电磁场与电磁波设计报告

合集下载

电磁场与电磁波实验报告

电磁场与电磁波实验报告

电磁场与电磁波实验报告电磁场与电磁波实验报告引言:电磁场和电磁波是物理学中非常重要的概念。

电磁场是由电荷产生的一种物理场,它的存在和变化会影响周围空间中的其他电荷。

而电磁波则是电磁场的一种传播形式,它以电磁场的振荡和传播为基础,具有波动性质。

本次实验旨在通过实际操作和测量,深入了解电磁场和电磁波的特性。

实验一:测量电磁场强度在实验一中,我们使用了一个电磁场强度计来测量不同位置的电磁场强度。

首先,我们将电磁场强度计放置在一个固定的位置,记录下此时的电磁场强度。

然后,我们将电磁场强度计移动到其他位置,重复测量过程。

通过这些数据,我们可以得出不同位置的电磁场强度的分布情况。

实验结果显示,电磁场强度随着距离的增加而逐渐减弱。

这符合电磁场的特性,即电荷产生的电磁场在空间中以一定的规律传播,而传播的强度会随着距离的增加而减弱。

这一实验结果验证了电磁场的存在和变化对周围环境的影响。

实验二:测量电磁波频率和波长在实验二中,我们使用了一个频率计和一个波长计来测量电磁波的频率和波长。

首先,我们将频率计和波长计设置好,并将它们与电磁波源连接。

然后,我们观察频率计和波长计的测量结果,并记录下来。

通过这些数据,我们可以得出电磁波的频率和波长的数值。

实验结果显示,不同频率的电磁波具有不同的波长。

频率越高的电磁波,波长越短;频率越低的电磁波,波长越长。

这符合电磁波的特性,即电磁波的振荡频率和波长之间存在一定的关系。

这一实验结果验证了电磁波的波动性质,以及频率和波长之间的关系。

实验三:观察电磁波的干涉和衍射现象在实验三中,我们使用了一块光栅和一个狭缝装置来观察电磁波的干涉和衍射现象。

首先,我们将光栅放置在光源前方,并调整光源的位置和光栅的角度。

然后,我们观察到在光栅后方的屏幕上出现了一系列明暗相间的条纹。

这些条纹是由电磁波的干涉和衍射效应引起的。

实验结果显示,当电磁波通过光栅时,会发生干涉和衍射现象。

干涉现象表现为明暗相间的条纹,而衍射现象表现为条纹的扩散和交替。

电磁场与电磁波实验报告

电磁场与电磁波实验报告

实验一 静电场仿真1.实验目的建立静电场中电场及电位空间分布的直观概念。

2.实验仪器计算机一台3.基本原理当电荷的电荷量及其位置均不随时间变化时,电场也就不随时间变化,这种电场称为静电场。

点电荷q 在无限大真空中产生的电场强度E 的数学表达式为(1-1)真空中点电荷产生的电位为(1-2)其中,电场强度是矢量,电位是标量,所以,无数点电荷产生的电场强度和电位是不一样的,电场强度为4= (1-3) 电位为4= (1-4) 本章模拟的就是基本的电位图形。

4.实验内容及步骤(1)点电荷静电场仿真题目:真空中有一个点电荷-q,求其电场分布图。

程序1:负点电荷电场示意图clear[x,y]=meshgrid(-10:1.2:10);E0=8.85e-12;q=1.6*10^(-19);r=[];r=sqrt(x.^2+y.^2+1.0*10^(-10))m=4*pi*E0*r;m1=4*pi*E0*r.^2;E=(-q./m1).*r;surfc(x,y,E);负点电荷电势示意图clear[x,y]=meshgrid(-10:1.2:10); E0=8.85e-12;q=1.6*10^(-19);r=[];r=sqrt(x.^2+y.^2+1.0*10^(-10))m=4*pi*E0*r;m1=4*pi*E0*r.^2;z=-q./m1surfc(x,y,z);xlabel('x','fontsize',16)ylabel('y','fontsize',16)title('负点电荷电势示意图','fontsize',10)程序2clearq=2e-6;k=9e9;a=1.0;b=0;x=-4:0.16:4;y=x; [X,Y]=meshgrid(x,y);R1=sqrt((X+1).^2+Y.^2+1.0*10^(-10)); R2=sqrt((X-1).^2+Y.^2+1.0*10^(-10));Z=q*k*(1./R2-1./R1);[ex,ey]=gradient(-Z);ae=sqrt(ex.^2+ey.^2);ex=ex./ae;ey=ey./ae; cv=linspace(min(min(Z)),max(max(Z)),40); contour(X,Y,Z,cv,'k-');hold onquiver(X,Y,ex,ey,0.7);clearq=2e-6;k=9e9;a=1.0;b=0;x=-4:0.15:4;y=x; [X,Y]=meshgrid(x,y);R1=sqrt((X+1).^2+Y.^2+1.0*10^(-10));R2=sqrt((X-1).^2+Y.^2+1.0*10^(-10));U=q*k*(1./R2-1./R1);[ex,ey]=gradient(-U);ae=sqrt(ex.^2+ey.^2);ex=ex./ae;ey=ey./ae; cv=linspace(min(min(U)),max(max(U)),40); surfc(x,y,U);实验二恒定电场的仿真1.实验目的建立恒定电场中电场及电位空间分布的直观概念。

电磁场与电磁波实验报告(一)2024

电磁场与电磁波实验报告(一)2024

电磁场与电磁波实验报告(一)引言概述:电磁场与电磁波是近代物理学中的重要概念,对于理解电磁现象和应用电磁技术具有重要意义。

本实验报告旨在通过实验来探究电磁场和电磁波的基本特性,并深入了解其在不同情境下的行为和应用。

一、电磁场的产生与性质1. 静电场与磁场的产生机制2. 静电场与磁场的区别与联系3. 电磁场的力线分布与场强的概念4. 高斯定律与安培定律的应用5. 电磁场的矢量表示及其运算规则二、电磁辐射和电磁波的特性1. 辐射的概念与特点2. 电磁波的定义和分类3. 电磁波的传播速度和能量传播方式4. 电磁波的频率和波长关系5. 电磁波与物质的作用及与光的关系三、电磁波的实验测量1. 等幅比波法测量电磁波的速度2. 利用扩散法测量电磁波的波长3. 利用光栅光谱仪测量电磁波的频率和波长4. 利用双缝干涉测量电磁波的波长5. 利用驻波法测量电磁波的频率四、电磁波在通信中的应用1. 电磁波在无线通信中的传输原理2. 电磁波的调制与解调技术3. 电磁波的天线和传输介质选择4. 电磁波在卫星通信中的应用5. 电磁波在无线电和电视广播中的应用五、电磁波对人体健康的影响1. 电磁波对人体的生物效应与健康风险2. 电磁辐射的安全标准与防护措施3. 电磁波辐射源的评估与监测4. 电磁波辐射对儿童和孕妇的影响5. 电磁波辐射与癌症的关系研究总结:通过本实验的开展,我们深入了解了电磁场和电磁波的产生机制和特性,探讨了其在实验测量、通信技术和健康影响等方面的应用。

电磁场与电磁波作为现代科技中的基础理论和技术手段,对于推动科学技术发展和提高人们的生活水平具有重要意义。

在未来的研究中,我们将继续深入探索电磁场和电磁波的更多应用和相关问题,为推动科学进步和提高人类福祉做出贡献。

最新电磁场与电磁波实验报告

最新电磁场与电磁波实验报告

最新电磁场与电磁波实验报告
在本次实验中,我们深入研究了电磁场与电磁波的基本特性,并进行了一系列的实验来验证理论和观测实际现象。

以下是实验的主要部分和观察结果的概述。

实验一:静电场的建立与测量
我们首先建立了一个简单的静电场,通过使用高压电源对两个相对的金属板进行充电。

通过改变电源的电压,我们观察到金属板上的电荷积累情况,并使用电位差计测量了电场强度。

实验数据显示,电场强度与电压成正比,这与库仑定律的预测一致。

实验二:电磁波的产生与传播
接下来,我们通过振荡电路产生了电磁波。

在一个封闭的微波腔中,我们使用电磁波发生器产生不同频率的电磁波,并通过特殊的探测器来测量波的传播特性。

实验结果表明,电磁波的传播速度在不同的介质中有所变化,这与介质的电磁特性有关。

实验三:电磁波的极化与干涉
在这部分实验中,我们研究了电磁波的极化现象。

通过使用不同极化的波前,我们观察到了波的干涉效应。

特别是在双缝干涉实验中,我们观察到了明显的干涉条纹,这证明了电磁波的波动性质。

实验四:电磁波的吸收与反射
最后,我们探讨了电磁波与物质相互作用的过程。

通过将电磁波照射在不同材料的样品上,我们测量了波的吸收和反射率。

实验发现,吸收和反射率与材料的电磁性质密切相关,并且可以通过改变波的频率来调整这些性质。

通过这些实验,我们不仅验证了电磁场与电磁波的基本理论,而且加深了对这些现象在实际应用中的理解。

这些实验结果对于无线通信、雷达技术以及其他相关领域的研究和开发具有重要的指导意义。

哈工大电磁场与电磁波实验报告

哈工大电磁场与电磁波实验报告

哈⼯⼤电磁场与电磁波实验报告电磁场与电磁波实验报告班级:学号:姓名:同组⼈:实验⼀电磁波的反射实验1.实验⽬的:任何波动现象(⽆论是机械波、光波、⽆线电波),在波前进的过程中如遇到障碍物,波就要发⽣反射。

本实验就是要研究微波在⾦属平板上发⽣反射时所遵守的波的反射定律。

2.实验原理:电磁波从某⼀⼊射⾓i射到两种不同介质的分界⾯上时,其反射波总是按照反射⾓等于⼊射⾓的规律反射回来。

如图(1-2)所⽰,微波由发射喇叭发出,以⼊射⾓i设到⾦属板MM',在反射⽅向的位置上,置⼀接收喇叭B,只有当B处在反射⾓i'约等于⼊射⾓i时,接收到的微波功率最⼤,这就证明了反射定律的正确性。

3.实验仪器:本实验仪器包括三厘⽶固态信号发⽣器,微波分度计,反射⾦属铝制平板,微安表头。

4.实验步骤:1)将发射喇叭的衰减器沿顺时针⽅向旋转,使它处于最⼤衰减位置;2)打开信号源的开关,⼯作状态置于“等幅”旋转衰减器看微安表是否有显⽰,若有显⽰,则有微波发射;3)将⾦属反射板置于分度计的⽔平台上,开始它的平⾯是与两喇叭的平⾯平⾏。

4)旋转分度计上的⼩平台,使⾦属反射板的法线⽅向与发射喇叭成任意⾓度i,然后将接收喇叭转到反射⾓等于⼊射⾓的位置,缓慢的调节衰减器,使微µ)。

安表显⽰有⾜够⼤的⽰数(50A5)熟悉⼊射⾓与反射⾓的读取⽅法,然后分别以⼊射⾓等于30、40、50、60、70度,测得相应的反射⾓的⼤⼩。

6)在反射板的另⼀侧,测出相应的反射⾓。

5.数据的记录预处理记下相应的反射⾓,并取平均值,平均值为最后的结果。

5.实验结论:?的平均值与⼊射⾓0?⼤致相等,⼊射⾓等于反射⾓,验证了波的反射定律的成⽴。

6.问题讨论:1.为什么要在反射板的左右两侧进⾏测量然后⽤其相应的反射⾓来求平均值?答:主要是为了消除离轴误差,圆盘上有360°的刻度,且外部包围圆盘的基座上相隔180°的两处有两个游标。

电磁场与电磁波报告

电磁场与电磁波报告

一、电磁场与电磁波的应用人们对电磁理论的研究经过了漫长的过程。

早期磁现象曾被认为是与电现象独立无关的,电学和磁学是两门平行的学科。

电磁场现象的研究发现是从十六世纪下半叶英国人吉尔伯特实验展开的,在研究过程中它采用的方法比较原始,无法完全解释出电磁场的现象原理。

电磁场的近代研究要追溯到18 世纪,由法国物理学家库伦以及英国物理学家卡文迪许展开研究分析,他们的主要贡献是发明了用测量仪器对电磁场现象做定量的规律,从而促使电磁场的发展得到了质的飞越。

坚信自然力可以相互转化的奥斯特发现了电流磁效应,之后安培提出安培定则和分子电流假说。

受到奥斯特试验现象鼓舞的法拉第于1831年首次发现电磁感应现象,奠定了电磁学的基础。

在这之后,经典电磁学集大成者、英国天才物理学家麦克斯韦在法拉第的电磁研究基础上,进一步探讨了电与磁之间的互相影响作用关系,说明了电磁场的涵义,与此同时,他还总结分析除了电磁现象的规律,发表了位移电流的相关概念,并总结提出了麦克斯韦方程组,实现了物理史上的第二次综合。

现代电子技术如通讯、广播、电视、导航、雷达、遥感、测控、电子对抗、电子仪器和测量系统,都离不开电磁波的发射、控制、传播和接收;从家用电器、工业自动化到地质勘探,从电力、交通等工业、农业到医疗等国民经济领域,几乎全部涉及到电磁场理论的应用。

并且电磁学一直是新兴科学的孕育点。

电磁场在科学技术中的应用,主要有两类:一类是利用电磁场的变化将其他信号转换为电信号,进而达到转化信息或者自动控制的目的;另一类是利用电磁场对电荷或者电流的作用来控制其运动,使平衡、加速、偏转或转动,以达到预定的目的。

接下来将介绍电磁场的在人们生活中的应用的一种--磁悬浮列车。

电磁悬浮技术(electromagnetic levitation)简称EML技术。

它的主要原理是利用高频电磁场在金属表面产生的涡流来实现对金属的悬浮体。

磁悬浮技术的系统,是由转子、传感器、控制器和执行器4部分组成,其中执行器包括电磁铁和功率放大器两部分。

电磁场与电磁波实验报告

电磁场与电磁波实验报告

电磁场与电磁波实验报告实验题目:电磁场与电磁波实验实验目的:1.了解电磁场的产生原理和特性。

2.理解电磁波的概念和基本特性。

3.掌握测量和分析不同电磁波的实验方法。

实验器材:1.U形磁铁2.电磁铁3.直流电源4.交流电源5.电磁感应器6.示波器7.微波源8.微波接收器9.光栅片10.各种电磁波滤波器实验原理:1.电磁场的产生:电流通过电线时,会在周围产生磁场。

在一对平行导线中,当电流方向相同时,导线之间的磁场是叠加的;当电流方向相反时,导线之间的磁场互相抵消。

2.电磁场的特性:电磁场具有两种性质,即不能长距离传播和具有作用力。

通过电磁感应现象,可以观察到电磁场的作用力。

3.电磁波的产生与传播:当电场和磁场变化时,会激发并产生电磁波。

电磁波可根据频率不同被分为不同波段,如:无线电波、微波、红外线、可见光、紫外线、X射线和γ射线。

实验步骤:实验1:观察电磁场的产生和作用1.将磁铁插入U形磁铁中,并将直流电源连接到U形磁铁的两端;2.在U形磁铁下方放置一根金属杆,并用电磁感应器在金属杆上方测量磁感应强度;3.开启直流电源,记录不同电流强度下的磁感应强度,并绘制电流与磁感应强度的图线;4.在磁铁两端放置一磁性物体,观察其受力情况。

实验2:测量电磁波的特性1.将微波源和微波接收器分别连接至交流电源和示波器;2.将微波源调至一定频率,并记录该频率;3.调整示波器至合适的量程和垂直偏置,观察示波器上的微波信号;4.更换不同频率和波长的电磁波,重复步骤3;5.将光栅片放置在微波源与接收器之间,观察光栅片的衍射效应。

实验结果与分析:实验1:观察电磁场的产生和作用根据实验数据,绘制出电流与磁感应强度的图线,可以观察到磁感应强度与电流之间呈现线性关系,并且磁性物体受到磁力的作用。

实验2:测量电磁波的特性根据实验数据,可以观察到不同频率和波长的电磁波在示波器上表现出不同的振动形态,频率越高,波长越短。

通过光栅片的衍射效应,可以观察到电磁波的波长。

电磁场及电磁波设计报告

电磁场及电磁波设计报告

HEFEI UNIVERSITY电磁场与电磁波设计报告题目:电磁场与电磁波设计报告系别:12级电子系班级:电子信息工程1班姓名:指导老师:目录:静电场的基本概念------------------------------------------3 恒定磁场的基本概念----------------------------------------5 时变磁场的基本概念----------------------------------------6 电场和磁场之间的关系--------------------------------------7 电磁场应用之变频电磁场处理油田水防垢技术------------------8 背景---------------------------------------------------8 原理结构图--------------------------------------------11 除垢、防垢工作原理------------------------------------12 电磁场处理对溶液电导率的影响--------------------------13 电磁场对溶液表面张力的影响----------------------------13 电磁场处理对溶液pH值的影响---------------------------14 实验结果分析------------------------------------------16 从水分子的结构方面---------------------------------16电磁场诱导微晶的形成-------------------------------18静电场的基本概念:1.定义:空间位置固定不变且电量不随时间变化的电荷产生的电场,称为静电场。

2.几个基本定律:库仑定律:真空中两个静止的点电荷之间的作用力与这两个电荷所带电量的乘积成正比,和它们距离的平方成反比,作用力的方向沿着这两个点电荷的连线,同名电荷相斥,异名电荷相吸。

电磁场电磁波实验报告

电磁场电磁波实验报告

第二师学院学生实验报告一相对而言性能优良,但又容易制作,成本低廉的有半波天线、环形天线、螺旋天线等。

本实验重点介绍其中的一种半波天线。

半波天线又称半波振子,是对称天线的一种最简单的模式。

对称天线(或称对称振子)可以看成是由一段末端开路的双线传输线形成的。

这种天线是最通用的天线型式之一,又称为偶极子天线。

而半波天线是对称天线中应用最为广泛的一种天线,它具有结构简单和馈电方便等优点。

半波振子因其一臂长度为λ/4 ,全长为半波长而得名。

其辐射场可由两根单线驻波天线的辐射场相加得到,于是可得半波振子(L=λ/4 )的远区场强有以下关系式:│E│=[60Imcos(πcosθ/2)]/R 。

sinθ=[60Im/R 。

]│f(θ)│式中,f(θ) 为方向函数。

对称振子归一化方向函数为│F(θ)│=│f(θ)│/fmax=|cos(πcosθ/2)/sinθ| 其中fmax 是f(θ) 的最大值。

由上式可画出半波振子的方向图如下:半波振子方向函数与ψ无关,故在H 面上的方向图是以振子为中心的一个圆,即为全方性的方向图。

在E 面的方向图为8 字形,最大辐射方向为θ=π/2 ,且只要一臂长度不超过0.625λ,辐射的最大值始终在θ=π/2 方向上;若继续增大L ,辐射的最大方向将偏离θ=π/2 方向。

【实验容】第二师学院学生实验报告三第二师学院学生实验报告四律,就称电磁波为极化电磁波(简称极化波)。

如果极化电磁波的电场强度始终在垂直于传播方向的(横)平面取向,其电场矢量的端点沿一闭合轨迹移动,则这一极化电磁波称为平面极化波。

电场的矢端轨迹称为极化曲线,并按极化曲线的形状对极化波命名。

天线的极化,就是指天线辐射时形成的电场强度方向。

当电场强度方向垂直于地面时,此电波就称为垂直极化波;当电场强度方向平行于地面时,此电波就称为水平极化波。

由于电波的特性,决定了水平极化传播的信号在贴近地面时会在表面产生极化电流,极化电流因受阻抗影响产生热能而使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅衰减,保证了信号的有效传播。

电磁场与电磁波实验报告电磁波反射和折射实验

电磁场与电磁波实验报告电磁波反射和折射实验

电磁场与微波测量实验报告学院:班级:组员:撰写人:学号:序号:实验一电磁波反射和折射实验一、实验目的1、熟悉S426型分光仪的使用方法2、掌握分光仪验证电磁波反射定律的方法3、掌握分光仪验证电磁波折射定律的方法二、实验设备与仪器S426型分光仪三、实验原理电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。

四、实验内容与步骤1、熟悉分光仪的结构和调整方法。

2、连接仪器,调整系统。

仪器连接时,两喇叭口面应相互正对,它们各自的轴线应在一条直线上,指示两喇叭的位置的指针分别指于工作平台的90刻度处,将支座放在工作平台上,并利用平台上的定位销和刻线对正支座,拉起平台上的四个压紧螺钉旋转一个角度后放下,即可压紧支座。

3、测量入射角和反射角反射金属板放到支座上时,应使金属板平面与支座下面的小圆盘上的某一对刻线一致。

而把带支座的金属反射板放到小平台上时,应使圆盘上的这对与金属板平面一致的刻线与小平台上相应90度的一对刻线一致。

这是小平台上的0刻度就与金属板的法线方向一致。

转动小平台,使固定臂指针指在某一角度处,这角度读书就是入射角,五、实验结果及分析记录实验测得数据,验证电磁波的反射定律表格分析:(1)、从总体上看,入射角与反射角相差较小,可以近似认为相等,验证了电磁波的反射定律。

(2)、由于仪器产生的系统误差无法避免,并且在测量的时候产生的随机误差,所以入射角不会完全等于反射角,由差值一栏可以看出在55度左右的误差最小。

越向两边误差越大,说明测量仪器在55度的入射角能产生最好的特性。

2、观察介质板(玻璃板)上的反射和折射实验将金属换做玻璃板,观察、测试电磁波在该介质板上的反射和折射现象,自行设计实验步骤和表格,计算反射系数和透射系数,验证透射系数和反射系数相加是否等于1 。

电磁场与电磁波(天线部分)实验报告解读

电磁场与电磁波(天线部分)实验报告解读

电磁场与电磁波(天线部分实验报告班级:姓名:学号:实验一网络分析仪测量振子天线输入阻抗实验目的1.掌握网络分析仪校正方法;2.学习网络分析仪测量振子天线输入阻抗的方法;3.研究振子天线输入阻抗随振子电径变化的情况。

实验原理当双振子天线的一端变为一个无穷大导电平面后,就形成了单振子天线。

实际上当导电平面的径向距离大到0.2~0.3λ,就可以近似认为是无穷大导电平面。

这时可以采用镜像法来分析。

天线臂与其镜像构成一对称振子,则它在上半平面辐射场与自由空间对称振子的辐射场射相同。

由于使用坡印亭矢量法积分求其辐射功率只需对球面上半部分积分,故其辐射功率为等臂长等电流分布的对称振子的一半,其辐射电阻也为对称振子的一半。

当h<<λ时,可认为R≈40。

由于天线到地面的单位长度电容比到对称振子另一个臂的单位长度电容大一倍,则天线的平均特征阻抗也为等臂长对称振子天线的一半,为=60[ln(2h/a-1]。

实验步骤1.设置仪表为频域模式的回损连接模式后,校正网络分析仪;2.设置参数(BF=600,∆F=25,EF=2600,n=81并加载被测天线,开始测量输入阻抗;3.调整测试频率寻找天线的两个谐振点并记录相应阻抗数据;4.更换不同电径(φ1,φ 3,φ9)的天线,分析两个谐振点的阻抗变化情况。

实验数据当被测天线的电径为1mm时,可在Smith原图上得到如下阻抗点分布:当被测天线的电径为3mm时,可在Smith原图上得到如下阻抗点分布:当被测天线的电径为9mm时,可在Smith原图上得到如下阻抗点分布:实验结果分析由图可知,相同材质、不同电径的天线对应不同的输入阻抗,电径越大,谐振点输入阻抗越小,网络反射系数越小,回波损耗越小。

1被测天线的电径对天线的阻抗是基本不产生影响的,上述三图中阻抗有差别主要是因为三根阵子粗细不同因而对空间电磁场产生了一些影响导致了天线阻抗的变化,本质上是不影响的。

2天线的电阻随着频率的变化是不断变化的,频率变化范围为600KHz到2600KHz,变化的趋势为——在前20个点基本不变,后面的点基本随着频率的增加电阻增加。

电磁场与波实验报告

电磁场与波实验报告

电磁场与波实验报告电磁场与波实验报告引言:电磁场与波是物理学中重要的研究对象,对于我们理解光、电、磁等现象具有重要意义。

为了更好地探究电磁场与波的性质,我们进行了一系列实验,下面将对实验过程和结果进行详细报告。

实验一:电磁感应现象实验目的:通过实验观察电磁感应现象,验证法拉第电磁感应定律。

实验装置:实验装置由一根导线、一个磁铁和一个电流表组成。

实验步骤:1. 将导线绕在一个纸芯上,形成一个线圈。

2. 将磁铁靠近线圈,观察电流表的指示情况。

实验结果:当磁铁靠近线圈时,电流表指针发生偏转,表明在导线中产生了电流。

当磁铁远离线圈时,电流方向相反。

这一现象验证了法拉第电磁感应定律,即磁场的变化会引起导线中的电流。

实验二:电磁波的传播实验目的:通过实验观察电磁波的传播特性,验证电磁波的存在。

实验装置:实验装置由一个发射器和一个接收器组成。

实验步骤:1. 将发射器放置在一定距离内,接通电源。

2. 在接收器处设置一个示波器,调节示波器的参数。

3. 观察示波器上的波形变化。

实验结果:当发射器工作时,示波器上出现了一定频率的波形。

通过调节示波器参数,我们可以观察到电磁波的传播特性,包括波长、频率等。

这一实验结果验证了电磁波的存在,并且进一步揭示了电磁波的传播特性。

实验三:电磁波的干涉实验目的:通过实验观察电磁波的干涉现象,验证电磁波的波动性质。

实验装置:实验装置由一个光源、一个狭缝、一个屏幕和一个检测器组成。

实验步骤:1. 将光源置于一定位置,使其照射到狭缝上。

2. 在屏幕上观察到干涉条纹的出现。

3. 使用检测器测量干涉条纹的强度。

实验结果:在屏幕上观察到了明暗相间的干涉条纹,这表明电磁波具有波动性质。

通过检测器的测量,我们可以进一步研究干涉条纹的强度分布规律。

这一实验结果验证了电磁波的波动性质,并且揭示了电磁波的干涉现象。

结论:通过以上实验,我们验证了电磁感应定律、电磁波的存在以及电磁波的波动性质。

电磁场与波是物理学中重要的研究对象,对于我们理解光、电、磁等现象具有重要意义。

电磁场电磁波实验报告

电磁场电磁波实验报告

第二师学院学生实验报告一相对而言性能优良,但又容易制作,成本低廉的有半波天线、环形天线、螺旋天线等。

本实验重点介绍其中的一种半波天线。

半波天线又称半波振子,是对称天线的一种最简单的模式。

对称天线(或称对称振子)可以看成是由一段末端开路的双线传输线形成的。

这种天线是最通用的天线型式之一,又称为偶极子天线。

而半波天线是对称天线中应用最为广泛的一种天线,它具有结构简单和馈电方便等优点。

半波振子因其一臂长度为λ/4 ,全长为半波长而得名。

其辐射场可由两根单线驻波天线的辐射场相加得到,于是可得半波振子(L=λ/4 )的远区场强有以下关系式:│E│=[60Imcos(πcosθ/2)]/R 。

sinθ=[60Im/R 。

]│f(θ)│式中,f(θ) 为方向函数。

对称振子归一化方向函数为│F(θ)│=│f(θ)│/fmax=|cos(πcosθ/2)/sinθ| 其中fmax 是f(θ) 的最大值。

由上式可画出半波振子的方向图如下:半波振子方向函数与ψ无关,故在H 面上的方向图是以振子为中心的一个圆,即为全方性的方向图。

在E 面的方向图为8 字形,最大辐射方向为θ=π/2 ,且只要一臂长度不超过0.625λ,辐射的最大值始终在θ=π/2 方向上;若继续增大L ,辐射的最大方向将偏离θ=π/2 方向。

【实验容】第二师学院学生实验报告三第二师学院学生实验报告四律,就称电磁波为极化电磁波(简称极化波)。

如果极化电磁波的电场强度始终在垂直于传播方向的(横)平面取向,其电场矢量的端点沿一闭合轨迹移动,则这一极化电磁波称为平面极化波。

电场的矢端轨迹称为极化曲线,并按极化曲线的形状对极化波命名。

天线的极化,就是指天线辐射时形成的电场强度方向。

当电场强度方向垂直于地面时,此电波就称为垂直极化波;当电场强度方向平行于地面时,此电波就称为水平极化波。

由于电波的特性,决定了水平极化传播的信号在贴近地面时会在表面产生极化电流,极化电流因受阻抗影响产生热能而使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅衰减,保证了信号的有效传播。

电磁场与电磁波实验报告

电磁场与电磁波实验报告

电磁场与电磁波实验陈述之宇文皓月创作班级:学号:姓名:实验一:验证电磁波的反射和折射定律(1学时)1、实验目的验证电磁波在媒质中传播遵循反射定理及折射定律。

(1)研究电磁波在良好导体概况上的全反射。

(2)研究电磁波在良好介质概况上的反射和折射。

(3)研究电磁波全反射和全折射的条件。

2、实验原理电磁波在传播过程中如遇到障碍物,肯定要发生反射,本处以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。

3、实验结果:图1.1 电磁波在介质板上的折射图1.2 电磁波在良导体板上的反射实验二:电磁波的单缝衍射实验、双缝干涉实验。

1、实验目的(1)研究当一平面波入射到一宽度和波长可比较的狭缝时,就要发生衍射的现象。

在缝后面出现的衍射波强度不是均匀的,中央最强;(2)研究当一平面波垂直入射到一金属板的两条狭线上,则每一条狭缝就是次级波波源。

由两缝发出的次级波是相干波,因此在金属板的面前面空间中,将发生干涉现象。

2、实验原理单缝衍射实验原理见下图 5:当一平面波入射到一宽度和波长可比较的狭缝时,就要发生衍射的现象。

在缝后面将出现的衍射波强度不是均匀的,中央最强,同时也最宽,在中央的两侧衍射波强度迅速减小,直至出现衍射波强度的最小值,即一级极小,此时衍射角为,其中λ是波长,λ是狭缝宽度。

两者取同一长度单位,然后,随着衍射角增大,衍射波强度又逐渐增大,直至一级极大值,角度为:图 5 单缝衍射实验原理图如图 8:当一平面波垂直入射到一金属板的两条狭缝上时,则每一条狭缝就是次级波波源,由于两缝发出的次级波是相干波,因此在金属板的面前面空间中,将发生干涉现象。

当然电磁波通过每个缝也有狭缝现象。

因此实验将是衍射和干涉两者结合的结果。

为了只研究主要是由于来自双缝的两束中央衍射波相互干涉的结果,令双缝的缝宽α接近入,例如:,这时单缝的一级极小接近53°。

电磁场与电磁波实验报告

电磁场与电磁波实验报告

电磁场与电磁波实验报告
实验目的:通过实验探究电磁场和电磁波的相关性质,加深对电磁
学原理的理解,掌握相关实验操作技巧。

一、实验仪器与材料
本次实验所用仪器设备包括:
1. 电磁场产生装置;
2. 电场仪表;
3. 磁场仪表;
4. 信号发生器;
5. 示波器等。

二、实验步骤
1. 观察并记录电磁场产生装置的工作原理,了解电磁场的形成过程;
2. 利用电场仪表和磁场仪表分别测量电磁场的电场分量和磁场分量,并记录实验数据;
3. 通过调节信号发生器的频率和幅度,产生不同频率的电磁波,并
利用示波器观察并记录波形;
4. 将电磁场和电磁波的实验数据整理,形成图表和曲线。

三、实验结果与分析
根据实验数据,我们可以观察到电磁场和电磁波在不同频率下的表现。

电磁场的电场分量和磁场分量呈现出明显的变化规律,频率越高,波动频率越密集;而电磁波的波形随着频率的增加呈现出不同的特征,频率在一定范围内变化会引起频率响应的变化。

四、结论与思考
通过本次实验,我们深入了解了电磁场和电磁波的相关特性,了解
到电磁场和电磁波在不同频率下的表现差异。

同时,我们也发现了实
验过程中需要注意的细节问题,如仪器的校准和操作注意事项等。


过实验,我们不仅加深了对电磁学理论知识的理解,也提高了实验操
作的技巧和分析能力。

综上所述,电磁场与电磁波实验为我们提供了一个直观、具体的实
践平台,促进了电磁学知识的学习与应用,为我们日后的研究与工作
打下了坚实的基础。

电磁场与电磁波实验报告2

电磁场与电磁波实验报告2

电磁场与电磁波实验报告设入射波为,当入射波以入射角向介质板斜投射时,则在φj i i e E E -=01θ分界面上产生反射波和折射波。

设介质板的反射系数为r E t E 介质板的折射系数为,由介质板进入空气的折射系数为0T这里 ;;()13112r r r L L L ββφ=+=()()231322222L L L L L L r r r r βββφ=+∆+=+=其中。

12L L L -=∆又因为为定值,则随可动板位移而变化。

当移动值,使有零1L 2L 2r P L ∆3r P 指示输出时,必有与反相。

故可采用改变的位置,使输出最大1r E 2r E 2r P 3r P 或零指示重复出现。

从而测出电磁波的波长和相位常数。

下面用数学式λβ来表达测定波长的关系式。

在处的相干波合成为3r P ()210021φφj j i c r r r e e E T RT E E E --+-=+=或写成(1-2)()⎪⎭⎫ ⎝⎛+-∆Φ-=200212cos 2φφj i c r eE T RT E 式中L∆=-=∆Φβφφ221为了测量准确,一般采用零指示法,即3r P 02cos =∆φ或,n=0,1,2......π)12(+=∆Φn 这里n 表示相干波合成驻波场的波节点()数。

同时,除n=0以外的n 0=r E 值,又表示相干波合成驻波的半波长数。

故把n=0时驻波节点为参考0=r E 节点的位置0L 又因(1-3)L∆⎪⎭⎫⎝⎛=∆λπφ22故()Ln ∆⎪⎭⎫⎝⎛=+λππ2212或(1-4)λ)12(4+=∆n L 由(1-4)式可知,只要确定驻波节点位置及波节数,就可以确定波长的值。

当n=0的节点处作为第一个波节点,对其他N 值则有:0L n=1, ,对应第二个波节点,或第一个半波长数。

()λ24401=-=∆L L L n=1,,对应第三个波节点,或第二个半波长数。

()λ24412=-=∆L L L三、实验步骤读数机构上得到所有节点位置,并记录。

合肥学院电磁场与电磁波模板报告

合肥学院电磁场与电磁波模板报告

合肥学院Array电磁波设计报告题目:12通信一班模板朝这里看齐系别:电子信息与电气工程系专业:通信工程专业班级: 4 姓名:导师:成绩:目录电偶极子的等电势图和电场 (3)一电偶极子原理以及相关知识 (3)1.1 电偶极子定义 (3)1.2 电偶极子原理 (3)二演示程序 (6)2.1电偶极子电势在matlab中的模拟 (6)2.2电偶极子电场在matlab中的模拟 (7)三结束语 (9)四参考文献 (10)电偶极子的等电势图和电场一电偶极子原理以及相关知识1.1 电偶极子定义一个实体,它在距离充分大于本身几何尺寸的一切点处产生的电场强度都和一对等值异号的分开的点电荷所产生的电场强度相同。

电偶极子(electric dipole)是两个相距很近的等量异号点电荷组成的系统。

电偶极子的特征用电偶极距P=lq描述,其中l是两点电荷之间的距离,l和P的方向规定由-q指向+q。

电偶极子在外电场中受力矩作用而旋转,使其电偶极矩转向外电场方向。

电偶极矩就是电偶极子在单位外电场下可能受到的最大力矩,故简称电矩。

如果外电场不均匀,除受力矩外,电偶极子还要受到平移作用。

电偶极子产生的电场是构成它的正、负点电荷产生的电场之和。

1.2 电偶极子原理两个点电荷q和-q间的距离为L。

此电偶极子在场点 P 处产生的电位等于两个点电荷在该点的电位之和,即(1)图(1)表示中心位于坐标系原点上的一个电偶极子,它的轴线与Z轴重合,其中与分别是q和-q到 P 点的距离。

图1 电偶极子一般情况下,我们关心的是电偶极子产生的远区场,即负偶极子到场点的距离r 远远大于偶极子长度L的情形,此时可以的到电偶极子的远区表达式(2)可见电偶极子的远区电位与成正比,与的平方成反比,并且和场点位置矢量与轴的夹角有关。

为了便于描述电偶极子,引入一个矢量P,摸P=q L,方向由-q指向q,称之为此电偶极子的电矩矢量,简称为偶极矩,记作P=q L (3)此时(2)式又可以写成(4)电偶极子的远区电场强度可由(4)式求梯度得到。

电磁波与电磁场的研究报告

电磁波与电磁场的研究报告

电磁波与电磁场的研究报告摘要:本研究报告旨在探讨电磁波与电磁场的相关理论和应用。

首先介绍了电磁波的基本概念和分类,包括电磁波的产生、传播和特性。

接着,讨论了电磁场的基本概念和数学描述,包括电场和磁场的特性以及它们之间的相互作用。

在此基础上,探讨了电磁波与电磁场在通信、医学、能源等领域的应用,并对未来的研究方向进行了展望。

1. 引言电磁波是由电场和磁场相互作用而产生的一种波动现象。

电磁场是电场和磁场在空间中的分布情况。

电磁波与电磁场的研究对于我们理解自然界的基本规律以及应用于现实生活中的各种技术具有重要意义。

2. 电磁波的基本概念和分类电磁波是由振荡的电场和磁场相互作用而形成的一种波动现象。

根据波长和频率的不同,电磁波可以分为不同的类型,包括射频波、微波、红外线、可见光、紫外线、X射线和γ射线等。

不同类型的电磁波在自然界中的产生和传播方式有所不同。

3. 电磁场的基本概念和数学描述电磁场是电场和磁场在空间中的分布情况。

电场是由电荷产生的,而磁场则是由电流产生的。

电场和磁场之间通过麦克斯韦方程组进行描述。

麦克斯韦方程组包括四个方程,分别描述了电场和磁场的产生、传播和相互作用。

4. 电磁波与电磁场的应用电磁波与电磁场在通信、医学、能源等领域有着广泛的应用。

在通信领域,电磁波被用于无线通信和卫星通信等技术中,使信息能够快速传输和广泛传播。

在医学领域,电磁波被用于医学成像和治疗,如X射线和磁共振成像等技术。

在能源领域,电磁波被用于太阳能和风能等可再生能源的收集和利用。

5. 未来的研究方向尽管电磁波与电磁场的研究已经取得了重要的进展,但仍然存在许多未解决的问题和挑战。

未来的研究可以集中在电磁波与材料的相互作用、电磁波的调控和控制、电磁场的数值模拟和优化等方面。

此外,还可以探索新型电磁波的产生和传播方式,以及电磁波在生物学和环境科学等领域的应用。

结论:电磁波与电磁场的研究对于我们理解自然界的基本规律以及应用于现实生活中的各种技术具有重要意义。

电磁场与电磁波实验报告-校园无线信号场强特性的研究

电磁场与电磁波实验报告-校园无线信号场强特性的研究

电磁场与电磁波实验报告题目:校园无线信号场强特性的研究班级:学号:班内序号:姓名:目录【实验目的】 (1)【实验原理】 (1)【实验内容】 (6)【实验步骤】 (6)1.实验对象的选择 (6)2.数据采集 (6)3. 数据处理 (7)【实验结果分析】 (7)【实验心得】 (16)【附录】 (16)一、实验目的1.掌握在移动环境下阴影衰落的概念以及正确的测试方法;2.研究校园内各种不同环境下阴影衰落的分布规律;3.掌握在室内环境下场强的正确测量方法,理解建筑物穿透损耗的概念;4.通过实地测量,分析建筑物穿透损耗随频率的变化关系;5.研究建筑物穿透损耗与建筑材料的关系。

二、实验原理1.电磁波的传播方式无线通信系统是由发射机、发射天线、无线信道、接收机、接收天线所组成。

对于接受者,只有处在发射信号的覆盖区内,才能保证接收机正常接受信号,此时,电波场强大于等于接收机的灵敏度。

因此基站的覆盖区的大小,是无线工程师所关心的。

决定覆盖区的大小的主要因素有:发射功率,馈线及接头损耗,天线增益,天线架设高度,路径损耗,衰落,接收机高度,人体效应,接收机灵敏度,建筑物的穿透损耗,同播,同频干扰等。

电磁场在空间中的传输方式主要有反射﹑绕射﹑散射三种模式。

当电磁波传播遇到比波长大很多的物体时,发生反射。

当接收机和发射机之间无线路径被尖锐物体阻挡时发生绕射。

当电波传播空间中存在物理尺寸小于电波波长的物体﹑且这些物体的分布较密集时,产生散射。

散射波产生于粗糙表面,如小物体或其它不规则物体﹑树叶﹑街道﹑标志﹑灯柱。

2.尺度路径损耗在移动通信系统中,路径损耗是影响通信质量的一个重要因素。

大尺度平均路径损耗:用于测量发射机与接收机之间信号的平均衰落,即定义为有效发射功率和平均接受功率之间的(dB)差值,根据理论和测试的传播模型,无论室内或室外信道,平均接受信号功率随距离对数衰减,这种模型已被广泛的使用。

对任意的传播距离,大尺度平均路径损耗表示为:()[]()()=+010log/0PL d dB PL d n d d即平均接收功率为:()[][]()()()[]() =--=-d dBm Pt dBm PL d n d d d dBm n d dPr010log/0Pr010log/0其中,定义n为路径损耗指数,表明路径损耗随距离增长的速度,d0为近地参考距离,d为发射机与接收机之间的距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁场与电磁波设计报告题目:电磁场与电磁波设计报告系别:班级:姓名:指导老师:目录:静电场的基本概念------------------------------------------3 恒定磁场的基本概念----------------------------------------5 时变磁场的基本概念----------------------------------------6 电场和磁场之间的关系--------------------------------------7 电磁场应用之变频电磁场处理油田水防垢技术------------------8 背景---------------------------------------------------8 原理结构图--------------------------------------------11 除垢、防垢工作原理------------------------------------12 电磁场处理对溶液电导率的影响--------------------------13 电磁场对溶液表面张力的影响----------------------------13 电磁场处理对溶液pH值的影响---------------------------14 实验结果分析------------------------------------------16 从水分子的结构方面---------------------------------16电磁场诱导微晶的形成-------------------------------18静电场的基本概念:1.定义:空间位置固定不变且电量不随时间变化的电荷产生的电场,称为静电场。

2.几个基本定律:库仑定律:真空中两个静止的点电荷之间的作用力与这两个电荷所带电量的乘积成正比,和它们距离的平方成反比,作用力的方向沿着这两个点电荷的连线,同名电荷相斥,异名电荷相吸。

公式:F=k*(q1*q2)/r^2 。

电荷守恒定律:电荷既不能被创造,也不能被消灭,只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分;在转移的过程中,电荷的总量保存不变。

高斯定理:通过任意闭合曲面的电通量等于该闭合曲面所包围的所有电荷量的代数和与电常数之比。

3.几个核心物理量:电场强度:作用于静止带电粒子上的力F与粒子电荷Q 之比。

矢量,符号“E”。

电势差:电场强度E沿一规定路径从一点到另一点的线积分:在无旋场条件下,电压与路径无关,等于两点之间的电位差。

标量,符号“UAB”。

散度:div F=▽·F 在矢量场F中的任一点M处作一个包围该点的任意闭合曲面S,当S所限定的区域直径趋近于0时,比值∮F·dS/ΔV的极限称为矢量场F在点M处的散度,并记作div F由散度的定义可知,div F表示在点M处的单位体积内散发出来的矢量F的通量,所以div F描述了通量源的密度。

散度的重要性在于,可用于表征空间各点矢量场发散的强弱程度,当div F>0 ,表示该点有散发通量的正源;当div F<0表示该点有吸收通量的负源;当div F=0,表示该点为无源场。

旋度:面元与所指矢量场f之矢量积对一个闭合面S的积分除以该闭合面所包容的体积之商,当该体积所有尺寸趋于无穷小时极限的一个矢量。

恒定磁场的基本概念:1.定义:恒定电流产生的磁场成为恒定磁场或恒定电场。

具体解释为,磁场强度和方向保持不变的磁场。

2.几个基本定律:安培力定律:载有恒定电流的两个回路之间存在相互用力,成为安培力定律。

3.几个核心物理量:长为L的直导线。

在匀强磁场B中受到的安培力大小为:F=ILBsin(I,B),其中(I,B)为电流方向与磁场方向间的夹角。

安培力的方向由左手定则判定。

对于任意形状的电流受非匀强磁场的作用力,可把电流分解为许多段电流元I△L,每段电流元处的磁场B可看成匀强磁场,受的安培力为△F=I△L·Bsin(I,B),把这许多安培力加起来就是整个电流受的力。

时变磁场的基本概念:1.定义:电场或磁场随时间变化,变化的电场就可以称为磁场的一个源,而变化的磁场的一个源,从而,时变磁场也可以电场的一个源,从而,时变电磁场就是随时间变化着的电磁场。

2.电磁场波动方程1. 一般情况下,电磁场的基本方程是Maxwell’s equations,即:2.在自由空间中,电场与磁场相互激发,电磁的运动规律将由Maxwell’s equations导出:由波动方程可知电磁场具有波动性,电磁场的能量可以转移。

即脱离电荷和电流而独立存在的的电磁场总是以波动形式存在。

在真空中,一切电磁波以光速C传播。

(3)时谐电磁场在时变电磁场中,如果场源以一定的角速度随时间呈正弦(余弦)变化,则所产生的电磁场也以同样的角频率随时间呈时谐变化。

因此,这种以一定角频率作时谐变化的电磁场称为时谐电磁场。

时谐电磁场在工程上应用广泛。

(4)时变电磁场还可以分为以周期变化的交变电磁场以及非周期性变化的瞬变电磁场。

交变电磁场在单一频率的正弦变化下,可用复数表示以简化计算,在电力技术和连续波分析中应用较多。

瞬变电磁场又称脉冲电磁场,覆盖的频率很宽,介质或传输系统呈现出色散特性,往往采取频域或时序展开等方法进行研究。

电场和磁场之间的关系:变化的电场产生稳定的磁场变化的磁场产生稳定的电场电场和磁场是一起出现和消失的。

打个比方来说,电场和磁场就好像一个硬币两个面,即有电场必有磁场,有磁场必有电场。

运动电荷产生磁场,这一点已毫无疑问。

再跟据相对性原里,即使是静止的点荷,只要另选一个相对运动的座标系为参考系,该电荷也是运动的,就也会产生磁场,以上得出:无论电荷是否运动,都会产生磁场。

即——有电场一定有磁场。

那么有磁场一定有电场吗?由安培假说(已广泛证明),磁场是由运动点荷产生的,也就是挑明了磁场离不开电场,即——有磁场必然有电场。

综上所述,有电场必然有磁场,有磁场必然有电场,二者相互依存,不可分割。

变频电磁场处理油田水防垢技术背景:在工业水系统领域普遍存在着水系统管道、设备器壁上结垢的问题。

在电力、石油开采、钢铁、化工、矿山工业等以水为载体的低温或冷却水系统中,输送管道、泵、阀等设备内结垢现象十分普遍和严重。

在上述冷水系统中,由于水中过量矿物质的存在,且该类水系统一般一次用水量很大,用化学方法处理不经济。

因此寻找一种无添加物、无污染、能耗低、简便、实用并可靠的防垢方法来代替化学法水处理成为当务之急,为此提出了多种物理法水处理防垢新技术。

从上个世纪初,人们就开始深入地研究了水垢产生的机理,水垢的危害以及防治方法,运用了多种化学和物理方法来减少水垢的生成。

由于物理方法不会对水质造成污染,能够减少对环境的污染,与化学方法相比显示出了自身的优越性,因此在生产、生活中应用比较广泛。

当前采用的物理方法主要有以下几种:电磁场、超声场、紫外光技术、等离子技术等,其中电磁场方法又包括磁场处理技术、静电处理技术、高频电场处理技术和变频电磁场处理技术。

磁场处理技术虽是一种简易可行具有一定效率的水处理技术,但也存在一定的局限性,从而影响着它的广泛应用。

例如,磁处理器吸附的磁性物质容易形成磁短路,作用效果不稳定,对处理对象的特性有明确要求,影响工作效率。

静电处理技术,这种处理方法需要的电压太高,安全性低,而且处理效果受多种因素影响,在许多场合不能利用,尤其在油气集中的油田生产方面。

高频电场处理技术,是磁处理技术和静电处理技术的换代技术。

其操作简单、维护方便、经济环保,解决了化学方法难以解决的技术难题。

但当频率超过一定范围,媒质的电磁参数就会受到影响,引起的介质损耗,产生能量损耗。

变频电磁场处理技术是在静电阻垢和磁场软化水基础上发展起来的一种将直流脉冲技术与变频原理相结合的物理法水处理技术。

利用该技术可以根据不同水质特征和处理目标,调整不同的电磁场参数,使处理效果更加完善。

本课题在此基础上,研究变频电磁场在防垢、除垢过程中的作用,通过变频,适应不同水质,促进油田水处理方法的进展、增加产油量,使得水处理器的应用范围变得更加广泛。

随着油田的不断开发,地层中的原油逐渐减少,油田常采用注水方式保持油层压力来提高采收率。

注水是一种常用的油田开发技术,被注水的处理是防止水进入地层后产生结垢,堵塞地层毛细管道,防止所注的水破坏地层结构。

目前,环保要求越来越严格,多数油田采用采出水作为回注水,为了达到注水要求,必须采用必要的处理方法。

在稠油区,注入高压蒸汽降低原油粘度,使稠油得到开采。

注水或注入蒸汽都会使原油含水率增高,油田采出水经过处理进行回注,不仅可满足油田开采过程中注水量日益增长的要求,同时也可以节省水资源,为油田带来经济效益。

油田对采出水进行处理的目的是净化原水水质,使其达到注水、热采锅炉给水、外排所要求的水质标准,对于不同用途的水质,要求有不同的处理工艺。

由于各油田原油的特性、地质不一样,油田采出水水质各异,但又有一些相同的特性,如采出水中含微生物,常见微生物有硫酸盐还原菌、铁细菌、腐生菌,细菌大量繁殖不仅腐蚀管线,而且还造成地层严重堵塞;含有大量可生成垢的离子,如碳酸氢根离子、钙粒子、镁离子、钡离子等容易生成垢的离子。

由于变频电磁场技术由于适用范围宽广,投资相对较小,具有环保、节能,应用安全、可靠等优势,在防垢、缓蚀、杀菌、增注等应用技术领域,将发挥越来越重要的作用。

此外与磁场、静电、高频电场、超声波等水处理方法相比,变频电磁场处理更安全,效果更理想。

本课题在有关国内外大量文献资料的基础上,开展了变频电磁场水处理的研究。

开发了具有较大功率的变频电磁场水处理器,通过对水溶液的pH值、电导率、表面张力以及结垢量等参数的测量,验证了自行设计的水处理装置的实用效能,对变频电磁场处理过的水溶液的防垢机理作了进一步的探讨,为今后电磁场水处理设备的应用和开发提供依据。

原理结构图:信号发生器的组成信号发生器由扫频信号发生电路、压控振荡电路和驱动电路三部分组成,如图(1)扫频信号发生器是由信号发生电路和信号调节电路两部分组成,用于产生扫频控制信号,为压控振荡器提供控制电压。

(2)压控振荡器是信号发生器的核心部分,在控制电压的作用下输出周期变化的方波。

(3)驱动电路部分主要是将该方波信号功率放大,为后面的水处理部分的线圈提供较大功率的脉冲电磁场信号。

除垢、防垢工作原理:在吸收高频电磁能量后,水分子结构由原缔合链状大分子断裂成单个水分子,水中的盐类正负离子被单个水分子包围,运动速度降低,有效碰撞次数减少,静电吸引力下降,水中的盐类正负离子在电磁场的作用下亲和力大为减弱并趋于分散,从而使水中的钙镁离子无法与碳酸根合成碳酸钙和碳酸镁,有效防止水垢生成而达到防垢效果。

相关文档
最新文档