图2
图3
图4
图5
图6
图7
图8A
图8B
图8C
图9
图10
图11。

相关文档
最新文档