高考数学一轮复习第十一章概率11.2古典概型课件文新人教B版
高三数学一轮复习 第11章第1课时课件
两个计数原理的综合应用
对于某些复杂的问题,有时既要用分类计数原理, 又要用分步计数原理,重视两个原理的灵活运用, 并注意以下几点: (1)认真审题,分析题目的条件、结论,特别要理 解题目中所讲的“事情”是什么,完成这件事情 的含义和标准是什么. (2)明 确 完 成 这 件 事 情 需 要 “ 分 类 ” 还 是 “ 分
2.混合问题一般是先分类再分步. 3.分类时标准要明确,做到不重复不遗漏. 4.要恰当画出示意图或树状图,使问题的分
析更直观、清楚,便于探索规律.
从近两年的高考试题来看,分类加法计数 原理和分步乘法计数原理是考查的热 点.题型为选择题、填空题,分值在5分左 右,属中档题.两个计数原理较少单独考 查,一般与排列、组合的知识相结合命 题.
(2010·广东卷)为了迎接 2010 年广州亚运会,某大
楼安装了 5 个彩灯,它们闪亮的顺序不固定,每
个彩灯只能闪亮红、橙、黄、绿、蓝中的一种颜
色,且这 5 个彩灯所闪亮的颜色各不相同,记这 5
个彩灯有序地各闪亮一次为一个闪烁,在每个闪
烁中,每秒钟有且仅有一个彩灯闪亮,而相邻两
个闪烁的时间间隔均为 5 秒,如果要实现所有不
(2)确定第二象限的点,可分两步完成:第一 步确定 a,由于 a<0,所以有 3 种确定方法; 第二步确定 b,由于 b>0,所以有 2 种确定方 法.由分步乘法计数原理,得到第二象限点 的个数是 3×2=6.
(3)点 P(a,b)在直线 y=x 上的充要条件是 a =b.因此 a 和 b 必须在集合 M 中取同一元素, 共有 6 种取法,即在直线 y=x 上的点有 6 个.由(1)得不在直线 y=x 上的点共有 36- 6=30(个).
人教B版高考总复习一轮数学精品课件 第十一章 第四节 随机事件的概率与古典概型
发生的可能性大小都相等
(简称为等可能性),则称这样的随机试验为古
典概率模型,简称为古典概型.
(2)公式:假设样本空间含有n个样本点,如果事件C包含有m个样本点,则
P(C)=
.
(3)古典概型的概率性质:
①0≤P(A)≤1;
②P()=1-P(A),即 P(A)+P()=1;
可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的
路径.
解 (1)由已知共调查了 100 人,其中 40 分钟内不能赶到火车站的有
12+12+16+4=44(人),用频率估计相应的概率为
44
P= =0.44.
100
(2)选择 L1 的有 60 人,选择 L2 的有 40 人,故由调查结果得频率为
续保人,续保人本年度的保费与其上年度出险次数的关联如下:
上年度出险次数 0
1
2
3
4
保费/元
0.85a
a
1.25a
1.5a
1.75a
≥5
2a
随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:
出险次数
0
1
2
3
4
≥5
频数
60
50
30
30
20
10
(1)记A为事件:“一续保人本年度的保费不高于基本保费”,求P(A)的估计值;
0.85a×0.30+a×0.25+1.25a×0.15+1.5a×0.15+1.75a×0.10+2a×0.05=1.
2022版高考数学大一轮复习第11章概率第2讲古典概型与几何概型2
第十一章概率第二讲古典概型与几何概型1。
[2021长春市第一次质量监测]张老师居住的一条街上,行驶着甲、乙两路公交车,这两路公交车的数目相同,并且都是每隔十分钟就到达车站一辆(即停即走)。
张老师每天早晨都是在6:00到6:10之间到达车站乘车到学校,这两条公交线路对他是一样的,都可以到达学校,甲路公交车的到站时间是6:09,6:19,6:29,6:39,…,乙路公交车的到站时间是6:00,6:10,6:20,6:30,…,则张老师乘坐上甲路公交车的概率是() A.10%B。
50%C。
60%D。
90%2。
[2021安徽省示范高中联考]在以正五边形ABCDE的顶点为顶点的三角形中,任取一个,是钝角三角形的概率()A。
12B.13C。
14D.233。
[2021石家庄质检]北京冬奥会将于2022年2月4日到2022年2月20日在北京和张家口举行.申奥成功后,中国邮政陆续发行多款邮票,图案包括冬奥会会徽“冬梦”、冬残奥会会徽“飞跃”、冬奥会吉祥物“冰墩墩”、冬残奥会吉祥物“雪容融”、多种冰上运动等.现从2枚会徽邮票、2枚吉祥物邮票、1枚冰上运动邮票共5枚邮票中任取3枚,则恰有1枚吉祥物邮票的概率为()A.310B.12C。
35D。
7104。
[2021晋南高中联考]把分别写有1,2,3,4的四张卡片全部分给甲、乙、丙三个人,每人至少一张,且若分得的卡片超过一张,则必须是连号,那么2,3连号的概率为 ( )A.23B .13C 。
35D 。
145。
[2021贵阳四校第一次联考][条件创新]在区间[-2,2]内随机取一个数x ,则事件“y ={2x ,x ≤0,x +1,x >0,且y ∈[12,2]”发生的概率为( )A.78B 。
58C 。
38D 。
126。
[2021广东珠海模拟][与音乐结合]现有8位同学参加音乐节演出活动,每位同学都会拉小提琴或吹长笛,已知5人会拉小提琴,5人会吹长笛,现从这8人中随机选一人上场演出,恰好选中两种乐器都会演奏的同学的概率是 ( )A.14B 。
数学人教版一轮复习课件:第11章第2讲 古典概型
画出树状图如图11-2-1所示.
图 11-2-1
由图12-2-1可知,所有的基本事件共有25个,满足题意的基本事件有10个,故
10
所求概率为
25
=
2
.
5
考法1 古典概型的求法
(2)(排列、组合法)不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,
2
从中随机选取两个不同的数,有C10
古典概型,在高考中常与平面向量、集合、函数、数列、解析几何、
命题分 统计等知识交汇命题,命题角度及背景新颖,考查知识全面,能力要
析预测 求较高.本部分内容重点考查数学建模与数学运算素养.
在2022年高考备考过程中要注意古典概型与数学文化、实际
生活密切联系的问题,要加强实际应用问题的训练.
考点帮·必备知识通关
243 331 112
342 241 244 431 233 214 344 142 134
由此可以估计,恰好第三次就停止摸球的概率为
1
9
1
6
2
9
5
18
A. B. C. D.
考法2 随机模拟的应用
解析 由18组随机数得,恰好在第三次停止摸球的有142,112,241,142,共4
4
组,所以恰好第三次就停止摸球的概率约为
年VIP
月VIP
连续包月VIP
VIP专享文档下载特权
每月专享9次VIP专享文档下载特权,自VIP生效
享受60次VIP专享文档下载特权,一次发放,全 VIP专享文档下载特权自VIP生效起每月发放一次,每次发放的特权有
起每月发放一次,持续有效不清零。自动续费,
年内有效。
效期为1个月,发放数量由您购买的VIP类型决定。
2023版高考数学一轮总复习11-1随机事件古典概型与几何概型课件
Ω的几何度量
考法一 古典概型概率的求法 1.求解古典概型概率的步骤
2.基本事件个数的确定方法 1)列举法:此法适合于基本事件个数较少的古典概型. 2)列表法:此法适合于从多个元素中选定两个元素的试验,也可看成坐标 法.
3)画树状图法:画树状图法是进行列举的一种常用方法,适用于有顺序的 问题及较复杂问题中基本事件个数的探求. 4)运用排列组合知识计算.
A39 7
答案 D
创新 生活中的概率问题 1.概率问题常与生活实际或数学文化相结合,主要考查学生的逻辑推 理、数据分析、数学抽象等核心素养. 2.解决这类问题的关键:①认真审题,把握信息;②弄清提供的问题情境的 意义;③抽象转化成数学问题,应用熟悉的数学知识解决.
例1 (2021湖南湘潭一模,7)德国心理学家艾宾浩斯研究发现,遗忘在学习 之后立即开始,而且遗忘的进程并不是均匀的.最初遗忘速度很快,以后逐 渐减慢.他认为“保持和遗忘是时间的函数”.他用无意义音节(由若干音 节字母组成,能够读出,但无内容意义,即不是词的音节)作为记忆材料,用 节省法计算保持和遗忘的数量,并根据试验结果绘成描述遗忘进程的曲 线,即著名的艾宾浩斯遗忘曲线(如图所示).若一名学生背了100个英语单 词,一天后,该学生在这100个英语单词中随机听写2个英语单词,以频率代 替概率,不考虑其他因素,则该学生恰有1个单词不会的概率大约为 ( )
m=5+4+3+2+1=15,则取到的整数十位数字比个位数字大的概率P= m =15
n 25
=3.
5
答案 B
考法二 几何概型概率的求法
例2 (2021辽宁辽南协作体联考,9)1876年4月1日,加菲尔德在《新英格兰 教育日志》上发表了勾股定理的一种证明方法,即在如图的直角梯形 ABCD中,利用“两个全等的直角三角形和一个等腰直角三角形的面积之 和等于直角梯形的面积”,可以简洁明了地推证出勾股定理.1881年加菲 尔德就任美国第二十任总统.后来,人们为了纪念他对勾股定理直观、易 懂的证明,就把这一证明方法称为“总统证法”.如图,设∠ECB=60°,在梯 形ABCD中随机取一点,则此点取自等腰直角△CDE(阴影部分)中的概率 是() A.2(2- 3 ) B.2- 3 C. 3 -1 D.2( 3-1)
2025年高考数学一轮复习 第十一章 -第三节 随机事件的概率与古典概型【课件】
分布
第三节 随机事件的概率与古典概型
1
1 强基础 知识回归
2
2 研考点 题型突破
1.了解随机事件发生的不确定性和频率的稳定性;了解概率的意义以及频率与概率的区别;
课 了解两个互斥事件的概率加法公式.
标 2.理解古典概型及其概率计算公式;会计算一些随机事件所包含的样本点及事件发生的概
1
0
必然事件的概率: Ω =___,不可能事件的概率
⌀ =___.
五、事件的关系与运算
名称
条件
包含关系
若发生,则一定发生
相等关系
⊇
若 ⊇ 且_______
并(和)
事件
发生或发生
结论
事件包含事件
(事件包含于事件)
事件与事件相等
事件与事件的并事件
(或和事件)
符号表示
明确可知
(2)试验的所有可能结果是__________的,并且不止一个;
(3)每次试验总是恰好出现这些可能结果中的一个,但事先不能确定出现哪一个结果.
二、样本点和样本空间
定义
样本点
每个可能的基本结果
我们把随机试验的____________________称为样本点
样本空间 全体样本点的集合称为试验的样本空间
随机事件
本点的事件称为基本事件.随机事件一般用大写字母,,,⋯ 表示.在每次
试验中,当且仅当中某个样本点出现时,称为事件发生
必然事件
不可能事件
Ω 作为自身的子集,包含了所有的样本点,在每次试验中总有一个样本点发
必然事件
生,所以Ω 总会发生,我们称Ω 为__________
不可能
高三数学一轮复习 第十一章 第2课时 古典概型课件
3.概率的一般加法公式 P(A∪B)=P(A)+P(B)- P(A∩B) 公式使用中要注意: (1)公式的作用是求 A∪B 的概率,当 A∩B=∅时, A、B 互斥,此时 P(A∩B)=0,∴P(A∪B)=P(A) +P(B); (2)要计算 P(A∪B),需要求 P(A)、P(B),更重要 的是把握事件 A∩B,并求其概率;
(3)记“至少摸出 1 个黑球”为事件 B,则事 件 B 包含的基本事件为 ab,ac,ad,ae,bc, bd,be,共 7 个基本事件. 所以 P(B)=170=0.7. 答:至少摸出 1 个黑球的概率为 0.7.
求较复杂的古典概型概率
对于较复杂事件的概率,关键是理解题目的 实际含义,把实际问题转化为概率模型,用 分析法、列表法求出基本事件的总数,必要 时将所求事件转化成彼此互斥的事件的和, 或者先去求对立事件的概率,进而再用互斥 事件的概率加法公式或对立事件的概率公式 求出所求事件的概率.
(3)该公式可以看作一个方程,知三可求一.
从近两年的高考试题来看,古典概型是高考 的热点,可在选择题、填空题中单独考查, 也可在解答题中与统计或随机变量的分布列 一起考查,属容易或中档题.以考查基本概 念、基本运算为主.
(本小题满分12分)(2010·天津卷)有编号为A1, A2,…,A10的10个零件,测量其直径(单位: cm),得到下面数据:
解析: 由集合 P={x|x(x2+10x+24)=0} 可得 P={-6,-4,0}, 由 Q={y|y=2n-1,1≤n≤2,n∈N*},可得 Q ={1,3}, M=P∪Q={-6,-4,0,1,3}. 因为点 A(x′,y′)的坐标 x′∈M,y′∈M, 所以满足条件的 A 点共有 5×5=25 个. (1)正 好在第 三象限的 点有 (- 6,- 6), (- 4, -6),(-6,-4),(-4,-4)4 个点.
2022数学第十一章概率11.2古典概型学案文含解析新人教A版
11。
2古典概型必备知识预案自诊知识梳理1.基本事件在一次试验中,我们常常要关心的是所有可能发生的基本结果,它们是试验中不能再分的最简单的随机事件,其他事件可以用它们来描绘,这样的事件称为。
2.基本事件的特点(1)任何两个基本事件是的.(2)任何事件(除不可能事件)都可以表示成的和.3。
古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型。
(1)有限性:试验中所有可能出现的基本事件.(2)等可能性:每个基本事件出现的可能性。
4。
古典概型的概率公式.P(A)=A包含的基本事件的个数基本事件的总数1。
任一随机事件的概率都等于构成它的每一个基本事件概率的和。
2。
求试验的基本事件数及事件A包含的基本事件数的方法有列举法、列表法和树状图法。
考点自诊1.判断下列结论是否正确,正确的画“√”,错误的画“×”。
(1)在一次古典概型试验中,其基本事件的发生一定是等可能的.()(2)基本事件的概率都是1n。
若某个事件A包含的结果有m个,则P(A)=mn.()(3)掷一枚质地均匀的硬币两次,出现“两个正面”“一正一反"“两个反面”,这三个结果是等可能事件.()(4)在古典概型中,如果事件A中基本事件构成集合A,所有的基本事件构成集合I,那么事件A的概率为card(A)card(I)。
()(5)从1,2,3,4,5中任取出两个不同的数,其和为5的概率是0。
2.()2.某同学打算编织一条毛线围巾送给妈妈,决定从妈妈喜欢的白色、黄色和紫色中随机选择两种颜色的毛线编织,那么这条围巾是由白色、紫色两种颜色的毛线编织的概率是()A.14B.13C。
12D.343.(2019全国3,3)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是()A。
16B。
14C。
13D.124.从集合A={1,3,5,7,9}和集合B={2,4,6,8}中各取一个数,那么这两个数之和除以3余1的概率是()A。
人教版高中总复习一轮数学精品课件 第11章 概率 11.2 古典概型、条件概率与全概率公式
P(Ai)>0,i=1,2,…,n,则对任意的事件 B⊆Ω,有 P(B)= ∑ P(Ai)P(B|Ai).
=1
5.贝叶斯公式
设 A1,A2,…,An 是一组两两互斥的事件,A1∪A2∪…∪An=Ω,且 P(Ai)>0,
P(A|B)= ()
=
0.3×0.5
0.8
=
3
16
.
3
.
16
5.某公司在某地区对商品A进行调查,随机调查了100位购买商品A的顾客
的性别,其中男性顾客18位.已知该地区商品A的购买率为10%,该地区女性
人口占该地区总人口的46%.从该地区中任选一人,若此人是男性,则此人购
买商品A的概率为
1
30
.
10
故所求概率 P=
25
=
2
.
5
(2)将4个1和2个0随机排成一行,则2个0不相邻的概率为( C )
1
A.3
2
B.5
2
C.3
4
D.5
将 4 个 1 和 2 个 0 随机排成一行的总的排法有C62 =15(种),
其中 2 个 0 不相邻的排法有C52 =10(种),
所以 2 个 0
10
不相邻的概率为
( B )
3
A.8
3
B.10
3
C.11
3
D.5
设事件A表示“有1名主任医师被选派”,事件B表示“2名主任医师都被选
派”,则在有1名主任医师被选派的条件下,2名主任医师都被选派的概率为
()
P(B|A)= ()
【精选】高考数学一轮复习第十一章概率11.2古典概型课件文新人教B版
(p1,p2)在圆(x-m)2+y268=51 的内部,则实数m的取值范围
是
.
(3)设集合A={x|x2-3x-10<0,x∈Z},从集合A中任取两个元素a,b,
且ab≠0,则方���������程���2 + ������������2=1
表示焦点在x轴上的双曲线的概率
为.
(4)已知关于x的二次函数f(x)=ax2-4bx+1,设a∈{-
考点1
考点2
考点3
考点 1
古典概型的概率
例1(1)一枚均匀的正方体玩具的各个面上分别标有数字 1,2,3,4,5,6.将这个玩具向上抛掷1次,设事件A表示向上的一面出现 奇数,事件B表示向上的一面出现的数字不超过3,事件C表示向上的 一面出现的数字不小于4,则( )
A.A与B是互斥而非对立事件 B.A与B是对立事件 C.B与C是互斥而非对立事件 D.B与C是对立事件
事件是( ) A.至多有一次中靶 B.两次都中靶 C.只有一次中靶 D.两次都不中靶
关闭
从 5 支彩笔中任取 2 支不同颜色的彩笔,共有(红黄),(红蓝),(红
绿),(红紫),(黄蓝),(黄绿),(黄紫),(蓝绿),(蓝紫),(绿紫)10 种不同情
况,记“取出的 2 支彩笔中含有红色彩笔”为事件 A,则事件 A 包含
白紫,红黄;红白,黄紫;黄紫,红白;红紫,黄白;黄白,红紫,共6种.满足条
件的基本事件是:红黄,白紫;白紫,红黄;红白,黄紫;黄紫,红白,共4种.
故所求事件的概率为 4
6
=
23.
(方法二)若认为两个花坛没有区别,总的基本事件是:红黄,白紫;红
白,黄紫;红紫,黄白,共3种.满足条件的基本事件是:红黄,白紫;红白, 黄紫,共2种.故所求事件的概率为23 .
高考数学大一轮复习 第十一章 概率 11.2 古典概型教师用书 文 新人教版-新人教版高三全册数学试
2018版高考数学大一轮复习 第十一章 概率 11.2 古典概型教师用书 文 新人教版1.基本事件的特点(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和. 2.古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型. (1)试验中所有可能出现的基本事件只有有限个; (2)每个基本事件出现的可能性相等.3.如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是1n ;如果某个事件A 包括的结果有m 个,那么事件A 的概率P (A )=mn.4.古典概型的概率公式P (A )=A 包含的基本事件的个数基本事件的总数.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.( × )(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.( × )(3)从市场上出售的标准为500±5 g 的袋装食盐中任取一袋,测其重量,属于古典概型.( × )(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为13.( √ )(5)从1,2,3,4,5中任取出两个不同的数,其和为5的概率是0.2.( √ )(6)在古典概型中,如果事件A 中基本事件构成集合A ,且集合A 中的元素个数为n ,所有的基本事件构成集合I ,且集合I 中元素个数为m ,则事件A 的概率为n m.( √ )1.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) A.12 B.13 C.14 D.16 答案 B解析 基本事件的总数为6,构成“取出的2个数之差的绝对值为2”这个事件的基本事件的个数为2,所以所求概率P =26=13,故选B.2.(2016·)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为( ) A.15 B.25 C.825 D.925 答案 B解析 从甲、乙等5名学生中随机选2人共有10种情况,甲被选中有4种情况,则甲被选中的概率为410=25.3.(2015·课标全国Ⅰ)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A.310B.15C.110D.120 答案 C解析 从1,2,3,4,5中任取3个不同的数共有如下10种不同的结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),其中勾股数只有(3,4,5),所以概率为110.故选C. 4.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为________.答案3 5解析取两个点的所有情况为10种,所有距离不小于正方形边长的情况有6种,概率为610=35.5.(教材改编)同时掷两个骰子,向上点数不相同的概率为________.答案5 6解析掷两个骰子一次,向上的点数共6×6=36(种)可能的结果,其中点数相同的结果共有6个,所以点数不同的概率P=1-66×6=56.题型一基本事件与古典概型的判断例1 (1)有两颗正四面体的玩具,其四个面上分别标有数字1,2,3,4,下面做投掷这两颗正四面体玩具的试验:用(x,y)表示结果,其中x表示第1颗正四面体玩具出现的点数,y表示第2颗正四面体玩具出现的点数.试写出:①试验的基本事件;②事件“出现点数之和大于3”包含的基本事件;③事件“出现点数相等”包含的基本事件.(2)袋中有大小相同的5个白球,3个黑球和3个红球,每球有一个区别于其他球的编号,从中摸出一个球.①有多少种不同的摸法?如果把每个球的编号看作一个基本事件建立概率模型,该模型是不是古典概型?②若按球的颜色为划分基本事件的依据,有多少个基本事件?以这些基本事件建立概率模型,该模型是不是古典概型?解(1)①这个试验的基本事件为(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).②事件“出现点数之和大于3”包含的基本事件为(1,3),(1,4),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).③事件“出现点数相等”包含的基本事件为(1,1),(2,2),(3,3),(4,4).(2)①由于共有11个球,且每个球有不同的编号,故共有11种不同的摸法.又因为所有球大小相同,因此每个球被摸中的可能性相等,故以球的编号为基本事件的概率模型为古典概型.②由于11个球共有3种颜色,因此共有3个基本事件,分别记为A:“摸到白球”,B:“摸到黑球”,C:“摸到红球”,又因为所有球大小相同,所以一次摸球每个球被摸中的可能性均为111,而白球有5个,故一次摸球摸到白球的可能性为511,同理可知摸到黑球、红球的可能性均为3 11,显然这三个基本事件出现的可能性不相等,所以以颜色为划分基本事件的依据的概率模型不是古典概型.思维升华一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特点——有限性和等可能性,只有同时具备这两个特点的概型才是古典概型.下列试验中,古典概型的个数为( )①向上抛一枚质地不均匀的硬币,观察正面向上的概率;②向正方形ABCD内,任意抛掷一点P,点P恰与点C重合;③从1,2,3,4四个数中,任取两个数,求所取两数之一是2的概率;④在线段[0,5]上任取一点,求此点小于2的概率.A.0 B.1 C.2 D.3答案 B解析 ①中,硬币质地不均匀,不是等可能事件, 所以不是古典概型;②④的基本事件都不是有限个,不是古典概型; ③符合古典概型的特点,是古典概型. 题型二 古典概型的求法例2 (1)(2015·某某)袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________. 答案 56解析 设取出的2只球颜色不同为事件A .基本事件有:(白,红),(白,黄),(白,黄),(红,黄),(红,黄),(黄,黄)共6种,事件A 包含5种.故P (A )=56.(2)(2016·某某)某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x ,y .奖励规则如下:a .若xy ≤3,则奖励玩具一个;b .若xy ≥8,则奖励水杯一个;c .其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀,小亮准备参加此项活动. ①求小亮获得玩具的概率;②请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.解 用数对(x ,y )表示儿童参加活动先后记录的数,则基本事件空间Ω与点集S ={(x ,y )|x ∈N ,y ∈N,1≤x ≤4,1≤y ≤4}一一对应.因为S 中元素的个数是4×4=16,所以基本事件总数n =16. ①记“xy ≤3”为事件A , 则事件A 包含的基本事件共5个, 即(1,1),(1,2),(1,3),(2,1),(3,1). 所以P (A )=516,即小亮获得玩具的概率为516.②记“xy ≥8”为事件B ,“3<xy <8”为事件C . 则事件B 包含的基本事件共6个,即(2,4),(3,3),(3,4),(4,2),(4,3),(4,4). 所以P (B )=616=38.事件C 包含的基本事件共5个,即(1,4),(2,2),(2,3),(3,2),(4,1). 所以P (C )=516.因为38>516,所以小亮获得水杯的概率大于获得饮料的概率. 引申探究1.本例(1)中,若将4个球改为颜色相同,标号分别为1,2,3,4的四个小球,从中一次取两球,求标号和为奇数的概率.解 基本事件数仍为6.设标号和为奇数为事件A ,则A 包含的基本事件为(1,2),(1,4),(2,3),(3,4),共4种, 所以P (A )=46=23.2.本例(1)中,若将条件改为有放回地取球,取两次,求两次取球颜色相同的概率. 解 基本事件为(白,白),(白,红),(白,黄),(白,黄),(红,红),(红,白),(红,黄),(红,黄),(黄,黄),(黄,白),(黄,红),(黄,黄),(黄,黄),(黄,白),(黄,红),(黄,黄),共16种,其中颜色相同的有6种,故所求概率为P =616=38.思维升华 求古典概型的概率的关键是求试验的基本事件的总数和事件A 包含的基本事件的个数,这就需要正确列出基本事件,基本事件的表示方法有列举法、列表法和树状图法,具体应用时可根据需要灵活选择.(1)(2016·全国乙卷)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ) A.13 B.12 C.23 D.56 答案 C解析 从4种颜色的花中任选2种种在一个花坛中,余下2种种在另一个花坛,有((红黄),(白紫)),((白紫),(红黄)),((红白),(黄紫)),((黄紫),(红白)),((红紫),(黄白)),((黄白),(红紫)),共6种种法,其中红色和紫色不在一个花坛的种法有((红黄),(白紫)),((白紫),(红黄)),((红白),(黄紫)),((黄紫),(红白)),共4种,故所求概率为P =46=23,故选C. (2)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)参加书法社团未参加书法社团参加演讲社团 8 5 未参加演讲社团230①从该班随机选1名同学,求该同学至少参加上述一个社团的概率;②在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A 1,A 2,A 3,A 4,A 5,3名女同学B 1,B 2,B 3.现从这5名男同学和3名女同学中各随机选1人,求A 1被选中且B 1未被选中的概率.解 ①由调查数据可知,既未参加书法社团又未参加演讲社团的有30人, 故至少参加上述一个社团的共有45-30=15(人),所以从该班随机选1名同学,该同学至少参加上述一个社团的概率为P =1545=13.②从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成的基本事件有 {A 1,B 1},{A 1,B 2},{A 1,B 3},{A2,B1},{A2,B2},{A2,B3},{A3,B1},{A3,B2},{A3,B3},{A4,B1},{A4,B2},{A4,B3},{A5,B1},{A5,B2},{A5,B3},共15个.根据题意,这些基本事件的出现是等可能的,事件“A1被选中且B1未被选中”所包含的基本事件有{A1,B2},{A1,B3},共2个.因此,A1被选中且B1未被选中的概率为P=215.题型三古典概型与统计的综合应用例3 (2015·某某)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工.根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为:[40,50),[50,60),…,[80,90),[90,100].(1)求频率分布直方图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60)的受访职工中,随机抽取2人,求此2人的评分都在[40,50)的概率.解(1)因为(0.004+a+0.018+0.022×2+0.028)×10=1,所以a=0.006.(2)由所给频率分布直方图知,50名受访职工评分不低于80的频率为(0.022+0.018)×10=0.4,所以该企业职工对该部门评分不低于80的概率的估计值为0.4.(3)受访职工中评分在[50,60)的有50×0.006×10=3(人),记为A1,A2,A3;受访职工中评分在[40,50)的有50×0.004×10=2(人),记为B1,B2,从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是{A1,A2},{A1,A3},{A 1,B 1},{A 1,B 2},{A 2,A 3},{A 2,B 1},{A 2,B 2},{A 3,B 1},{A 3,B 2},{B 1,B 2}.又因为所抽取2人的评分都在[40,50)的结果有1种,即{B 1,B 2},故所求的概率为P =110.思维升华 有关古典概型与统计结合的题型是高考考查概率的一个重要题型,已成为高考考查的热点.概率与统计结合题,无论是直接描述还是利用频率分布表、频率分布直方图、茎叶图等给出信息,只要能够从题中提炼出需要的信息,则此类问题即可解决.海关对同时从A ,B ,C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.地区 ABC数量50150100(1)求这6件样品中来自A ,B ,C 各地区商品的数量;(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.解 (1)因为样本容量与总体中的个体数的比是 650+150+100=150,所以样本中包含三个地区的个体数量分别是 50×150=1,150×150=3,100×150=2.所以A ,B ,C 三个地区的商品被选取的件数分别是1,3,2. (2)设6件来自A ,B ,C 三个地区的样品分别为A ;B 1,B 2,B 3;C 1,C 2.则从6件样品中抽取的这2件商品构成的所有基本事件为{A ,B 1},{A ,B 2},{A ,B 3},{A ,C 1},{A ,C 2},{B 1,B 2},{B 1,B 3},{B 1,C 1},{B 1,C 2},{B 2,B 3},{B 2,C 1},{B 2,C 2},{B 3,C 1},{B 3,C 2},{C 1,C 2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D :“抽取的这2件商品来自相同地区”,则事件D 包含的基本事件有{B 1,B 2},{B 1,B 3},{B 2,B 3},{C 1,C 2},共4个.所以P (D )=415,即这2件商品来自相同地区的概率为415.六审细节更完善典例 (12分)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4. (1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求n <m +2的概率.(1)基本事件为取两个球↓(两球一次取出,不分先后,可用集合的形式表示) 把取两个球的所有结果列举出来 ↓{1,2},{1,3},{1,4},{2,3},{2,4},{3,4} ↓两球编号之和不大于4(注意:和不大于4,应为小于4或等于4) ↓{1,2},{1,3}↓利用古典概型概率公式求解P =26=13(2)两球分两次取,且有放回↓(两球的编号记录是有次序的,用坐标的形式表示) 基本事件的总数可用列举法表示↓(1,1),(1,2),(1,3),(1,4) (2,1),(2,2),(2,3),(2,4) (3,1),(3,2),(3,3),(3,4) (4,1),(4,2),(4,3),(4,4)↓(注意细节,m 是第一个球的编号,n 是第2个球的编号)n <m +2的情况较多,计算复杂↓(将复杂问题转化为简单问题) 计算n ≥m +2的概率 ↓n ≥m +2的所有情况为(1,3),(1,4),(2,4)↓P 1=316↓(注意细节,P 1=316是n ≥m +2的概率,需转化为其对立事件的概率)n <m +2的概率为1-P 1=1316.规X 解答解 (1)从袋中随机取两个球,其一切可能的结果组成的基本事件有{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6个.从袋中取出的球的编号之和不大于4的事件有{1,2},{1,3},共2个. 因此所求事件的概率P =26=13.[4分](2)先从袋中随机取一个球,记下编号为m ,放回后,再从袋中随机取一个球,记下编号为n ,其一切可能的结果有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.[6分] 又满足条件n ≥m +2的事件为(1,3),(1,4),(2,4),共3个, 所以满足条件n ≥m +2的事件的概率为P 1=316.[10分]故满足条件n <m +2的事件的概率为1-P1=1-316=1316.[12分]1.(2016·全国丙卷)小敏打开计算机时,忘记了开某某码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( )A.815B.18C.115D.130答案 C解析第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,所以总的基本事件的个数为15,密码正确只有一种,概率为115,故选C.2.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )A.23B.25C.35D.910答案 D解析由题意知,从五位大学毕业生中录用三人,所有不同的可能结果有(甲,乙,丙),(甲,乙,丁),(甲,乙,戊),(甲,丙,丁),(甲,丙,戊),(甲,丁,戊),(乙,丙,丁),(乙,丙,戊),(乙,丁,戊),(丙,丁,戊),共10种,其中“甲与乙均未被录用”的所有不同的可能结果只有(丙,丁,戊)这1种,故其对立事件“甲或乙被录用”的可能结果有9种,所求概率P=910.3.(2015·某某)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为( )A.0.4 B.0.6 C.0.8 D.1答案 B解析设3件合格品为A1,A2,A3,2件次品为B1,B2,从5件产品中任取2件有(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A2,A3),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2),共10种.恰有1件次品有6种,∴P =610=0.6. 4.(2016·某某模拟)设a ∈{1,2,3,4},b ∈{2,4,8,12},则函数f (x )=x 3+ax -b 在区间[1,2]上有零点的概率为( ) A.12 B.58 C.1116 D.34 答案 C解析 由已知f ′(x )=3x 2+a >0,所以f (x )在R 上递增,若f (x )在[1,2]上有零点,则需⎩⎪⎨⎪⎧f 1=1+a -b ≤0,f 2=8+2a -b ≥0,经验证有(1,2),(1,4),(1,8),(2,4),(2,8),(2,12),(3,4),(3,8),(3,12),(4,8),(4,12),共11对满足条件,而总的情况有16种, 故所求概率为1116.5.连掷两次骰子分别得到点数m ,n ,则向量(m ,n )与向量(-1,1)的夹角θ>90°的概率是( )A.512B.712C.13D.12 答案 A解析 ∵(m ,n )·(-1,1)=-m +n <0,∴m >n .基本事件总共有6×6=36(个),符合要求的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),…,(5,4),(6,1),…,(6,5),共1+2+3+4+5=15(个). ∴P =1536=512,故选A.6.(2016·某某模拟)在平面直角坐标系中,从下列五个点:A (0,0),B (2,0),C (1,1),D (0,2),E (2,2)中任取三个,这三点能构成三角形的概率是( )A.25B.35C.45 D .1 答案 C解析 从5个点中取3个点,列举得ABC ,ABD ,ABE ,ACD ,ACE ,ADE ,BCD ,BCE ,BDE ,CDE ,共10个基本事件,而其中ACE ,BCD 两种情况三点共线,其余8个均符合题意,故能构成三角形的概率为810=4 5.7.从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于( )A.110B.18C.16D.15答案 D解析如图所示,从正六边形ABCDEF的6个顶点中随机选4个顶点,可以看作随机选2个顶点,剩下的4个顶点构成四边形,有A、B,A、C,A、D,A、E,A、F,B、C,B、D,B、E,B、F,C、D,C、E,C、F,D、E,D、F,E、F,共15种.若要构成矩形,只要选相对顶点即可,有A、D,B、E,C、F,共3种,故其概率为315=15.8.若A、B为互斥事件,P(A)=0.4,P(A∪B)=0.7,则P(B)=________.答案0.3解析因为A、B为互斥事件,所以P(A∪B)=P(A)+P(B),故P(B)=P(A∪B)-P(A)=0.7-0.4=0.3.9.(2017·某某月考)如右图的茎叶图是甲、乙两人在4次模拟测试中的成绩,其中一个数字被污损,则甲的平均成绩不超过乙的平均成绩的概率为________.答案0.3解析依题意,记题中的被污损数字为x,若甲的平均成绩不超过乙的平均成绩,则有(8+9+2+1)-(5+3+x+5)≤0,x≥7,即此时x的可能取值是7,8,9,因此甲的平均成绩不超过乙的平均成绩的概率P=310=0.3.10.连续2次抛掷一枚骰子(六个面上分别标有数字1,2,3,4,5,6),记“两次向上的数字之和等于m ”为事件A ,则P (A )最大时,m =________. 答案 7解析 1+1=2,1+2=3,1+3=4,1+4=5,1+5=6,1+6=7,2+1=3,2+2=4,2+3=5,2+4=6,2+5=7,2+6=8,…,依次列出m 的可能取值,知7出现次数最多.11.设连续掷两次骰子得到的点数分别为m ,n ,令平面向量a =(m ,n ),b =(1,-3). (1)求事件“a ⊥b ”发生的概率; (2)求事件“|a |≤|b |”发生的概率.解 (1)由题意知,m ∈{1,2,3,4,5,6},n ∈{1,2,3,4,5,6},故(m ,n )所有可能的取法共36种.因为a ⊥b ,所以m -3n =0,即m =3n ,有(3,1),(6,2),共2种, 所以事件a ⊥b 发生的概率为236=118. (2)由|a |≤|b |,得m 2+n 2≤10,有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),共6种,其概率为636=16.12.甲、乙两人用4X 扑克牌(分别是红桃2,红桃3,红桃4,方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一X .(1)设(i ,j )表示甲、乙抽到的牌的牌面数字(如果甲抽到红桃2,乙抽到红桃3,记为(2,3)),写出甲、乙两人抽到的牌的所有情况;(2)若甲抽到红桃3,则乙抽到的牌的牌面数字比3大的概率是多少?(3)甲、乙约定,若甲抽到的牌的牌面数字比乙大,则甲胜;否则,乙胜,你认为此游戏是否公平?请说明理由.解 (1)方片4用4′表示,则甲、乙两人抽到的牌的所有情况为(2,3),(2,4),(2,4′),(3,2),(3,4),(3,4′),(4,2),(4,3),(4,4′),(4′,2),(4′,3),(4′,4),共12种不同的情况.(2)甲抽到3,乙抽到的牌只能是2,4,4′,因此乙抽到的牌的牌面数字大于3的概率为23.(3)甲抽到的牌的牌面数字比乙大,有(3,2),(4,2),(4,3),(4′,2),(4′,3),共5种情况.甲胜的概率为P 1=512,乙胜的概率为P 2=712.因为512<712,所以此游戏不公平.*13.(2015·某某)一辆小客车上有5个座位,其座位号为1,2,3,4,5.乘客P 1,P 2,P 3,P 4,P 5的座位号分别为1,2,3,4,5,他们按照座位号从小到大的顺序先后上车.乘客P 1因身体原因没有坐自己的1号座位,这时司机要求余下的乘客按以下规则就座:如果自己的座位空着,就只能坐自己的座位;如果自己的座位已有乘客就座,就在这5个座位的剩余空位中任意选择座位.(1)若乘客P 1坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出了其中两种坐法,请填入余下两种坐法(将乘客就座的座位号填入表中空格处);(2)若乘客P 1坐到了2号座位,其他的乘客按规则就座,求乘客P 5坐到5号座位的概率. 解 (1)余下两种坐法如下表所示:(2)若乘客P 1坐到了2号座位,其他乘客按规则就座,则所有可能的坐法可用下表表示:于是,所有可能的坐法共8种,设“乘客P 5坐到5号座位”为事件A ,则事件A 中的基本事件的个数为4,所以P (A )=48=12.。
2023版高考数学一轮总复习11-2离散型随机变量及其分布列均值与方差课件
例 (2020山东泰安三模)某水果批发商经销某种水果(以下简称A水果),购 入价为300元/袋,并以360元/袋的价格售出,若前8小时内所购进的A水果 没有售完,则批发商将没售完的A水果以220元/袋的价格低价处理完毕 (根据经验,2小时内完全能够把A水果低价处理完,且当天不再购进).该水 果批发商根据往年的销量,统计了100天内A水果在每天的前8小时的销售 量,制成如下条形统计图.
+M},r=min{n,M}.如果随机变量X的分布列具有上式的形式,那么称随机
变量X服从超几何分布.
4.离散型随机变量的均值与方差
1)均值的定义:一般地,若离散型随机变量X的分布列为
X
x1
x2
…
xi
…
xn
P
p1
p2
…
pi
…
pn
则E(X)=x1p1+x2p2+…+xnpn为随机变量X的均值或数学期望,它反映了离散 型随机变量取值的平均水平.
2
3)=P(ξ=-3)= 1 ,P(ξ=1)=P(ξ=-1)= 3,故随机变量|ξ|的分布列为
8
8
|ξ|
1
故E(|ξ|)=1×3 +3× 1= ,3
4
42
D(|ξ|)=1
3 2
2
×
3+
4
3
3 2
2
×
=14
.故3 选B.
4
答案 B
应用 利用均值、方差进行决策 解决均值、方差实际问题的策略 1)把握“1”实质:随机变量的均值反映了随机变量取值的平均水平,方差 反映了随机变量稳定于均值的程度,它们从整体和全局上刻画了随机变 量,是实际生产中用于方案取舍的重要理论依据. 2)运用“2”策略: ①当均值不同时,两个随机变量取值的水平有区别,可直接对问题作出判断. ②若两随机变量的均值相同或相差不大,则可通过方差来研究两随机变 量的离散程度或者稳定程度,进行决策.
旧教材适用2023高考数学一轮总复习第十一章计数原理概率随机变量及分布列第5讲古典概型课件
求古典概型的概率的关键是求试验的基本事件的总数和事 件 A 包含的基本事件的个数,这就需要正确列出基本事件,基本事件的表示 方法有列举法、列表法和树形图法,具体应用时可根据需要灵活选择.
1.在《周易》中,长横“ ”表示阳爻,两个短横“ ” 表示阴爻.有放回地取阳爻和阴爻三次合成一卦,共有 23=8 种组合方法, 这便是《系辞传》所说“太极生两仪,两仪生四象,四象生八卦”.所谓的 “算卦”,就是两个八卦的叠合,即有放回地取阳爻和阴爻六次,得到六爻, 然后对应不同的解析.在一次所谓“算卦”中得到六爻,这六爻恰好有三个 阳爻和三个阴爻的概率是( )
解法二:从这 30 瓶饮料中任取 2 瓶,至少取到 1 瓶已过保质期的概率 为 P=1-CC222370=12485.
2
PART TWO
核心考向突破
考向一 简单的古典概型
例 1 (1)(2021·全国甲卷)将 4 个 1 和 2 个 0 随机排成一行,则 2 个 0 不
相邻的概率为( )
A.13 C.23
续自然数的概率是( )
A.35
B.25
C.13
D.23
答案 D
解析 取出的两个数是连续自然数的有(1,2),(2,3),(3,4),(4,5), (5,6),共 5 种情况,则取出的两个数不是连续自然数的概率 P=1-C526=1 -155=23.故选 D.
3.(2021·安徽蚌埠教学质量评估)袋子里装有编号分别为“1,2,2,3,
□05 P(A)=
基本事件的总数
.
一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特征 ——有限性和等可能性,只有同时具备这两个特征的概率模型才是古典概 型.正确判断试验的类型是解决概率问题的关键.
高考数学一轮复习 第十一章概率与统计11.2古典概型教学案 理
11.2 古典概型考纲要求1.理解古典概型及其概率计算公式.2.会计算一些随机事件所含的基本事件数及事件发生的概率.1.基本事件有如下特点:(1)任何两个基本事件是______的;(2)任何事件(除不可能事件)都可以表示成__________.2.一般地,一次试验有下面两个特征:(1)有限性,即在一次试验中,可能出现的结果只有有限个,即只有有限个不同的基本事件;(2)等可能性,每个基本事件发生的可能性是相等的,称具有这两个特点的概率模型为古典概型.判断一个试验是否是古典概型,在于该试验是否具有古典概型的两个特征:试验结果的有限性和每一个试验结果出现的等可能性.3.如果一次试验中所有可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是______;如果某个事件A 包含的结果有m 个,那么事件A 的概率P (A )=______.1.从集合A ={2,3,-4}中随机选取一个数记为k ,从集合B ={-2,-3,4}中随机选取一个数记为b ,则直线y =kx +b 不经过第二象限的概率为( ).A .29B .13C .49D .592.先后抛掷两颗质地均匀的骰子,设出现的点数之和是12,11,10的概率依次是P 1,P 2,P 3,则( ).A .P 1=P 2<P 3B .P 1<P 2<P 3C .P 1<P 2=P 3D .P 3=P 2<P 13.从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个数的两倍的概率是__________.4.盒子中共有大小相同的3个白球,1个黑球,若从中随机摸出两个球,则它们颜色不同的概率是__________.一、古典概型及其概率计算【例1】袋中有大小相同的5个白球,3个黑球和3个红球,每球有一个区别于其他球的编号,从中摸出一个球.(1)有多少种不同的摸法?如果把每个球的编号看作一个基本事件建立概率模型,该模型是不是古典概型?(2)若按球的颜色为划分基本事件的依据,有多少个基本事件?以这些基本事件建立概率模型,该模型是不是古典概型?方法提炼1.判断一个概率问题是否为古典概型,关键是看它是否同时满足两个特征:有限性和等可能性,同时满足这两个特征的概率模型才是古典概型.2.求古典概型的概率时,一般是先用列举法把试验所包含的基本事件一一列举出来,然后再找出所求事件A 所包含的基本事件的个数,利用公式P (A )=m n即可求得事件A 的概率.请做演练巩固提升1二、古典概型的应用【例2-1】一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求n <m +2的概率.【例2-2】甲、乙两人用4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.(1)设(i ,j )分别表示甲、乙抽到的牌的数字,写出甲、乙两人抽到的牌的所有情况;(2)若甲抽到红桃3,则乙抽出的牌的牌面数字比3大的概率是多少?(3)甲、乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜,反之,则乙胜.你认为此游戏是否公平,说明你的理由.方法提炼由于古典概型所包含的基本事件的个数是有限的,所以可先用列举法把试验所包含的基本事件一一列举出来,然后再求出某事件A 所包含的基本事件的个数,利用公式P (A )=m n便可求出事件A 的概率.请做演练巩固提升3概率主观题的规范解答【典例】(12分)(2012山东高考)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(2)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.规范解答:(1)标号为1,2,3的三张红色卡片分别记为A ,B ,C ,标号为1,2的两张蓝色卡片分别记为D ,E ,从五张卡片中任取两张的所有可能的结果为:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E ),共10种.(3分)由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的.从五张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为:(A ,D ),(A ,E ),(B ,D ),共3种.(5分)所以这两张卡片颜色不同且它们的标号之和小于4的概率为310.(6分) (2)记F 为标号为0的绿色卡片,从六张卡片中任取两张的所有可能的结果为:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共15种.(8分)由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的.(9分)从六张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为:(A ,D ),(A ,E ),(B ,D ),(A ,F ),(B ,F ),(C ,F ),(D ,F ),(E ,F ),共8种.(11分)所以这两张卡片颜色不同且它们的标号之和小于4的概率为815.(12分) 答题指导:事件A 的概率的计算方法,关键要分清基本事件总数n 与事件A 包含的基本事件数m .因此必须解决以下三个方面的问题:第一,本试验是否是等可能的;第二,本试验的基本事件有多少个;第三,事件A 是什么,它包含的基本事件有多少个.回答好这三个方面的问题,解题才不会出错.1.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( ).A .13B .12C .23D .342.若a ∈{1,2},b ∈{-2,-1,0,1,2},方程x 2+ax +b =0的两根均为实数的概率为( ).A .35B .710C .14D .383.(2012安徽高考)袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球.从袋中任取两球,两球颜色为一白一黑的概率等于( ).A .15B .25C .35D .454.从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于( ).A .110B .18C .16D .155.某日用品按行业质量标准分成五个等级,等级系数X 依次为1,2,3,4,5.现从一批该日用品中随机抽取20(1)若所抽取的205的恰有2件,求a ,b ,c 的值;(2)在(1)的条件下,将等级系数为4的3件日用品记为x 1,x 2,x 3,等级系数为5的2件日用品记为y 1,y 2,现从x 1,x 2,x 3,y 1,y 2这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率.参考答案基础梳理自测知识梳理1.(1)互斥 (2)基本事件的和3.1n m n基础自测1.C 解析:依题意k 和b 的所有可能的取法一共有3×3=9种,其中当直线y =kx +b 不经过第二象限时应有k >0,b <0,一共有2×2=4种,所以所求概率为49. 2.B 解析:先后抛掷两颗骰子点数之和共有36种可能,而点数之和为12,11,10的概率分别为P 1=136,P 2=118,P 3=112. 3.13解析:所有情况共有6种,而其中一个数为另一个数两倍的有2种情况. 故所求概率为26=13. 4.12解析:基本事件总数为6种情况,其中颜色不同的共有3种情况,所以所求概率为P =36=12. 考点探究突破【例1】解:(1)由于共有11个球,且每个球有不同的编号,故共有11种不同的摸法.又因为所有球大小相同,因此每个球被摸中的可能性相等,故以球的编号为基本事件的概率模型为古典概型.(2)由于11个球共有3种颜色,因此共有3个基本事件,分别记为A :“摸到白球”,B :“摸到黑球”,C :“摸到红球”,又因为所有球大小相同,所以一次摸球每个球被摸中的可能性均为111,而白球有5个,故一次摸球摸中白球的可能性为511,同理可知摸中黑球、红球的可能性均为311,显然这三个基本事件出现的可能性不相等,所以以颜色为划分基本事件的依据的概率模型不是古典概型.【例2-1】解:(1)从袋中随机取两个球,其一切可能的结果组成的基本事件有1和2,1和3,1和4,2和3,2和4,3和4,共6个.从袋中取出的球的编号之和不大于4的事件共有1和2,1和3两个.因此所求事件的概率P =26=13. (2)先从袋中随机取一个球,记下编号为m ,放回后,再从袋中随机取一个球,记下编号为n ,其一切可能的结果(m ,n )有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.又满足条件n ≥m +2的事件为(1,3),(1,4),(2,4),共3个,所以满足条件n ≥m +2的事件的概率为P 1=316. 故满足条件n <m +2的事件的概率为1-P 1=1-316=1316. 【例2-2】解:(1)甲、乙两人抽到的牌的所有情况(方片4用4′表示,红桃2,红桃3,红桃4分别用2,3,4表示)为:(2,3),(2,4),(2,4′),(3,2),(3,4),(3,4′),(4,2),(4,3),(4,4′),(4′,2),(4′,3),(4′,4)共12种不同情况.(2)甲抽到3,乙抽到的牌只能是2或4或4′,因此乙抽到的牌的数字大于3的概率为23.(3)由甲抽到的牌的牌面数字比乙大的有(3,2),(4,2),(4,3),(4′,2),(4′,3)共5种,甲胜的概率为P1=512,乙胜的概率为P2=712,∵512<712,∴此游戏不公平.演练巩固提升1.A 解析:由题意得,甲、乙两位同学参加小组的所有可能的情况共3×3=9种,又两位同学参加同一个兴趣小组的种数为3,故概率为39=13.2.B 解析:若方程有两实根,则a2-4b≥0,即a2≥4b.则满足条件的基本事件(a,b)有:(1,0),(2,-1),(2,0),(1,-1),(1,-2),(2,-2),(2,1)共有7种情况,而基本事件总数为10,∴所求概率为710.3.B 解析:记1个红球为A,2个白球为B1,B2,3个黑球为C1,C2,C3,则从中任取2个球,基本事件空间Ω={(A,B1),(A,B2),(A,C1),(A,C2),(A,C3),(B1,B2),(B1,C1),(B1,C2),(B1,C3),(B2,C1),(B2,C2),(B2,C3),(C1,C2),(C1,C3),(C2,C3)},共计15种,而两球颜色为一白一黑的有如下6种:(B1,C1),(B1,C2),(B1,C3),(B2,C1),(B2,C2),(B2,C3),所以所求概率为615=25.4.D 解析:在正六边形中,6个顶点选取4个,种数为15.选取的4点能构成矩形的,只有对边的4个顶点(例如AB与DE),共有3种,∴所求概率为315=15.5.解:(1)由频率分布表得a+0.2+0.45+b+c=1,即a+b+c=0.35.因为抽取的20件日用品中,等级系数为4的恰有3件,所以b=320=0.15. 等级系数为5的恰有2件,所以c=220=0.1.从而a=0.35-b-c=0.1,所以a=0.1,b=0.15,c=0.1.(2)从日用品x1,x2,x3,y1,y2中任取两件,所有可能的结果为:{x1,x2},{x1,x3},{x1,y1},{x1,y2},{x2,x3},{x2,y1},{x2,y2},{x3,y1},{x3,y2},{y1,y2}.设事件A表示“从日用品x1,x2,x3,y1,y2中任取两件,其等级系数相等”,则A包含的基本事件为{x1,x2},{x1,x3},{x2,x3},{y1,y2},共4个.又基本事件的总数为10,故所求的概率P(A)=410=0.4.。