南京市高淳区2018年中考数学二模试卷(含答案)

合集下载

2018年南京市高淳区二模

2018年南京市高淳区二模

2018年质量调研检测试卷(二)九年级数学注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卷上,答在本试卷上无效.2.请将自己的班级、姓名、考试证号、座位号用0.5毫米黑色墨水签字笔填写在答题卷上. 3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卷上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.计算1+(-2)的结果是( ▲ ) A .-1B . 1C . 3D .-32.已知点A (1,2)与点A ′(a ,b )关于坐标原点对称,则实数a 、b 的值是( ▲ ) 3.一元一次不等式组⎩⎪⎨⎪⎧2x >x -1,12x ≤1的解集是( ▲ )A .x >-1B . x ≤2C .-1<x ≤2D .x >-1或x ≤24.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,连结AC 、AD 、BD ,若∠BAC =35°, 则∠ADC 的度数为 ( ▲ )5的点距离最近的整数点所表示的数是( ▲ )A .1B .2C .36.如图,二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,下列结论:①ac <0,②b >0,③a -b +c >0,其中正确的是( ▲ )A .a =1,b =2B .a =-1,b =2C .a =1,b =-2D .a =-1,b =-2A .35°B . 55°C .65°D . 70°A .①②B .②③C .①③D .①②③A(第4题)(第6题)二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7.计算:9= ▲ .8.据调查,截止2018年2月末,全国4G 用户总数达到1 030 000 000户,把1 030 000 000用科学记数法表示为 ▲ .9.若一个棱柱有7个面,则它是 ▲ 棱柱.10.若式子1x -1+1在实数范围内有意义,则x 的取值范围是 ▲ .11.计算:52-12= ▲ . 12.已知一元二次方程x 2+x +m =0的一个根为2,则它的另一个根为 ▲ . 13.同一个正方形的内切圆与外接圆的面积比为 ▲ .14.如图,某小区有一块长为36m ,宽为24m 的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为600m 2,两块绿地之间及周边有宽度相等的人行通道,则.15.在数据1,2, 4,5中加入一个正整数...x ,使得到的新一组数据的平均数与中位数相等,则x = ▲ .16.已知一次函数y =32x -3的图像与x 、y 轴分别交于点A 、B ,与反比例函数y =kx(x >0)的图像交于点C ,且AB =AC ,则k 的值为 ▲ .三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(1)(5分)计算:38+2cos45°+∣-2∣×(-12)-1;(2)(4分)解方程(x -3)( x -1)=-1.(第16题) 3624(第14题)学生选择的活动项目A :踢毽子B :乒乓球C :篮球D :跳绳学生选择的活动项目人数18.(7分)(1)计算:4x 2-4- 1x -2;(2)方程4x 2-4- 1x -2=12的解是 ▲ .19.(7分)某校为了解“阳光体育”活动的开展情况,从全校1000名学生中,随机抽取部分学生进行问卷调查(每名学生只能从A 、B 、C 、D 中选择一项自己喜欢的活动项目),并将调查结果绘制成如下两幅不完整的统计图.)被调查的学生共有 ▲ 人,并补全条形统计图;(2)在扇形统计图中,求表示区域D 的扇形圆心角的度数; (3)全校学生中喜欢篮球的人数大约是多少人?20.(7分)在课外活动时间,甲、乙、丙做“互相踢毽子”游戏,毽子从一人传给另一人就记为一次踢毽.(1)若从甲开始,经过三次踢毽后,毽子踢到乙处的概率是多少?请说明理由; (2)若经过三次踢毽后,毽子踢到乙处的可能性最小,则应从 ▲ 开始踢.21.(8分)如图,在□ABCD 中,点M 、N 分别为边AD 、BC 的中点,AE 、CF 分别是∠BAD 、∠BCD 的平分线. (1)求证:AE ∥CF ;(2)若AD =2AB ,求证:四边形PQRS 是矩形.22.(7分)某太阳能热水器的横截面示意图如图所示,已知真空热水管AB 与支架CD 所在直线相交于点O ,且OB =OD ,支架CD 与水平线AE 垂直,∠BAC =37°,∠E =45°,DE =902cm ,AC =160cm .求真空热水管AB 的长. 【参考数据:sin37°≈0.60,cos37°≈0.80,23.(7分)如图,已知△ABC .(1)作图:作∠B 的角平分线BD 交AC 于点D ;在BC 、AB 上作点E 、F ,使得 四边形BEDF 为菱形.(2)若AB =3,BC =2,则菱形BEDF 的边长为 ▲ .24.(8分)已知二次函数y =(x -m )2-2(x -m )(m 为常数). (1)求该二次函数图像与x 轴的交点坐标; (2)求该二次函数图像的顶点P 的坐标;(3)如将该函数的图像向左平移3个单位,再向上平移1个单位,得到函数y =x 2的 图像,直接写出m 的值.25.(8分)如图,在△ABC 中,AB =AC ,以AB 为直径作⊙O ,⊙O 交BC 于点D ,交CA的延长线于点E .过点D 作DF ⊥AC ,垂足为F . (1)求证:DF 为⊙O 的切线;(2)若AB =4,∠C =30°,求劣弧⌒BE26.(9分)某公司招聘外卖送餐员,送餐员的月工资由底薪1000元加上外卖送单补贴(送一次外卖称为一单)构成,外卖送单补贴的具体方案如下:(1)若某“外卖小哥”4月份送餐400单,则他这个月的工资总额为多少元?(2)设5月份某“外卖小哥”送餐x 单(x >500),所得工资为y 元,求y 与x 的函数关系式. (3)若某“外卖小哥”5月份送餐800单,所得工资为6500元,求m 的值.(第25题)27.(11分)如图,在△ABC中,∠A=90°,AB=4,AC=2,M是AB上的动点(不与A、B重合),过点M作MN∥BC交AC于点N,以MN为直径作⊙O,并在⊙O内作内接矩形AMPN.设AM=x.(1)△MNP的面积S=▲ ,MN=▲;(用含x的代数式表示)(2)在动点M的运动过程中,设△MNP与四边形MNCB重合部分的面积为y.试求y 关于x的函数表达式,并求出x为何值时,y的值最大,最大值为多少?。

2018年江苏省南京市高淳县中考数学二模试卷-解析版

2018年江苏省南京市高淳县中考数学二模试卷-解析版

2018年江苏省南京市高淳县中考数学二模试卷一、选择题(本大题共6小题,共12.0分)1.计算的结果是A. B. 1 C. 3 D.【答案】A【解析】解:.故选:A.直接利用有理数加减运算法则计算得出答案.此题主要考查了有理数的加减运算,正确掌握运算法则是解题关键.2.已知点与点关于坐标原点对称,则实数a、b 的值是A. ,B. ,C. ,D. ,【答案】D【解析】解:点与点关于坐标原点对称,实数a、b 的值是:,.故选:D.直接利用关于原点对称点的性质得出a,b的值.此题主要考查了关于原点对称点的性质,正确把握横纵坐标的关系是解题关键.3.一元一次不等式组的解集是A. B. C. D. 或【答案】C【解析】解:解不等式,得:,解不等式,得:,则不等式组的解集为,故选:C.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.如图,AB 是的直径,CD 是的弦,连结AC、AD、BD,若,则的度数为A.B.C.D.【答案】B【解析】解:是的直径,,又圆周角定理,.故选:B.先求出,由,可得.本题考查了圆周角定理的知识,解答本题的关键是掌握圆周角定理的内容.5.在数轴上,与表示的点距离最近的整数点所表示的数是A. 1B. 2C. 3D. 4【答案】B【解析】解:,,则在数轴上,与表示的点距离最近的整数点所表示的数是2,故选:B.利用平方根定义估算的大小,即可得到结果.此题考查了实数与数轴,以及算术平方根,熟练掌握各自的性质是解本题的关键.6.如图,二次函数的图象如图所示,下列结论:,,,其中正确的是A.B.C.D.【答案】C【解析】解:抛物线的开口向上,,与y轴的交点在y 轴负半轴上,,,故正确;对称轴在y轴的右侧,,,,故错误;当时,,故正确.故选:C.由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线中自变量的情况进行推理,进而对所得结论进行判断.本题考查了二次函数系数与图象的关系此题难度适中,注意掌握利用图象求出a,b,c的范围,以及特殊值的代入能得到特殊的式子.二、填空题(本大题共10小题,共20.0分)7.化简:______.【答案】3【解析】解:.故答案为:3.根据算术平方根的定义求出即可.此题主要考查了算术平方根的定义,是基础题型,比较简单.8.据调查,截止2018年2月末,全国4G用户总数达到1 030 000 000户,把1 030 000 000用科学记数法表示为______.【答案】【解析】解:1 030 000 .故答案为:.科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同:当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.9.若一个棱柱有7个面,则它是______棱柱.【答案】5【解析】解:棱柱有七个面,它有5个侧面,它是5棱柱,故答案为:5根据棱柱有两个底面求出侧面的面数,然后解答解答.本题考查了认识立体图形,关键在于根据棱柱有两个底面确定出侧面的面数.10.若式子在实数范围内有意义,则x的取值范围是______.【答案】【解析】解:式子在实数范围内有意义,,解得:.故答案为:.分式有意义的条件是分母不等于零.本题主要考查的是分式有意义的条件,掌握分式有意义的条件是解题的关键.11.计算:______.【答案】【解析】解:原式.故答案为.先把各二次根式化简为最简二次根式,然后合并即可.本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.12.已知一元二次方程的一个根为2,则它的另一个根为______.【答案】【解析】解:设方程的另一个根为n,根据题意得:,解得:.故答案为:.设方程的另一个根为n,根据根与系数的关系可得出关于n的一元一次方程,解之即可得出结论.本题考查了根与系数的关系,牢记两根之和等于、两根之积等于是解题的关键.13.同一个正方形的内切圆与外接圆的面积比为______.【答案】1:2【解析】解:连接OA,OB,根据题意得:,,,,::,正四边形内切圆与外接圆的面积比为:::2.故答案为:1:2.根据题意画出图形,然后由正四边形内切圆与外接圆的性质,求得OB ::,根据圆的面积公式计算即可.本题考查的是正多边形和圆,掌握多边形的外接圆、内切圆的概念和性质、等腰直角三角形的性质是解题的关键.14.如图,某小区有一块长为36m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为______【答案】2【解析】解:设人行通道的宽度为x,将脸矩形绿地平移,如图所示,,,由题意可列出方程:解得:或不合题意,舍去故答案为:2将矩形绿地平移后,根据图中的等量关系列出方程即可求出答案.本题考查一元二次方程的应用,解题的关键是正确找出题中的等量关系,本题属于中等题型.15.在数据1,2,4,5中加入一个正整数x,使得到的新一组数据的平均数与中位数相等,则______.【答案】8【解析】解:根据题意知新数据的平均数为,若中位数为2,则,解得舍;若中位数为4,则,解得;若中位数为x ,则,解得:;故答案为:3或8.根据算术平均数得出其平均数为,由中位数的定义知中位数可能为2、4、x,分别求解可得.本题主要考查中位数和算术平均数,解题的关键是根据中位数的定义分类求解.16.已知一次函数的图象与x、y轴分别交于点A、B ,与反比例函数的图象交于点C ,且,则k的值为______.【答案】12【解析】解:作轴于D ,则,在和中,≌,、,由直线可知、,、,则、,,点C 的坐标为,则,故答案为:12.作轴于D ,易得≌,根据全等三角形的性质得出、,根据图象上的点满足函数解析式即可得k的值.本题考查了反比例函数与一次函数的交点问题,图象上的点满足函数解析式,求得C点的坐标是解题的关键.三、计算题(本大题共2小题,共15.0分)17.化简:方程的解是______.【答案】【解析】解:原式;两边都乘以,得:,整理,得:,解得:或,检验:时,,舍去;时,,所以原分式方程的解为,故答案为:.先通分化为同分母分式相减,再根据法则计算可得;根据解分式方程的步骤计算可得.本题主要考查解分式方程,解题的关键是熟练掌握分式的加减运算及解分式方程的基本步骤.18.已知二次函数为常数.求该二次函数图象与x轴的交点坐标;求该二次函数图象的顶点P的坐标;如将该函数的图象向左平移3个单位,再向上平移1个单位,得到函数的图象,直接写出m 的值.【答案】解:当时,,,解得,,该二次函数图象与x 轴的交点坐标为,;,该二次函数图象的顶点P 的坐标为;该函数的图象向左平移3个单位,再向上平移1个单位,平移的顶点坐标为,即顶点坐标为,平移后的抛物线为,即平移后的抛物线顶点坐标为,,.【解析】通过解方程得到该二次函数图象与x轴的交点坐标;把抛物线解析式配成,从而得到该二次函数图象的顶点P的坐标;利用抛物线平移和点平移的规律得到平移后的顶点坐标为,然后利用平移后的抛物线为,即平移后的抛物线顶点坐标为得到,解关于m的方程即可.本题考查了抛物线与x 轴的交点:把求二次函数b,c 是常数,与x轴的交点坐标问题转化为解关于x的一元二次方程也考查了二次函数的性质.四、解答题(本大题共9小题,共73.0分)19.计算:;解方程.【答案】解:原式【解析】根据根式的性质,绝对值的性质,负整数指数幂的意义即可求出答案.根据一元二次方程解法即可求出答案.本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.20.某校为了解“阳光体育”活动的开展情况,从全校1000名学生中,随机抽取部分学生进行问卷调查每名学生只能从A、B、C、D 中选择一项自己喜欢的活动项目,并将调查结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:被调查的学生共有______人,并补全条形统计图;在扇形统计图中,求表示区域D的扇形圆心角的度数;全校学生中喜欢篮球的人数大约是多少人?【答案】50【解析】解:被调查的学生人数为人,则A 项目人数为,补全图形如下:表示区域D 的扇形圆心角的度数为;全校学生中喜欢篮球的人数大约是人.由B项目人数及其所占百分比可得总人数,总人数减去B、C、D的人数求得A的人数即可补全图形;用乘以D项目人数所占比例;总人数乘以样本中C项目人数所占比例.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.在课外活动时间,甲、乙、丙做“互相踢毽子”游戏,毽子从一人传给另一人就记为一次踢毽.若从甲开始,经过三次踢毽后,毽子踢到乙处的概率是多少?请说明理由;若经过三次踢毽后,毽子踢到乙处的可能性最小,则应从______开始踢.【答案】乙【解析】解:画树状图如下:由树状图知,从甲开始,经过三次踢毽后共有8种等可能结果,其中毽子踢到乙处的有3种结果,所以毽子踢到乙处的概率为;由知,若从甲开始踢,则毽子踢到甲处的概率最小为,踢到乙、丙的概率均为,所以若经过三次踢毽后,毽子踢到乙处的可能性最小,则应从乙开始踢,故答案为:乙.根据题意画出树状图,得出所有的可能情况数,找出毽子踢到乙处的情况数,即可求出所求的概率;由知,若从甲开始踢,则毽子踢到甲处的概率最小,据此可得.此题考查了列表法与画树状图,用到的知识点为:概率所求情况数与总情况数之比.22.如图,在▱ABCD中,点M、N分别为边AD、BC的中点,AE、CF分别是、的平分线.求证:;若,求证:四边形PQRS是矩形.【答案】证明:四边形ABCD是平行四边形,,,,,,,,同法可证:,,,四边形AECF是平行四边形,.证明:四边形ABCD是平行四边形,,,,,,四边形BMDN是平行四边形,,,四边形RSPQ是平行四边形,,,,平分,,,四边形RSPQ是矩形.【解析】只要证明四边形AECF是平行四边形即可解决问题;首先证明四边形RSPQ 是平行四边形,再证明即可;本题考查矩形的判定、平行四边形的判定和性质、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.某太阳能热水器的横截面示意图如图所示,已知真空热水管AB与支架CD所在直线相交于点O ,且,支架CD与水平线AE 垂直,,,,求真空热水管AB的长【参考数据:,,】【答案】解:在中,,,,在中,,,,,,答:真空热水管AB的长为170cm.【解析】中,根据,,求出支架CD 的长即可,在中,根据,,求出OC的长是多少,进而求出OD的长是多少;然后求出OA的长是多少,即可求出真空热水管AB的长.此题主要考查了解直角三角形的应用,要熟练掌握,注意将实际问题抽象为数学问题画出平面图形,构造出直角三角形转化为解直角三角形问题.24.如图,已知.作图:作的角平分线BD交AC于点D;在BC、AB上作点E、F,使得四边形BEDF 为菱形要求:用尺规作图,不写做法,保留作图痕迹若,,则菱形BEDF的边长为______.【答案】【解析】解:如图,四边形BEDF为所作;设菱形的边长为x ,则,,,∽,,即,解得,即菱形的边长为.故答案为.作BD的垂直平分线得到EF ,则,,由于BD 平分,,所以,则可判断四边形BEDF为菱形;设菱形的边长为x ,则,,证明∽,利用相似比得到,然后解方程求出x即可.本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作也考查了菱形的判定与折叠的性质.25.如图,在中,,以AB 为直径作,交BC于点D,交CA 的延长线于点过点D作,垂足为F.求证:DF 为的切线;若,,求劣弧的长.【答案】证明:连接OD,,,,,,,,,是的切线;连接OE,,,,的长.【解析】证明,可得,可得结论;根据外角的性质可得:,可得圆心角,根据弧长公式可得结论.此题考查了切线的判定、等腰三角形的性质、弧长公式的计算等知识点,属于基础题,难度中等.26.某公司招聘外卖送餐员,送餐员的月工资由底薪1000元加上外卖送单补贴送一次外卖称为一单构成,外卖送单补贴的具体方案如下:外卖送单数量补贴元单每月不超过500单6超过500单但不超过m 单的部分8超过m 单的部分10若某“外卖小哥”4月份送餐400单,则他这个月的工资总额为多少元?设5月份某“外卖小哥”送餐x单,所得工资为y元,求y与x的函数关系式.若某“外卖小哥”5月份送餐800单,所得工资为6500元,求m的值.【答案】解:工资总额元当,当,当时,则,y最多元,不合题意舍去当时,解得:答:m的值为750【解析】根据题意和表格中的数据可以求得若某“外卖小哥”4月份送餐400单,他这个月的工资总额;根据题意和表格中的数据可以写出各段y与x的函数解析式;将,代入两个解析式就可解得m的值.本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和不等式的性质解答.27.如图,在中,,,,M是AB 上的动点不与A、B 重合,过点M 作交AC于点N,以MN 为直径作,并在内作内接矩形设.的面积______,______;用含x 的代数式表示在动点M的运动过程中,设与四边形MNCB 重合部分的面积为试求y关于x的函数表达式,并求出x为何值时,y的值最大,最大值为多少?【答案】;【解析】解:在中,,,,.,,即.,,,.四边形AMPN为矩形,.故答案为:;当点M为线段AB中点时,点P落在线段BC上,分及两种情况考虑.当时,如图1所示.,,当时,y取最大值,最大值为1;当时,如图2所示.,则,,,,,.,当x 取时,y 取最大值,最大值为.综上所述:y关于x 的函数表达式为,当时,y 的值最大,最大值为.在中,利用勾股定理可求出BC的值,由,利用平行线分线段成比例可求出AN、MN的值,再利用三角形的面积公式结合矩形的性质即可求出的面积S的值;分及两种情况考虑:当时,利用的结论可得出y关于x的函数关系式,利用二次函数的性质可求出此时y的最大值;当时,由可得出BM、PF的值,利用三角形的面积公式结合可得出y关于x的函数关系式,利用二次函数的性质可求出此时y 的最大值综上,此题得解.本题考查了三角形的面积、平行线的性质、矩形的性质以及二次函数的性质,解题的关键是:根据三角形的面积公式结合矩形的性质找出S的值;分及两种情况找出y关于x的函数关系式.。

2018届中考数学二模试卷(带答案) (18)

2018届中考数学二模试卷(带答案)  (18)

2018年中考数学二模试卷一、.选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分1.计算(ab2)3的结果是()A.ab5B.ab6C.a3b5D.a3b62.下列各式中,不成立的是()A.|﹣3|=3 B.﹣|3|=﹣3 C.|﹣3|=|3| D.﹣|﹣3|=33.在实数﹣,0,,,,中,无理数有()A.1个B.2个C.3个D.4个4.如图,AB是⊙O直径,∠AOC=130°,则∠D=()A.65°B.25°C.15°D.35°5.如图是由四个小正方体叠成的一个立体图形,那么它的主视图是()A.B.C.D.6.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2014的值为()A.2012 B.2013 C.2014 D.20157.如图,在△ABC中,已知∠C=90°,BC=3,AC=4,⊙O是内切圆,E,F,D分别为切点,则tan∠OBD=()A.B.C.D.8.如图,在▱ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是()A.1 B.2 C.D.49.某快餐店用米饭加不同炒菜配制了一批盒饭,配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒.每盒盒饭的大小、外形都相同,从中任选一盒,不含辣椒的概率是()A.B.C.D.10.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.a=c B.a=b C.b=c D.a=b=c11.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,则AC的长是()A.B. C. D.712.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分.13.因式分解:x2﹣2xy+y2=.14.将三角板(不是等腰的)顶点放置在直线AB上的O点处,使AB∥CD,则∠2的余弦值是.15.如图,△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为.16.方程x2﹣2x﹣1=0的解是.17.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是.18.猜数字游戏中,小明写出如下一组数:,,,,…,小亮猜想出第六个数字是,根据此规律,第n个数是.三、选修题、本小题满分6分,请在下列两个小题中,任选其一完成即可19.(1)解方程组:(2)解不等式组:.四、解答题:本大题共7个小题,满分54分.解答时请写出必要的演推过程.20.计算﹣2sin45°+(﹣2)﹣3+()0.21.为了解学生的课余生活情况,某中学在全校范围内随机抽取部分学生进行问卷调查.问卷中请学生选择最喜欢的课余生活种类(2007•台州)如图,△ABC内接于⊙O,点D在半径OB的延长线上,∠BCD=∠A=30°.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径长为1,求由弧BC、线段CD和BD所围成的阴影部分面积.(结果保留π和根号)23.海丰塔是无棣灿烂文化的象征(如图①),喜爱数学实践活动的小伟查资料得知:海丰塔,史称唐塔,原名大觉寺塔,始建于唐贞观十三年(公元639年),碑记为“尉迟敬德监建”,距今已1300多年,被誉为冀鲁三胜之一.小伟决定用自己所学习的知识测量海丰塔的高度.如图②,他利用测角仪站在B处测得海丰塔最高点P的仰角为45°,又前进了18米到达A处,在A处测得P的仰角为60°.请你帮助小伟算算海丰塔的高度.(测角仪高度忽略不计,≈1.7,结果保留整数).24.如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD与AE、AF分别相交于G、H.(1)求证:△ABE∽△ADF;(2)若AG=AH,求证:四边形ABCD是菱形.25.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,AB为半圆的直径,点M为圆心,A点坐标为(﹣2,0),B点坐标为(4,0),D点的坐标为(0,﹣4).(1)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;(2)请你求出“蛋圆”抛物线部分的解析式,并写出自变量x的取值范围.(3)你能求出经过点D的“蛋圆”切线的解析式吗?能,请写出过程,不能,请说明理由.参考答案与试题解析一、.选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分1.计算(ab2)3的结果是()A.ab5B.ab6C.a3b5D.a3b6【考点】幂的乘方与积的乘方.【分析】根据积的乘方的性质进行计算,然后直接选取答案即可.【解答】解:(ab2)3=a3•(b2)3=a3b6.故选D.【点评】本题考查积的乘方,把积中的每一个因式分别乘方,再把所得的幂相乘.2.下列各式中,不成立的是()A.|﹣3|=3 B.﹣|3|=﹣3 C.|﹣3|=|3| D.﹣|﹣3|=3【考点】绝对值.【分析】根据绝对值的意义选择.【解答】解:A中|﹣3|=3,正确;B中﹣|3|=﹣3,正确;C中|﹣3|=|3|=3,正确;D中﹣|﹣3|=﹣3,不成立.故选D.【点评】本题考查绝对值的化简:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.3.在实数﹣,0,,,,中,无理数有()A.1个B.2个C.3个D.4个【考点】无理数.【分析】根据无理数的三种形式求解.【解答】解:=3,=﹣2,无理数有:,,共2个.故选B.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.4.如图,AB是⊙O直径,∠AOC=130°,则∠D=()A.65°B.25°C.15°D.35°【考点】圆周角定理.【专题】压轴题.【分析】先根据邻补角的定义求出∠BOC,再利用圆周角定理求解.【解答】解:∵∠AOC=130°,∴∠BOC=180°﹣∠AOC=180°﹣130°=50°,∴∠D=×50°=25°.故选B.【点评】本题利用了圆周角定理和邻补角的概念求解.5.如图是由四个小正方体叠成的一个立体图形,那么它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3个正方形,第二层中间有1个正方形.故选C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.6.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2014的值为()A.2012 B.2013 C.2014 D.2015【考点】抛物线与x轴的交点.【分析】把x=m代入方程x2﹣x﹣1=0求得m2﹣m=1,然后将其整体代入代数式m2﹣m+2014,并求值.【解答】解:∵抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,解得m2﹣m=1.∴m2﹣m+2014=1+2014=2015.故选:D.【点评】本题考查了抛物线与x轴的交点.解题时,注意“整体代入”数学思想的应用,减少了计算量.7.如图,在△ABC中,已知∠C=90°,BC=3,AC=4,⊙O是内切圆,E,F,D分别为切点,则tan∠OBD=()A.B.C.D.【考点】三角形的内切圆与内心;切线长定理.【专题】压轴题.【分析】首先根据切线的性质和切线长定理证得四边形OECD是正方形,那么AC+BC﹣AB即为2R(⊙O的半径R)的值,由此可得到OD、CD的值,进而可在Rt△OBD中求出∠OBD的正切值.【解答】解:∵BC、AC、AB都是⊙O的切线,∴CD=CE、AE=AF、BF=BD,且OD⊥BC、OE⊥AC;易证得四边形OECD是矩形,由OE=OD可证得四边形OECD是正方形;设OD=OE=CD=R,则:AC+BC﹣AB=AE+R+BD+R﹣AF﹣BF=2R,即R=(AC+BC﹣AB)=1,∴BD=BC﹣CD=3﹣1=2;在Rt△OBD中,tan∠OBD==.故选C.【点评】此题考查的是三角形的外切圆,切线长定理以及锐角三角形函数的定义,难度适中.8.如图,在▱ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是()A.1 B.2 C.D.4【考点】平行四边形的性质;三角形中位线定理.【分析】由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,即可求得OC=OA,又由点E 是BC边的中点,根据三角形中位线的性质,即可求得AB的长.【解答】解:∵四边形ABCD是平行四边形,∴OC=OA,∵点E是BC边的中点,即BE=CE,∴OE=AB,∵OE=1,∴AB=2.故选B.【点评】此题考查了平行四边形的性质与三角形中位线的性质.注意平行四边形的对角线互相平分,三角形的中位线平行于三角形的第三边且等于第三边的一半.9.某快餐店用米饭加不同炒菜配制了一批盒饭,配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒.每盒盒饭的大小、外形都相同,从中任选一盒,不含辣椒的概率是()A.B.C.D.【考点】概率公式.【分析】让不含辣椒的盒饭数除以总盒饭数即为从中任选一盒,不含辣椒的概率.【解答】解:配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒,全部是80盒,不含辣椒的有70盒,所以从中任选一盒,不含辣椒的概率是=.故选A.【点评】本题比较容易,考查等可能条件下的概率.用到的知识点为:概率=所求情况数与总情况数之比.10.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.a=c B.a=b C.b=c D.a=b=c【考点】根的判别式.【专题】压轴题;新定义.【分析】因为方程有两个相等的实数根,所以根的判别式△=b2﹣4ac=0,又a+b+c=0,即b=﹣a﹣c,代入b2﹣4ac=0得(﹣a﹣c)2﹣4ac=0,化简即可得到a与c的关系.【解答】解:∵一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根,∴△=b2﹣4ac=0,又a+b+c=0,即b=﹣a﹣c,代入b2﹣4ac=0得(﹣a﹣c)2﹣4ac=0,即(a+c)2﹣4ac=a2+2ac+c2﹣4ac=a2﹣2ac+c2=(a﹣c)2=0,∴a=c.故选A【点评】一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.11.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,则AC的长是()A.B. C. D.7【考点】勾股定理;全等三角形的性质;全等三角形的判定.【专题】计算题;压轴题.【分析】过A、C点作l 3的垂线构造出直角三角形,根据三角形全等和勾股定理求出BC的长,再利用勾股定理即可求出.【解答】解:作AD⊥l3于D,作CE⊥l3于E,∵∠ABC=90°,∴∠ABD+∠CBE=90°又∠DAB+∠ABD=90°∴∠BAD=∠CBE,,∴△ABD≌△BCE∴BE=AD=3在Rt△BCE中,根据勾股定理,得BC==,在Rt△ABC中,根据勾股定理,得AC=×=2;故选A.【点评】此题要作出平行线间的距离,构造直角三角形.运用全等三角形的判定和性质以及勾股定理进行计算.12.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③【考点】二次函数图象与系数的关系.【专题】计算题;压轴题.【分析】①由抛物线的对称轴为直线x=1,一个交点A(﹣1,0),得到另一个交点坐标,利用图象即可对于选项①作出判断;②根据抛物线开口方向判定a的符号,由对称轴方程求得b与a的关系是b=﹣2a,将其代入(3a+b),并判定其符号;③根据两根之积=﹣3,得到a=﹣,然后根据c的取值范围利用不等式的性质来求a的取值范围;④把顶点坐标代入函数解析式得到n=a+b+c=c,利用c的取值范围可以求得n的取值范围.【解答】解:①∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),对称轴直线是x=1,∴该抛物线与x轴的另一个交点的坐标是(3,0),∴根据图示知,当x>3时,y<0.故①正确;②根据图示知,抛物线开口方向向下,则a<0.∵对称轴x=﹣=1,∴b=﹣2a,∴3a+b=3a﹣2a=a<0,即3a+b<0.故②错误;③∵抛物线与x轴的两个交点坐标分别是(﹣1,0),(3,0),∴﹣1×3=﹣3,∴=﹣3,则a=﹣.∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点),∴2≤c≤3,∴﹣1≤﹣≤﹣,即﹣1≤a≤﹣.故③正确;④根据题意知,a=﹣,﹣=1,∴b=﹣2a=,∴n=a+b+c=c.∵2≤c≤3,∴≤c≤4,即≤n≤4.故④错误.综上所述,正确的说法有①③.故选D.【点评】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分.13.因式分解:x2﹣2xy+y2=(x﹣y)2.【考点】因式分解-运用公式法.【专题】计算题.【分析】根据完全平方公式直接解答即可.【解答】解:原式=(x﹣y)2.故答案为(x﹣y)2.【点评】本题考查了因式分解﹣﹣运用公式法,熟悉因式分解是解题的关键.14.将三角板(不是等腰的)顶点放置在直线AB上的O点处,使AB∥CD,则∠2的余弦值是.【考点】特殊角的三角函数值;平行线的性质.【专题】探究型.【分析】先根据平行线的性质及直角三角板的特点求出∠2的度数,再根据特殊角的三角函数值进行解答即可.【解答】解:由三角板的特点可知,∠D=60°,∵AB∥CD,∴∠D=∠2=60°,∴cos∠2=cos60°=.故答案为:.【点评】本题考查的是直角三角板的特点及平行线的性质、特殊角的三角函数值,熟记特殊角的三角函数值是解答此题的关键.15.如图,△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为45°.【考点】线段垂直平分线的性质.【专题】计算题.【分析】首先利用线段垂直平分线的性质推出∠DAC=∠DCA,根据等腰三角形的性质可求出∠ABC=∠ACB,易求∠BCD的度数.【解答】解:∵AB=AC,∠A=30°(已知)∴∠ABC=∠ACB==75°∵DE垂直平分AC,∴AD=CD;∴∠A=∠ACD=30°,∴∠BCD=∠ACB﹣∠ACD,∴∠BCD=45°;故答案为:45°.【点评】本题主要考查了线段垂直平分线的性质以及等腰三角形的性质,难度一般.16.方程x2﹣2x﹣1=0的解是x1=1+,x2=1﹣.【考点】解一元二次方程-配方法.【分析】首先把常数项2移项后,然后在左右两边同时加上一次项系数﹣2的一半的平方,然后开方即可求得答案.【解答】解:∵x2﹣2x﹣1=0,∴x2﹣2x=1,∴x2﹣2x+1=2,∴(x﹣1)2=2,∴x=1±,∴原方程的解为:x1=1+,x2=1﹣.故答案为:x1=1+,x2=1﹣.【点评】此题考查了配方法解一元二次方程.解题时注意配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.17.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是76.【考点】勾股定理;正方形的性质.【分析】根据勾股定理求出AB,分别求出△AEB和正方形ABCD的面积,即可求出答案.【解答】解:∵在Rt△AEB中,∠AEB=90°,AE=6,BE=8,∴由勾股定理得:AB==10,∴正方形的面积是10×10=100,∵△AEB的面积是AE×BE=×6×8=24,∴阴影部分的面积是100﹣24=76,故答案是:76.【点评】本题考查了正方形的性质,三角形的面积,勾股定理的应用,主要考查学生的计算能力和推理能力.18.猜数字游戏中,小明写出如下一组数:,,,,…,小亮猜想出第六个数字是,根据此规律,第n个数是.【考点】规律型:数字的变化类.【分析】根据分数的分子是2n,分母是2n+3,进而得出答案即可.【解答】解:∵分数的分子分别是:2 2=4,23=8,24=16,…分数的分母分别是:2 2+3=7,23+3=11,24+3=19,…∴第n个数是.故答案为:.【点评】此题主要考查了数字变化规律,根据已知得出分子与分母的变化规律是解题关键.三、选修题、本小题满分6分,请在下列两个小题中,任选其一完成即可19.(1)解方程组:(2)解不等式组:.【考点】解二元一次方程组;解一元一次不等式组.【专题】计算题.【分析】(1)方程组利用加减消元法求出解即可;(2)求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:(1)①+②得:4x=20,即x=5,把x=5代入①得:y=1,则方程组的解为;(2),由①得:x<﹣1,由②得:x≤2,则不等式组的解集为x<﹣1.【点评】此题考查了解二元一次方程组,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.四、解答题:本大题共7个小题,满分54分.解答时请写出必要的演推过程.20.计算﹣2sin45°+(﹣2)﹣3+()0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】原式第一项利用二次根式性质化简,第二项利用特殊角的三角函数值计算,第三项利用负整数指数幂法则计算,最后一项利用零指数幂法则计算即可得到结果.【解答】解:原式=﹣1﹣2×﹣+1=﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21.为了解学生的课余生活情况,某中学在全校范围内随机抽取部分学生进行问卷调查.问卷中请学生选择最喜欢的课余生活种类(2)易知选择音乐类的有4人,选择美术类的有3人.记选择音乐类的4人分别是A1,A2,A,小丁;选择美术类的3人分别是B1,B2,小李.可画出树状图如下:由树状图可知共有12种选取方法,小丁和小李都被选中的情况仅有1种,所以小丁和小李恰好都被选中的概率是或列表:由表可知共有12中选取方法,小丁和小李都被选中的情况仅有1种,所以小丁和小李恰好都被选中的概率是;(3)由(1)可知问卷中最喜欢体育运动的学生占40%,由样本估计总体得得500×40%=200名.所以该年级中最喜欢体育运动的学生约有200名.【点评】本题考查的是条形统计图和扇形统计图及用样本估计总体等知识的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.如图,△ABC内接于⊙O,点D在半径OB的延长线上,∠BCD=∠A=30°.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径长为1,求由弧BC、线段CD和BD所围成的阴影部分面积.(结果保留π和根号)【考点】切线的判定;扇形面积的计算.【专题】几何综合题.【分析】(1)由已知可证得OC⊥CD,OC为圆的半径所以直线CD与⊙O相切;(2)根据已知可求得OC,CD的长,则利用S阴影=S△COD﹣S扇形OCB求得阴影部分的面积.【解答】解:(1)直线CD 与⊙O 相切, ∵在⊙O 中,∠COB=2∠CAB=2×30°=60°, 又∵OB=OC , ∴△OBC 是正三角形, ∴∠OCB=60°, 又∵∠BCD=30°, ∴∠OCD=60°+30°=90°, ∴OC ⊥CD , 又∵OC 是半径, ∴直线CD 与⊙O 相切.(2)由(1)得△OCD 是Rt △,∠COB=60°, ∵OC=1,∴CD=,∴S △COD =OC •CD=,又∵S 扇形OCB =,∴S 阴影=S △COD ﹣S 扇形OCB =.【点评】此题主要考查学生对切线的性质及扇形的面积公式的理解及运用.23.海丰塔是无棣灿烂文化的象征(如图①),喜爱数学实践活动的小伟查资料得知:海丰塔,史称唐塔,原名大觉寺塔,始建于唐贞观十三年(公元639年),碑记为“尉迟敬德监建”,距今已1300多年,被誉为冀鲁三胜之一.小伟决定用自己所学习的知识测量海丰塔的高度.如图②,他利用测角仪站在B 处测得海丰塔最高点P 的仰角为45°,又前进了18米到达A 处,在A 处测得P 的仰角为60°.请你帮助小伟算算海丰塔的高度.(测角仪高度忽略不计,≈1.7,结果保留整数).【考点】解直角三角形的应用-仰角俯角问题.【分析】设海丰塔的高OP=x,在Rt△POB中表示出OB,在Rt△POA中表示出OA,再由AB=18米,可得出方程,解出即可得出答案.【解答】解:设海丰塔的高OP=x,在Rt△POB中,∠OBP=45°,则OB=OP=x,在Rt△POA中,∠OAP=60°,则OA==x,由题意得,AB=OB﹣OA=18m,即x﹣x=18,解得:x=27+9,故海丰塔的高度OP=27+9≈42米.答:海丰塔的高度约为42米.【点评】本题考查了解直角三角形的应用,要求学生能借助仰角构造直角三角形并解直角三角形,注意方程思想的运用.24.如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD与AE、AF分别相交于G、H.(1)求证:△ABE∽△ADF;(2)若AG=AH,求证:四边形ABCD是菱形.【考点】菱形的判定;全等三角形的判定与性质;平行四边形的性质;相似三角形的判定与性质.【专题】证明题.【分析】(1)利用两角对应相等可证出△ABE∽△ADF;(2)利用(1)的结论,先证出△ABG≌△ADH,得到AB=AD,那么平行四边形ABCD是菱形.【解答】证明:(1)∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90度.∵四边形ABCD是平行四边形,∴∠ABE=∠ADF.∴△ABE∽△ADF.(2)∵△ABE∽△ADF,∴∠BAG=∠DAH.∵AG=AH,∴∠AGH=∠AHG,从而∠AGB=∠AHD,∴△ABG≌△ADH,∴AB=AD.∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.【点评】本题利用了相似三角形的判定和性质,全等三角形的判定和性质以及菱形的判定.25.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,AB为半圆的直径,点M为圆心,A点坐标为(﹣2,0),B点坐标为(4,0),D点的坐标为(0,﹣4).(1)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;(2)请你求出“蛋圆”抛物线部分的解析式,并写出自变量x的取值范围.(3)你能求出经过点D的“蛋圆”切线的解析式吗?能,请写出过程,不能,请说明理由.【考点】二次函数综合题.【分析】(1)易得点A、B的坐标,用交点式设出二次函数解析式,把D坐标代入即可.自变量的取值范围是点A、B之间的数.(2)先设出切线与x轴交于点E.利用直角三角形相应的三角函数求得EM的长,进而求得点E坐标,把C、E坐标代入一次函数解析式即可求得所求的解析式.(3)设出所求函数解析式,让它与二次函数组成方程组,消除y,让跟的判别式为0,即可求得一次函数的比例系数k.【解答】解:(1)如图,设经过点C“蛋圆”的切线CE交x轴于点E,连结CM,∴CM⊥CE,又∵A点坐标为(﹣2,0),B点坐标为(4,0),AB为半圆的直径,点M为圆心,∴M点的坐标为(1,0),∴AO=2,BO=4,OM=1.又因为CO⊥x轴,所以CO2=AO•OB,解得:CO=2,又∵CM⊥CE,CO⊥x轴,∴CO2=EO•OM,解之得:EO=8,∴E点的坐标是(﹣8,0),∴切线CE的解析式为:y=x+2;(2)根据题意可得:A(﹣2,0),B(4,0);则设抛物线的解析式为y=a(x+2)(x﹣4)(a≠0),又∵点D(0,﹣4)在抛物线上,∴a=;∴y=x2﹣x﹣4自变量取值范围:﹣2≤x≤4;(3)设过点D(0,﹣4),“蛋圆”切线的解析式为:y=kx﹣4(k≠0),由题意可知方程组只有一组解.即kx﹣4=x2﹣x﹣4有两个相等实根,∴k=﹣1,∴过点D“蛋圆”切线的解析式y=﹣x﹣4;【点评】本题以半圆与抛物线合成的封闭图形“蛋圆”为背景,考查一次函数、二次函数有关性质,解题过程中涉及解一元一次方程、一元二次方程、方程组相关知识与技能,是一道综合性很强的试题.。

2018南京市高淳区数学二模(含答案)

2018南京市高淳区数学二模(含答案)

2018年质量调研检测试卷(二)九年级数学注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卷上,答在本试卷上无效.2.请将自己的班级、姓名、考试证号、座位号用0.5毫米黑色墨水签字笔填写在答题卷上. 3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卷上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.计算1+(-2)的结果是( ▲ ) A .-1B . 1C . 3D .-32.已知点A (1,2)与点A ′(a ,b )关于坐标原点对称,则实数a 、b 的值是( ▲ ) 3.一元一次不等式组⎩⎪⎨⎪⎧2x >x -1,12x ≤1的解集是( ▲ )A .x >-1B . x ≤2C .-1<x ≤2D .x >-1或x ≤24.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,连结AC 、AD 、BD ,若∠BAC =35°, 则∠ADC 的度数为 ( ▲ )5的点距离最近的整数点所表示的数是( ▲ )A .1B .2C .36.如图,二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,下列结论:①ac <0,②b >0,③a -b +c >0,其中正确的是( ▲ )A .a =1,b =2B .a =-1,b =2C .a =1,b =-2D .a =-1,b =-2A .35°B . 55°C .65°D . 70°A .①②B .②③C .①③D .①②③A(第4题)(第6题)二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7.计算:9= ▲ .8.据调查,截止2018年2月末,全国4G 用户总数达到1 030 000 000户,把1 030 000 000用科学记数法表示为 ▲ .9.若一个棱柱有7个面,则它是 ▲ 棱柱.10.若式子1x -1+1在实数范围内有意义,则x 的取值范围是 ▲ .11.计算:52-12= ▲ . 12.已知一元二次方程x 2+x +m =0的一个根为2,则它的另一个根为 ▲ . 13.同一个正方形的内切圆与外接圆的面积比为 ▲ .14.如图,某小区有一块长为36m ,宽为24m 的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为600m 2,两块绿地之间及周边有宽度相等的人行通道,则.15.在数据1,2, 4,5中加入一个正整数...x ,使得到的新一组数据的平均数与中位数相等,则x = ▲ .16.已知一次函数y =32x -3的图像与x 、y 轴分别交于点A 、B ,与反比例函数y =kx(x >0)的图像交于点C ,且AB =AC ,则k 的值为 ▲ .三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(1)(5分)计算:38+2cos45°+∣-2∣×(-12)-1;(2)(4分)解方程(x -3)( x -1)=-1.(第16题) 3624(第14题)学生选择的活动项目A :踢毽子B :乒乓球C :篮球D :跳绳学生选择的活动项目人数18.(7分)(1)计算:4x 2-4- 1x -2;(2)方程4x 2-4- 1x -2=12的解是 ▲ .19.(7分)某校为了解“阳光体育”活动的开展情况,从全校1000名学生中,随机抽取部分学生进行问卷调查(每名学生只能从A 、B 、C 、D 中选择一项自己喜欢的活动项目),并将调查结果绘制成如下两幅不完整的统计图.)被调查的学生共有 ▲ 人,并补全条形统计图;(2)在扇形统计图中,求表示区域D 的扇形圆心角的度数; (3)全校学生中喜欢篮球的人数大约是多少人?20.(7分)在课外活动时间,甲、乙、丙做“互相踢毽子”游戏,毽子从一人传给另一人就记为一次踢毽.(1)若从甲开始,经过三次踢毽后,毽子踢到乙处的概率是多少?请说明理由; (2)若经过三次踢毽后,毽子踢到乙处的可能性最小,则应从 ▲ 开始踢.21.(8分)如图,在□ABCD 中,点M 、N 分别为边AD 、BC 的中点,AE 、CF 分别是∠BAD 、∠BCD 的平分线. (1)求证:AE ∥CF ;(2)若AD =2AB ,求证:四边形PQRS 是矩形.22.(7分)某太阳能热水器的横截面示意图如图所示,已知真空热水管AB 与支架CD 所在直线相交于点O ,且OB =OD ,支架CD 与水平线AE 垂直,∠BAC =37°,∠E =45°,DE =902cm ,AC =160cm .求真空热水管AB 的长. 【参考数据:sin37°≈0.60,cos37°≈0.80,23.(7分)如图,已知△ABC .(1)作图:作∠B 的角平分线BD 交AC 于点D ;在BC 、AB 上作点E 、F ,使得 四边形BEDF 为菱形.(2)若AB =3,BC =2,则菱形BEDF 的边长为 ▲ .24.(8分)已知二次函数y =(x -m )2-2(x -m )(m 为常数). (1)求该二次函数图像与x 轴的交点坐标; (2)求该二次函数图像的顶点P 的坐标;(3)如将该函数的图像向左平移3个单位,再向上平移1个单位,得到函数y =x 2的 图像,直接写出m 的值.25.(8分)如图,在△ABC 中,AB =AC ,以AB 为直径作⊙O ,⊙O 交BC 于点D ,交CA的延长线于点E .过点D 作DF ⊥AC ,垂足为F . (1)求证:DF 为⊙O 的切线;(2)若AB =4,∠C =30°,求劣弧⌒BE26.(9分)某公司招聘外卖送餐员,送餐员的月工资由底薪1000元加上外卖送单补贴(送一次外卖称为一单)构成,外卖送单补贴的具体方案如下:(1)若某“外卖小哥”4月份送餐400单,则他这个月的工资总额为多少元?(2)设5月份某“外卖小哥”送餐x 单(x >500),所得工资为y 元,求y 与x 的函数关系式. (3)若某“外卖小哥”5月份送餐800单,所得工资为6500元,求m 的值.(第25题)27.(11分)如图,在△ABC中,∠A=90°,AB=4,AC=2,M是AB上的动点(不与A、B重合),过点M作MN∥BC交AC于点N,以MN为直径作⊙O,并在⊙O内作内接矩形AMPN.设AM=x.(1)△MNP的面积S=▲ ,MN=▲;(用含x的代数式表示)(2)在动点M的运动过程中,设△MNP与四边形MNCB重合部分的面积为y.试求y 关于x的函数表达式,并求出x为何值时,y的值最大,最大值为多少?。

2018年江苏省南京市联合体中考数学二模试卷(含解析)

2018年江苏省南京市联合体中考数学二模试卷(含解析)

2018年江苏省南京市联合体中考数学二模试卷一、选择题(本大题共6小题,共12.0分)1.2的平方根是()A. ±√2B. √23 C. √2 D. −√2【答案】A【解析】解:2的平方根是:±√2.故选:A.根据平方根的定义解答.本题考查了平方根的应用,注意:一个正数有两个平方根,这两个平方根互为相反数.2.下列计算正确的是()A. a3+a2=a5B. a3−a2=aC. a3⋅a2=a6D. a3÷a2=a【答案】D【解析】解:A、a2与a3不是同类项,不能合并,故本选项错误;B、a3与a2不是同类项,不能合并,故本选项错误;C、应为a3⋅a2=a5,故本选项错误;D、a3÷a2=a,正确.故选:D.根据同类项定义;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.本题主要考查同底数幂的乘法,同底数幂的除法,熟练掌握运算性质是解题的关键,不是同类项的一定不能合并.3.如图,将菱形ABCD沿BD方向平移得到菱形EFGH,若FD:BF=1:3,菱形ABCD与菱形EFGH的重叠部分面积记为S1,菱形ABCD的面积记为S2,则S1:S2的值为()A. 1:3B. 1:4C. 1:9D. 1:16【答案】D【解析】解:如图设AD交EF于M,CD交FG于N.由题意,重叠部分四边形MDNF是菱形,菱形MFND∽菱形ABCD,∴S1S2=(DFBD)2,∵DF:BF=1:3,∴DF:BD=1:4,∴S1S2=(DFBD)2=116,故选:D.利用相似多边形的性质即可解决问题;本题考查菱形的性质、相似多边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4.如图,已知BA是⊙O的切线,切点为A,连接OB交⊙O于点C,若∠B=45∘,AB长为2,则BC的长度为()A. 2√2−1B. √2C. 2√2−2D.2−√2【答案】C【解析】解:连接OA,∵BA是⊙O的切线,切点为A,∴∠OAB=90∘,∵∠B=45∘,∴△OAB是等腰直角三角形,∵AB长为2,∴AO=2,则BO=2√2,故BC=2√2−2,故选:C.利用切线的性质结合等腰直角三角形的性质得出BO的长,进而得出答案.此题主要考查了切线的性质以及勾股定理,正确得出△OAB是等腰直角三角形是解题关键.5.已知反比例函数y=k2x(k≠0)过点A(a,y1),B(a+1,y2),若y2>y1,则a的取值范围为()A. −1<aB. −1<a<0C. a<1D. 0<a<1【答案】B【解析】解:∵反比例函数y=k2x(k≠0)中的k2>0,∴反比例函数y=k2x(k≠0)的图象经过第一、三象限,且在每一象限内y随x的增大而减小.∵y2>y1,a+1>a,∴点A位于第三象限,点B位于第一象限,∴{a+1>0a<0,解得−1<a<0.故选:B.根据反比例函数图象所经过的象限和函数的增减性解答.考查了反比例函数图象上点的坐标特征,解题时,需要熟悉反比例函数解析式中系数与图象的关系.6.2x−3−2−1123456则、的大小关系为A. m>nB. m<nC. m=nD. 无法比较【答案】A【解析】解:∵x=−2时,y=−7,x=4时,y=−7,=1,即(1,2)为抛物线的顶点,∴抛物线对称轴为直线x=−2+42∴2为抛物线的最大值,即抛物线开口向下,∴当x>1时,抛物线为减函数,x<1时,抛物线为增函数,∴(2,m)与(3,n)在抛物线对称轴右侧,且2<3,则m>n.故选:A.由表格中x=−2与x=4时,对应的函数y都为−7,确定出(1,2)为二次函数的顶点坐标,即x=1为抛物线的对称轴,且抛物线开口向下,进而由抛物线的增减性,即可判断出m与n的大小.此题考查了二次函数图象上点的坐标特征,以及二次函数的图象与性质,其中根据表格的抛物线的对称轴及开口方向是解本题的关键.二、填空题(本大题共10小题,共20.0分)7.计算(√2)0=______,2−1=______.【答案】1;12,【解析】解:原式=1,原式=12故答案为:1;12原式利用零指数幂、负整数指数幂法则计算即可求出值.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.8.计算√2x⋅√8xy(x≥0,y≥0)的结果是______.【答案】4x√y【解析】解:√2x⋅√≥0,y≥0)=√16x2y=4x√y.故答案为:4x√y.直接利用二次根式的性质化简得出答案.此题主要考查了二次根式的性质,正确化简二次根式是解题关键.9.分解因式a3−a的结果是______.【答案】a(a+1)(a−1)【解析】解:a3−a=a(a2−1)=a(a+1)(a−1).故答案为:a(a+1)(a−1).先提取公因式a,再对余下的多项式利用平方差公式继续分解.本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.10. 甲、乙、丙三名射击运动员在某场测试中各射击10次,三人的测试成绩如下:甲 7 7 8 8 8 9 9 9 10 10 乙 7 7 7 8 8 9 9 10 10 10 丙 7 8 8 8 8 9 9 9 9 10这三人10次射击命中的环数的平均数x 甲=x 乙=x 丙=8.5,则测试成绩比较稳定的是______,(填“甲”或“乙”或“丙”)【答案】丙【解析】解:∵x 甲=x 乙=x 丙=8.5,∴S 甲2=110×[2×(7−8.5)2+3×(8−8.5)2+3×(9−8.5)2+2×(10−8.5)2]=1.05, S 乙2=110×[3×(7−8.5)2+2×(8−8.5)2+2×(9−8.5)2+3×(10−8.5)2]=1.45, S 丙2=110×[(7−8.5)2+4×(8−8.5)2+4×(9−8.5)2+(10−8.5)2]=0.65,∵S 丙2<S 甲2<S 乙2,∴测试成绩比较稳定的是丙, 故答案为:丙.根据方差就是各变量值与其均值离差平方的平均数,根据方差公式计算即可,再利用方差的意义解答即可得出答案.此题主要考查了方差公式的应用,方差是各变量值与其均值离差平方的平均数,它是测算数值型数据离散程度的最重要的方法.11. 如图,已知直线a//b ,∠1=72∘,∠2=38∘,则∠3=______ ∘.【答案】70【解析】解:∵a//b , ∴∠2=∠4=38∘, 又∵∠1=72∘,∴∠3=180∘−38∘−72∘=70∘, 故答案为:70.依据a//b ,即可得到∠2=∠4=38∘,再根据∠1=72∘,即可得到∠3的度数. 本题考查了平行线的性质和平角的定义,熟练掌握性质定理是解题的关键.12. 如图,正方形ABCD 的顶点B 、C 都在直角坐标系的x 轴上,AC 与BD 交于点E ,若点D 的坐标是(3,4),则点E 的坐标是______.【答案】(1,2)【解析】解:过点E作EF⊥x轴于点F,∵D的坐标是(3,4),B、C在x轴上,∴DC=4,OC=3,∵四边形ABCD是正方形,∴BC=CD=4,∴OB=4−3=1,∵B在x轴的负半轴上,∴B(−1,0),∵E为BD中点,EF⊥BC,∴BF=FC=2,∴FO=1,EF=12DC=2,∴E(1,2).故答案为:(1,2).根据D的坐标和C的位置求出DC=4,OC=3,根据正方形性质求出OB,即可求出答案.本题考查了正方形的性质和坐标与图形性质,解此题的关键是求出DC、OC、OB的长度,题目比较好,难度不大.13.已知关于x的一元二次方程x2+mx+n=0的两个根是1和−2,则mn的值是______.【答案】−2【解析】解:由根与系数的关系可知:1+(−2)=−m,1×(−2)=n,∴m=1,n=−2∴mn=−2故答案为:−2根据根与系数的关系即可求出答案.本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.14.已知圆锥的高是3cm,母线长5cm,则圆锥的侧面积是______cm2.(结果保留π).【答案】20π【解析】解:∵圆锥的高是3cm,母线长5cm,∴勾股定理得圆锥的底面半径为4cm,∴圆锥的侧面积=π×4×5=20πcm2.故答案为:20π.首先利用勾股定理求得圆锥的底面半径,然后利用圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.本题考查圆锥侧面积公式的运用,掌握公式是关键.15.已知⊙M过原点,A(1,2),B(3,1)三点,则圆心M坐标为______.【答案】(32,1 2 )【解析】解:过A作EF⊥y轴于E,过B作BF⊥EF于F,∴∠AEO=∠BFA=90∘,∴∠EAO+∠AOE=90∘,∵A(1,2),B(3,1),∴OE=AF=2,AE=BF=1,∴△AEO≌△BFA(SAS),∴∠AOE=∠BAF,∴∠EAO+∠BAF=90∘,∴∠OAB=90∘,∴△OAB是直角三角形,∴OB是△OAB外接圆的直径,∴M是OB的中点,∵O(0,0),B(3,1),∴M(32,12 );故答案为:(32,1 2 ).先根据三角形全等证明△OAB是直角三角形,根据圆周角定理∠AOB=90∘得OB为⊙M的直径,则可得到线段OB的中点即点M的坐标.本题考查了圆周角定理及其推论、全等三角形的判定和性质,熟练掌握90∘的圆周角所对的弦是直径是关键.16.如图,在直角坐标系中,△AOB为直角三角形,∠AOB=90∘,∠OAB=30∘,点A坐标为(3,1),AB与x轴交于点C,则AC:BC的值为______.【答案】√33【解析】解:如图所示:作AD⊥x轴,垂足为D,作BE⊥y轴,垂足为E.∵A(3,1),∴OA=√32+12=√10.∵∠OAB=30∘,∠AOB=90∘,∴OAOB=√3.∵∠AOB=90∘,∠EOC=90∘,∴∠EOB=∠AOD,又∵∠BEO=∠ADO,∴△OEB∽△ODA,∴OEOD =OBAO=√33,即OE3=√33,解得:OE=√3.∵AC:BC=S△AOC:S△OBC=AD:OE=1:√3=√33.故答案为:√33.作AD ⊥x 轴,垂足为D ,作BE ⊥y 轴,垂足为E ,先求得OA 的长,然后证明△OEB∽△ODA ,依据相似三角形的性质可得到OE OD=OB AO=√33,最后依据AC :BC =S △AOC :S △OBC =AD :OE 求解即可.本题主要考查的是一次函数图象上点的坐标特点,证得△OEB∽△ODA 是解答本题的关键.三、计算题(本大题共2小题,共15.0分) 17. 计算a 2−b 2ab÷(1a −1b ).【答案】解:原式=(a+b)(a−b)ab÷b−a ab=(a +b)(a −b)ab ⋅ab−(a −b)=−(a +b)=−a −b .【解析】先计算括号内分式的减法,再将除法转化为乘法,约分即可得.本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.18. 甲、乙两地相距480km ,一辆货车从甲地匀速驶往乙地,货车出发一段时间后,一辆汽车从乙地匀速驶往甲地,设货车行驶的时间为xℎ.线段OA 表示货车离甲地的距离y 1km 与xh 的函数图象;折线BCDE 表示汽车距离甲地的距离y 2km 与x(ℎ)的函数图象. (1)求线段OA 与线段CD 所表示的函数表达式;(2)若OA 与CD 相交于点F ,求点F 的坐标,并解释点F 的实际意义;(3)当x 为何值时,两车相距100千米?【答案】解:(1)设线段OA 对应的函数关系式为y 1=kx , 6k =480,得k =80,即线段OA 对应的函数关系式为y 1=80x(0≤x ≤6), 设线段CD 对应的函数关系式为y 2=ax +b , {5.2a +b =01.2a+b=480,得{b =624a=−120,即线段CD 对应的函数关系式为y 2=−120x +624(1.2≤x ≤5.2); (2){y =−120x +624y=80x, 解得,{y =249.6x=3.12,∴点F 的坐标为(3.12,249.6),点F 的实际意义是:在货车出发3.21小时时,距离甲地249.6千米,此时与汽车相遇;(3)由题意可得,|80x −(−120x +624)|=100, 解得,x 1=2.62,x 2=3.62,答:x 为2.62或x =3.62时,两车相距100千.【解析】(1)根据函数图象中的数据可以求得相应的函数解析式;(2)根据(1)中的函数解析式可以求得点F 的坐标,并写出点F 表示的实际意义;(3)根据题意可以得到相应的方程,从而可以解答本题. 本题考查一次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用一次函数的性质解答.四、解答题(本大题共9小题,共73.0分)19. 求不等式组{1−x ≤0x+12<3的整数解.【答案】解:{1−x ≤0①x+12<3②∵解不等式①得:x ≥1,解不等式②得:x <5,∴不等式组的解集为1≤x <5, ∴不等式组的整数解是1,2,3,4.【解析】先求出不等式的解集,再求出不等式组的解集,即可求出答案.本题考查了解一元一次不等式组和不等式组的整数解,能求出不等式组的解集是解此题的关键.20. 根据一家文具店的账目记录,某天卖出15个笔袋和5支钢笔,收入240元,另一天,笔袋加价1元和钢笔打8折,卖出同样的12个笔袋和8支钢笔,收入276元,求笔袋和钢笔的单价. 【答案】解:设每个笔袋的价格为x 元,每支钢笔的价格为y 元. 根据题意,得{12(x +1)+8y ×0.8=27615x+5y=240, 解得{y =30x=6.答:每个笔袋的价格为6元,每支钢笔的价格为30元.【解析】等量关系为:15个笔袋总价+5支钢笔总价=240元;12个笔袋总价+8支钢笔总价=276元,把相关数值代入后看求得的单价是否符合实际情况即可. 考查二元一次方程组在实际中的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.21. 光明中学全体学生900人参加社会实践活动,从中随机抽取50人的社会实践活动成绩制成如图所示的条形统计图,结合图中所给信息解答下列问题:【答案】解:(1)中位数众数随机抽取的50人的社会实践活动成绩(单位:分)4 4(2)随机抽取的50人的社会实践活动成绩的平均数是:x=1×2+2×9+3×13+4×14+5×1250=3.5(分).估计光明中学全体学生社会实践活动成绩的总分是:3.5×900=3150(分)【解析】(1)根据抽取的人数可以确定中位数的位置,从而确定中位数,小长方形最高的小组的分数为该组数据的众数;(2)算出抽取的50名学生的平均分乘以全校的总人数即可得到光明中学全体学生社会实践活动成绩的总分.本题考查了条形统计图的知识,题目相对比较简单,解题的关键是正确的识图,并从图形中整理出有关的解题的信息.22.小明的书包里只放了A4大小的试卷共4张,其中语文1张、数学2张、英语1张(1)若随机地从书包中抽出2张,求抽出的试卷中有英语试卷的概率.(2)若随机地从书包中抽出3张,抽出的试卷中有英语试卷的概率为______【答案】34【解析】解:(1)画树状图为:共有12种等可能的结果数,其中抽出的试卷中有英语试卷的结果数为6,所以抽出的试卷中有英语试卷的概率为612=12;(2)∵从4张试卷中抽出3张有如下4种情况:(数、数、英)、(语、数、英)、(语、数、英)、(语、数、数),其中抽出的试卷中有英语试卷的有3种结果,所以抽出的试卷中有英语试卷的概率为34.故答案为:34.(1)先画出树状图展示所有12种等可能的结果数,再找出抽出的试卷中有英语试卷的结果数,然后根据概率公式求解.(2)列举出抽出3张试卷的结果数,再从中找到抽出的试卷中有英语试卷的结果数,根据概率公式即可得.本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A 或B的结果数目m,然后根据概率公式求出事件A或B的概率.23.如图,一单摆在重力作用下处于OA处(与水平垂直),若单摆摆动到OB处,单摆的长度不变,旋转角为θ,此时点B相对于点A高度上升了m厘米,求单摆的长度.(用含θ与m的代数式表示)【答案】解:作BH⊥OA,设单摆长度是x厘米,,在Rt△OBH中,cosθ=OHOB∴OH=OB⋅cosθ=xcosθ,∴x−xcosθ=m,解得:x=m,1−cosθcm.答:单摆长度为m1−cosθ【解析】作BH⊥OA,根据直角三角形的解法解答即可.此题主要考查了解直角三角形中俯角问题的应用,根据锐角三角函数的关系得出OH的长是解题关键.24.已知,如图,在▱ABCD中,E是AB的中点,连接CE井延长交DA的延长线于点F.(1)求证:△AEF≌△BEC;(2)若DE平分∠ADC,求证:DC=DF.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AD//BC,∴∠F=∠BCE,∵E是AB中点,∴AE=EB,∵∠AEF=∠BEC,∴△AEF≌△BEC.(2)证明:∵DE平分∠ADC,∴∠EDA=∠EDC,∵AE//CD,∴∠CDE=∠AED,∴∠EDA=∠AED,∴AD=AE,∵△AEF≌△BEC,∴AF=BC=AB,∴DF=2AD,DC=AB=2AE,∴DC=DF.【解析】(1)根据AAS即可证明:△AEF≌△BEC;(2)首先证明AE=AE,再证明DF=2AD,CD=2AE即可解决问题;本题考查平行四边形的性质、全等三角形的判定和性质、角平分线的定义、等腰三角形的判定和性质等知识,解题的关键是准确寻找全等三角形解决问题,属于中考常考题型.25.已知⊙O的半径为5,弦AB的长度为m,点C是弦AB所对优弧上的一动点.(1)如图①,若m=5,则∠C的度数为______ ∘;(2)如图②,若m=6.①求∠C的正切值;②若△ABC为等腰三角形,求△ABC面积.【答案】30【解析】解(1)如图1,连接OB,OA,∴OB=OC=5,∵AB=m=5,∴OB=OC=AB,∴△AOB是等边三角形,∴∠AOB=60∘,∴∠ACB=12∠AOB=30∘,故答案为30;(2)①如图2,连接AO并延长交⊙O于D,连接BD,∵AD为⊙O的直径,∴AD=10,∠ABD=90∘,在Rt△ABD中,AB=m=6,根据勾股定理得,BD=8,∴tan∠ADB=ABBD =34,∵∠C=∠ADB,∴∠C的正切值为34;②Ⅰ、当AC=BC时,如图3,连接CO并延长交AB于E,∵AC=BC,AO=BO,∴CE为AB的垂直平分线,∴AE=BE=3,在Rt△AEO中,OA=5,根据勾股定理得,OE=4,∴CE=OE+OC=9,∴S△ABC=12AB×CE=12×6×9=27;Ⅱ、当AC=AB=6时,如图4,连接OA交BC于F,∵AC=AB,OC=OB,∴AO是BC的垂直平分线,过点O作OG⊥AB于G,∴∠AOG=12∠AOB,AG=12AB=3,∵∠AOB=2∠ACB,∴∠ACF=∠AOG,在Rt△AOG中,sin∠AOG=AGAC =35,∴sin∠ACF=35,在Rt△ACF中,sin∠ACF=35,∴AF=35AC=185,∴CF=245,∴S△ABC=12AF×BC=12×185×245=43225;Ⅲ、当BA=BC=6时,如图5,由对称性知,S△ABC=43225.(1)连接OA,OB,判断出△AOB是等边三角形,即可得出结论;(2)①先求出AD=10,再用勾股定理求出BD=8,进而求出tan∠ADB,即可得出结论;②分三种情况,利用等腰三角形的性质和垂径定理以及勾股定理即可得出结论.此题是圆的综合题,主要圆的性质,圆周角定理,垂径定理,等腰三角形的性质,三角形的面积公式,用分类讨论的思想解决问题是解本题的关键.26.已知二次函数y=x2−2mx+m2−m(m为常数)(1)若m≥0,求证该函数图象与x轴必有交点(2)求证:不论m为何值,该函数图象的顶点都在函数y=−x的图象上(3)当−2≤x≤3时,y的最小值为−1,求m的值【答案】(1)证明:令y=0,则x2−2mx+m2−m=0,∵m≥0,∴△=4m2−4(m2−m)=4m>0,∴二次函数y=x2−2mx+m2−m的图象与x轴必有交点;(2)证明:∵二次函数y=x2−2mx+m2−m=(x−m)2−m,∴顶点坐标为(m,−m),令x=m,y=−m,∴y=−x,∴不论m为何值,该函数图象的顶点都在函数y=−x的图象上;(3)解:由(2)知,抛物线的对称轴为直线x=m,抛物线开口向上,当m>3时,由题意得:当x=3时,y最小值为−1,代入抛物线解析式中得:9−6m+m2−m=−1,即m=2(舍)或m=5,当−2≤m≤3时,由题意得:当x=m时,y最小值为−1,代入抛物线解析式中得:m2−2m2+m2−m=−1,即m=1;当m<−2时,由题意得:当x=−2时,y最小值为−1,代入抛物线解析式中得:4+4m+m2−m=−1,即m2+3m+5=0,此方程无解;综上,m的值是1或5.【解析】(1)利用一元二次方程根的情况判断抛物线与x轴的交点情况;(2)先确定出抛物线的顶点坐标,即可得出结论;(3)利用抛物线的增减性,分三种情况讨论即可得出结论.此题是二次函数综合题,主要考查了抛物线的顶点坐标的确定,抛物线与x轴交点个数的判定,极值的确定,用分类讨论的思想解决问题是解本题的关键.27.如图,在▱ABCD中,AB=3√2,BC=5,∠B=45∘,点E为CD上一动点,经过A、C、E三点的⊙O交BC于点F.【操作与发现】(1)当E运动到AE⊥CD处,利用直尺与规作出点E与点F;(保留作图痕迹)(2)在(1)的条件下,证明:AFAE =ABAD.【探索与证明】(3)点E运动到任何一个位置时,求证:AFAE =ABAD;【延伸与应用】(4)点E在运动的过程中求EF的最小值.【答案】解:(1)如图1所示,(2)如图,易知AC为直径,则AF⊥BC,则S四边形ABCD=BC⋅AF=CD⋅AE,∴AFAE=CDBC=ABAD(3)如图,作AM⊥BC,AN⊥CD,若E在DN之间由(2)可知,AMAN =ABAD∵A、F、C、E四点共圆,∴∠AFC+∠AEC=180∘,∵∠AFC+∠AFM=180∘,∴∠AEN=∠AFM,∵∠AMF=∠ANE∴△AMF∽△ANE∴AMAN=AFAE=ABAD若E在CN之间时,同理可证(4)∵A、F、C、E四点共圆,∴∠FAE+∠BCD=180∘,∵四边形ABCD为平行四边形,∠B=45∘,∴∠BCD=135∘,∴∠FAE=45∘,∴∠FOE=90∘,∴△FOE为等腰直角三角形,∴FE=√2R∵AN≤AC≤2R,∴E与N重合时,FE最小,此时FE=√22AC,在△ABC中,AM=BM=3,则CM=2∴由勾股定理可知:AC=√13此时EF最小值为√262【解析】(1)当AE⊥CD,此时AC是⊙O的直径,作出AC的中点O后,以OA为半径作出⊙O即可作出点E、F;(2)易知AC为直径,则AF⊥BC,S四边形ABCD=BC⋅AF=CD⋅AE,从而得证;(3)如图,作AM⊥BC,AN⊥CD,若E在DN之间,由(2)可知,AMAN =ABAD,然后再证明△AMF∽△ANE,从而可知AMAN =AFAE=ABAD,若E在CN之间时,同理可证;(4)由于A、F、C、E四点共圆,所以∠FAE+∠BCD=180∘,由于四边形ABCD为平行四边形,∠B=45∘,从而可证△FOE为等腰直角三角形,所以FE=√2R,由于AN≤AC≤2R,所以E与N重合时,FE最小.本题考查圆的综合问题,涉及相似三角形的性质与判定,平行四边形的性质与判定,等腰三角形的性质,尺规作图等知识,综合程度较高,需要学生灵活运用所学知识.。

2018届中考数学二模试卷(带答案) (2)

2018届中考数学二模试卷(带答案)  (2)

2018年中考数学二模试卷一、选择题(本大题共12小题,共36分.每小题只有一个选项符合题意.请考生用2B铅笔在答题卷上将选定的答案标号涂黑)1.在平面直角坐标系中,下面的点在第一象限的是()A.(1,2) B.(﹣2,3)C.(0,0) D.(﹣3,﹣2)2.计算:﹣1﹣2=()A.1 B.﹣1 C.﹣2 D.﹣33.下列长度的三条线段能组成三角形的是()A.1,2,3 B.3,4,5 C.3,1,1 D.3,4,74.在Rt△ABC中,∠C=90°,AB=5,BC=3,则∠A的余弦值为()A.B.C.D.5.一个几何体的三视图完全相同,该几何体可以是()A.圆锥 B.圆柱 C.长方体D.球6.下列计算正确的是()A.(a+b)2=a2+b2B.(﹣2a)3=﹣6a3C.(a2b)3=a5b2 D.(﹣a)6÷(﹣a)2=a47.下列事件中,属于确定事件的个数是()(1)打开电视,正在播广告;(2)投掷一枚普通的骰子,掷得的点数小于10;(3)射击运动员射击一次,命中10环;(4)在一个只装有红球的袋中摸出白球.A.0 B.1 C.2 D.38.不等式组的解集在数轴上可表示为()A.B.C.D.9.如果一个多边形的内角和是其外角和的一半,那么这个多边形是()A.六边形B.五边形C.四边形D.三角形10.计算﹣的结果是()A.﹣B.C.D.11.方程:+=1的解是()A.x=﹣1 B.x=3 C.x=﹣1或x=3 D.x=1或x=﹣31212.如图,在平面直角坐标系中有一正方形AOBC,反比例函数y=经过正方形AOBC对角线的交点,半径为(4﹣2)的圆内切于△ABC,则k的值为()A.4B.4 C.2D.2二、填空题(本大题共6小题,每小题3分,共18分,请把答案填写在答题卷指定的位置上)13.若二次根式有意义,则x的取值范围是.14.“神舟七号”舱门除了有气压外,还有光压,开门最省力也需要用大约568000斤的臂力.用科学记数法表示568000为.15.分解因式:1﹣x2=.16.甲、乙、丙、丁四位同学在本学期的四次数学测试中,他们成绩的平均数相同,方差分别为S甲2=5.5,S乙2=7.3,S丙2=8.6,S丁2=4.5,则成绩最稳定的是.17.如图,以O为位似中心,把五边形ABCDE的面积扩大为原来的4倍,得五边形A 1B1C1D1E1,则OD:OD1=.18.点E是平行四边形ABCD边BC的中点,平行四边形ABCD的面积是m,则四边形ABEF的面积是.三、解答题(本大题共8小题,共66分,解答应写出文字说明、证明过程或验算步骤)19.计算:4cos45°+(﹣1)2015﹣+()﹣2.20.如图,方格纸中的每个小正方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC 的顶点均在格点上,O、M都在格点上.(1)画出△ABC关于直线OM对称的△A1B1C1;(2)画出将△ABC绕点O按顺时针方向旋转90°后得到的△A2B2C2(3)△A1B1C1与△A2B2C2组成的图形是轴对称图形码?如果是轴对称图形,请画出对称轴.21.已知:如图,在△ABC中,∠A=30°,∠B=60°.(1)作∠B的平分线BD,交AC于点D;作AB的中点E(要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)连接DE,求证:△ADE≌△BDE.22.小明对所在班级的“小书库”进行了分类统计,并制作了如下的统计图表:根据上述信息,完成下列问题:(1)图书总册数是册,a=册;(2)请将条形统计图补充完整;(3)数据22,20,18,a,12,14中的众数是,极差是;(4)小明从这些书中任意拿一册来阅读,求他恰好拿到数学或英语书的概率.23.某商店第一次用3000元购进某款书包,很快卖完,第二次又用2400元购进该款书包,但这次每个书包的进价是第一次进价的1.2倍,数量比第一次少了20个.(1)求第一次每个书包的进价是多少元?(2)若第二次进货后按80元/个的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的书包全部按同一标准一次性打折销售,但要求这次的利润不少于480元,问最低可打几折?24.已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2),(1)求这两个函数的关系式;(2)观察图象,写出使得y1>y2成立的自变量x的取值范围;(3)如果点C与点A关于x轴对称,求△ABC的面积.25.如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线于F.(1)求证:∠DCP=∠DAP;(2)若AB=2,DP:PB=1:2,且PA⊥BF,求对角线BD的长.26.如图,半径为1的⊙M经过直角坐标系的原点O,且分别与x轴正半轴、y轴正半轴交于点A、B,∠OMA=60°,过点B的切线交x轴负半轴于点C,抛物线过点A、B、C.(1)求点A、B的坐标;(2)求抛物线的函数关系式;(3)若点D为抛物线对称轴上的一个动点,问是否存在这样的点D,使得△BCD是等腰三角形?若存在,求出符合条件的点D的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共12小题,共36分.每小题只有一个选项符合题意.请考生用2B铅笔在答题卷上将选定的答案标号涂黑)2.在平面直角坐标系中,下面的点在第一象限的是()A.(1,2) B.(﹣2,3)C.(0,0) D.(﹣3,﹣2)【考点】点的坐标.【专题】计算题.【分析】满足点在第一象限的条件是:横坐标是正数,纵坐标也是正数,结合选项进行判断即可.【解答】解:因为第一象限的条件是:横坐标是正数,纵坐标也是正数,而各选项中符合纵坐标为正,横坐标也正的只有A(1,2).故选:A.【点评】本题主要考查了平面直角坐标系中第四象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).1.计算:﹣1﹣2=()A.1 B.﹣1 C.﹣2 D.﹣3【考点】有理数的减法.【分析】根据有理数的减法运算进行计算即可得解.【解答】解:﹣1﹣2=﹣3,故选D.【点评】本题考查了有理数的减法,将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数).3.下列长度的三条线段能组成三角形的是()A.1,2,3 B.3,4,5 C.3,1,1 D.3,4,7【考点】三角形三边关系.【专题】应用题.【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”进行分析.【解答】解:根据三角形的三边关系,知A、1+2=3,不能组成三角形,故A错误;B、3+4>5,能够组成三角形;故B正确;C、1+1<3,不能组成三角形;故C错误;D、3+4=7,不能组成三角形,故D错误.故选:B.【点评】本题考查了三角形的三边关系,判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数,难度适中.4.在Rt△ABC中,∠C=90°,AB=5,BC=3,则∠A的余弦值为()A.B.C.D.【考点】锐角三角函数的定义;勾股定理.【专题】计算题.【分析】先根据勾股定理,求出AC的值,然后再由余弦=邻边÷斜边计算即可.【解答】解:在Rt△ABC中,∵∠C=90°,AB=5,BC=3,∴AC=4,∴cosA==.故选C.【点评】本题考查了锐角三角函数的定义和勾股定理,牢记定义和定理是解题的关键.5.一个几何体的三视图完全相同,该几何体可以是()A.圆锥 B.圆柱 C.长方体D.球【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:A、圆锥的主视图、左视图都是三角形,俯视图是圆形;故本选项错误;B、圆柱的主视图、左视图都是长方形,俯视图是圆形;故本选项错误;C、长方体的主视图为长方形、左视图为长方形或正方形、俯视图为长方形或正方形;故本选项错误;D、球体的主视图、左视图、俯视图都是圆形;故本选项正确.故选D.【点评】本题考查了简单几何体的三视图,锻炼了学生的空间想象能力.6.下列计算正确的是()A.(a+b)2=a2+b2B.(﹣2a)3=﹣6a3C.(a2b)3=a5b2 D.(﹣a)6÷(﹣a)2=a4【考点】同底数幂的除法;幂的乘方与积的乘方;完全平方公式.【分析】根据完全平方公式、幂的乘方和同底数幂的除法计算判断即可.【解答】解:A、(a+b)2=a2+2ab+b2,错误;B、(﹣2a)3=﹣8a3,错误;C、(a2b)3=a6b3,错误;D、(﹣a)6÷(﹣a)2=a4,正确;故选D.【点评】此题考查完全平方公式、幂的乘方和同底数幂的除法,关键是根据法则进行计算.7.下列事件中,属于确定事件的个数是()(1)打开电视,正在播广告;(2)投掷一枚普通的骰子,掷得的点数小于10;(3)射击运动员射击一次,命中10环;(4)在一个只装有红球的袋中摸出白球.A.0 B.1 C.2 D.3【考点】随机事件.【分析】确定事件就是一定发生的事件或一定不会发生的事件,根据定义即可确定.【解答】解:(1)(3)属于随机事件;(4)是不可能事件,属于确定事件;(2)是必然事件,属于确定事件;故属于确定事件的个数是2,故选:C.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.不等式组的解集在数轴上可表示为()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【专题】计算题.【分析】首先解出不等式组x的取值范围,然后根据x的取值范围,找出正确答案;【解答】解:不等式组,解①得:x≥﹣1,解②得:x<2,则不等式组的解集是:﹣1≤x<2.故选B.【点评】本题考查了不等式组的解法及在数轴上表示不等式的解集,把不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.9.如果一个多边形的内角和是其外角和的一半,那么这个多边形是()A.六边形B.五边形C.四边形D.三角形【考点】多边形内角与外角.【专题】应用题.【分析】任何多边形的外角和是360度,内角和等于外角和的一半则内角和是180度,可知此多边形为三角形.【解答】解:根据题意,得(n﹣2)•180°=180°,解得:n=3.故选D.【点评】本题主要考查了已知多边形的内角和求边数,可以转化为方程的问题来解决,难度适中.10.计算﹣的结果是()A.﹣B.C.D.【考点】分式的加减法.【分析】首先通分,然后根据同分母的分式加减运算法则求解即可求得答案.【解答】解:﹣===﹣.故选A.【点评】此题考查了分式的加减运算法则.题目比较简单,注意解题需细心.11.方程:+=1的解是()A.x=﹣1 B.x=3 C.x=﹣1或x=3 D.x=1或x=﹣312【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x+3=x2,即(x﹣3)(x+1)=0,解得:x=3或x=﹣1,经检验x=3与x=﹣1都为分式方程的解.故选C.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.12.如图,在平面直角坐标系中有一正方形AOBC,反比例函数y=经过正方形AOBC对角线的交点,半径为(4﹣2)的圆内切于△ABC,则k的值为()A.4B.4 C.2D.2【考点】反比例函数综合题.【分析】根据正方形的性质得出AD=BD=DO=CD,NO=DN,HQ=QE,HC=CE,进而根据半径为(4﹣2)的圆内切于△ABC,得出CD的长,从而得出DO的长,再利用勾股定理得出DN的长进而得出k的值.【解答】解:设正方形对角线交点为D,过点D作DM⊥AO于点M,DN⊥BO于点N;设圆心为Q,切点为H、E,连接QH、QE.∵在正方形AOBC中,反比例函数y=经过正方形AOBC对角线的交点,∴AD=BD=DO=CD,NO=DN,HQ=QE,HC=CE,QH⊥AC,QE⊥BC,∠ACB=90°,∴四边形HQEC是正方形,∵半径为(4﹣2)的圆内切于△ABC,∴DO=CD,∵HQ2+HC2=QC2,∴2HQ2=QC2=2×(4﹣2)2,∴QC2=48﹣32=(4﹣4)2,∴QC=4﹣4,∴CD=4﹣4+(4﹣2)=2,∴DO=2,∵NO2+DN2=DO2=(2)2=8,∴2NO2=8,∴NO2=4,∴DN×NO=4,即:xy=k=4.故选B.【点评】本题考查了反比例函数综合题,涉及正方形的性质以及三角形内切圆的性质以及待定系数法求反比例函数解析式,根据已知求出CD的长度,进而得出DN×NO=4是解决问题的关键.二、填空题(本大题共6小题,每小题3分,共18分,请把答案填写在答题卷指定的位置上)13.若二次根式有意义,则x的取值范围是x≥1.【考点】二次根式有意义的条件.【分析】根据二次根式的性质可知,被开方数大于等于0,列出不等式即可求出x的取值范围.【解答】解:根据二次根式有意义的条件,x﹣1≥0,∴x≥1.故答案为:x≥1.【点评】此题考查了二次根式有意义的条件,只要保证被开方数为非负数即可.14.“神舟七号”舱门除了有气压外,还有光压,开门最省力也需要用大约568000斤的臂力.用科学记数法表示568000为 5.68×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于568000有6位,所以可以确定n=6﹣1=5.【解答】解:568 000=5.68×105.故答案为:5.68×105.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.15.分解因式:1﹣x2=(1+x)(1﹣x).【考点】因式分解-运用公式法.【专题】因式分解.【分析】分解因式1﹣x2中,可知是2项式,没有公因式,用平方差公式分解即可.【解答】解:1﹣x2=(1+x)(1﹣x).故答案为:(1+x)(1﹣x).【点评】本题考查了因式分解﹣运用公式法,熟练掌握平方差公式的结构特点是解题的关键.16.甲、乙、丙、丁四位同学在本学期的四次数学测试中,他们成绩的平均数相同,方差分别为S甲2=5.5,S乙2=7.3,S丙2=8.6,S丁2=4.5,则成绩最稳定的是丁.【考点】方差.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S甲2=5.5,S乙2=7.3,S丙2=8.6,S丁2=4.5,丁的方差最小,∴成绩最稳定的是丁同学,故答案为:丁.【点评】此题主要考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.17.如图,以O为位似中心,把五边形ABCDE的面积扩大为原来的4倍,得五边形A1B1C1D1E1,则OD:OD1=1:2.【考点】位似变换.【分析】根据五边形ABCDE的面积扩大为原来的4倍,利用相似图形面积的比等于相似比的平方,即可得出答案.【解答】解:∵以O为位似中心,把五边形ABCDE的面积扩大为原来的4倍,得五边形A1B1C1D1E1,则OD:OD1=1:2,故答案为:1:2.【点评】此题主要考查位似图形的性质,根据面积的比等于相似比的平方是解决问题的关键.18.点E是平行四边形ABCD边BC的中点,平行四边形ABCD的面积是m,则四边形ABEF的面积是m.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】设出△EFC的面积为a,根据△AFD∽△CFE和AD=2EC,求出△AFD的面积,根据DF=2FE,求出△DFC的面积,计算得到a=m,得到答案.【解答】解:设△EFC的面积为a,∵E是BC的中点,∴BC=2EC,则AD=2EC,∵AD∥BC,∴△AFD∽△CFE,∴△AFD的面积为4a,∵DF=2FE,∴△DFC的面积为2a,∴△ADC的面积为6a,则四边形ABEF的面积为5a,又∵平行四边形ABCD的面积是m,即12a=m,a=m,∴四边形ABEF的面积m.故答案为:m.【点评】本题考查的是面积的计算,掌握相似三角形的面积比等于相似比的平方是解题的关键,解答时,注意等高的两个三角形的面积比等于底的比.三、解答题(本大题共8小题,共66分,解答应写出文字说明、证明过程或验算步骤)19.计算:4cos45°+(﹣1)2015﹣+()﹣2.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】原式第一项利用特殊角的三角函数值计算,第二项利用乘方的意义计算,最后一项利用负整数指数幂法则计算即可得到结果.【解答】解:原式=4×﹣1﹣+36=2﹣+35.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.如图,方格纸中的每个小正方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC 的顶点均在格点上,O、M都在格点上.(1)画出△ABC关于直线OM对称的△A1B1C1;(2)画出将△ABC绕点O按顺时针方向旋转90°后得到的△A2B2C2(3)△A1B1C1与△A2B2C2组成的图形是轴对称图形码?如果是轴对称图形,请画出对称轴.【考点】作图-旋转变换;作图-轴对称变换.【专题】作图题.【分析】(1)根据网格结构找出点A、B、C关于直线OM的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点A、B、C绕点O顺时针旋转90°后的对应点A2、B2、C2的位置,然后顺次连接即可;(3)根据轴对称的概念作出判断并画出对称轴.【解答】解:(1)△A1B1C1如图;(2)△A2B2C2如图;(3)是轴对称,如图直线l为对称轴.【点评】本题考查了利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.21.已知:如图,在△ABC中,∠A=30°,∠B=60°.(1)作∠B的平分线BD,交AC于点D;作AB的中点E(要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)连接DE,求证:△ADE≌△BDE.【考点】作图—复杂作图;全等三角形的判定.【专题】压轴题.【分析】(1)①以B为圆心,任意长为半径画弧,交AB、BC于F、N,再以F、N为圆心,大于FN长为半径画弧,两弧交于点M,过B、M画射线,交AC于D,线段BD就是∠B的平分线;②分别以A、B为圆心,大于AB长为半径画弧,两弧交于X、Y,过X、Y画直线与AB交于点E,点E 就是AB的中点;(2)首先根据角平分线的性质可得∠ABD的度数,进而得到∠ABD=∠A,根据等角对等边可得AD=BD,再加上条件AE=BE,ED=ED,即可利用SSS证明△ADE≌△BDE.【解答】解:(1)作出∠B的平分线BD;作出AB的中点E.(2)证明:∵∠ABD=×60°=30°,∠A=30°,∴∠ABD=∠A,∴AD=BD,在△ADE和△BDE中∴△ADE≌△BDE(SSS).【点评】此题主要考查了复杂作图,以及全等三角形的判定,关键是掌握基本作图的方法和证明三角形全等的判定方法.22.小明对所在班级的“小书库”进行了分类统计,并制作了如下的统计图表:根据上述信息,完成下列问题:(1)图书总册数是100册,a=14册;(2)请将条形统计图补充完整;(3)数据22,20,18,a,12,14中的众数是14,极差是10;(4)小明从这些书中任意拿一册来阅读,求他恰好拿到数学或英语书的概率.【考点】条形统计图;众数;极差;概率公式.【专题】数形结合.【分析】(1)用其他类的册数除以频率即可求出总本数,再减去已知的本书即可求出a的值.(2)根据上题求出的结果将统计图补充完整即可.(3)根据众数与极差的概念直接解答即可.(4)根据概率的求法,用数学与英语书的总本数除以总本数即可解答.【解答】解:(1)总本数=14÷0.14=100本,a=100﹣22﹣20﹣18=12﹣14=14本.(2)如图:(3)数据22,20,18,a,12,14中a=14,所以众数是14,极差是22﹣12=10;(4)(20+18)÷100=0.38,即恰好拿到数学或英语书的概率为0.38.故答案为100,14,14,10.【点评】本题考查的是条形统计图和统计表的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.23.某商店第一次用3000元购进某款书包,很快卖完,第二次又用2400元购进该款书包,但这次每个书包的进价是第一次进价的1.2倍,数量比第一次少了20个.(1)求第一次每个书包的进价是多少元?(2)若第二次进货后按80元/个的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的书包全部按同一标准一次性打折销售,但要求这次的利润不少于480元,问最低可打几折?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设第一次每个书包的进价是x元,根据某商店第一次用300元购进某款书包,很快卖完,第二次又用2400元购进该款书包,但这次每个书包的进价是第一次进价的1.2倍,数量比第一次少了20个可列方程求解.(2)设最低可以打x折,根据若第二次进货后按80元/个的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的书包全部按同一标准一次性打折销售,但要求这次的利润不少于480元,可列出不等式求解.【解答】解:(1)设第一次每个书包的进价是x元,﹣20=x=50.经检验得出x=50是原方程的解,且符合题意,答:第一次书包的进价是50元.(2)设最低可以打y折.2400÷(50×1.2)=4080×20+80×0.1y•20﹣2400≥480y≥8故最低打8折.【点评】本题考查理解题意能力,第一问以数量做为等量关系列方程求解,第二问以利润做为不等量关系列不等式求解.24.已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2),(1)求这两个函数的关系式;(2)观察图象,写出使得y1>y2成立的自变量x的取值范围;(3)如果点C与点A关于x轴对称,求△ABC的面积.【考点】反比例函数与一次函数的交点问题.【专题】计算题.【分析】(1)先根据点A的坐标求出反比例函数的解析式为y1=,再求出B的坐标是(﹣2,﹣2),利用待定系数法求一次函数的解析式;(2)当一次函数的值小于反比例函数的值时,直线在双曲线的下方,直接根据图象写出一次函数的值小于反比例函数的值x的取值范围x<﹣2 或0<x<1.(3)根据坐标与线段的转换可得出:AC、BD的长,然后根据三角形的面积公式即可求出答案.【解答】解:(1)∵函数y1=的图象过点A(1,4),即4=,∴k=4,即y1=,又∵点B(m,﹣2)在y1=上,∴m=﹣2,∴B(﹣2,﹣2),又∵一次函数y2=ax+b过A、B两点,即,解之得.∴y2=2x+2.综上可得y1=,y2=2x+2.(2)要使y1>y2,即函数y1的图象总在函数y2的图象上方,如图所示:当x<﹣2 或0<x<1时y1>y2.(3)由图形及题意可得:AC=8,BD=3,∴△ABC的面积S△ABC=AC×BD=×8×3=12.【点评】本题主要考查了待定系数法求反比例函数与一次函数的解析式.以及三角形面积的求法,这里体现了数形结合的思想.25.如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线于F.(1)求证:∠DCP=∠DAP;(2)若AB=2,DP:PB=1:2,且PA⊥BF,求对角线BD的长.【考点】相似三角形的判定与性质;全等三角形的判定与性质;勾股定理;菱形的性质.【专题】几何综合题;压轴题.【分析】(1)根据菱形的性质得CD=AD,∠CDP=∠ADP,证明△CDP≌△ADP即可;(2)由菱形的性质得CD∥BA,可证△CPD∽△FPB,利用相似比,结合已知DP:PB=1:2,CD=BA,可证A为BF的中点,又PA⊥BF,从而得出PB=PF,已证PA=CP,把问题转化到Rt△PAB中,由勾股定理,列方程求解.【解答】(1)证明:∵四边形ABCD为菱形,∴CD=AD,∠CDP=∠ADP,∴△CDP≌△ADP,∴∠DCP=∠DAP;(2)解:∵四边形ABCD为菱形,∴CD∥BA,CD=BA,∴∠CDP=∠FBP,∠BFP=∠DCP,∴△CPD∽△FPB,∴===,∴CD=BF,CP=PF,∴A为BF的中点,又∵PA⊥BF,∴PB=PF,由(1)可知,PA=CP,∴PA=PB,在Rt△PAB中,PB2=22+(PB)2,解得PB=,则PD=,∴BD=PB+PD=2.【点评】本题考查了全等三角形、相似三角形的判定与性质,菱形的性质及勾股定理的运用.关键是根据菱形的四边相等,对边平行及菱形的轴对称性解题.26.如图,半径为1的⊙M经过直角坐标系的原点O,且分别与x轴正半轴、y轴正半轴交于点A、B,∠OMA=60°,过点B的切线交x轴负半轴于点C,抛物线过点A、B、C.(1)求点A、B的坐标;(2)求抛物线的函数关系式;(3)若点D为抛物线对称轴上的一个动点,问是否存在这样的点D,使得△BCD是等腰三角形?若存在,求出符合条件的点D的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】压轴题.【分析】(1)由题意可直接得出点A、B的坐标为A(1,0),B(0,);(2)再根据BC是切线,可求出BC的长,即得出点C的坐标,由待定系数法求出抛物线的解析式;(3)先假设存在,看能否求出符合条件的点D即可.【解答】解:(1)∵MO=MA=1,∠OMA=60°,∴∠ABO=30°,∴OB=,∴A(1,0),B(0,);(2)∵BC是切线,∴∠ABC=90°,∴∠ACB=30°,∴AC=4,∴C(﹣3,0),设抛物线的解析式为y=ax2+bx+c,将点A、B、C代入得,,解得∴抛物线的解析式为y=﹣x2﹣x+;(3)设在对称轴上存在点D,使△BCD是等腰三角形,对称轴为直线x=﹣1,设点D(﹣1,m),分3种情况讨论:①BC=BD;=2,解得m=±+;②BC=CD;=2,解得m=±2;③BD=CD;=,解得:m=0,∴符合条件的点D的坐标为,(﹣1,+),(﹣1,﹣+),(﹣1,2),(﹣1,﹣2),(﹣1,0).【点评】本题是二次函数的综合题,其中涉及到的知识点有抛物线的公式的求法和等腰三角形判定等知识点,是各地中考的热点和难点,解题时注意数形结合等数学思想的运用,同学们要加强训练,属于中档题.。

2018年江苏省南京市联合体中考数学二模试卷含答案解析

2018年江苏省南京市联合体中考数学二模试卷含答案解析

2018年江苏省南京市联合体中考数学二模试卷一、选择题(本大题共6小题,共12.0分)1.2的平方根是A. B. C. D.【答案】A【解析】解:2的平方根是:.故选:A.根据平方根的定义解答.本题考查了平方根的应用,注意:一个正数有两个平方根,这两个平方根互为相反数.2.下列计算正确的是A. B. C. D.【答案】D【解析】解:A、与不是同类项,不能合并,故本选项错误;B、与不是同类项,不能合并,故本选项错误;C、应为,故本选项错误;D、,正确.故选:D.根据同类项定义;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.本题主要考查同底数幂的乘法,同底数幂的除法,熟练掌握运算性质是解题的关键,不是同类项的一定不能合并.3.如图,将菱形ABCD沿BD方向平移得到菱形EFGH,若FD::3,菱形ABCD与菱形EFGH的重叠部分面积记为,菱形ABCD的面积记为,则:的值为A. 1:3B. 1:4C. 1:9D. 1:16【答案】D【解析】解:如图设AD交EF于M,CD交FG于N.由题意,重叠部分四边形MDNF是菱形,菱形MFND∽菱形ABCD,,::3,::4,,故选:D.利用相似多边形的性质即可解决问题;本题考查菱形的性质、相似多边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4.如图,已知BA是的切线,切点为A,连接OB交于点C,若,AB长为2,则BC的长度为A. B. C. D.【答案】C【解析】解:连接OA,是的切线,切点为A,,,是等腰直角三角形,长为2,,则,故BC,故选:C.利用切线的性质结合等腰直角三角形的性质得出BO的长,进而得出答案.此题主要考查了切线的性质以及勾股定理,正确得出是等腰直角三角形是解题关键.5.已知反比例函数过点,,若,则a的取值范围为A. B. C. D.【答案】B【解析】解:反比例函数中的,反比例函数的图象经过第一、三象限,且在每一象限内y随x的增大而减小.,,点A位于第三象限,点B位于第一象限,,解得.故选:B.根据反比例函数图象所经过的象限和函数的增减性解答.考查了反比例函数图象上点的坐标特征,解题时,需要熟悉反比例函数解析式中系数与图象的关系.6.则、的大小关系为A. B. C. D. 无法比较【答案】A【解析】解:时,,时,,抛物线对称轴为直线,即为抛物线的顶点,为抛物线的最大值,即抛物线开口向下,当时,抛物线为减函数,时,抛物线为增函数,与在抛物线对称轴右侧,且,则.故选:A.由表格中与时,对应的函数y都为,确定出为二次函数的顶点坐标,即为抛物线的对称轴,且抛物线开口向下,进而由抛物线的增减性,即可判断出m与n的大小.此题考查了二次函数图象上点的坐标特征,以及二次函数的图象与性质,其中根据表格的抛物线的对称轴及开口方向是解本题的关键.二、填空题(本大题共10小题,共20.0分)7.计算______,______.【答案】1;【解析】解:原式,原式,故答案为:1;原式利用零指数幂、负整数指数幂法则计算即可求出值.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.8.计算的结果是______.【答案】【解析】解:.故答案为:.直接利用二次根式的性质化简得出答案.此题主要考查了二次根式的性质,正确化简二次根式是解题关键.9.分解因式的结果是______.【答案】【解析】解:.故答案为:.先提取公因式a,再对余下的多项式利用平方差公式继续分解.本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.10.甲、乙、丙三名射击运动员在某场测试中各射击10次,三人的测试成绩如下:甲7 7 8 8 8 9 9 9 10 10乙7 7 7 8 8 9 9 10 10 10丙7 8 8 8 8 9 9 9 9 10这三人10次射击命中的环数的平均数甲乙丙,则测试成绩比较稳定的是______,填“甲”或“乙”或“丙”【答案】丙【解析】解:甲乙丙,,甲,乙,丙,丙甲乙测试成绩比较稳定的是丙,故答案为:丙.根据方差就是各变量值与其均值离差平方的平均数,根据方差公式计算即可,再利用方差的意义解答即可得出答案.此题主要考查了方差公式的应用,方差是各变量值与其均值离差平方的平均数,它是测算数值型数据离散程度的最重要的方法.11.如图,已知直线,,,则______【答案】70【解析】解:,,又,,故答案为:70.依据,即可得到,再根据,即可得到的度数.本题考查了平行线的性质和平角的定义,熟练掌握性质定理是解题的关键.12.如图,正方形ABCD的顶点B、C都在直角坐标系的x轴上,AC与BD交于点E,若点D的坐标是,则点E的坐标是______.【答案】【解析】解:过点E作轴于点F,的坐标是,B、C在x轴上,,,四边形ABCD是正方形,,,在x轴的负半轴上,,为BD中点,,,,,.故答案为:.根据D的坐标和C的位置求出,,根据正方形性质求出OB,即可求出答案.本题考查了正方形的性质和坐标与图形性质,解此题的关键是求出DC、OC、OB的长度,题目比较好,难度不大.13.已知关于x的一元二次方程的两个根是1和,则mn的值是______.【答案】【解析】解:由根与系数的关系可知:,,,故答案为:根据根与系数的关系即可求出答案.本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.14.已知圆锥的高是3cm,母线长5cm,则圆锥的侧面积是______结果保留.【答案】【解析】解:圆锥的高是3cm,母线长5cm,勾股定理得圆锥的底面半径为4cm,圆锥的侧面积.故答案为:.首先利用勾股定理求得圆锥的底面半径,然后利用圆锥的侧面积底面半径母线长,把相应数值代入即可求解.本题考查圆锥侧面积公式的运用,掌握公式是关键.15.已知过原点,,三点,则圆心M坐标为______.【答案】【解析】解:过A作轴于E,过B作于F,,,,,,,≌ ,,,,是直角三角形,是外接圆的直径,是OB的中点,,,;故答案为:先根据三角形全等证明是直角三角形,根据圆周角定理得OB为的直径,则可得到线段OB的中点即点M的坐标.本题考查了圆周角定理及其推论、全等三角形的判定和性质,熟练掌握的圆周角所对的弦是直径是关键.16.如图,在直角坐标系中,为直角三角形,,,点A坐标为,AB与x轴交于点C,则AC:BC的值为______.【答案】【解析】解:如图所示:作轴,垂足为D,作轴,垂足为E.,.,,.,,,又,∽ ,,即,解得:.::::.故答案为:.作轴,垂足为D,作轴,垂足为E,先求得OA的长,然后证明 ∽ ,依据相似三角形的性质可得到,最后依据AC:::OE求解即可.本题主要考查的是一次函数图象上点的坐标特点,证得 ∽ 是解答本题的关键.三、计算题(本大题共2小题,共15.0分)17.计算【答案】解:原式.【解析】先计算括号内分式的减法,再将除法转化为乘法,约分即可得.本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.18.甲、乙两地相距480km,一辆货车从甲地匀速驶往乙地,货车出发一段时间后,一辆汽车从乙地匀速驶往甲地,设货车行驶的时间为线段OA表示货车离甲地的距离与xh的函数图象;折线BCDE表示汽车距离甲地的距离与的函数图象.求线段OA与线段CD所表示的函数表达式;若OA与CD相交于点F,求点F的坐标,并解释点F的实际意义;当x为何值时,两车相距100千米?【答案】解:设线段OA对应的函数关系式为,,得,即线段OA对应的函数关系式为,设线段CD对应的函数关系式为,,得,即线段CD对应的函数关系式为;,解得,,点F的坐标为,点F的实际意义是:在货车出发小时时,距离甲地千米,此时与汽车相遇;由题意可得,,解得,,,答:x为或时,两车相距100千.【解析】根据函数图象中的数据可以求得相应的函数解析式;根据中的函数解析式可以求得点F的坐标,并写出点F表示的实际意义;根据题意可以得到相应的方程,从而可以解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用一次函数的性质解答.四、解答题(本大题共9小题,共73.0分)19.求不等式组的整数解.【答案】解:解不等式得:,解不等式得:,不等式组的解集为,不等式组的整数解是1,2,3,4.【解析】先求出不等式的解集,再求出不等式组的解集,即可求出答案.本题考查了解一元一次不等式组和不等式组的整数解,能求出不等式组的解集是解此题的关键.20.根据一家文具店的账目记录,某天卖出15个笔袋和5支钢笔,收入240元,另一天,笔袋加价1元和钢笔打8折,卖出同样的12个笔袋和8支钢笔,收入276元,求笔袋和钢笔的单价.【答案】解:设每个笔袋的价格为x元,每支钢笔的价格为y元.根据题意,得,解得.答:每个笔袋的价格为6元,每支钢笔的价格为30元.【解析】等量关系为:15个笔袋总价支钢笔总价元;12个笔袋总价支钢笔总价元,把相关数值代入后看求得的单价是否符合实际情况即可.考查二元一次方程组在实际中的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.21.光明中学全体学生900人参加社会实践活动,从中随机抽取50人的社会实践活动成绩制成如图所示的条形统计图,结合图中所给信息解答下列问题:【答案】解:随机抽取的50人的社会实践活动成绩的平均数是:分.估计光明中学全体学生社会实践活动成绩的总分是:分【解析】根据抽取的人数可以确定中位数的位置,从而确定中位数,小长方形最高的小组的分数为该组数据的众数;算出抽取的50名学生的平均分乘以全校的总人数即可得到光明中学全体学生社会实践活动成绩的总分.本题考查了条形统计图的知识,题目相对比较简单,解题的关键是正确的识图,并从图形中整理出有关的解题的信息.22.小明的书包里只放了A4大小的试卷共4张,其中语文1张、数学2张、英语1张若随机地从书包中抽出2张,求抽出的试卷中有英语试卷的概率.若随机地从书包中抽出3张,抽出的试卷中有英语试卷的概率为______【答案】【解析】解:画树状图为:共有12种等可能的结果数,其中抽出的试卷中有英语试卷的结果数为6,所以抽出的试卷中有英语试卷的概率为;从4张试卷中抽出3张有如下4种情况:数、数、英、语、数、英、语、数、英、语、数、数,其中抽出的试卷中有英语试卷的有3种结果,所以抽出的试卷中有英语试卷的概率为.故答案为:.先画出树状图展示所有12种等可能的结果数,再找出抽出的试卷中有英语试卷的结果数,然后根据概率公式求解.列举出抽出3张试卷的结果数,再从中找到抽出的试卷中有英语试卷的结果数,根据概率公式即可得.本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A 或B的结果数目m,然后根据概率公式求出事件A或B的概率.23.如图,一单摆在重力作用下处于OA处与水平垂直,若单摆摆动到OB处,单摆的长度不变,旋转角为,此时点B相对于点A高度上升了m厘米,求单摆的长度用含与m的代数式表示【答案】解:作,设单摆长度是x厘米,在中,,,,解得:,答:单摆长度为.【解析】作,根据直角三角形的解法解答即可.此题主要考查了解直角三角形中俯角问题的应用,根据锐角三角函数的关系得出OH的长是解题关键.24.已知,如图,在▱ABCD中,E是AB的中点,连接CE井延长交DA的延长线于点F.求证: ≌ ;若DE平分,求证:.【答案】证明:四边形ABCD是平行四边形,,,是AB中点,,,≌ .证明:平分,,,,,,≌ ,,,,.【解析】根据AAS即可证明: ≌ ;首先证明,再证明,即可解决问题;本题考查平行四边形的性质、全等三角形的判定和性质、角平分线的定义、等腰三角形的判定和性质等知识,解题的关键是准确寻找全等三角形解决问题,属于中考常考题型.25.已知的半径为5,弦AB的长度为m,点C是弦AB所对优弧上的一动点.如图,若,则的度数为______;如图,若.求的正切值;若为等腰三角形,求面积.【答案】30【解析】解如图1,连接OB,OA,,,,是等边三角形,,,故答案为30;如图2,连接AO并延长交于D,连接BD,为的直径,,,在中,,根据勾股定理得,,,,的正切值为;Ⅰ、当时,如图3,连接CO并延长交AB于E,,,为AB的垂直平分线,,在中,,根据勾股定理得,,,;Ⅱ、当时,如图4,连接OA交BC于F,,,是BC的垂直平分线,过点O作于G,,,,,在中,,,在中,,,,;Ⅲ、当时,如图5,由对称性知,.连接OA,OB,判断出是等边三角形,即可得出结论;先求出,再用勾股定理求出,进而求出,即可得出结论;分三种情况,利用等腰三角形的性质和垂径定理以及勾股定理即可得出结论.此题是圆的综合题,主要圆的性质,圆周角定理,垂径定理,等腰三角形的性质,三角形的面积公式,用分类讨论的思想解决问题是解本题的关键.26.已知二次函数为常数若,求证该函数图象与x轴必有交点求证:不论m为何值,该函数图象的顶点都在函数的图象上当时,y的最小值为,求m的值【答案】证明:令,则,,,二次函数的图象与x轴必有交点;证明:二次函数,顶点坐标为,令,,,不论m为何值,该函数图象的顶点都在函数的图象上;解:由知,抛物线的对称轴为直线,抛物线开口向上,当时,由题意得:当时,y最小值为,代入抛物线解析式中得:,即舍或,当时,由题意得:当时,y最小值为,代入抛物线解析式中得:,即;当时,由题意得:当时,y最小值为,代入抛物线解析式中得:,即,此方程无解;综上,m的值是1或5.【解析】利用一元二次方程根的情况判断抛物线与x轴的交点情况;先确定出抛物线的顶点坐标,即可得出结论;利用抛物线的增减性,分三种情况讨论即可得出结论.此题是二次函数综合题,主要考查了抛物线的顶点坐标的确定,抛物线与x轴交点个数的判定,极值的确定,用分类讨论的思想解决问题是解本题的关键.27.如图,在▱ABCD中,,,,点E为CD上一动点,经过A、C、E三点的交BC于点F.【操作与发现】当E运动到处,利用直尺与规作出点E与点F;保留作图痕迹在的条件下,证明:.【探索与证明】点E运动到任何一个位置时,求证:;【延伸与应用】点E在运动的过程中求EF的最小值.【答案】解:如图1所示,如图,易知AC为直径,则,则四边形,如图,作,,若E在DN之间由可知,、F、C、E四点共圆,,,,∽若E在CN之间时,同理可证、F、C、E四点共圆,,四边形ABCD为平行四边形,,,,,为等腰直角三角形,,与N重合时,FE最小,此时,在中,,则由勾股定理可知:此时EF最小值为【解析】当,此时AC是的直径,作出AC的中点O后,以OA为半径作出即可作出点E、F;,从而得证;易知AC为直径,则,四边形如图,作,,若E在DN之间,由可知,,然后再证明 ∽ ,从而可知,若E在CN之间时,同理可证;由于A、F、C、E四点共圆,所以,由于四边形ABCD为平行四边形,,从而可证为等腰直角三角形,所以,由于,所以E与N重合时,FE最小.本题考查圆的综合问题,涉及相似三角形的性质与判定,平行四边形的性质与判定,等腰三角形的性质,尺规作图等知识,综合程度较高,需要学生灵活运用所学知识.。

2018年南京市联合体中考二模数学试卷及答案

2018年南京市联合体中考二模数学试卷及答案

中考数学模拟试题(二)注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上)1. -13的倒数为()A.13B.3C.-13D.-32. 下列运算中,结果是6a的是()A.23a a⋅B.122a a÷C.33)(a D.()6a-3.下面调查中,适合采用普查的是()A .调查全国中学生心理健康现状.B .调查你所在的班级同学的身高情况.C .调查我市食品合格情况.D .调查南京市电视台《今日生活》收视率.4. 如图,在方格纸中选择标有序号①②③④的一个小正方形涂黑,使它与图中阴影部分组成的新图形为中心对称正方形的序号是 ( )A .①B .②C .③D .④5. 若干桶方便面摆放在桌面上,它的三个视图如下,则这一堆方便面共有 ( )A .7桶B .8 桶C .9 桶D .10桶6. 在△ABC 中,∠ABC =30°,AB 边长为6,AC 边的长度可以在1、3、5、7中取值,满足这些条件的互不全等的三角形的个数是(第4题)(第5题)主视图 左视图俯视图( )A .3个B .4个C .5个D .6个二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7. 10的平方根为 ▲ .8. 因式分解: ab 2-a = ▲ .9. 点P 在第二象限内,且到两坐标轴的距离相等,则点P 的坐标可以为 ▲ .(填一个即可)10.关于x 、y 的二元一次方程组 ⎩⎨⎧=-=+032y x y x的解为 ▲ .11. 如图,将正五边形ABCDE 的C 点固定,并依顺时针方向旋转,若要使得新五边形A ´B ´C ´BC12. 已知点A (1,y 1)、B (–4,y 2)在反比例函数y =kx(k <0)的图像上,则y 1和y 2的大小关系是 ▲ .13. 如图,在⊙O 中,直径EF ⊥CD ,垂足为M ,若CD =2 5 ,EM =5,则⊙O 的(第11题) ´(第15题)ABCDE(第13题)半径为 ▲ .14.二次函数图像过点(–3,0)、(1,0),且顶点的纵坐标为4,此函数关系式为 ▲ .15.如图,在△ABC 中,AB =AC = 3,高BD = 5 ,AE 平分∠BAC ,交BD 于点E ,则DE 的长为 ▲ . 16. 若111a m =-,2111a a =-,3211a a =-,… ,则2014a 的值为 ▲ .(用含m 的代数式表示)三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(60212cos30()12--+--18. (8分)先化简再求值:1441112-+-÷⎪⎭⎫ ⎝⎛--x x x x ,其中x 是方程02=-x x 的根.19.(8分)(1)在一个不透明的盒子中,放入2个白球和1个红球,这些球除颜色外都相同.搅匀后从中任意摸出1个球,记录下颜色后放回袋中,再次搅匀后从中任意摸出1个球,请通过列表或树状图求2次摸出的球都是白球的概率;(2)现有一个可以自由转动的转盘,转盘被等分成60个相等的扇形,这些扇形除颜色外完全相同,其中40个扇形涂上白色,20个扇形涂上红色,转动转盘2次,指针2次都指向白色区域的概率为▲.20.(8分)为了解八年级学生每天的课外阅读情况,学校从八年级随机抽取了若干名学生,对他们的读书时间进行了调查并将收集的数据绘成了两幅不完整的统计图,请你依据图中提供的信息,解答下列问题:(说明:每组时间段含最小值不含最大值)(1)从八年级抽取了多少名学生?(2)①“2 − 2.5小时”的部分对应的扇形圆心角为▲度;②课外阅读时间的中位数落在▲内.(填时间段)(3)如果八年级共有800名学生,请估算八年级学生课外阅读时间不少于1.5)图②图①21.(8分)已知:如图,在ABC ∆中,︒=∠90ACB ,CAB ∠的平分线交BC 于D ,AB DE ⊥,垂足为E ,连结CE ,交AD 于点H.(1)求证:CE AD ⊥;(2)过点E 作EF ∥BC 交AD 于点F ,连结CF ,求证:四边形EFCD 为菱形.ACBD HE22.(8分)如图,在一次夏令营活动中,小明同学从营地A 出发,要到A 地的北偏东60°方向的C 处,他先沿正东方向走了730m 到达B 地,再沿北偏东45°方向走,恰能到达目的地C .求B C 、两地距离. (参考数据 3 ≈1.73、2 ≈1.41)23.(8分)某学校准备组织部分学生到少年宫参加活动,刘老师从少年宫带回来两条信息:信息一:按原来报名参加的人数,共需要交费用320元,如果参加的人数能够增加到原来人数的2倍,就可以享受优惠,此时只需交费用480元;信息二:如果能享受优惠,那么参加活动的每位同学平均分摊的费用比原来少4元.根据以上信息,原来报名参加的学生有多少人?AC24.如图,△ABC 中,⊙O 经过A 、B 两点,且交AC 于点D ,∠DBC =∠BAC . (1)判断BC 与⊙O 有何位置关系,并说明理由;(2)若⊙O 的半径为4,∠BAC =30°,求图中阴影部分的面积.OCBAD25. (8分)提高南京长江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数图像如下.当车流密度不超过20辆/千米,此时车流速度为60千米/小时.研究表明:当20≤x≤200时,车流速度v是车流密度x 的一次函数;当桥上的车流密度达到200辆/千米,造成堵塞,此时车流速度为0.(1)求当20≤x≤200时大桥上的车流速度v与车流密度x的函数关系式. (2)车流量y(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)满y可以达到最大,并求出最大26. (8分)已知平行四边形ABCD 中,AB =5,BC =132 ,E 为AB 中点,F 是BC边上的一动点.(1)如图①,若∠B =90°,作FG ⊥CE 交AD 于点G ,作GH ⊥BC ,垂足为H .求FH 的长;(2)如图②,若sin B =35 ,连接FA 交CE 于M ,当BF 为多少时,FA ⊥CE ?图①图②ABCDEFGHABCDEFM27.(10分)【阅读理解】(1)发现一:一次函数y =kx +b (k 、b 为常数且k ≠0),若k 的绝对值越大,此一次函数的图像与过点(0,b )且平行于x 轴的直线所夹的锐角就越大.根据发现请解决下列问题: 图①是y =k 1x +2、y =k 2x +2、y =k 3x +2、y =k 4x +2四个一次函数在同一坐标系中的图像,比较k 1、k 2、、k 3、k 4的大小 ▲ .(用“<”或“>”号连接)y =y =k 3x(2)发现二:我们知道函数y 1=k 1x +b 1与y 2=k 2x +b 2的交点的横坐标是方程k 1x +b 1=k 2x +b 2的解.类似的,1-x =12 x +1的解就是y =1-x 和y =12x +1的两个图像交点的横坐标.求含有绝对值的方程1-x =12x +1的解.解: 在同一直角坐标系中画出y =1-x y =12x +1的图像如图②.由图像可知方程1-x =12x +1的解有两个.情况一:由图像可知当x >1时,y =1-x =x -1,即x -1=12x +1 ,解得x=4情况二:由图像可知当x ≤1时,y =1-x =-x +1,即-x +1=12x +1 ,解得图① 图② y =x =0所以方程1-x =12x +1的解为x 1=4、 x 2=0利用以上方法......,解关于x 的方程2-x =﹣12 x +1.(3)【拓展延伸】解关于x 的方程2-x =a x (a 为常数且a ≠0).x(备用图)中考数学模拟试题(二)参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)三、解答题(本大题共11小题,共88分) 17.解:原式=33 —2×32+4— 3 +1 ………………………………………………4分=3+5…………………………………………………………………………6分18.解:原式=144122-+-÷--x x x x x ………………………………………………………1分 =12-x x—×()221--x x ………………………………………………………3分=-21-x …………………………………………………………………………5分 02=-x x 解得 x 1= 1 ,x 2=0 ………………………………………………7分x 1= 1 分式无意义; 把x 2=0代入原式=12……………………………………8分 19.(1)画树状图略 ……………………………………………………………………4分所以P (2次摸出的球都是白球)=49. ………………………………………6分 (2)49…………………………………………………………………………………8分 20.(1)从八年级抽取了120名学生 …………………………………………………4分(2)①36;②1−1.5小时 . …………………………………………………6分(3)八年级学生课外阅读时间不少于 1.5小时的估计有240人 …………………8分21.证明:(1)∵︒=∠90ACB ,CAB ∠的平分线交BC 于D ,AB DE ⊥∴在△ACD 和△AED 中CAD EAD AD AD ACD AED ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ACD ≌△AED ………………………………2分∴AC=AE ………………………………………………………………3分∴CE AD ⊥ …………………………………………………………4分(2)四边形CDEF 是菱形.……………………………………5分∵ AC =AE ,CE AD ⊥∴CH =HE∵EF ∥BC ,∴FEH DCH ∠=∠,又FHE DHC ∠=∠∴△FEH ≌△DCH ……………………………………7分 ∴FH =DH ∴四边形CDEF 是平行四边形. 又∵CE FD ⊥∴四边形CDEF 是菱形 . ………………………8分22.解:作CD ⊥AB ,垂足为D , 在Rt △ACD 中,tan ∠CAB =ADCD…………1分 在Rt △BCD 中,tan ∠CBD =BDCD…………2分 设CD 为x 则AD =CABCD∠tan = 3x ………3分BD =CBDCD∠tan =x ………4分AB =AD -BD730= 3 x -x …………5分x =-13730…………6分 A C BDHE FACD在Rt △BCD 中,Sin ∠CBD =BCCDBC =-13730× 2 =1410………8分 答:BC 距离为1410米.23.设原来报名参加的学生有x人, …………………………………………………1分 依题意,得42480320=-xx . …………………………………………………4分 解这个方程,得 x =20. …………………………………………………6分 经检验,x =20是原方程的解且符合题意. …………………………………………7分 答:原来报名参加的学生有20人. … …………………………………………………8分24.解:(1)BC 是O 的切线.连接BO 并延长交⊙O 于点E ,连接DE ,-……………………………………………1分则∠BDE =90°, ………………………………………………………………………2分所以∠EBD +∠BED =90°,因为∠DBC =∠DAB ,∠DAB =∠E , 所以∠EBD +∠DBC =90°, …………………………………………………………3分即OB ⊥BC ,又点B 在⊙O 上,所以BC 是O 的切线. ………………………………4分(2)由圆心角的性质可知,∠BOD =2∠A =60°,………………………………………5分即△BOD 是边长为4的等边三角形,S 扇形=83π………………………………………6分S △BOD =43……………………………………7分所以S阴影=S扇形–S△BOD=83π–43………………………………………………………8分25. 解:(1)设v =kx +b ,把(20,60)(200,0)代入⎩⎨⎧60=20k +b ,0=200k +b……………2分解得⎩⎨⎧k =-13 ,b =2003v = -13x +2003…………………………………3分 (2)当0≤x ≤20时y =60x 当x =20时y 最大为1200辆; ………………4分当20<x ≤200时y =x •v =-13 x 2+2003x …………………………………5分=-13(x -100)2+100003……………………………………7分 当x =100时,y 最大为3333辆.因为3333>1200,所以当x =100时,y 最大为3333辆. …………………8分26. 解:(1)∠FMC=∠B=90°………………………………1分∠GFH+∠BCE=∠BEC+∠BCE=90°∠BEC=∠GFH………………………………………2分易证△BEC∽△HFG……………………………………3分BE FH =BCGH即2.5FH=6.55FH=2513………………4分(2)作AT⊥BC,ER⊥BC易证△REC∽△TFA REFT=RCAT………………5分AT=AB sin B=3 BT=4 ER=1.5 CR=4.51.5 FT =4.53…………………………6分FT=1 …………………………7分BF=BT-FT=3 ………………8分27.(1)k4<k3<k2<k1………………………………………………………………………………………2分(2)在同一直角坐标系中画出y=2x+y=-12x+1的图像,由图像可知方程2x+=12x+1的解有两个.情况一:当x>-2时,y=2x+=x+2,即x+2=﹣12x+1. 解得x=-2 3,…………………4分AB CDEFGHMR TAB CDEFM情况二:当x≤-2时,y=2x+=-x-2,即-x-2=-12x+1 解得x=-6…………………6分所以方程2x+=-12x+1.的解为x1=-23或x2=-6(3)当a<-1时,有一个解,-x+2=ax,解得x=2a+1;………………………………7分当-1≤a<0时,无解;………………………………………………………………………………8分当0<a<1时,有两个解,当 x<2时,-x+2=ax,解得x=2a+1;当x≥2时,x-2=ax,解得x=21-a…………………………9分当a≥1时,有一个解,-x+2=ax,解得x=2a+1;…………………………………………10分。

2018年南京市联合体中考二模数学试卷及答案精品

2018年南京市联合体中考二模数学试卷及答案精品

2018年中考数学模拟试题(二)注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上)1. -13的倒数为()A .13B .3C .-13D .-32. 下列运算中,结果是6a的是()A .23a aB .122a aC .33)(a D .6a3.下面调查中,适合采用普查的是()A .调查全国中学生心理健康现状.B .调查你所在的班级同学的身高情况.C .调查我市食品合格情况.D .调查南京市电视台《今日生活》收视率.4. 如图,在方格纸中选择标有序号①②③④的一个小正方形涂黑,使它与图中阴影部分组成的新图形为中心对称图形,该小正方形的序号是()A .①B .②C .③D .④5. 若干桶方便面摆放在桌面上,它的三个视图如下,则这一堆方便面共有()A .7桶B .8 桶C .9 桶D .10桶6. 在△ABC 中,∠ABC =30°,AB 边长为6,AC 边的长度可以在1、3、5、7中取值,满足这些条件的互不全等的三角形的个数是(第4题)④③②①(第5题)主视图左视图俯视图()A .3个B .4个C .5个D .6个二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上)7. 10的平方根为▲.8. 因式分解: ab 2-a =▲.9. 点P 在第二象限内,且到两坐标轴的距离相等,则点P 的坐标可以为▲ .(填一个即可)10.关于x 、y 的二元一次方程组32y xyx 的解为▲ .11. 如图,将正五边形ABCDE 的C 点固定,并依顺时针方向旋转,若要使得新五边形A ′B ′C ′D ′E ′的顶点D ′落在直线BC上,则至少要旋转▲°.12. 已知点A (1,y 1)、B (–4,y 2)在反比例函数y =k x(k <0)的图像上,则y 1和y 2的大小关系是▲ .(第11题)A ′ABCD E B ′D ′E ′(第15题)ABCDECOM DE F(第13题)13. 如图,在⊙O 中,直径EF ⊥CD ,垂足为M ,若CD =2 5 ,EM =5,则⊙O 的半径为▲ .14.二次函数图像过点(–3,0)、(1,0),且顶点的纵坐标为4,此函数关系式为▲ .15.如图,在△ABC 中,AB =AC = 3,高BD = 5 ,AE 平分∠BAC ,交BD 于点E ,则DE 的长为▲.16. 若111a m,2111a a ,3211a a ,…,则2014a 的值为▲.(用含m 的代数式表示)三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)计算:21272cos30()13218. (8分)先化简再求值:1441112x x xx ,其中x 是方程02x x 的根.19.(8分)(1)在一个不透明的盒子中,放入2个白球和1个红球,这些球除颜色外都相同.搅匀后从中任意摸出1个球,记录下颜色后放回袋中,再次搅匀后从中任意摸出1个球,请通过列表或树状图求2次摸出的球都是白球的概率;(2)现有一个可以自由转动的转盘,转盘被等分成60个相等的扇形,这些扇形除颜色外完全相同,其中40个扇形涂上白色,20个扇形涂上红色,转动转盘2次,指针2次都指向白色区域的概率为▲.20.(8分)为了解八年级学生每天的课外阅读情况,学校从八年级随机抽取了若干名学生,对他们的读书时间进行了调查并将收集的数据绘成了两幅不完整的统计图,请你依据图中提供的信息,解答下列问题:(说明:每组时间段含最小值不含最大值) (1)从八年级抽取了多少名学生?(2)①“2 - 2.5小时”的部分对应的扇形圆心角为▲度;②课外阅读时间的中位数落在▲内.(填时间段)(3)如果八年级共有800名学生,请估算八年级学生课外阅读时间不少于1.5小时的有多少人?5448 30 24 12时间(小时)人数0.51 1.522.5 1-1.5小时45%1.5-2小时b% 0.5-1小时25%2-2.5小时a%图①图②21.(8分)已知:如图,在ABC 中,90ACB,CAB 的平分线交BC 于D ,AB DE,垂足为E ,连结CE ,交AD 于点H .(1)求证:CE AD;(2)过点E 作EF ∥BC 交AD 于点F ,连结CF ,求证:四边形EFCD 为菱形.ACBD HE22.(8分)如图,在一次夏令营活动中,小明同学从营地A 出发,要到A 地的北偏东60°方向的C 处,他先沿正东方向走了730m 到达B 地,再沿北偏东45°方向走,恰能到达目的地C .求B C 、两地距离. (参考数据3 ≈1.73、2 ≈1.41)23.(8分)某学校准备组织部分学生到少年宫参加活动,刘老师从少年宫带回来两条信息:信息一:按原来报名参加的人数,共需要交费用320元,如果参加的人数能够增加到原来人数的2倍,就可以享受优惠,此时只需交费用480元;信息二:如果能享受优惠,那么参加活动的每位同学平均分摊的费用比原来少4元.根据以上信息,原来报名参加的学生有多少人?ABC北45°60°24.如图,△ABC 中,⊙O 经过A 、B 两点,且交AC 于点D ,∠DBC =∠BAC . (1)判断BC 与⊙O 有何位置关系,并说明理由;(2)若⊙O 的半径为4,∠BAC =30°,求图中阴影部分的面积.OCBAD25. (8分)提高南京长江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数图像如下.当车流密度不超过20辆/千米,此时车流速度为60千米/小时.研究表明:当20≤x ≤200时,车流速度v 是车流密度x的一次函数;当桥上的车流密度达到200辆/千米,造成堵塞,此时车流速度为0.(1)求当20≤x ≤200时大桥上的车流速度v 与车流密度x 的函数关系式. (2)车流量y (单位时间内通过桥上某观测点的车辆数,单位:辆/小时)满足y =x ?v ,当车流密度x 为多大时,车流量y 可以达到最大,并求出最大值.(精确到1辆/小时)20200600 v (千米/小时)x (辆/千米)26. (8分)已知平行四边形ABCD 中,AB =5,BC =132,E 为AB 中点,F 是BC边上的一动点.(1)如图①,若∠B =90°,作FG ⊥CE 交AD 于点G ,作GH ⊥BC ,垂足为H .求FH 的长;(2)如图②,若sin B =35,连接FA 交CE 于M ,当BF 为多少时,FA ⊥CE ?图①图②ABCDEFGHABCDEFM27.(10分)【阅读理解】(1)发现一:一次函数y =kx +b (k 、b 为常数且k ≠0),若k 的绝对值越大,此一次函数的图像与过点(0,b )且平行于x 轴的直线所夹的锐角就越大.根据发现请解决下列问题:图①是y =k 1x +2、y =k 2x +2、y =k 3x +2、y =k 4x +2四个一次函数在同一坐标系中的图像,比较k 1、k 2、、k 3、k 4的大小▲ .(用“<”或“>”号连接)xyy=k 4x+2y=k 1x+2y=k 2x+2y=k 3x+22oxy12345–1–2–312345–1–2–3–4–5o (2)发现二:我们知道函数y 1=k 1x +b 1与y 2=k 2x +b 2的交点的横坐标是方程k 1x +b 1=k 2x +b 2的解.类似的,1-x =12x +1的解就是y =1-x 和y =12x +1的两个图像交点的横坐标.求含有绝对值的方程1-x =12x +1的解.解: 在同一直角坐标系中画出y =1-x y =12x +1的图像如图②.由图像可知方程1-x =12x +1的解有两个.情况一:由图像可知当x >1时,y =1-x =x -1,即x -1=12x +1 ,解得x=4图①图②y =12x+1 y =1-x情况二:由图像可知当x ≤1时,y =1-x =-x +1,即-x +1=12x +1 ,解得x =0所以方程1-x =12x +1的解为x 1=4、 x 2=0利用以上方法......,解关于x 的方程2-x =﹣12x +1.(3)【拓展延伸】解关于x 的方程2-x =a x (a 为常数且a ≠0).(用含a 的代数式表示)xy12345–1–2–3–412345–1–2–3–4o(备用图)2014年中考数学模拟试题(二)参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7. ±10 8. a (b -1)(b +1)9. (–1,1)(不唯一)10.x =1,y =111. 72°12. y 1<y 213. 3 14. y =– (x +1)2+415.25516.1m m三、解答题(本大题共11小题,共88分)17.解:原式=33—2× 3 2+4—3+1 ………………………………………………4分=3+5…………………………………………………………………………6分18.解:原式=144122xx xxx ………………………………………………………1分=12x x —×题号 123456答案D D B B C B221xx ………………………………………………………3分=-21x…………………………………………………………………………5分02x x解得x 1= 1 ,x 2=0 ………………………………………………7分x 1= 1 分式无意义;把x 2=0代入原式=12……………………………………8分19.(1)画树状图略……………………………………………………………………4分所以P (2次摸出的球都是白球)=49.………………………………………6分(2)49…………………………………………………………………………………8分20. (1)从八年级抽取了120名学生…………………………………………………4分(2)①36;②1- 1.5小时.…………………………………………………6分(3)八年级学生课外阅读时间不少于 1.5小时的估计有240人…………………8分21.证明:(1)∵90ACB ,CAB 的平分线交BC 于D ,ABDE∴在△ACD 和△AED 中CAD EAD AD AD ACDAED∴△ACD ≌△AED ………………………………2分∴AC=AE………………………………………………………………3分∴CE AD …………………………………………………………4分(2)四边形CDEF 是菱形.……………………………………5分∵AC =AE ,CE AD ∴CH =HE ∵EF ∥BC ,∴FEHDCH ,又FHEDHC∴△FEH ≌△DCH ……………………………………7分∴FH =DH ∴四边形CDEF 是平行四边形.又∵CE FD∴四边形CDEF 是菱形 . ………………………8分22.解:作CD ⊥AB ,垂足为D ,在Rt △ACD 中,tan ∠CAB =ADCD …………1分在Rt △BCD 中,tan ∠CBD =BDCD …………2分设CD 为x 则AD =CABCD tan = 3x ………3分BD =CBDCD tan =x ………4分AB =AD -BD730= 3 x -x …………5分x =-13730…………6分A C BDHE FABC北45°60D在Rt △BCD 中,Sin ∠CBD =BCCD BC =-13730× 2 =1410………8分答:BC 距离为1410米.23.设原来报名参加的学生有x人,…………………………………………………1分依题意,得42480320xx. …………………………………………………4分解这个方程,得x=20.…………………………………………………6分经检验,x =20是原方程的解且符合题意.…………………………………………7分答:原来报名参加的学生有20人.……………………………………………………8分24.解:(1)BC 是O 的切线.连接BO 并延长交⊙O于点E ,连接DE ,-……………………………………………1分则∠BDE=90°,………………………………………………………………………2分所以∠EBD +∠BED =90°,因为∠DBC =∠DAB ,∠DAB =∠E ,所以∠EBD +∠DBC =90°,…………………………………………………………3分即OB ⊥BC ,又点B 在⊙O 上,所以BC 是O 的切线. ………………………………4分(2)由圆心角的性质可知,∠BOD=2∠A=60°,………………………………………5分即△BOD是边长为4的等边三角形,S扇形=83π………………………………………6分S△BOD=43……………………………………7分所以S阴影=S扇形–S△BOD=83π–43………………………………………………………8分25. 解:(1)设v=kx+b,把(20,60)(200,0)代入60=20k+b,0=200k+b……………2分解得k=-13,b=2003v=-13x+2003…………………………………3分(2)当0≤x≤20时y=60x当x=20时y最大为1200辆;………………4分当20<x≤200时y=x?v=-13x2+2003x…………………………………5分=-13(x-100)2+100003……………………………………7分当x=100时,y最大为3333辆.因为3333>1200,所以当x=100时,y最大为3333辆. …………………8分26. 解:(1)∠FMC=∠B=90°………………………………1分∠GFH+∠BCE=∠BEC+∠BCE=90°∠BEC=∠GFH………………………………………2分易证△BEC∽△HFG……………………………………3分BE FH =BCGH即2.5FH=6.55FH=2513………………4分(2)作AT⊥BC,ER⊥BC易证△REC∽△TFA REFT=RCAT………………5分AT=AB sin B=3 BT=4 ER=1.5 CR=4.51.5 FT =4.53…………………………6分FT=1 …………………………7分BF=BT-FT=3 ………………8分27.(1)k4<k3<k2<k1………………………………………………………………………………………2分(2)在同一直角坐标系中画出y=2x y=-12x+1的图像,由图像可知方程2x=12x+1的解有两个.情况一:当x>-2时,y=2x=x+2,即x+2=﹣12x+1. 解得x=-2 3,…………………4分AB CDEFGHMR TAB CDEFM情况二:当x≤-2时,y=2x=-x-2,即-x-2=-12x+1 解得x=-6…………………6分所以方程2x=-12x+1.的解为x1=-23或x2=-6(3)当a<-1时,有一个解,-x+2=ax,解得x=2a+1;………………………………7分当-1≤a<0时,无解;………………………………………………………………………………8分当0<a<1时,有两个解,当 x<2时,-x+2=ax,解得x=2a+1;当x≥2时,x-2=ax,解得x=21-a…………………………9分当a≥1时,有一个解,-x+2=ax,解得x=2a+1;…………………………………………10分精品文档强烈推荐精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有。

2018届中考数学二模试卷(带答案) (26)

2018届中考数学二模试卷(带答案)  (26)
∴4的算术平方根是2.
故选:B.
【点评】本题考查了算术平方根的定义,熟记定义是解题的关键.
3.在Rt△ABC中,∠C=90°,AB=13,AC=12,则cosA=( )
A. B. C. D.
【考点】锐角三角函数的定义;勾股定理.
【专题】计算题.
【分析】直接根据余弦的定义即可得到答案.
【解答】解:∵Rt△ABC中,∠C=90°,AB=13,AC=12,
15.方程 =0的解是.
16.已知圆锥的高是3cm,母线长5cm,则圆锥的侧面积是cm2.(结果保留π).
17.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为.
18.如图,平行于x轴的直线AC分别交抛物线y1=x2(x≥0)与y2= (x≥0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DE∥AC,交y2于点E,则 =.
解得:a=﹣1.
故选:A.
【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.
9.已知a,b,c为非零实数,且满足 = = =k,则一次函数y=kx+(1+k)的图象一定经过( )
A.第一、二、三象限B.第二、四象限
C.第一象限D.第二象限
【考点】一次函数的性质;比例的性质.
三、解答题(本大题共8小题,共28分,解答应写出必要的文字说明及演算步骤)
19.(1)计算:﹣24﹣ +|1﹣4sin60°|+(π﹣ )0;
(2)解方程:2x2﹣4x﹣1=0.
20.如图,在▱ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F.

2018年南京市中考数学模拟测试卷(含答案)

2018年南京市中考数学模拟测试卷(含答案)

2018年南京市中考数学模拟测试卷九年级数学一、选择题(本大题共6小题.每小题2分.共12分.在每小题所给出的四个选项中.有一项是符合题目要求的.请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.计算-3+︱- 5︱的结果是(▲) A. -2 B. 2 C. -8D. 82.在 “2015高淳国际马拉松赛”中.有来自肯尼亚、韩国、德国等16个国家和地区约10100名马拉松爱好者参加.将10100用科学记数法可表示为(▲) A .10.1×103B .1.01×104C .1.01×105D . 0.101×1043.计算()-a 23的结果是(▲)A .a5B .-a5C .a6D .-a 64.甲、乙、丙、丁四位同学五次数学测验成绩统计如右表所示.如果从这四位同学中.选出一位成绩较好且状态稳定的同学参加全国数学联赛.那么应选(▲)A .甲B .乙C .丙D .丁5.将如图所示的Rt △ABC 绕直角边AB 旋转一周.则所得几何体的主视图为(▲)A .B .C .D .6.如图.矩形ABCD 中.AB =3.BC =4.点P 从A 点出发.按A →B →C 的方向在AB 和BC 上移动.记PA =x .点D 到直线PA的距离为y .则y 关于x 的函数关系的大致图象是( )DBAC P x y(第5题)BC(第12题)OABCD(第14题)A .B .C .D .二、填空题(本大题共10小题.每小题2分.共20分.不需写出解答过程.请把答案直接填写在答题纸相应位置.......上) 7.4的平方根是 ▲ . 8.函数y =xx -1中自变量x 的取值范围是 ▲ . 9.化简12+313的结果为 ▲ . 10.同时抛掷两枚材质均匀的硬币.出现“一正一反”的概率为 ▲ . 11.已知反比例函数y =k x的图象经过点A (-3.2).则当x =-2时.y = ▲ . 12.如图.四边形ABCD 是⊙O 的内接四边形.∠BOD =100°.则∠BCD = ▲ °. 13.一元二次方程x 2+mx +2m =0(m ≠0)的两个实根分别为x 1.x 2.则x 1+x 2x 1x 2= ▲ . 14.如图.在Rt △OAB 中.∠AOB =45°.AB =2.将Rt △OAB 绕O 点顺时针旋转90°得到Rt △OCD .则AB 扫过的面积为 ▲ .15.二次函数y =a x 2+bx +c (a ≠0)中的自变量x 与函数值y 的部分对应值如下表:则a x 2+bx +c =0的解为 ▲ .16.如图.在矩形ABCD 中.AB =5.BC =6.点E 是AD 上一点.把△BAE 沿BE 向矩形内部折叠.当点A 的对应点A 1恰落在∠ADC 的平分线上时.DA 1= ▲ .三、解答题 (本大题共11小题.共88分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤)17.(6分)解不等式组⎩⎪⎨⎪⎧2x -1<5,①3x +12-1≥x ,②并把它的解集在数轴上表示出来.18.(6分)先化简.再求值:a +2a +3÷a 2-4 a 2+3a -1.其中a =12.19.(8分)中考体育测试前.某区教育局为了了解选报引体向上的初三男生的成绩情况.随机抽测了本区部分选报引体向上项目的初三男生的成绩.并将测试得到的成绩绘成了下面两幅不完整的统计图:3个 5个及以上(第17题)请你根据图中的信息.解答下列问题:(1)写出扇形图中a = ▲ %.并补全条形图;(2)在这次抽测中.测试成绩的众数和中位数分别是 ▲ 个 、 ▲ 个. (3)该区体育中考选报引体向上的男生共有1800人.如果体育中考引体向上达6个以上 (含6个)得满分.请你估计该区体育中考中选报引体向上的男生能获得满分的有多少名?20.(8分)某种电子产品共4件.其中有正品和次品.已知从中任意取出一件.取得的产品为次品的概率为14.(1)该批产品有正品 ▲ 件;(2)如果从中任意取出2件.求取出2件都是正品的概率.21.(8分)如图.□ABCD 中.AC 与BD 相交于点O .AB =AC .延长BC 到点E .使CE =BC .连接AE .分别交BD 、CD 于点F 、G . (1) 求证:△ADB ≌△CEA ; (2) 若BD =6.求AF 的长.22.(8分)某班数学兴趣小组为了测量建筑物AB 的高度.他们选取了地面上一点E .测得DE 的长度为8.65米.并以建筑物CD 的顶端点C 为观测点.测得点A 的仰角为45°.点B 的俯角为37°.点E 的俯角为30°.(第21题)ABODC EF G(1)求建筑物CD 的高度; (2)求建筑物AB 的高度.(参考数据: 3 ≈1.73.sin37°≈53.cos37°≈54.tan37°≈43)23.(8分)某花圃用花盆培育某种花苗.经试验发现每盆花的盈利与每盆花中花苗的株数有如下关系:每盆植入花苗4株时.平均单株盈利5元;以同样的栽培条件.若每盆每增加1株花苗.平均单株盈利就会减少0.5元.要使每盆花的盈利为24元.且尽可能地减少成本.则每盆花应种植花苗多少株?24.(9分)已知二次函数y =2x 2+b x -1.(1)求证:无论b 取什么值.二次函数y =2x 2+b x -1图像与x 轴必有两个交点. (2)若两点P (-3.m )和Q (1.m )在该函数图像上. ①求b 、m 的值;② 将二次函数图像向上平移多少单位长度后.得到的函数图像与x 轴只有一个公共点?ABCD E45° 30° (第22题)37°25.(8分)如图.四边形ABCD 内接于⊙O .BD 是 ⊙O 的直径.过点A 作AE ⊥CD .交CD 的延长线于点E .DA 平分∠BDE .(1)求证:AE 是⊙O 的切线;(2)已知AE =8cm.CD =12cm.求⊙O 的半径.26.(10分)从M 地到N 地有一条普通公路.总路程为120km ;有一条高速公路.总路程为126km .甲车和乙车同时从M 地开往N 地.甲车全程走普通公路.乙车先行驶了另一段普通公路.然后再上高速公路.假设两车在普通公路和高速公路上分别保持匀速行驶.其中在普通公路上的行车速度为60km/h.在高速公路上的行车速度为100km/h .设两车出发x h 时.距N 地的路程为y km.图中的线段AB 与折线ACD 分别表示甲车与乙车的y 与x 之间的函数关系.(1)填空:a = ▲ .b = ▲ ;(2)求线段AB 、CD 所表示的y 与x(3)两车在何时间段内离N 过30km ?27.(9分)如图①.AB 是⊙O 的一条弦.点C 是优弧⌒AmB 上一点.(1)若∠ACB =45°.点P 是⊙O 上一点(不与A 、B 重合).则∠APB = ▲ ;(2)如图②.若点P 是弦AB 与⌒AmB 所围成的弓形区域(不含弦AB 与⌒AmB )内一点.(第26题)(第25题)求证:∠APB >∠ACB ;(3)请在图③中直接用阴影部分表示出在弦AB 与⌒AmB 所围成的弓形区域内满足∠ACB <∠APB <2∠ACB 的点P 所在的范围.九年级数学参考答案及评分标准一、选择题(每小题2分.共12分.将正确答案的题号填在下面的表格中)二、填空题(本大题共10小题.每小题2分.共20分.不需写出解答过程.请把答案直接填写在答题卡相应位置.......上) 7. 2 8.x ≠1 9.3 3 10.12 11.312.130° 13.-12 14.π 15.x 1=1.x 2=-2 16.2 2三、解答题(本大题共11小题.共88分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤)17.(6分)解不等式①.得x <3. ………2分 解不等式②.得x ≥1.………4分所以.不等式组的解集是1≤x <3.………5分在数轴上表示正确 ………6分18.(6分)解:a +2a +3÷a 2-4a 2+3a-1mmm(第27题)图①图②图③=a+2a+3÷(a+2)(a-2)a (a+3)-1 ………2分=a+2a+3·a (a+3)(a+2)(a-2)-1=aa-2-a-2a-2………4分=2a-2.………5分当a=12时.原式=-43.………6分19.(8分)解:(1)25;画图正确……2分(2)5.5;……5分(3)50+40200×1800=810(名).答:估计该区体育中考选报引体向上的男生能获得满分的同学有810名.………8分20.(8分)(1)3;…………2分(2)将4件电子产品记为正品1、正品2、正品3、次品.列表分析如下:…………6分结果共有12种情况.且各种情况都是等可能的.其中两次取出的都是正品共6种∴ P(两次取出的都是正品)=612=12 (8)分21.(8分) (1)证明:∵四边形ABCD 是平行四边形.∴.AD =BC∴∠ABC +∠BAD =180°. …………1分 又∵AB =AC .∴ ∠ABC =∠ACB .∵∠ACB +∠ACE =180°. ∴∠BAD =∠ACE .……2分 又∵CE =BC .∴CE =AD . …………3分 ∴△ADB ≌△CEA . …………4分 (2) ∵△ADB ≌△CEA .∴AE =BD =6. …………5分∵AD ∥BC .∴△ADF ∽△EBF . …………6分 =AD BE =7分 ∴AF =2. …………8分 22.(8分)解:(1) 在Rt △CDE 中. tan ∠CED =DCDE.…………1分 DE =8.65.∠CED =30°.∴tan30°=DC8.65. …………2分DC ≈8.651.73=5 ∴ 建筑物CD 的高度约为5米.…………3分 (2)过点C 作CF ⊥AB 于点F . 在Rt △CBF 中. tan ∠FCB =BFFC.…………4分 BF =DC =5.∠FCB =37°.∴tan37°=5FC ≈34.FC ≈6.67 …………6分 在Rt △AFC 中.∵∠ACF =45°.∴AF =CF =6.67.…………7分 ∴AB =AF +BF ≈11.67 …………8分 ∴建筑物AB 的高度约为11.67米.ABCD E45° 30° (第22题)37°F23.(本题8分)解:设每盆花在植苗4株的基础上再多植x 株.………1分 由题意得:(4+x )(5-0.5x )=24 ………4分 解得:x 1=2.x 2=4 …………6分因为要尽可能地减少成本.所以x 2=4应舍去 …………7分 即x =2. ∴ x +4=6答:每盆花植花苗6株时.每盆花的盈利为24元. …………8分 24.(9分)解:(1)因为△=b 2+8≥8>0. …………1分所以.无论b 取何值时.方程2x 2+b x -1=0都有两个不相等的实数根. ……2分所以.无论b 取何值时.二次函数y =2x 2+b x -1图像与x 轴必有两个交点. ……3分(2)①∵点P 、Q 是二次函数y =2x 2+bx -1图像上的两点.且两点纵坐标都为m∴点P 、Q 关于抛物线对称轴对称. ∴抛物线对称轴是直线x =-1. ………4分由-b2×2=-1.解得:b =4. …………5分∴ 当x =1时.m =2×12+4×1-1=5. …………6分 ②法一:设平移后抛物线的关系式为y =2x 2+4x -1+k . …………7分∵平移后的图像与x 轴仅有一个交点. ∴2x 2+b x -1=0有两个相等的实数根 ∴△=16+8-8 k =0.解得k =3 ............8分 即将二次函数图像向上平移3个单位时.函数图像与x 轴仅有一个公共点. (9)分法二:y =2x 2+4x -1=22)1(+x -3. ………7分把y =22)1(+x -3的图象沿y 轴向上平移3个单位后.得到y =22)1(+x 的图象. 它的顶点坐标为(-1.0).这个函数图象与x 轴只有一个公共点. ………8分所以.把函数y =2x 2+4x -1的图象沿y 轴向上平移3个单位后.得到的函数图象与x 轴只有一个公共点. ………9分25.(8分)(1)证明:连结OA .∵OA =OD .∴∠ODA =∠OAD . …………1分∵DA 平分∠BDE . ∴∠ODA =∠EDA .∴∠OAD =∠EDA .∴EC ∥OA . …………2分∵AE ⊥CD . ∴OA ⊥AE . …………3分∵点A 在⊙O 上.∴AE 是⊙O 的切线.………4分(2)过点O 作OF ⊥CD .垂足为点F .∵∠OAE =∠AED =∠OFD =90°.∴四边形AOFE 是矩形.………5分∴OF =AE =8cm . …………6分 又∵OF ⊥CD .∴DF = 12CD =6cm . …………7分 在Rt △ODF 中. OD =22DF OF +=10cm. 即⊙O 的半径为10cm . ……8分26.(10分)(1)1.36.2; …………2分(2)根据题意.可得A (0.120).C (0.1.126).法一:线段AB 所表示的y 与x 之间的函数关系式为y 1=-60x +120.…………4分 线段CD 所表示的y 与x 之间的函数关系式为y 2=-100(x -0.1)+126.即y 2=-100x +136. …………6分法二:设线段AB 、CD 所表示的y 与x 之间的函数关系式分别为y 1=k 1x +b 1.y 2=k 2x +b 2.根据题意.得B (2.0)、D (1.36.0).将A 、B 的坐标代入关系式可得:⎩⎪⎨⎪⎧b 1=120,2k 1+b 1=0.解得:⎩⎪⎨⎪⎧k 1=-60,b 1=120.即y 1=-60x +120 …………4分 将C 、D 的坐标代入关系式可得:⎩⎪⎨⎪⎧1.36k 2+b 2=0,0.1k 2+b 2=126.解得:⎩⎪⎨⎪⎧k 2=-100,b 2=136.即y 2=-100x +136 …………6分 (3)由题意.当x =0.1时.两车离N 地的路程之差是12km.所以当0<x <0.1时.两车离N 地的路程之差不可能达到或超过30km . …………7分当0.1≤x <1.36时.由y 1-y 2≥30.得(-60x +120)-(-100x +136)≥30.解得x ≥1.15.即当1.15≤x <1.36时.两车离N 地的路程之差达到或超过30km .……8分当1.36≤x ≤2时.由y 1≥30.得-60x +120≥30.解得x ≤1.5.即当1.36≤x ≤1.5时.两车离N 地的路程之差达到或超过30km . …………9分 综上.当1.15≤x ≤1.5时.两车离N 地的路程之差达到或超过30km . ……10分27.(9分)(1)45°或135°; …………2分(2)证明:延长AP 交⊙O 于点Q .连接BQ .则∠PQB =∠ACB . …………4分∵∠APB 为△PQB 的一个外角.∴∠APB >∠PQB .即∠APB >∠ACB ; …………6分(3)点P 所在的范围如图所示.(⌒AOB 外部与⌒AmB 的内部围成的范围.不含两条弧上的点) …………9分图② A B C O m 图③。

2018年中考南京市高淳区二模数学试卷含答案

2018年中考南京市高淳区二模数学试卷含答案

2018年质量调研检测试卷(二)九年级数学留意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卷上,答在本试卷上无效.2.请将自己的班级、姓名、考试证号、座位号用0.5毫米黑色墨水签字笔填写在答题卷上.3.答选择题必需用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必需用0.5毫米黑色墨水签字笔写在答题卷上的指定位置,在其他位置答题一律无效.4.作图必需用2B 铅笔作答,并请加黑加粗,描写清晰. 一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上)1.计算1+(-2)的结果是( ▲ ) A .-1B . 1C . 3D .-32.已知点A (1,2)与点A ′(a ,b )关于坐标原点对称,则实数a 、b 的值是( ▲ )3.一元一次不等式组⎩⎪⎨⎪⎧2x >x -1,12x ≤1的解集是( ▲ )A .a =1,b =2B .a =-1,b =2C .a =1,b =-2D .a =-1,b =-2A .x >-1B . x ≤2C .-1<x ≤2D .x >-1或x ≤24.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,连结AC 、AD 、BD ,若∠BAC =35°,则∠ADC 的度数为 ( ▲ ) 5间隔 最近的整数点所表示的数是( ▲ ) A .1 B .2C .3D .46.如图,二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,下列结论:①ac <0,②b >0,③a -b +c >0,其中正确的是( ▲ )A .35°B . 55°C .65°D . 70° A .①② B .②③ C .①③D .①②③(第4题)二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案干脆填写在答题卡相应位置.......上)7.计算:9= ▲ .8.据调查,截止2018年2月末,全国4G 用户总数到达1 030 000 000户,把1 030 000 000用科学记数法表示为 ▲ . 9.若一个棱柱有7个面,则它是 ▲ 棱柱.10.若式子1x -1+1在实数范围内有意义,则x 的取值范围是▲ . 11.计算:52-12= ▲ . 12.已知一元二次方程x 2+x +m =0的一个根为2,则它的另一个根为 ▲ .13.同一个正方形的内接圆与外切圆的面积比为 ▲ . 14.如图,某小区有一块长为36m ,宽为24m 的矩形空地,安排在其中修建两块一样的矩形绿地,它们的面积之和为600m 2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为 ▲ m .15.在数据1,2, 4,5中参加一个正整数...x ,使得到的新一组数据的平均数与中位数相等,则x = ▲ .16.已知一次函数y =32x -3的图像与x 、y 轴分别交于点A 、B ,与反比例函数y =kx(x >0)的图像交于点C ,且AB =AC ,则(第16ByxAO C362(第14k 的值为 ▲ .三、解答题(本大题共11小题,共88分.请在答题卡指定区......域.内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(1)(5分)计算:38+2cos45°+∣-2∣×(-12)-1;(2)(4分)解方程(x -3)( x -1)=-1. 18.(7分)(1)计算:4x 2-4- 1x -2;(2)方程 4x 2-4- 1x -2=12的解是 ▲ .19.(7分)某校为理解“阳光体育”活动的开展状况,从全校1000名学生中,随机抽取局部学生进展问卷调查(每名学生只能从A 、B 、C 、D 中选择一项自己喜爱的活动工程),并将调查结果绘制成如下两幅不完好的统计图.(1 (2)在扇形统计图中,(320.(7分)在课外活动时间,甲、乙、丙做“相互踢毽子”嬉戏,毽子从一人传给另一人就记为一次踢毽.(1)若从甲开场,经过三次踢毽后,毽子踢到乙处的概率是多少?请说明理由;(2)若经过三次踢毽后,毽子踢到乙处的可能性最小,则应从 ▲ 开场踢.21.(8分)如图,在□ABCD 中,点M 、N 分别为边AD 、BC 的中点,AE 、CF 分别是∠BAD 、∠(1)求证:AE ∥CF ;(2)若AD =2AB ,求证:四边形22.(7空热水管AB 与支架CD 支架CD 与程度线AE 垂直,∠BAC =37°,∠E =45°,DE =902cm ,AC =160cm .求真空热水管AB 的长.【参考数据:sin37°≈0.60,0.75】23.(7分)如图,已知△ABC .(1)作图:作∠B 的角平分线上作点E 、F ,使得四边形BEDF 为菱形.(要求:用尺规作图,不写做法,保存作图痕迹)(2)若AB =3,BC =2,则菱形BEDF 的边长为 ▲ . 24.(8分)已知二次函数y =(x -m )2-2(x -m )(m 为常数). (1)求该二次函数图像与x 轴的交点坐标; (2)求该二次函数图像的顶点P 的坐标;(3)如将该函数的图像向左平移3个单位,再向上平移1个单位,得到函数y =x 2的图像,干脆写出m 的值.25.(8分)如图,在△ABC 中,AB =AC ,以AB 为直径作⊙O ,⊙O 交BC 于点D ,交CA垂足为F .(1)求证:DF 为⊙O 的切线;(2)若AB =4,∠C =3026.(9分)元加上外卖送单补贴(送一次外卖称为一单)构成,外卖送单补贴的详细方案如下:(1)若某“外卖小哥”4月份送餐400单,则他这个月的工资总额为多少元?(2)设5月份某“外卖小哥”送餐x 单(x >500),所得工资为y 元,求y 与x 的函数关系式.(3)若某“外卖小哥”5月份送餐800单,所得工资为6500元,求m 的值.27.(11分)如图,在△ABC 中,∠A =90°,AB =4,AC =2,M 是AB 上的动点(不与A 、B 重合),过点M 作MN ∥BC 交AC 于点N ,以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .设AM =x .(1)△MNP 的面积S = ▲ ,MN = ▲ ;(用含x(第25的代数式表示)(2)在动点M的运动过程中,设△MNP与四边形MNCB重合局部的面积为y.试求y关于x的函数表达式,并求出x为何值时,y的值最大,最大值为多少?7.3 8.1.03×1099.五10.x≠111.2 212.-3 13.1:2 14.215.3或816.12三、解答题17.(1)38+2cos45°+∣-2∣×(-12)-1=2+2×22+2×(-2)………………4分=2-2………………5分(2)解: x2-4x+3=-1,x2-4x+4=0,………………2分(x -2) 2=0,………………3分 ∴x 1=x 2=2.………………4分18.(1)解: 4x 2-4- 1x -2=4(x +2)( x -2)-x +2(x +2)(x -2)………………2分 =2-x (x +2)(x -2)………………4分 =-1x +2………………5分(2)-4………………7分19.(1)50,画图正确; ………………3分(2)1050×360°=72°;………………5分(3)2050×1000=400(人).答:估计全校学生中喜爱篮球的人数有400人.………………7分20.(8分)解:(1)从甲开场,经过三次踢毽后全部可能结果为:(乙,甲,乙)、(乙,甲,丙)、(乙,丙,甲)、(乙,丙,乙)、(丙,甲,乙)、(丙,甲,丙)、(丙,乙,甲)、(丙,乙,丙),共有8种结果,且是等可能的,其中毽子踢到乙处的结果有3种.……4分因此,从甲开场,经过三次踢毽后,毽子踢到乙处的概率P =38.…………5分(2)乙.…………7分 21.(8分)证明:(1)∵四边形ABCD 是□ABCD ,∴AD ∥BC ,∠BAD =∠BCD . ………1分∵AE 、CF 分别是∠BAD 、∠BCD∴∠DAE =12∠BAD ,∠BCF =12∠BCD .∴∠DAE =∠BCF ,………2分∵AD ∥BC , ∴∠DAE =∠BEA , ………3∴∠BEA =∠BCF ,∴AE ∥CF . ………4分(2)∵四边形ABCD 为□,M 、N 为AD 、BC 的中点 ∴MD ∥BN ,且MD =BN ,∴四边形BMDN 为□,∴BM ∥DN .又由(1)AE ∥CF ,∴四边形PQRS 为□ ………6分 ∵AD =2AB ,点M 为边AD 的中点,∴AM =AB ,………7分 ∵AE 平分∠BAD ,∴AE ⊥BM ,∴∠APB =∠SPQ =90°.∴四边形PQRS 是矩形.………8分 22(7分)解:在Rt △DCE 中,∵sin ∠E =DC DE =22,∴DC =22DE =902×22=90. (2)分在Rt △AOC 中,∵cos ∠A =AC OA =0.8,∴OA =AC ÷0.8=160×54=200. (3)分∵tan ∠A =OCAC=0.75,∴OC =AC ×0.75=160×0.75=120,∴OD =OC -DC =120-90=30. ……………5分 ∴ AB =OA -OB =OA -OD =200-30=170答:真空热水管AB 的长为170cm 23.(7分)(1)作图正确;………4分(2)65.………7分24.(8分)解:(1)令y =0,得(x -m )2-2 (x -m )=0 , 即(x -m ) (x -m -2)=0,解得x 1=m ,x 2=m +2. …………2分∴该函数图像与x 轴的交点坐标为(m ,0)(m +2,0).…………3分(2)y =(x -m )2-2(x -m )=(x -m )2-2(x -m ) +1-1=(x -m -1)2-1………………………………5分∴该函数图像的顶点P 的坐标为(m +(其它解法参照给分) (3)m =2.………………8分 25.(8分)(1)连接AD 、OD . ∵AB 是直径,∴∠ADB =90°. ∵AB =AC ,∴BD =CD , ………1分又∵OA =OB ,∴OD 是△ABC 的中位线,∴OD ∥AC ,……2分 ∵DF ⊥AC ,∴OD ⊥DF ,………3分即∠ODF =90°.∴DF 为⊙O 的切线. ………4分 (2)连接OE .∵AB =AC ,∴∠B =∠C =30°,∴∠BAE =60°………5分 ∵∠BOE =2∠BAE ,∴∠BOE =120°, ………6分 ∴⌒BE =120360·4π=43π. ………8分26.(9分)解:(1)1000+400×6=3400(元).答:他这个月的工资总额为3400元.………………2分(2)当500<x ≤m 时,y =1000+500×6+8(x -500) =8x ;………………4分 当x >m 时,y =1000+500×6+8(m -500) +10 (x -m ) =10x -2m ;………………6分 (3)当m ≥800时,y =8x =8×800=6400≠6500,不合题意;………………7分 当700≤m <800时,y =10x -2m =10×800-2m =8000-2m =6500,解得m =(第25750.………………9分所以,所求m 的值为750.27.(11分)(1)14x 2 ,52x ;……………3分(2)随着点M 的运动,当点P 落在BC 上,连接AP ,则O 为AP 的中点.∵MN ∥BC ,∴△AMO ∽△ABP . ∴AM AB =AO AP =12,∴AM =MB =12AB =2. …………4分①当0<x ≤2时,y =S △PMN =14x 2.∴当x =2时,y 取最大值为1. ……………6分 ②当2<x <4时,设PM 、PN 与BC 交于点E 、F . ∵四边形AMPN 为矩形,∴PN ∥AM ,PN =AM =x , 又∵MN ∥BC ,∴四边形MBFN 为平行四边形.∴FN =BM =4-x ,△PEF ∽△ACB ,∴PF =PN -FN =2x -4∵S △PEF S △ACB =(PF AB )2 , ∴S △PEF =(2x -44)2×12×4×2=(x -2)2,∴y =S △PMN -S △PEF =14x 2-(x -2)2=-34x 2+4x -4,………9分AB MC AB M P NFO E N∴y =-34(x -83)2+43(2<x <4),∴当x =83时,满意2<x <4,y 取最大值为43 .…………10分综上可知,当x =83时,y 取最大值,最大值为43 (11)分CP。

2018届中考数学二模试卷(带答案) (12)

2018届中考数学二模试卷(带答案)  (12)

2018年中考数学二模试卷一、选择题:每小题3分,共36分。

1.下列计算错误的是()A.•=B.+=C.÷=2 D.=22.﹣8的立方根是()A.﹣2 B.±2 C.2 D.﹣3.下列运算正确的是()A.x2•x3=x6B.x6÷x5=x C.(﹣x2)4=x6D.x2+x3=x54.下列函数,其图象经过点(2,2)的是()A.y=3x B.y=1﹣2x C.y=D.y=x2﹣15.如图所示的几何体的主视图是()A.B. C.D.6.函数y=中,自变量x的取值范围是()A.x≠0 B.x≥2 C.x>2且x≠0 D.x≥2且x≠07.有19位同学参加歌咏比赛,成绩互不相同,前10名的同学进入决赛.某同学知道自己的分数后,要判断自己能够进入决赛,他只需知道这19位同学成绩的()A.平均数B.中位数C.众数 D.方差8.如图,OB是∠AOC的角平分线,OD是∠COE的角平分线,如果∠AOB=40°,∠COE=60°,则∠BOD的度数为()A.50°B.60°C.65°D.70°9.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为()A.x≥B.x≤3 C.x≤D.x≥310.如图,圆锥体的高h=2cm,底面半径r=2cm,则圆锥体的全面积为()cm2.A.4πB.8πC.12πD.(4+4)π11.下列判断错误的是()A.对角线相互垂直且相等的平行四边形是正方形B.对角线相互垂直平分的四边形是菱形C.对角线相等的四边形是矩形D.对角线相互平分的四边形是平行四边形12.若不等式组有解,则m的取值范围是()A.m≥2 B.m<1 C.m>2 D.m<2二、填空题:每小题3分,共18分。

13.将0.00305用科学记数法表示为.14.分解因式:x2﹣x+=.15.单项式的系数与次数之积为.16.如图,若AD∥BE,且∠ACB=90°,∠CBE=30°,则∠CAD=度.17.已知x、y满足,则x+2y=.18.如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB交AB于D,已知cos∠ACD=,BC=3,则AC的长为.三、解答题:本大题共66分。

2018年中考二模数学试卷及答案

2018年中考二模数学试卷及答案

EDCB A2018年初中毕业生学业模拟考试数 学 试 卷说明:本试卷共 4页,25小题,满分 120 分.考试用时100 分钟. 注意事项:1.答题前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写准考证号、姓名、试室号、座位号,再用2B 铅笔把试室号、座位号的对应数字涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应答案选项涂黑,如需改动,用橡皮擦擦干净后,再重新选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、相信你,都能选择对!四个选项中只有一个是正确的.(本大题10小题,每题3分,共30分) 1.﹣4的绝对值是( )A .4B .﹣4C .41 D .41 2.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为( ) A .44×108 B .4.4×109 C .4.4×108D .4.4×10103.一组数据从小到大排列为2,3,4,x ,6,9.这组数据的中位数是5,那么这组数据的众数为( ) A .4B .5C .5.5D .64.下列四边形中,是中心对称而不是轴对称图形的是( ) A .平行四边形 B .矩形 C .菱形 D .正方形 5.如图,能判定EB ∥AC 的条件是( ) A .∠A=∠ABE B .∠A=∠EBDC .∠C=∠ABCD .∠C=∠ABE 6.下列计算正确的是( )A .a 2+a 2=a 4B .(﹣a )2﹣a 2=0C .a 8÷a 2=a 4D .a 2•a 3=a 6 7.一元二次方程x 2﹣2x+p=0总有实数根,则p 应满足的条件是( ) A .p >1 B . p =1 C .p <1 D .p ≤18.如图,沿AC 方向修隧道,为了加快施工进度,要在小山的另一边同时施工,从AC 上的一点B 取∠ABD=145°,BD=500米,∠D=55°,使A 、C 、E 在一条直线上,那么开挖点E 与D 的距离是( ) A .500sin55°米 B .500cos35°米 C .500cos55°米 D .500tan55°9.如图,在Rt △ABC 中,∠C=90°,∠ABC=60°,AB 的垂直平分线分别交AB 与AC 于点D 和点E ,若CE=2,则AB 的长是( ) A .4B .43C .8D .83P OFEDCBACC10.如图,菱形ABCD 的对角线AC 与BD 交于点O ,AC=6,BD=8.动点E 从点B 出发,沿着 B ﹣A ﹣D 在菱形ABCD 的边上运动,运动到点D 停止.点F 是点E 关于BD 的对称点,EF 交 BD 于点P ,若BP=x ,△OEF 的面积为y ,则y 与x 之间的函数图象大致为( )A .B .C .D .二.填空题(本大题6小题,每小题4分,共24分) 11.比较大小:(填“>”或“<”)12.一个多边形的每个外角都是60°,则这个多边形边数为 . 13.若|x +2|+5-y =0,则xy 的值为 .14.分式方程aa 134=-的根是 . 15.如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,若⊙O 的半径为5,AB=8,则CD 的长是 . 16.把边长为1的正方形ABCD 绕点A 逆时针旋转45°得到正方形AB′C′D′, 边B′C′与DC 交于点O ,则四边形AB′OD 的周长为 . 三.解答题(一)(本大题3小题,每题6分,共18分) 17.(本题满分6分)计算:()332160tan 3101++-︒-⎪⎭⎫⎝⎛-.18.(本题满分6分)先化简,再求值: ⎪⎭⎫ ⎝⎛--÷+-+x x x x x x 1121222,其中x=3.19.(本题满分6分)在平行四边形ABCD 中,AB=2AD . (1)作AE 平分∠BAD 交DC 于E (2)在(1)的条件下,连接BE ,判定△ABE 的形状 (不要求证明).20.(本题满分7分)中秋佳节我国有赏月和吃月饼的传统,英才学校数学兴趣小组为了了解本校学生喜爱月饼的情况,随机抽取了60名同学进行问卷调查,经过统计后绘制了两幅尚不完整的统计图.(注:参与问卷调查的每一位同学在任何一种分类统计中只有一种选择)请根据统计图完成下列问题:(1)扇形统计图中,“很喜欢”的部分所对应的圆心角为度;条形统计图中,“很喜欢”月饼中喜欢“豆沙”月饼的学生有人;(2)若该校共有学生1200人,请根据上述调查结果,估计该校学生中“很喜欢”月饼的有人.(3)李民同学最爱吃莲蓉月饼,陈丽同学最爱吃豆沙月饼,现有重量、包装完全一样的豆沙、莲蓉、蛋黄三种月饼各一个,让李民、陈丽每人各选一个,则李民、陈丽两人都选中自己最爱吃的月饼的概率为.21.(本题满分7分)如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕EF分别与AB、DC交于点E和点F.(1)证明:△ADF≌△AB′E;(2)若AD=12,DC=18,求△AEF的面积.22.(本题满分7分)飞马汽车销售公司3月份销售新上市一种新型低能耗汽车8辆,由于该型汽车的优越的经济适用性,销量快速上升,5月份该公司销售该型汽车达18辆.(1)求该公司销售该型汽车4月份和5月份的平均增长率;(2)该型汽车每辆的进价为9万元,该公司的该型车售价为9.8万元/辆.且销售m辆汽车,汽车厂返利销售公司0.04m万元/辆.若使6月份每辆车盈利不低于1.7万元,那么该公司6月份至少需要销售该型汽车多少辆?(盈利=销售利润+返利)E23.(本题满分9分)如图,在平面直角坐标系中,一次函数的图象y 1=kx +b 与反比例函数xny =2的图象交于点A (1,5)和点B (m ,1). (1)求m 的值和反比例函数的解析式; (2)当x >0时,根据图象直接写出不等式xn≥kx +b 的解集; (3)若经过点B 的抛物线的顶点为A ,求该抛物线的解析式.24.(本题满分9分)如图,四边形ABCD 内接于⊙O ,AB=AD ,对角线BD 为⊙O 的直径,AC 与BD 交于点E .点F 为CD 延长线上,且DF=BC . (1)证明:AC=AF ;(2)若AD=2,AF=13+,求AE 的长;(3)若EG ∥CF 交AF 于点G ,连接DG.证明:DG 为⊙O25.(本题满分9分)如图,在矩形ABCD 中,AB=5,AD=4,E 为AD 边上一动点(不与点A 重合), AF ⊥BE ,垂足为F ,GF ⊥CF ,交AB 于点G ,连接EG .设AE=x ,S △BE G =y . (1)证明:△AFG ∽△BFC ;(2)求y 与x 的函数关系式,并求出y 的最大值; (3)若△BFC 为等腰三角形,请直接写出x 的值.2018年初中毕业生学业模拟考试数学参考答案一.选择题(本大题10小题,每题3分,共30分)1.A 2.B 3.D 4.A 5.A 6.B 7.D 8.C 9.B 10.D 二.填空题(本大题6小题,每小题4分,共24分)11.<. 12.6. 13.-10. 14.1-=a . 15.2. 16.. 三.解答题(一)(本大题3小题,每题6分,共18分) 17.解:原式=3-3-1+3 4分 =2. 6分 18.解:原式=()()()11112+-⨯-+x x x x x x 4分=12-x x . 5分当x=3时,原式=291332=-. 19.解:(1)如图,AE 为所求; 3分 (2)△ABE 为直角三角形. 6分四.解答题(二)(本大题3小题,每小题7分,共21分) 20.解:(1)126°, 1分4; 2分 (2)420; 4分 (3)61. 7分 21.(1)证明:∵四边形ABCD 是矩形,∴∠D=∠C=∠B′=90°,AD=CB=AB′, 1分 ∵∠DAF +∠EAF=90°,∠B′AE +∠EAF=90°,∴∠DAF=∠B′AE , 2分 在△ADF 和△AB′E 中,∴△ADF ≌△AB′E . 3分(2)解:由折叠性质得FA=FC ,设FA=FC=x ,则DF=DC -FC=18-x , 4分在Rt △ADF 中,AD 2+DF 2=AF 2, 5分∴()2221812x x =-+.解得13=x . 6分∵△ADF ≌△AB′E ,(已证) ∴AE=AF=13. ∴S △AEF =AD AE ⋅⋅21=131221⨯⨯=78. 7分 22.解:(1)设该公司销售该型汽车4月份和5月份的平均增长率为x , 1分 根据题意列方程:8(1+x )2=18, 3分 解得x 1=﹣250%(不合题意,舍去),x 2=50%.答:该公司销售该型汽车4月份和5月份的平均增长率为50%. 4分 (2)由题意得:0.04m +(9.8﹣9)≥1.7, 5分 解得:m ≥22.5, 6分 ∵m 为整数,∴该公司6月份至少需要销售该型汽车23辆, 7分 答:该公司6月份至少需要销售该型汽车23辆.五.解答题(三)(本大题3小题,每小题9分,共27分) 23.解:(1)∵反比例函数xny =2的图象交于点A (1,5), ∴5=n ,即n=5,∴, 1分∵点B (m ,1)在双曲线上.∴1=, ∴m=5, ∴B (5,1); 2分(2)不等式xn≥kx +b 的解集为0<x ≤1或x ≥5; 6分 (3)∵抛物线的顶点为A (1,5),∴设抛物线的解析式为()512+-=x a y , 8分∵抛物线经过B (5,1),∴()51512+-=a ,解得41-=a . ∴()51412+--=x y . 9分F24.(1)证明:∵四边形ABCD 内接于⊙O ,∴∠ABC+∠ADC=180°. ∵∠ADF+∠ADC=180°,∴∠ABC=∠ADF . 1分在△ABC 与△ADF 中,⎪⎩⎪⎨⎧=∠=∠=DF BC ADF ABC ADAB , 2分∴△ABC ≌△ADF .∴AC=AF ; 3分 (2)解:由(1)得,AC=AF=13+. 4分 ∵AB=AD , ∴⌒⌒AD AB =.∴∠ADE=∠ACD . ∵∠DAE=∠CAD ,∴△ADE ∽△ACD . 5分 ∴ADAEAC AD =. ∴()232213413222-=-=+==AC AD AE . 6分(3)证明:∵EG ∥CF ,∴1==ACAFAE AG . ∴AG=AE . 由(2)得AD AE AC AD =,∴ADAGAF AD =. ∵∠DAG=∠FAD ,∴△ADG ∽△AFD . 7分 ∴∠ADG=∠F .∵AC=AF ,∴∠ACD=∠F . 又∵∠ACD=∠ABD ,∴∠ADG=∠ABD . 8分 ∵BD 为⊙O 的直径, ∴∠BAD=90°.∴∠ABD+∠BDA=90°.∴∠ADG+∠BDA=90°. ∴GD ⊥BD .∴DG 为⊙O 的切线. 9分E 25.(1)证明:在矩形ABCD 中,∠ABC=90°. ∴∠ABF+∠FBC=90°. ∵AF ⊥BE , ∴∠AFB=90°. ∴∠ABF+∠GAF=90°.∴∠GAF=∠FBC . 1分 ∵FG ⊥FC , ∴∠GFC=90°. ∴∠ABF=∠GFC .∴∠ABF-∠GFB =∠GFC-∠GFB . 即∠AFG=∠CFB . 2分 ∴△AFG ∽△BFC ; 3分 (2)解:由(1)得△AFG ∽△BFC , ∴BFAFBC AG =. 在Rt △ABF 中,tan ∠ADF=BF AF, 在Rt △EAB 中,tan ∠EBA=ABEA,∴AB EA BF AF =. ∴ABEA BC AG =. ∵BC=AD=4,AB=5,∴54xAB BC EA AG =⋅=. 4分 ∴BG=AB-AG=5-x 54.∴32125825522552545212122+⎪⎭⎫ ⎝⎛--=+-=⎪⎭⎫ ⎝⎛-=⋅=x x x x x AE BG y . 5分 ∴y 的最大值为32125; 6分 (3)x 的值为25,825或415. 9分。

2018年南京市中考数学模拟测试卷(含答案)

2018年南京市中考数学模拟测试卷(含答案)

2018年南京市中考数学模拟测试卷九年级数学一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.计算-3+︱- 5︱的结果是(▲)A。

-2 B. 2 C。

-8 D。

82.在“2015高淳国际马拉松赛”中,有来自肯尼亚、韩国、德国等16个国家和地区约10100名马拉松爱好者参加,将10100用科学记数法可表示为(▲)A.10.1×103 B.1。

01×104C.1。

01×105 D. 0.101×1043.计算错误!3的结果是(▲)A.a5 B.-a5 C.a6 D.-a64.甲、乙、丙、丁四位同学五次数学测验成绩统计如右表所示.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选(▲)A.甲 B.乙 C.丙 D.丁5.将如图所示的Rt△ABC绕直角边AB旋转一周,则所得几何体的主视图为(▲)A. B. C. D.6.如图,矩形ABCD中,AB=3,BC=4,点P从AA→B→C的方向在AB和BC上移动.记P A=x,点D的距离为y,则y关于x的函数关系的大致图象是()D(第5题)BC(第12题)O ABCD(第14题)二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题纸相应位置.......上) 7.4的平方根是 ▲ .8.函数y =错误!中自变量x 的取值范围是 ▲ . 9.化简 错误!+3错误!的结果为 ▲ .10.同时抛掷两枚材质均匀的硬币,出现“一正一反”的概率为 ▲ .11.已知反比例函数y =kx 的图象经过点A (-3,2),则当x =-2时,y = ▲ .12.如图,四边形ABCD 是⊙O 的内接四边形,∠BOD =100°,则∠BCD = ▲ °. 13.一元二次方程x 2+mx +2m =0(m ≠0)的两个实根分别为x 1,x 2,则 x 1+x 2 x 1x 2 = ▲ .14.如图,在Rt △OAB 中,∠AOB =45°,AB =2,将Rt △OAB 绕O 点顺时针旋转90°得到Rt △OCD ,则AB 扫过的面积为 ▲ .15.二次函数y =a x 2+bx +c (a ≠0)中的自变量x 与函数值y 的部分对应值如下表:则 a x 2+bx +c =0的解为 ▲ .16.如图,在矩形ABCD 中,AB =5,BC =6,点E 是AD 上一点,把△BAE 沿BE 向矩形内部折叠,当点A 的对应点A 1恰落在∠ADC 的平分线上时,DA 1= ▲ .三、解答题 (本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)解不等式组错误!并把它的解集在数轴上表示出来.18.(6分)先化简,再求值:错误!÷错误!-1,其中a =错误!.19.(8分)中考体育测试前,某区教育局为了了解选报引体向上的初三男生的成绩情况,随机抽测了本区部分选报引体向上项目的初三男生的成绩,并将测试得到的成绩绘成了下面两幅不完整的统计图:请你根据图中的信息,解答下列问题: (1)写出扇形图中a = ▲ %,并补全条形图;(2)在这次抽测中,测试成绩的众数和中位数分别是 ▲ 个 、 ▲ 个.(3)该区体育中考选报引体向上的男生共有1800人,如果体育中考引体向上达6个以上 (含6个)得满分,请你估计该区体育中考中选报引体向上的男生能获得满分的有多少名?20.(8分)某种电子产品共4件,其中有正品和次品.已知从中任意取出一件,取得的产品为次品的概率为错误!.3个 5个及以上(第17题)(1)该批产品有正品 ▲ 件;(2)如果从中任意取出2件,求取出2件都是正品的概率.21.(8分)如图,□ABCD 中,AC 与BD 相交于点O ,AB =AC ,延长BC 到点E ,使CE =BC ,连接AE ,分别交BD 、CD 于点F 、G . (1) 求证:△ADB ≌△CEA ; (2) 若BD =6,求AF 的长.22.(8分)某班数学兴趣小组为了测量建筑物AB 的高度,他们选取了地面上一点E ,测得DE 的长度为8。

2018年中考数学二模试卷(含答案)-精品

2018年中考数学二模试卷(含答案)-精品

则投到阴影部分的概率是 ▲ .
A
D
17.如图,若将四根木条钉成的矩形木框变形为平行四边形
ABCD 的形状,并使其面积为矩形面积的一半,则这 个平行四边形的一个最小内角的值等于 ▲ 度.
B
C
(第 17 题)
18.在平面直角坐标系中,过点
作 x 轴的垂线,交直线
于点 ,过点 作
直线 的垂线交 x 轴于点 ,过点 作 x 轴的垂线,交直线 于 ,……,如此继续,
向旋转 90°得 OA1,则点 A1 的坐标为
A.(-a,b) B.( a,-b) C.(-b,a) D.( b,-a)
二、填空题:本大题共 8 小题,每小 分.不需写出解答过程,请把答 题.卡.相.应.位.置.上.
11.月球表面温度,中午是 101℃, 则半夜比中午低 ▲ ℃.
12.用科学记数法表示 13000000,结
满分为 100 分)进行统计,请你根据下面尚未完成并有局部污染的频率分布表和频率分
布直方图(如图).回答下列问题.
(1)被抽取调查的学生成绩的数量为

(2)补全频数分布直方图;
(3)请估计该校初二年级学生在这次数学测验中优秀学生人数约为多少名?
注:成绩在 90 分以上(不含 90 分)为优秀.
90.5~100.5 ? ?
合计
??
50.5 70.5 90.5
60.5 80.5 100.5 成绩(分) 21.(本小题满分 9 分)
甲、乙两班学生参加植树造林.已知甲班每天比乙班多种 5 棵树,甲班种 80 棵树所用 的天数与乙班种 70 棵树所用的天数相等.求甲、乙班每天各种树多少棵. 22.(本小题满分 8 分) 课外实践活动中,数学老师带领学生测量学校旗杆的高度.如图,在 处用测角仪(离 地高度为 1.5 米)测得旗杆顶端的仰角为 ,朝旗杆方向前进 23 米到 处,再次测得 旗杆顶端的仰角为 ,求旗杆 的高度.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年质量调研检测试卷(二)九年级数学一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.计算1+(-2)的结果是( )A . -1B .1C .3D .-32.已知点A (1,2)与点A ′(a ,b )关于坐标原点对称,则实数a 、b 的值是( )A . a =1,b =2B .a =-1,b =2C .a =1,b =-2D .a =-1,b =-23.一元一次不等式组⎩⎪⎨⎪⎧2x >x -1,12x ≤1的解集是( )A . x >-1B .x ≤2C .-1<x ≤2D .x >-1或x ≤24.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,连结AC 、AD 、BD ,若∠BAC =35°,则∠ADC 的度数为( ) A .35° B .55°D .70°5.在数轴上,与表示6的点距离最近的整数点所表示的数是( )A .1B .2C .3D .46.如图,二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,给定下列结论: ①ac <0,②b >0,③a -b +c >0,其中正确的是( ) A .①② B .②③ C .①③D .①②③二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7.计算:9= .8.据调查,截止2018年2月末,全国4G 用户总数达到1 030 000 000户,把1 030 000 000用科学记数法表示为 .9.若一个棱柱有7个面,则它是 棱柱.10.若式子1x -1+1在实数范围内有意义,则x 的取值范围是 .11.计算:52-12= . 12.已知一元二次方程x 2+x +m =0的一个根为2,则它的另一个根为 .13.同一个正方形的内接圆与外切圆的面积比为 . 14.如图,某小区有一块长为36m ,宽为24m 的矩形空地,计划在其yxAOCOACBD(第4题)-1 yO1(第6题)x中间修建两块形状相同的矩形绿地,它们的面积之和为600m 2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为 m .15.在数据1,2, 4,5中加入一个正整数...x ,使得到的新一组数据的平均数与中位数相等,则x的值为 . 16.已知一次函数y =32x -3的图像与x 、y 轴分别交于点A 、B ,与反比例函数y =kx(x >0)的图像交于点C ,且AB =AC ,则k 的值为 .三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(1)(5分)计算:38+2cos45°+∣-2∣×(-12)-1;(2)(4分)解方程(x -3)( x -1)=-1.18.(7分)(1)计算:4x 2-4- 1x -2;(2)方程 4x 2-4- 1x -2=12 的解是 .19.(7分)某校为了解“阳光体育”活动的开展情况,从全校1000名学生中,随机抽取部分学生进行问卷调查(每名学生只能从A 、B 、C 、D 中选择一项自己喜欢的活动项目),并将调查结F NENQM AQRBCDP S(第21题)DCB30%A学生选择的活动项目扇形统计图 A :踢毽子 B :乒乓球 C :篮球 D :跳绳学生选择的活动项目条形统计图 项目5ABCD人数20 1515 210 2510 果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)被调查的学生共有 人,并补全条形统计图; (2)在扇形统计图中,求表示区域D 的扇形圆心角的度数; (3)全校学生中喜欢篮球的人数大约是多少人?20.(7分)在课外活动时间,甲、乙、丙做“互相踢毽子”游戏,毽子从一人传给另一人就记为一次踢毽.(1)若从甲开始,经过三次踢毽后,毽子踢到乙处的概率是多少?请说明理由; (2)若经过三次踢毽后,毽子踢到乙处的可能性最小,则应从 开始踢.21.(8分)如图,在□ABCD 中,点M 、N 分别为边AD 、BC 的中点,AE 、CF 分别是∠BAD 、∠BCD的平分线.(1)求证:AE ∥CF ;(2)若AD =2AB ,求证:四边形PQRS 是矩形.22.(7交于点O ,且OB =OD ,支架CD 与水平线AE 垂直,∠BAC =37°,∠E =45°,DE =902cm ,AC =160cm .求真空热水管AB 的长.ABC(第23题)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)23.(7分)如图,已知△ABC .(1)作图:作∠B 的角平分线BD 交AC 于点D ;在BC 、AB 上作点E 、F ,使得四边形BEDF为菱形.(要求:用尺规作图,不写做法,保留作图痕迹) (2)若AB =3,BC =2,则菱形BEDF 的边长为 .24.(8分)已知二次函数y =(x -m )2-2(x -m )(m 为常数). (1)求该二次函数图像与x 轴的交点坐标; (2)求该二次函数图像的顶点P 的坐标;(3)如将该函数的图像向左平移3个单位,再向上平移1个单位,得到函数y =x 2的图像,直接写出m 的值.25.(8分)如图,在△ABC 中,AB =AC ,以AB 为直径作⊙O ,⊙O 交BC 于点D ,交CA 的延长线于点E .过点D 作DF ⊥AC ,垂足为F . (1)求证:DF 为⊙O 的切线;(2)若AB =4,∠C =30°,求劣弧⌒BE 的长.A FEO26.(9分)某公司招聘外卖送餐员,送餐员的月工资由底薪1000元加上外卖送单补贴(送一次外卖称为一单)构成,外卖送单补贴的具体方案如下:外卖送单数量补贴(元/单)每月不超过500单 6超过500单但不超过m单的部分(700≤m≤900)8超过m单的部分10 (1)若某“外卖小哥”4月份送餐400单,则他这个月的工资总额为多少元?(2)设5月份某“外卖小哥”送餐x单(x>500),所得工资为y元,求y与x的函数关系式;(3)若某“外卖小哥”5月份送餐800单,所得工资为6500元,求m的值.27.(11分)如图,在△ABC中,∠A=90°,AB=4,AC=2,M是AB上的动点(不与A、B重合),过点M作MN∥BC交AC于点N,以MN为直径作⊙O,并在⊙O内作内接矩形AMPN.设AM=x.(1)△MNP的面积S=,MN=;(用含x的代数式表示)(2)在动点M的运动过程中,设△MNP与四边形MNCB重合部分的面积为y.试求y关于x 的函数表达式,并求出x为何值时,y的值最大,最大值为多少?2018年质量调研检测试卷(二)九年级数学参考答案一、选择题1 2 3 4 5 6A D CB B C二、填空题7.3 8.1.03×1099.五10.x≠111.2 2 12.-3 13.1:2 14.215.3或8 16.12AB C(备用图)AB C(备用图)三、解答题17.(1)38+2cos45°+∣-2∣×(-12)-1=2+2×22+2×(-2) ………………4分=2-2; ………………5分 (2)解: x 2-4x +3=-1,x 2-4x +4=0, ………………2分 (x -2) 2=0, ………………3分 ∴x 1=x 2=2. ………………4分18.(1)4x 2-4- 1x -2=4(x +2)( x -2)-x +2(x +2)( x -2)………………2分=2-x(x +2)( x -2)………………4分=-1x +2; ………………5分(2)-4. ………………7分 19.(1)50,画图正确; ………………3分 (2)1050×360°=72°; ………………5分(3)2050×1000=400(人).答:估计全校学生中喜欢篮球的人数有400人.…………7分20.(1)从甲开始,经过三次踢毽后所有可能结果为:(乙,甲,乙)、(乙,甲,丙)、(乙,丙,甲)、(乙,丙,乙)、(丙,甲,乙)、(丙,甲,丙)、(丙,乙,甲)、(丙,乙,丙),共有8种结果,且是等可能的,其中毽子踢到乙处的结果有3种. (4)分因此,从甲开始,经过三次踢毽后,毽子踢到乙处的概率P =38. (5)分(2)乙. …………7分21.(1)∵四边形ABCD 是平行四边形,∴AD ∥BC ,∠BAD =∠BCD . …………1分∵AE 、CF 分别是∠BAD 、∠BCD 的平分线,∴∠DAE =12∠BAD ,∠BCF =12∠BCD ,∴∠DAE =∠BCF , (2)分∵AD ∥BC , ∴∠DAE =∠BEA , (3)分∴∠BEA =∠BCF ,∴AE ∥CF . (4)分(2)∵四边形ABCD 为平行四边形,M 、N 为AD 、BC 的中点,∴MD ∥BN ,且MD =BN ,∴四边形BMDN 为平行四边形,∴BM ∥DN .又由(1)AE ∥CF ,∴四边形PQRS 为平行四边形, (6)分∵AD =2AB ,点M 为边AD 的中点,∴AM =AB , (7)分∵AE 平分∠BAD ,∴AE ⊥BM ,∴∠APB =∠SPQ =90°,∴四边形PQRS 是矩形. (8)分22.解:在Rt △DCE 中,∵sin ∠E =DC DE =22,∴DC =22DE =902×22=90. (2)分在Rt △AOC 中,∵cos ∠A =AC OA =0.8,∴OA =AC ÷0.8=160×54=200. …………3分∵tan ∠A =OCAC=0.75,∴OC =AC ×0.75=160×0.75=120,∴OD =OC -DC =120-90=30, (5)分∴AB =OA -OB =OA -OD =200-30=170. (6)分答:真空热水管AB 的长为170cm . …………7分23.(1)作图正确;…………4分(2)65. …………7分24.(1)令y =0,得(x -m )2-2 (x -m )=0 ,即(x -m ) (x -m -2)=0,解得x 1=m ,x 2=m +2. (2)分∴该函数图像与x 轴的交点坐标为(m ,0),(m +2,0). (3)分(2)y =(x -m )2-2(x -m )=(x -m )2-2(x -m ) +1-1=(x -m -1)2-1, (5)分B C A D EF∴该函数图像的顶点P 的坐标为(m +1,-1); (6)分(3)m =2. ………8分25.(1)连接AD 、OD .∵AB 是直径,∴∠ADB =90°.∵AB =AC ,∴BD =CD , (1)分又∵OA =OB ,∴OD 是△ABC 的中位线,∴OD ∥AC , (2)分∵DF ⊥AC ,∴OD ⊥DF ,……3分即∠ODF =90°.∴DF 为⊙O 的切线; (4)分(2)连接OE .∵AB =AC ,∴∠B =∠C =30°,∴∠BAE =60°, ………5分∵∠BOE =2∠BAE ,∴∠BOE =120°, (6)分∴⌒BE =120360·4π=43π. (8)分26.(1)1000+400×6=3400(元).答:他这个月的工资总额为3400元. (2)分(2)当500<x ≤m 时,y =1000+500×6+8(x -500) =8x ; ………4分当x >m 时,y =1000+500×6+8(m -500) +10 (x -m ) =10x -2m ; (6)分(3)当m ≥800时,y =8x =8×800=6400≠6500,不合题意; ………7分当700≤m <800时,y =10x -2m =10×800-2m =8000-2m =6500,解得m =750. 所以m 的值为750. (9)分27.(1)14x 2,52x ; (3)分(2)随着点M 的运动,当点P 落在BC 上,连接AP ,则O 为AP 的中点.∵MN ∥BC ,∴△AMO ∽△ABP . ∴AM AB =AO AP =12,∴AM =MB =12AB =2. (4)分①当0<x ≤2时,y =S △PMN =14x 2,∴当x =2时,y 取最大值为1; (6)分②当2<x <4时,设PM 、PN 与BC 交于点E 、F . ∵四边形AMPN 为矩形,∴PN ∥AM ,PN =AM =x ,又∵MN ∥BC ,∴四边形MBFN 为平行四边形,∴FN =BM =4-x ,△PEF ∽△ACB ,∴PF =PN -FN =2x -4. ∵S △PEF S △ACB =(PF AB)2,∴S △PEF =(2x -44)2×12×4×2=(x -2)2,∴y =S △PMN -S △PEF =14x 2-(x -2)2=-34x 2+4x -4, (9)分∴y =-34(x -83)2+43(2<x <4),∴当x =83时,满足2<x <4,y 取最大值为43. (10)分综上所述,当x =83时,y 取最大值,最大值为43. (11)分。

相关文档
最新文档