交流伺服驱动器原理及调试 ppt课件
9 交流伺服驱动器原理及调试
①设置位置超差报警检测范围。 ②在位置控制方式下,当位置偏差计数器的计数 值超过本参数值时,伺服驱动器给出位置超差报 警。
电子齿轮
①设置位置指令脉冲的分倍频
②在位置控制方式下,通过对参数设置,可以很方便 地与各种脉冲源相匹配,以达到用户理想的控制分 辨率(即角度/脉冲)
P×G=N×C×4
伺服驱动器
孙海亮
主要内容
一、伺服驱动器的种类及结构
二、伺服驱动器发展趋势 三、 伺服驱动器电气原理: 四、 伺服驱动器的控制原理: 五、伺服驱动器的接口:
六、
与伺服调节有关的参数
七、 进给伺服常见报警
八、进给伺服驱动系统常见故障及处理
一、伺服驱动器的种类及结构
进给驱动装置
交流电源 交流电源
电 控 P 源 制 N 模 模 块 块
例如: 位置指令脉冲方向或速度指令输入取反; 是否允许反馈断线报警 是否允许CCW极限开关输入; 是否允许由系统内部启动SVR-ON控制
伺服运动特性调节有关的参数
位置比例增益
①设定位置环调节器的比例增益。
②设置值越大,增益越高,刚度越大,相同频率指令脉
冲条件下,位置滞后量越小。但数值太大可能会引起
电机电源 反馈
电 源 模 块
… P N P N
控制模块 1
反馈 电机电源
控制模块 2
反馈 电机电源
进给电动机 进给电动机 1 进给电动机 2
(a)集成式 进给驱动装置电源与控制模块的关系
(b)分离式
二、伺服驱动器发展趋势
伺服进给系统的要求
1. 调速范围宽
rn n min/ n max
2. 定位精度高
①设置模拟速度指令的电压值与转速的关 系。设定值为电压对应的转速值.
9__交流伺服驱动器原理及调试
9__交流伺服驱动器原理及调试一、交流伺服驱动器原理交流伺服驱动器是控制伺服电机运行的装置,通过对伺服电机的控制来实现位置和速度的精确控制。
交流伺服驱动器包含了控制电路、功率电路和信号输入输出模块。
控制电路是交流伺服驱动器的核心,其主要功能是对输入的命令信号进行解析,并输出相应的控制信号给伺服电机。
控制电路一般采用数字信号处理器(DSP)或者可编程逻辑器件(FPGA)进行实现,通过对位置和速度信号的处理,输出电机相应的转矩和速度。
功率电路是将控制信号转化为适合伺服电机工作的高电压、大电流信号。
一般来说,功率电路由三相的PWM(inverter)、直流均压드라이버(voltage driver)以及三相电机组成。
PWM负责将电源直流电转化为三相线电压,而直流均压드라이버则将PWM输出的线电压转化为直流电,并稳定输出。
信号输入输出模块是用于与外部设备进行通信的接口,可以接收各种指令信号,控制伺服电机的启停、速度、位置和运动方向等。
二、交流伺服驱动器调试方法1.硬件连接检查:首先检查驱动器与电机之间的连接是否正确,包括电源和信号线是否连接正确,驱动器是否与控制器相连,并确保各个连接口的接触良好。
2.电机参数配置:根据具体的电机型号和驱动器的要求,配置驱动器的电机参数,主要包括极性、转矩常数、转矩限制和速度限制等。
正确的参数配置能够保证电机的正常运行。
3.模式选择:根据具体的应用需求,选择适当的驱动模式,包括位置模式、速度模式和力矩模式等。
不同的模式有不同的控制方式,需要根据实际情况进行选择。
4.零位校准:在运动控制之前,需要对电机进行零位校准,使其回到初始位置。
可以通过手动运动或者自动零位的方式来进行校准。
5.参数调整:根据具体的运动要求,调整驱动器的参数,包括速度环和位置环的参数。
通过合理的参数调整,可以提高电机的控制精度和运动平稳性。
6.故障排查:在调试过程中,如果发现电机无法正常运行或者出现其他异常情况,需要进行故障排查。
交流伺服驱动器原理及调试PPT培训课件
在机器人领域的应用
01
机器人需要具备高度灵活性和精 确性的运动能力,交流伺服驱动 器能够满足这些要求,从而提高 机器人的工作性能。
02
交流伺服驱动器在机器人领域中 通常用于控制机器人的关节、手 臂、行走等部分的运动,实现精 确的姿态控制和轨迹跟踪。
在故障。
听诊法
仔细听驱动器运行时的声音, 判断是否存在异常响动或噪音
。
触摸法
通过触摸驱动器的外壳,感受 其温度和振动情况,判断是否
存在异常。
替换法
用正常工作的部件替换可能存 在故障的部件,以确定故障部
位。
驱动器的寿命与可靠性
寿命预测
预防性维护
根据驱动器的使用情况和维护状况, 预测其使用寿命,提前进行更换或维 修。
调试步骤与方法
初始参数设置
速度控制调试
根据设备实际情况,对交流伺服驱动器的 参数进行初始设置,如电机型号、控制模 式等。
调整速度控制环的参数,测试电机的转速 和响应,确保电机能够按照指令要求进
调整位置控制环的参数,测试电机的定位 精度和跟随性能,确保电机能够准确跟踪 指令位置。
02
交流伺服驱动器的调试
调试前的准备工作
01
02
03
了解设备参数
熟悉交流伺服驱动器的规 格、性能参数以及控制要 求,以便更好地进行调试。
检查硬件连接
确保交流伺服驱动器与电 机、编码器等设备的连接 正确、牢固,无短路或断 路现象。
准备调试工具
准备必要的调试工具,如 示波器、万用表、螺丝刀 等,以便在调试过程中进 行测量和调整。
交流伺服驱动ppt课件
HSV系列伺服有六种输出信号:
①伺服使能
②报警清除 ③偏差计数器清零
④指令脉冲禁止 ⑤CCW驱动禁止 ⑥CW驱动禁止
集电极开路输出;
低电平有效。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
动
力 电
S
源T
整 流 器
控 AC220V
制 电
AC220V
开关电源
源
指 令 信 号
直流 P
制动 N
控制平台
交流
逆
U
变 器
V
电
W
机
PG
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
交流伺服驱动器系统电气原理结构图
伺服连接-位置控制方式
脉冲输入接口的两种驱动方式比较:
差分驱动方式的抗干扰能力强于单端驱动方式,推荐 使用,尤其是在信号电缆较长时;
采用单端驱动方式,会使动作频率降低。
根据脉冲量输入电路,驱动电流10~15mA,限定外部
电源最大电压25V的条件,确定电阻R的数值。
经验数据:VCC=24V,R=1.3~2k; VCC=12V,R=510~820Ω; VCC=5V, R=82~120Ω 。
HSV系列伺服产品的发展
模拟、数字混合型 交流伺服驱动
HSV-9型伺服
(三相220V输入)
全数字型交流伺服、主轴驱动器系列
HSV-16型伺服 (三相220V输入, 集成开关电源)
《交流伺服电动机》PPT课件
此时时 •
•
I k jk I j
•
•
Ek
j Ej
•
•
Uk
jU j
k
k
绕组电压大小与绕组匝数成正比。
Uk 1 Wk
U kW
j
j
两相绕组产生圆形旋转磁场时,加在定子上的
电压分别定义为额定激磁电压Ù jn和额定控制 电状Wj=压 态WÙ。k 时kn ,,并称Uj两n =相U交kn 流伺服电动U机j~Ij 处j于j1E2 j 对称A来自AAB C
D
C
D
B
2. 利用三相电源的任意两相线电压
三相电源三个线电压的位差120°,为了方
便,直接取任意两相线电压使用,若加上系统中 其它元件的相位移,这时加在电动机定子绕组上
的两个电压接近90°的相位差。
RRj
2
j
sR
堵转点(启动点):
n=0 ,s = 1 ,T=T
o
Td
不同转子电阻特性
Tmax T
d Td
Z
RW
RU
2 j
rR
2W
2
j
s
(
x2 R
r2 R
)
机械特性仿真
为使交流伺服电动机转速从0~ns整个运行
范围内都保证其工作的稳定性,其机械特性在整 个范围内都是下垂的,要具有这样的下垂特性,
交流伺服电动机要有足够大的转子电阻,使sm>1。
是,在实际工作中经常是单相或三相电源,极少
有相移90o的两相电源,这就需要想法使现有的电
源改变成具有相移的两相电源,以满足交流伺服
电动机的需要。
1. 利用三相电源的相电压和线电压构成90°的移相
交流伺服电机的工作原理PPT课件
下面以反应式步进电机为例说明步进电机的 结构和工作原理。
三相反应式步进电动机的原理结构图如下:
转子
IA
A
IC C
定子内圆周 定子 均匀分布着六个
磁极,磁极上有
励磁绕组,每两
个相对的绕组组
IB
成一相。采用Y B 连接,转子有四
个齿。
第26页/共67页
1.工作原理 由于磁力线总是要通过磁阻最小的路径闭合,因
第7页/共67页
交流伺服电动机的特点:不仅要求它在静止状 态下,能服从控制信号的命令而转动,而且要求在 电动机运行时如果控制电压变为零,电动机立即停 转。
但如果交流伺服电动机的参数选择和一般单相 异步电动机相似,电动机一经转动,即使控制等于 零,电动机仍继续转动,电动机失去控制,这种现 象称为“自转”。
由机械特性可知:
n=f(T)曲线(U1=常数)
(1) 一定负载转矩下,当磁通不变时,U2 n。
(2) U2=0时,电机立即停转。 电动机反转:改变电枢电压的极性,电动机反转。
第14页/共67页
应用: 直流伺服电机的特性较交流伺服电机硬。通常
应用于功率稍大的系统中,如随动系统中的位置控 制等。
直流伺服电机输出功率一般为1-600W。
加在控制绕组上的控制电压大小变化时,其 产生的旋转磁场的椭圆度不同,从而产生的电磁 转矩也不同,从而改变电动机的转速。
交流伺服电动机n 的机械特性如图所示。
o
不同控制电压下的机械特性曲线
T
n=f(T), U1=常数
第11页/共67页
在励磁电压不变的情况下,随着控制电压的 下降,特性曲线下移。在同一负载转矩作用时, 电动机转速随控制电压的下降而均匀减小。
交流伺服驱动器原理及调试ppt课件
直流公共母线 P
三
软起
相
动及
整
泵生
N
流
控制
器
电路
220V
开关电源
控制
电源 开关电源
MPU AT89S8252
故障检 测电路
FPGA A42MX09
逆变器
霍尔元件
IPM 逆变器
ia ib
SPINDLE (SERVO) MOTOR
门极驱动电路
PG
DSP ADMC401
RS232 串行口
键盘及 显示
I/O 控制
控制方式选择
用于选择伺服驱动器的控制方式。 0:位置控制方式,接纳位置脉冲输入指令; 1:模拟速度控制方式,接纳模拟速度指令; 2:模拟转矩控制方式,接纳模拟转矩指令; 3:其他(内部速度控制方式)
与速度/转矩控制有关的参数
速度指令输入增益
①设置模拟速度指令的电压值与转速的关 系。设定值为电压对应的转速值. ②只在模拟速度输入方式下有效。
输入输出
光电隔离
其它监测信号 微 控 制 器
母线电压监测
状 态 显 示
XT2
220A
A
控制
220B 电 源
B
控制电路构造
功率电路构造
四、伺服驱动器的运转控制原理
位置环 电流环 速度环
华中数控
五、伺服驱动器的接线:
1. 主回路接线: 1〕驱动器R、S、T电源线的衔接; 2〕驱动器与电动机电源线之间的接线;
速度积分时间常数
①设定速度调理器的积分时间常数。 ④设置值越小,积分速度越快。参数数值根据详细的 伺服驱动系统型号和负载情况确定。普通情况下,负 载惯量越大,设定值越大。 ②在系统不产生振荡的条件下,尽量设定较小的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、有足够的传动刚性和高的速度稳定性
在系统负载范围内,
当负载变化时,输出 速度应基本不变。即△F 尽可能小;
当负载突变时,要求 速度的恢复时间短且无振 荡。即△t尽可能短;
F
Fmax
△t △F
t
4、快速响应,无超调
为了保证生产率和加工质量,除了要求有较高的定 位精度外,还要求有良好的快速响应特性,即要求跟 踪指令信号的响应要快,因为数控系统在启动、制动 时,要求加、减加速度足够大,缩短进给系统的过渡 过程时间,减小轮廓过渡误差。
2. 控制电源类接线:
1)r 、t控制电源接线; 2)I/O接口控制电源接线;
3. 信号指令线
1)指令接口 2)I/O接口 3)反馈检测类接线
伺服系统主回路的接线图
松下伺服驱动器I/F速度控制接线图
松下伺服驱动器I/F位置控制接线图
三洋伺服系统与数控系统连接图
六、 伺服参数
伺服控制是一个比较复杂的过程,参数的使用也相对比 较复杂,一般伺服参数个数少的也有几十个,多的有七、 八百个,修改起来比较麻烦。但是总的来说,伺服参数可 以分成三类。
F
Fmax
tp
t
5. 低速大转矩,过载能力强 一般来说,伺服驱动器具有数分钟甚
至半小时内1.5倍以上的过载能力,在短时间 内可以过载4~6倍而不损坏。
6. 可靠性高 要求数控机床的进给驱动系统可靠性高、
工作稳定性好,具有较强的温度、湿度、振 动等环境适应能力和很强的抗干扰的能力。
对电机的要求
1、从最低速到最高速电机都能平稳运转,转矩波动要 小,尤其在低速如0.1r/min或更低速时,仍有平稳的 速度而无爬行现象。
输入输出
光电隔离
其它监测信号 微 控 制 器
母线电压监测
状 态 显 示
XT2
220A
A
控制
220B 电 源
B
控制电路结构
功率电路结构
四、伺服驱动器的运行控制原理
位置环 电流环 速度环
华中数控
五、伺服驱动器的接线:
1. 主回路接线:
1)驱动器R、S、T电源线的连接; 2)驱动器与电动机电源线之间的接线;
例如:
位置指令脉冲方向或速度指令输入取反;
是否允许反馈断线报警 是否允许CCW极限开关输入; 是否允许由系统内部启动SVR-ON控制
伺服运动特性调节有关的参数
位置比例增益
①设定位置环调节器的比例增益。 ②设置值越大,增益越高,刚度越大,相同频率指令脉
冲条件下,位置滞后量越小。但数值太大可能会引起 振荡或超调。 ③参数数值由具体的伺服系统型号和负载情况确定。
1、调速范围宽
r n n m in /n m a x
R N 10且 00 . 0 1 m 0 m m F m i 1 n im nm m in
2、定位精度高
静态: 定位精度和重复定位精度要高,即定位误差和 重复定误差要小。
(尺寸精度) 动态:
跟随精度,这是动态性能指标,用跟随误差表示。(轮廓精度)
控制电路结构 功率电路结构
非熔断丝
交流电源1 断路器 注2
注3
L1 L2
器
变 压
L3
PE
注1
接地排
低通滤波器
交流电源2 注4
接 触 器 器 注5
灭弧器
电 抗 器 注6
DC24V 开关电源
进给驱动装置电源供电示意图
注7
进给 驱动 装置
交流伺服系统结构图
三相 R 380V S 电源
T
HSV-20P 电源模块
第二编码器 输入接口
脉冲输 入接口
模拟量 接口
编码器 输出接口
HSV-20P电源模块结构图
XT1 R S T PE
三相整流桥 T1
RST POW OK DCRDY 24V 24V -G N D
PW ROK1
PW ROK2
保险
软启动电阻
内部制动电阻
止
直流电抗器 晶闸管 制动控制
XT1 P
N PB BK2 BK1
直流公共母线 P
三
软起
相
动及
整
泵生
N
流
控制
器
电路
220V
开关电源
控制
电源 开关电源
MPU AT89S8252
故障检 测电路
FPGA A42MX09
ห้องสมุดไป่ตู้逆变器
霍尔元件
IPM 逆变器
ia ib
SPINDLE (SERVO) MOTOR
门极驱动电路
PG
DSP ADMC401
RS232 串行口
键盘及 显示
I/O 控制
2、电机应具有大的较长时间的过载能力,以满足低速 大转矩的要求。一般直流伺服电机要求在数分钟内 过载4~6倍而不损坏。
3、为了满足快速响应的要求,电机应有较小的转动惯 量和大的堵转转矩,并具有尽可能小的时间常数和 启动电压。
4、电机应能承受频繁启、制动和反转。
三、 伺服驱动器的电气控制原理
1.外部控制电路结构 2.内部电路结构
4
一、伺服驱动器的种类及结构
进给驱动装置
交流电源 电 源
P
控 制
电机电源
模 N 模 反馈
电 交流电源 源
模 块
块块
进给电动机
(a)集成式
PN
控制模块1
…
PN
控制模块2
反馈
电机电源 反馈
电机电源
进给电动机1
进给电动机2
(b)分离式
进给驱动装置电源与控制模块的关系
二、伺服驱动器发展趋势
伺服进给系统的要求:
伺服驱动器
主要内容
一、伺服驱动器的种类及结构 二、伺服驱动器发展趋势 三、 伺服驱动器电气原理: 四、 伺服驱动器的控制原理: 五、伺服驱动器的接口:
六、 与伺服调节有关的参数 七、 进给伺服常见报警 八、进给伺服驱动系统常见故障及处理
精品资料
你怎么称呼老师? 如果老师最后没有总结一节课的重点的难点,你 是否会认为老师的教学方法需要改进? 你所经历的课堂,是讲座式还是讨论式? 教师的教鞭 “不怕太阳晒,也不怕那风雨狂,只怕先生骂我 笨,没有学问无颜见爹娘 ……” “太阳当空照,花儿对我笑,小鸟说早早早……”
1、控制类参数 2、控制运动功能相关的参数 3、逻辑接口相关的一些参数
在参数的调节时,我们主要调节与控制功能相关的一些参 数,其他参数只与设计和硬件相关。基本上伺服系统确定以 后,参数也就确定下来,不需要我们调试人员去修改。控制 功能的参数不多,常用的有几个.
控制类参数
可以选择输入/输出信号定义,内部控制功能选择等。
位置前馈增益
①设定位置环的前馈增益。 ②设定值越大时,表示在任何频率的指令脉冲下,位 置滞后量越小 ③位置环的前馈增益大,控制系统的高速响应特性提 高,但会使系统的位置不稳定,容易产生振荡。 ④不需要很高的响应特性时,本参数通常设为0表示范 围:0~100%
速度比例增益
①设定速度调节器的比例增益。 ②设置值越大,增益越高,刚度越大。参数数值 根据具体的伺服驱动系统型号和负载值情况确定。 一般情况下,负载惯量越大,设定值越大。 ③在系统不产生振荡的条件下,尽量设定较大的 值。