实验一、拉伸实验
青岛理工大学--材料力学--实验报告
材料力学实验报告系别班级姓名学号青岛理工大学力学实验室目录实验一、拉伸实验报告实验二、压缩实验报告实验三、材料弹性模量E和泊松比µ的测定报告实验四、扭转实验报告实验五、剪切弹性模量实验报告实验六、纯弯曲梁的正应力实验报告实验七、等强度梁实验报告实验八、薄壁圆筒在弯扭组合变形下主应力测定报告实验九、压杆稳定实验报告实验十、偏心拉伸实验报告实验十一、静定桁架结构设计与应力分析实验报告实验十二、超静定桁架结构设计与应力分析实验报告实验十三、静定刚架与压杆组合结构设计与应力分析实验报告实验十四、双悬臂梁组合结构设计与应力分析实验实验十五、岩土工程材料的多轴应力特性实验报告实验一拉伸实验报告一、实验目的与要求: 二、实验仪器设备和工具: 三、实验记录:1、试件尺寸实验后:屈服极限载荷:P S = kN 强度极限载荷:P b = kN 四、计算屈服极限: ==A P ss σ MPa 强度极限: ==A P bb σ MPa 延伸率: =⨯-=%10000L L L δ 断面收缩率: =⨯-=%10000A AA ψ 五、绘制P -ΔL 示意图:实验二 压缩实验报告一、实验目的与要求: 二、实验仪器设备和工具: 三、试件测量:材 料标 距 L 0 (mm) 直径(mm )截面面积 A 0 (mm 2) 截面(1)截面(2)截面(3)(1) (2) 平均 (1) (2) 平均 (1) (2) 平均材 料 标距 L(mm)断裂处直径(mm )断裂处 截面面积 A(mm 2)(1)(2) 平均材 料直 径(mm )截面面积 A 0(mm 2)强度极限载荷:P b = kN 五、计算强度极限应力: ==A P bb σ MPa 六、绘制P -ΔL 示意图:实验三 材料弹性模量E 和泊松比µ的测定实验报告一、实验目的与要求: 二、实验仪器设备和工具: 试件基本尺寸厚度h (mm )宽度b (mm )5.030.0载荷 (N )P载荷增量 (N ) △P各测点电阻应变仪读数(µε)轴向应变横向应变通道号( )通道号( )通道号( )通道号( )ε1(测点1) ε1′(测点2) ε2(测点3)ε2′(测点4)读 数增 量 读 数 增 量 读 数 增 量 读 数 增 量 5001000 500 1500 500 2000 500 2500 500 3000500平均应变(µε)i ε∆1、弹性模量计算 10PE A ε∆==∆⨯2、泊松比计算 21εμε∆==∆ 实验四 扭转实验报告一、实验目的与要求: 二、实验仪器设备和工具:三、试件尺寸:1、低碳钢:d=10mm2、铸铁: d=10mm 四、实验记录:1、低碳钢: 屈服载荷:M s = N ·m强度载荷:M b = N ·m2、铸铁: 强度载荷:M b = N ·m 五、计算:1、低碳钢: 316t d W π== mm 3屈服应力: 34ss tM W τ== MPa 极限应力: 34bb tM W τ== MPa 2、铸铁: 316t d W π== mm 3极限应力: bb tM W τ== MPa 实验五 剪切弹性模量实验报告一、实验目的与要求: 二、实验仪器设备和工具: 三、试件尺寸:直径d=10mm L=150mm b=100mm ΔT=5×200 N ·mm 载荷(N )百分表指示格数格数增量0 5 10 15 20 25增量平均值 ΔN= 格==324d I P π mm 4=∆=100Nδ mm ==∆bδϕ rad=∆∆=ϕP I TLG Gpa 实验六 纯弯曲梁的正应力实验报告一、 实验目的与要求:二、 实验仪器设备与工具:三、 实验装置简图及应变片布置图:载荷 (N )载荷 增量 (N ) 各测点电阻应变仪读数(µε) 通道号( ) 通道号( ) 通道号( ) 通道号( ) 通道号( ) ε1(测点1) ε2(测点2) ε3(测点3) ε4(测点4) ε5(测点5) 读 数增 量 读 数 增 量 读 数 增 量 读 数 增 量 读 数 增 量 5001000 500 1500 500 2000500各测点应变片至中性层距离(mm ) 梁的尺寸和有关参数Y 1(测点1) -20 宽度 b=20mm 高度h=40mm跨度 L=600mm 载荷距离 a=125mm 弹性模量 E=210GPa 惯性矩I z =bh 3/12 1µε=10-6ε 1MPa=1N/mm 2 1GPa=103MPaY 2(测点2) -10 Y 3(测点3) 0 Y 4(测点4) 10 Y 5(测点5)202500 500 3000500平均应变(µε)i ε∆测点应力(MPa )610i i E σε-=⨯∆⨯测 点理论值σi (MPa ) 实测值σi (MPa )相对误差12 3 4 5七、 实验七 等强度梁实验一、实验目的与要求:二、实验仪器设备与工具: 三、试件参数: 梁的尺寸和有关参数载荷作用点到测试点距离 x 1 = mm x 2 = mm 距载荷点x 处梁的宽度 b 1 = mmb 2 = mm梁的厚度 h= mm 弹性模量E=210GPa载荷 (N )载荷 增量 (N ) 各测点电阻应变仪读数(µε) 通道号( )通道号( )通道号( )通道号( )ε1(测点1) ε2(测点2)ε3(测点3)ε4(测点4)读 数增 量 读 数 增 量 读 数 增 量 读 数 增 量平均应变(µε)i ε∆测点应力(MPa )610i i E σε-=⨯∆⨯测1、理论计算: 26x pxb h σ=2、实验值计算 610i i E σε-=⨯∆⨯ 3、理论值与实验值比较 100σσδσ=⨯理测理-% 测 点理论值σi (MPa ) 实测值σi (MPa )相对误差12 3 4实验八 薄壁圆筒在弯扭组合变形下主应力测定报告一、实验目的与要求: 二、实验仪器设备和工具: 三、试件参数: 四、实验记录:载荷(N )载荷 增量 (N )各测点电阻应变仪读数(µε)通道号( )通道号( )通道号( )045ε(测点1)00ε(测点2)45ε-(测点3)读 数增 量 读 数 增 量 读 数 增 量圆筒的尺寸和有关参数计算长度 L=240mm弹性模量 E=210GPa 外 径 D=40mm 泊 松 比 μ=0.30 内 径 d=35mm 扇臂长度 a=250mm平均应变(µε)i ε∆测点应力(MPa )610i i E σε-=⨯∆⨯测1、主应力及方向m 点实测值主应力及方向计算:()0000002245451,3450450()2()()2(1)21E Eεεσεεεεμμ--+=±-+--+=454500454522tg εεαεεε---==--0α=m 点理论值主应力及方向计算:圆筒抗弯截面模量:34(1)32Z D W πα=-= mm 3圆筒抗扭截面模量:34(1)16t D W πα=-= mm 3221,3()22σσστ=+022tg τασ-==0α=2、实验值与理论值比较比较内容实验值 理论值 相对误差/% 1/MPa σ3/MPa σ 0α/(°)3、误差分析实验九 压杆稳定实验报告一、实验目的与要求:二、实验仪器设备与工具: 试件参数及有关资料厚度h (mm ) 宽度b (mm )长度L (mm ) 220318最小惯性矩 I min =bh 3/12弹性模量E=210GPa载荷P/N应变仪读数(µε)121、绘出P -1和P -2曲线,以确定实测临界力cr P 实P122、理论临界力cr P 理计算 3min 12bh =理论临界力 min2cr EI P L理 3实验值cr P 实 理论值cr P 理 误差百分率 (%)|cr P 理-cr P 实|/ cr P 理六、误差分析实验十 偏心拉伸实验报告一、实验目的与要求: 二、实验仪器设备与工具: 试件 厚度h (mm )宽度b (mm )530弹性模量 E=210GPa 偏心距 e=10mm载荷 (N )载荷 增量各测点电阻应变仪读数(µε)通道号( )通道号( )(N )1ε(测点1)2ε(测点2)读 数增 量 读 数增 量 10002000 1000 3000 1000 4000 1000 50001000平均应变(µε)i ε∆1、求弹性模量E 12()2P εεε+== 0ppE A ε∆== 2、求偏心距e12()2m εεε-==26m Ehb e pε==∆ 3、应力计算理论值 206p MA bh σ=±= 实验值 max ()p m E σεε=+=min ()p m E σεε=-=六、误差分析:实验十一 静定桁架结构设计与应力分析实验报告一、实验目的与要求: 二、实验仪器设备与工具: 三、实验搭接的结构图: 杆件编号 应变片编号 应变值 计算应力值 理论应力值误差实验十二超静定桁架结构设计与应力分析实验报告一、实验目的与要求:二、实验仪器设备与工具:三、实验搭接的结构图:杆件编号应变片编号应变值计算应力值理论应力值误差实验十三静定刚架与压杆组合结构设计与应力分析实验报告一、实验目的与要求:二、实验仪器设备与工具:三、实验搭接的结构图:杆件编号应变片编号应变值计算应力值理论应力值误差实验十四双悬臂梁组合结构设计与应力分析实验一、实验目的与要求:二、实验仪器设备与工具:三、实验搭接的结构图:杆件编号应变片编号应变值计算应力值理论应力值误差实验十五岩土工程材料的多轴应力特性实验报告一、实验目的与要求:二、实验仪器设备与工具:三、实验结果记录试件高度h(mm)直径d(mm)横截面面积A0=bh(mm2)截面Ⅰ截面Ⅱ截面Ⅲ平均1、求弹性模量E弹性段的应力与应变的比值。
实验一 低碳钢拉伸试验
低碳钢拉伸试验姓名:班级:日期:指导老师:一、试验目的1、测定低碳钢在退火、正火和淬火三种不同热处理状态下的强度与塑性性能。
2、测定低碳钢的应变硬化指数和应变硬化系数。
二、试验要求按照相关国标标准(GB/T228-2002:金属材料室温拉伸试验方法)要求完成实验测量工作。
三、试验材料与试样本次试验的三个试样分别为经过退火、正火和淬火三种不同热处理的低碳钢试样。
退火是指将金属或合金加热到适当温度,保持一定时间,然后缓慢冷却的热处理工艺。
其组织晶粒细小均匀,碳化物呈颗粒状,分布均匀。
正火是指将钢件加热到上临界点(AC3或Acm)以上30—50℃或更高的温度,保温达到完全奥氏体化后,在空气中冷却的热处理工艺。
其组织可能是珠光体、贝氏体、马氏体或它们的混合组织,它的晶粒和碳化物细小(比退火的晶粒更细小),分布均匀。
退火可消除过共析钢的网状二次碳化物。
淬火是指将钢件加热到奥氏体化温度并保持一定时间,然后以大于临界冷却速度冷却,以获得非扩散型转变组织,如马氏体、下贝氏体的热处理工艺。
其组织可能为片状马氏体、板状马氏体、片状下贝氏体或它们的混合组织。
其组织是细小的马氏体及少量残余奥氏体,不存在先共析铁素体。
试样要进行机加工。
平行长度和夹持头部之间应以过渡弧连接,试样头部形状应适合于试验机夹头的夹持。
夹持端和平行长度之间的过渡弧的半径应为:≥0.75d即7.5mm。
本次试验采用的试样编号为R4,直径是10 mm,原始标距为50mm,平行长度Le≥55mm。
试样的精度要求包括①直径的尺寸公差为±0.07mm②形状公差即沿试样的平行长度的最大直径与最小直径之差不应超过0.04mm。
四、实验测量工具、仪器与设备根据国标要求,对于比例试样,应将原始标距的计算值修月之最接近5mm 的倍数,中间数值向较大一方修约,原始标距的标记应准确到±1%,即±0.5mm。
测量原始直径的分辨率不大于0.05mm。
实验一、二 拉伸和压缩实验
实验一 拉伸和压缩实验拉伸和压缩实验是测定材料在静载荷作用下力学性能的一个最基本的实验。
工矿企业、研究所一般都用此类方法对材料进行出厂检验或进厂复检,通过拉伸和压缩实验所测得的力学性能指标,可用于评定材质和进行强度、刚度计算,因此,对材料进行轴向拉伸和压缩试验具有工程实际意义。
不同材料在拉伸和压缩过程中表现出不同的力学性质和现象。
低碳钢和铸铁分别是典型的塑性材料和脆性材料,因此,本次实验将选用低碳钢和铸铁分别做拉伸实验和压缩实验。
低碳钢具有良好的塑性,在拉伸试验中弹性、屈服、强化和颈缩四个阶段尤为明显和清楚。
低碳钢在压缩试验中的弹性阶段、屈服阶段与拉伸试验基本相同,但最后只能被压扁而不能被压断,无法测定其压缩强度极限bc σ值。
因此,一般只对低碳钢材料进行拉伸试验而不进行压缩试验。
铸铁材料受拉时处于脆性状态,其破坏是拉应力拉断。
铸铁压缩时有明显的塑性变形,其破坏是由切应力引起的,破坏面是沿45︒~55︒的斜面。
铸铁材料的抗压强度bc σ远远大于抗拉强度b σ。
通过铸铁压缩试验观察脆性材料的变形过程和破坏方式,并与拉伸结果进行比较,可以分析不同应力状态对材料强度、塑性的影响。
一、 实验目的1.测定低碳钢的屈服极限s σ(包括sm σ、sl σ),强度极限b σ,断后伸长率δ和截面收缩率ψ;测定铸铁拉伸和压缩过程中的强度极限b σ和bc σ。
2.观察低碳纲的拉伸过程和铸铁的拉伸、压缩过程中所出现的各种变形现象,分析力与变形之间的关系,即P —L ∆曲线的特征。
3.掌握材料试验机等实验设备和工具的使用方法。
二、 实验设备和工具1. 液压摆式万能材料试验机。
2. 游标卡尺(0.02mm)。
三、 拉伸和压缩试件材料的力学性能sm s σσ(、sl σ)、b σ、δ和ψ是通过拉伸和压缩试验来确定的,因此,必须把所测试的材料加工成能被拉伸或压缩的试件。
试验表明,试件的尺寸和形状对试验结果有一定影响。
为了减少这种影响和便于使各种材料力学性能的测试结果可进行比较,国家标准对试件的尺寸和形状作了统一的规定,拉伸试件应按国标GB /T6397—1986《金属拉伸试验试样》进行加工,压缩试件应按国标GB /T7314—1987《金属压缩试验方法》进行加工。
金属的拉伸实验(实验报告)
金属的拉伸实验一一、实验目的1、测定低碳钢的屈服强度S σ、抗拉强度b σ、断后延伸率δ和断面收缩率ψ2、观察低碳钢在拉伸过程中的各种现象,并绘制拉伸图(F ─L ∆曲线)3、分析低碳钢的力学性能特点与试样破坏特征二、实验设备及测量仪器1、万能材料试验机2、游标卡尺、直尺三、试样的制备试样可制成圆形截面或矩形截面,采用圆形截面试件,试件中段用于测量拉伸变形,其长度0l 称为“标矩”。
两端较粗部分为夹持部分,安装于试验机夹头中,以便夹紧试件。
试验表明,试件的尺寸和形状对材料的塑性性质影响很大,为了能正确地比较材料力学性能,国家对试件的尺寸和形状都作了标准化规定。
直径020d mm =,标矩000200(10)l mm l d ==或000100(5)l mm l d ==的圆形截面试件叫做“标准试件”,如因原料尺寸限制或其他原因不能采用标准试件时,可以用“比例试件”。
四、实验原理在拉伸试验时,利用试验机的自动绘图器可绘出低碳钢的拉伸曲线,见图2-11所示的F—ΔL 曲线。
图中最初阶段呈曲线,是由于试样头部在夹具内有滑动及试验机存在间隙等原因造成的。
分析时应将图中的直线段延长与横坐标相交于O 点,作为其坐标原点。
拉伸曲线形象的描绘出材料的变形特征及各阶段受力和变形间的关系,可由该图形的状态来判断材料弹性与塑性好坏、断裂时的韧性与脆性程度以及不同变形下的承载能力。
但同一种材料的拉伸曲线会因试样尺寸不同而各异。
为了使同一种材料不同尺寸试样的拉伸过程及其特性点便于比较,以消除试样几何尺寸的影响,可将拉伸曲线图的纵坐标(力F )除以试样原始横截面面积S 0,并将横坐标(伸长ΔL )除以试样的原始标距0l 得到的曲线便与试样尺寸无关,此曲线称为应力-应变曲线或R —ε曲线,如图2—12所示。
从曲线上可以看出,它与拉伸图曲线相似,也同样表征了材料力学性能。
拉伸试验过程分为四个阶段,如图2—11和图2-12所示。
材料力学实验报告1
材料力学实验报告院系班级学号姓名实验一金属材料拉伸实验实验日期:同组成员:一.实验目的1.测定低碳钢的屈服极限,强度极限,延伸率和断面收缩率。
2.测定铸铁的强度极限。
二.实验设备1.万能材料试验机2.游标卡尺三.实验步骤1.用游标卡尺在试件标距长度内取三处,测每一处截面两个相互垂直方向的直径,取其平均值。
最后以三处平均值中最小值作为试件的直径。
2.选择试验机的量程根据试件的强度极限和截面积,估算试件的最大载荷,选择合适的量程。
3.打开电源开关,打开油泵开关,关上回油阀,打开送油阀,将工作台抬高1-2厘米,消除自重,关上送油阀。
4.装夹试件,调读盘零点。
5.打开送油阀,缓慢加载,测试并观察,记录相关数据。
6.试件拉断后,关上送油阀,将试件取出,记录相关数据,测试件断后标距及断后直径。
7.实验整理四、实验记录及实验结果:1、试件尺寸记录- 1 -2、载荷及计算结果3、绘出低碳钢和铸铁的P-ΔL图五、实验结论与分析:1、分析比较两种典型金属材料的抗拉机械性能。
2、国家标准《金属拉伸实验方法》(GB228-87)中规定拉伸试样分为短试样和长试样,对同一材质、同一直径的圆形试样,短试样和长试样的断后延伸率是否相同?若不一样哪个大?- 2 -实验二铸铁材料压缩实验实验日期:同组成员:一.实验目的1.测定铸铁抗压强度极限σb。
2.观察铸铁在压缩时的变形和破坏现象。
二.实验设备1.万能材料试验机2.游标卡尺三.实验步骤1.测量试件直径用游标卡尺在试件相互垂直方向的直径各测一次,取其平均值。
2.选择试验机的量程根据试件的强度极限和截面积,估算试件的最大载荷,选择合适的量程。
3.打开电源开关,打开油泵开关,关上回油阀,打开送油阀,将工作台抬高1-2厘米,消除自重,关上送油阀。
4.安装试件,注意载荷对中。
调读盘零点。
5.打开送油阀,缓慢加载,测试并观察,试件压断后,关上送油阀,将试件取出,记录相关数据。
四、实验记录及实验结果:1、试件几何尺寸记录2、实验数据记录及处理五. 实验结论与分析:1、铸铁的破坏形式说明什么问题?2、铸铁压缩与拉伸破坏端面形状有什么不同?- 3 -- 4 - 实验三 弹性模量E 的测定实验日期:同组成员: 一.实验目的1.测定低碳钢的弹性模量E 。
材料的力学实验报告
材料的力学实验报告材料的力学实验报告材料的力学实验报告一目录一、拉伸实验...............................................................................2 二、压缩实验...............................................................................4 三、拉压弹性模量E 测定实验...................................................6 四、低碳钢剪切弹性模量G测定实验.......................................8 五、扭转破坏实验....................................................................10 六、纯弯曲梁正应力实验..........................................................12 七、弯扭组合变形时的主应力测定实验..................................15 八、压杆稳定实验. (18)一、拉伸实验报告标准答案实验结果及数据处理:例:(一)低碳钢试件强度指标:Ps=_____KN屈服应力ζs= Ps/A _____MPa P b =_____KN 强度极限ζb= Pb /A _____MPa 塑性指标:L1-LAA1伸长率100% %面积收缩率100% %LA低碳钢拉伸图:铸铁试件强度指标:最大载荷Pb =_____ KN强度极限ζb= Pb / A = ___ M Pa问题讨论:1、为何在拉伸试验中必须采用标准试件或比例试件,材料相同而长短不同的试件延伸率是否相同答:拉伸实验中延伸率的大小与材料有关,同时与试件的标距长度有关.试件局部变形较大的断口部分,在不同长度的标距中所占比例也不同.因此拉伸试验中必须采用标准试件或比例试件,这样其有关性质才具可比性.材料相同而长短不同的试件通常情况下延伸率是不同的(横截面面积与长度存在某种特殊比例关系除外).2、分析比较两种材料在拉伸时的力学性能及断口特征.答:试件在拉伸时铸铁延伸率小表现为脆性,低碳钢延伸率大表现为塑性;低碳钢具有屈服现象,铸铁无.低碳钢断口为直径缩小的杯锥状,且有450的剪切唇,断口组织为暗灰色纤维状组织。
实验一 拉伸与压缩实验
实验一 拉伸与压缩实验拉伸实验是对试件施加轴向拉力,以测定材料在常温静荷载作用下的力学性能的实验。
它是材料力学最基本、最重要的实验之一。
拉伸实验简单、直观、技术成熟、数据可比性强,它是最常用的实验手段。
由此测定的材料力学性能指标,成为考核材料的强度、塑性和变形能力的最基本的依据,被广泛、直接地用于工程设计、产品检验、工艺评定等方面。
而有些材料的受压力学性能和受拉力学性能不同,所以,要对其施加轴向压力,以考核其受压性能,这就是压缩实验。
一、实验目的1.通过对低碳钢和铸铁这两种不同性能的典型材料的拉伸、压缩破坏过程的观察和对实验数据、断口特征的分析,了解它们的力学性能特点。
2.了解电子万能试验机的构造、原理和操作。
3.测定典型材料的强度指标及塑性指标,低碳钢拉伸时的屈服极限S σ,(或下屈服极限SL σ),强度极限b σ,延伸率δ,截面收缩率ψ,压缩时的压缩屈服极限SC σ,铸铁拉伸、压缩时的强度极限b σ、bC σ。
二.实验设备及试件1. 电子万能试验机:试验机结构与原理――材料力学基本实验设备是静态万能材料试验机, 能进行轴向拉伸、轴向压缩和三点弯曲等基本实验。
试验机主要由机械加载、控制系统、测量系统等部分组成。
当前试验机主要的机型是电子万能试验机,其加载是由伺服电机带动丝杠转动而使活动横梁上下移动而实现的。
在活动横梁和上横梁(或工作台上)安装一对拉伸夹具或压缩弯曲的附件,就组成了加载空间。
伺服控制系统则控制伺服电机在给定速度下匀速转动,实现不同速度下横梁移动或对被测试件加载。
活动横梁的移动速度范围是0.05~500毫米/每分钟。
图1-1 万能材料试验机结构图图1—2 拉伸圆试件 测量系统包括负荷测量、试件变形测量和横梁位移测量。
负荷和变形测量都是利用电测传感技术,通过传感器将机械信号转变为电信号。
负荷传感器安装在活动横梁上,通过万向联轴节和夹具与试件联在一起,测量变形的传感器一般称作引伸计安装在试件上。
实验拉伸
测量断后标距的量具最小刻度值应不大于0.1mm。 短、长比例试样的断后伸长率分别以符号A5、A10表示。定标距试样的断后 伸长率应附以该标距数值的角注, 例如: L0=100mm或200mm则分别以符号A100 或A200表示。
参考资料: 1. 张帆,周伟敏 编 材料性能学,上海交通大学出版社,2009年1月出版
64
低碳钢退火态的力(F)~伸长(ΔL)曲线(典型的拉伸曲线)
E
F / s 0 F l 0 ( N mm 2 ) l / l 0 l s 0
F p0.2 S0
R p 0 .2
Re eL
( N mm 2 ) ; Re eH
FeH ( N mm 2 ) ; S0
2. GB/T 228—2002《金属材料室温拉伸试验方法》
71
A
l k l k l 0 100% l0 l0
(1-8)
断后标长Lk,测量详见附录。 根据GB/ 228—2002标准,短试样( l 0 表示,长试样( l 0 6、 断面收缩率Z 试样拉断后,颈缩处横截面积的最大缩减量与原横截面积的百分比,称断面 收缩率Z。 测量原横截面积S0和拉断后缩颈处截面积S1后,可按公式(9)计算Z。
68
图1-5 圆形比例试样
拉伸试样二端与试验机连接部分(图1-5中M处)及夹持部分,可加工成光滑 或螺纹形状,其长度由试验机的夹头来确定。 2、 试验设备 ZWICK/Roell Z020-20kN
五、
测验程序
1、 用游标卡尺度量试样工作长度(均匀长度)内二端及中央三处的直径,各处 应在二个相互垂直的方向各测量一次。取其算术平均值,选用三处中的最小平均 直径,记作试样的d0。 2、 用划线器将试样工作长度L0划成N格(每格等同距)。 3、 检查机器各部分是处于正常工作状态。 4、 在计算机中打开相关的测试程序。根据测试要求和试样尺寸,输入相关测 试参数。
实验一低碳钢、铸铁的拉伸实验
实验一 低碳钢、铸铁的拉伸实验拉压实验是材料的力学性能实验中最基本最重要的实验,是工程上广泛使用的测定材料力学性能的方法之一。
一、实验目的:1、了解万能材料试验机的结构及工作原理,熟悉其操作规程及正确使用方法。
2、通过实验,观察低碳钢和铸铁在拉伸时的变形规律和破坏现象,并进行比较。
3、测定低碳钢拉伸时的屈服极限σs 、强度极限σb 、延伸率δ和截面收缩率ψ,铸铁拉伸时的强度极限σb 。
二、实验设备及试样1、万能材料试验机2、游标卡尺3、钢直尺4、拉伸试样:图2.7 拉伸试样由于试样的形状和尺寸对实验结果有一定影响,为便于互相比较,应按统一规定加工成标准试样。
图2.7分别表示横截面为圆形和矩形的拉伸试样。
L 0是测量试样伸长的长度,称为原始标距。
按现行国家GB6397-86的规定,拉伸试样分为比例试样和非比例试样两种。
比例试样的标距L 0与原始横截面A 0的关系规定为00A k L = (2.2)式中系数k 的值取为 5.65时称为短试样,取为11.3时称为长试样。
对直径d 0的圆截面短试样,0065.5A L ==5d 0;对长试样, 000103.11d A L ==。
本实验室采用的是长试样。
非比例试样的L 0和A 0不受上列关系的限制。
试样的表面粗糙度应符合国标规定。
在图2.7中,尺寸L称为试样的平行长度,圆截面试样L不小于L0+d 0;矩形截面试样L不小于L0+b 0/2。
为保证由平行长度到试样头部的缓和过渡,要有足够大的过渡圆弧半径R。
试样头部的形状和尺寸,与试验机的夹具结构有关,图2.7所示适用于楔形夹具。
这时,试样头部长度不小于楔形夹具长度的三分之二。
三、实验原理及方法常温下的拉伸实验是测定材料力学性能的基本实验。
可用以测定弹性E和μ,比例极限σp ,屈服极限σs (或规定非比例伸长应力),抗拉强度σb ,断后伸长率δ和截面收缩率ψ等。
这些力学性能指标都是工程设计的重要依据。
1、低碳钢拉伸实验1)、屈服极限σs 及抗拉强度σb 的测定对低碳钢拉伸试样加载,当到达屈服阶段时,低碳钢的P-△L曲线呈锯齿形(图2.8)。
实验一、用拉伸法测金属丝的杨氏模量
2.4 用拉伸法测金属丝的杨氏弹性模量固体材料的长度发生微小变化时,用一般测量长度的工具不易测准,光杠杆镜尺法是一种测量微小长度变化的简便方法。
本实验采用光杠杆放大原理测量金属丝的微小伸长量,在数据处理中运用两种基本方法—逐差法和作图法。
【实验目的】⑴ 掌握光杠杆镜尺法测量微小长度变化的原理和调节方法。
⑵ 用拉伸法测量金属丝的杨氏弹性模量。
⑶ 学习处理数据的一种方法——逐差法。
【实验原理】1. 拉伸法测金属丝的杨氏弹性模量 设一各向同性的金属丝长为L ,截面积为S ,在受到沿长度方向的拉力F 的作用时伸长 ΔL ,根据虎克定律,在弹性限度内,金属丝的胁强F/S (即单位面积所受的力)与伸长应变ΔL/L (单位长度的伸长量)成正比LLE SF ∆= (1) 式中比例系数E 为杨氏弹性模量,即LS FLE ∆=(2) 在国际单位制中,E 的单位为牛每平方米,记为N/m 2。
实验表明,杨氏弹性模量E 与外力F 、金属丝的长度L 及横截面积S 大小无关,只与金属丝的材料性质有关,因此它是表征固体材料性质的物理量。
(2)式中F 、L 、S 容易测得,ΔL 是不易测量的长度微小变化量。
例如一长度L=90.00cm 、直径d=0.500mm 的钢丝,下端悬挂一质量为0.500kg 砝码,已知钢丝的杨氏弹性模量E=2.00×1011N/m 2, 根据(2)式理论计算可得钢丝长度方向微小伸长量ΔL =1.12×10-4m 。
如此微小伸长量,如何进行非接触式测量,如何提高测量准确度?本实验采用光杠杆法测量。
2. 光杠杆测微小长度将一平面镜M 固定在有三个尖脚的小支架上,构成一个光杠杆,如图1所示。
用光杠杆法测微小长度原理如图2所示。
假设开始时平面镜M 的法线OB 在水平位置,B 点对应的标尺H 上的刻度为n 0,从n 0发出的光通过平面镜M 反射后在望远镜中形成n 0的像,当金属丝受到外力而伸长后,光杠杆的后尖脚随金属丝下降ΔL ,带动平面镜M 转一角度α到M ˊ,平面镜的法线OB 也转同一角度α到OB ˊ,根据光的反射定律,镜面旋转α角,从B 发出光的反射线将旋转2α角,即到达B ′′,由光线的可逆性,从B ′′发出的光经平面镜M 反射后进入望远镜,因此从望远镜将观察到刻度n 1。
实验一低碳钢和铸铁的拉伸实验
第一部分基本实验实验一低碳钢和铸铁的拉伸实验一、实验目的:1、测定低碳钢在拉伸时屈服极限σs 、强度极限σb、延伸率δ和截面收缩率Ψ。
2、观察低碳钢拉伸过程中的各种现象(包括屈服、强化、颈缩等现象),及拉伸图(P-ΔL曲线)。
3、测定铸铁拉伸时的强度极限σb。
4、比较低碳钢与铸铁抗拉性能的特点,并进行断口分析。
二、实验设备:1、万能材料实验机2、游标卡尺三、试件:由于试件的形状和尺寸对实验结果有一定的影响。
为了便于互相比较应按统一规定加工成标准试件。
试件加工须按《金属拉伸实验试样》(GB6397-86)的有关要求进行。
本实验的试件采用国家标准(GB6397-86)所规定的圆棒试件,尺寸为d=10mm,标距长度L=100mm,见图1-1。
为测定低碳钢的断后延伸率δ,须用刻线机在试样标距范围内刻划圆周线,将标距L分为等长的10格。
图1-1 圆形拉伸试件四、实验原理和方法拉伸实验是测定材料力学性能最基本的实验之一。
材料的力学性能如:屈服极限、强度极限、延伸率、截面收缩率等均是由拉伸破坏实验确定的。
1、低碳钢(1)力-伸长曲线的绘制:通过实验机绘图装置可自动绘成以轴向力P为纵坐标、试件伸长量ΔL为横坐标的力-伸长曲线(P-ΔL图),如图1-2所示。
低碳钢的力-伸长曲线是一种典型的形式,整个拉伸变形分四个阶段:弹性阶段、屈服阶段、强化阶段和颈缩阶段。
应当指出,绘图仪所绘出的拉伸变形ΔL是整个试件(不只是标距部分)的伸长,而且还包括机器本身的弹性变形和试件头部在夹头中的滑动等。
试件开始受力时,头部夹头中的滑动很大,故绘出的拉伸图最初一般是曲线。
图1-2 低碳钢拉伸图(2)屈服极限的测定:随着荷载的增加,变形也与荷载呈正比增加,P-ΔL图上为一直线,此即直线弹性段。
过了直线弹性段,尚有一极小的非直线弹性段。
弹性阶段包括直线弹性段和非直线弹性段。
当荷载增加到一定程度,测力指针往回偏转,继而缓慢的来回摆动,相应地在P-ΔL图上画出一段锯齿形曲线,此段即屈服阶段。
材料拉伸实验
标距与直径的比例为: l0 5d0 l0 10d0
对于板的材料拉伸实验,按国家标准做成矩形截面试件。
截面面积和试件标距关系为:
l0 5.65 A0 l0 11.3 A0
四、实验原理 1.夹头形式 圆形和矩形截面试件所用夹板分别如图1—3(a)(b)
夹板表面制成凸纹, 以夹牢试件。
取这三处截面直径的最小值d0作为计算试件横截面面积 A0的依据。
2.试验机的准备:首先了解电子万能试验机的基本 构造原理,学习试验机的操作规程。
(1)旋开钥匙开关,启动试验机。第一步:连接好试 验机电源线及各通讯线缆;第二步:打开空气开关; 第三步:打开钥匙开关。
(2)连接试验机与计算机。打开计算机显示器与主机, 运行实验程序,进入实验主界面,单击主菜单上“联 机”,连接试验机与计算机。
般要求 1h0/d。0 3
四、实验原理
1.低碳钢的压缩曲线
F
压缩过程中产生屈服以前的
基本情况与拉伸时相同,载
B
荷到达B点时,实验力值不变 或下降,材料产生屈服,当 FS
载荷超过B点后,塑性变形逐
渐增加,试件横截面积逐渐 增大,试件最后被压成鼓形 O
而不断裂,只能测出产生屈
服时的载荷 F S,由 S FS/ A0
实验采用半桥单臂、公共补偿、多点测量方法。加载
采用增量法,即每增加等量的载荷△F,测出各点的应
变增量 实,i 分别取各点应变增量的平均值 , 实 i
依次求出各点的应变增量 实i E实i,将实测应力
值与理论应力值 应力公式。
i
Miy1进/2行F比ai较y,以验证弯曲正
得出材料受压时的屈服极限。
F L
2.铸铁的压缩曲线
《材料力学实验指导书》.. (2)
课程教案课程名称:任课教师:所属院部:建筑工程与艺术学院教学班级:教学时间:2015—2016 学年第 1 学期湖南工学院实验一 拉伸实验一、本实验主要内容低碳钢和铸铁的拉伸实验.二、实验目的与要求1.测定低碳钢的流动极限S σ、强度极限b σ、延伸率δ、截面收缩率ψ和铸铁的强度极限b σ.2。
根据碳钢和铸铁在拉伸过程中表现的现象,绘出外力和变形间的关系曲线(F L -∆曲线)。
3.比较低碳钢和铸铁两种材料的拉伸性能和断口情况。
三、实验重点难点1、拉伸时难以建立均匀的应力状态.2、采集数据时,对数据的读取.四、教学方法和手段课堂讲授、提问、讨论、启发、演示、辩论等;实验前对学生进行实验的理论指导和提醒学生实验过程的注意事项。
五、作业与习题布置1、低碳钢拉伸图分为几阶段?每一阶段,力与变形有何关系?有什么现象?2、低碳钢和铸铁在拉伸时可测得哪些力学性能指标?用什么方法测得?实验一 拉伸实验拉伸实验是测定材料力学性能的最基本最重要的实验之一。
由本实验所测得的结果,可以说明材料在静拉伸下的一些性能,诸如材料对载荷的抵抗能力的变化规律、材料的弹性、塑性、强度等重要机械性能,这些性能是工程上合理地选用材料和进行强度计算的重要依据。
一、实验目的要求1。
测定低碳钢的流动极限S σ、强度极限b σ、延伸率δ、截面收缩率ψ和铸铁的强度极限b σ.2.根据碳钢和铸铁在拉伸过程中表现的现象,绘出外力和变形间的关系曲线(F L -∆曲线).3。
比较低碳钢和铸铁两种材料的拉伸性能和断口情况。
二、实验设备和仪器万能材料试验机、游标卡尺、分规等。
三、拉伸试件金属材料拉伸实验常用的试件形状如图所示。
图中工作段长度l 称为标距,试件的拉伸变形量一般由这一段的变形来测定,两端较粗部分是为了便于装入试验机的夹头内。
为了使实验测得的结果可以互相比较,试件必须按国家标准做成标准试件,即5l d =或10l d =。
对于一般板的材料拉伸实验,也应按国家标准做成矩形截面试件.其截面面积和试件标距关系为l =l =,A 为标距段内的截面积.四、实验方法与步骤1、低碳钢的拉伸实验(1)试件的准备:在试件中段取标距10l d =或5l d =在标距两端用分规打上冲眼作为标志,用游标卡尺在试件标距范围内测量中间和两端三处直径d (在每处的两个互相垂直的方向各测一次取其平均值)取最小值作为计算试件横截面面积用。
实验拉伸实验报告
实验拉伸实验报告实验拉伸实验报告引言:拉伸实验是材料力学实验中最基本的实验之一,通过对材料在受力下的变形和破坏过程进行观察和分析,可以得到材料的力学性能参数,为材料的设计和应用提供重要依据。
本文将对拉伸实验的目的、原理、实验装置以及实验结果进行详细描述和分析。
一、实验目的拉伸实验的目的是通过对材料在受力下的变形和破坏过程进行观察和分析,获取材料的力学性能参数,如屈服强度、抗拉强度、断裂延伸率等。
通过实验可以评估材料的力学性能,为材料的设计和应用提供依据。
二、实验原理拉伸实验是将试样置于拉伸机上,施加拉伸力使试样发生拉伸变形,通过测量试样的变形和力的变化,计算得到材料的力学性能参数。
拉伸实验的主要原理有以下几个方面:1. 应力-应变关系:拉伸试验中,测量试样的应变与应力之间的关系,可以得到材料的应力-应变曲线。
应力-应变曲线可以反映材料的变形特性和力学性能。
2. 屈服强度:材料在拉伸过程中,当应力达到一定值时,试样会出现塑性变形,即试样开始产生屈服。
屈服强度是指材料开始塑性变形时的应力值。
3. 抗拉强度:材料在拉伸过程中,当试样继续受力时,应力逐渐增大,最终达到最大值,即抗拉强度。
抗拉强度反映了材料的抗拉能力。
4. 断裂延伸率:材料在拉伸过程中,当试样发生破坏时,测量试样的断裂长度与原始长度之比,即可得到材料的断裂延伸率。
断裂延伸率可以评估材料的韧性和延展性。
三、实验装置拉伸实验需要使用拉伸试验机和试样,其中拉伸试验机是实验的核心装置,用于施加力和测量试样的变形。
实验装置包括以下几个部分:1. 拉伸试验机:拉伸试验机是用于施加力和测量试样变形的设备。
它由主机、传感器、控制系统等组成。
主机通过驱动装置施加拉力,传感器用于测量试样的变形,控制系统用于控制试验过程。
2. 试样:试样是进行拉伸实验的材料样品。
试样的形状和尺寸根据实验要求而定,常见的试样形状有圆柱形、矩形等。
试样的制备要求严格,以保证实验的准确性和可重复性。
拉伸实验
试验一 拉伸实验拉伸试验是测定材料在静载荷作用下力学性能的一个最基本最重要的试验。
通过拉伸试验所得的力学性能指标,在整个材料力学的强度计算中几乎都要用到。
更重要的是,工程设计中所选用的材料力学性能指标大都是以拉伸试验为主要依据的。
本次试验将选用低碳钢作为塑性材料的代表,做拉伸试验。
一、实验目的1)测定低碳钢的屈服强度s σ,抗拉强度b σ。
断后伸长率δ和断面收缩率ψ2)观察低碳钢在拉伸过程中所出现的各种变形现象(包括屈服、强化和缩颈等),分析力与变形之间的关系,并绘制拉伸图。
3)分析低碳钢力学性能的特点和试件断口情况,分析其破坏原因。
4)学习、掌握万能试验机的使用方法及其工作原理。
二、实验设备(1)试件:材料的力学性能是通过拉伸试验来确定的,因此,必须把所测试的材料加工成能被拉伸的试件。
试验表明,试件的尺寸和形状对试验结果有影响。
为了避免这种影响和便于使各种材料力学性能的测试结果进行比较,国家标准对试件的尺寸和形状作了统一的规定,拉力试件分为比例的和非比例的两种。
比例试件应符合如下的关系:L 0=K ·A 0 (1-1)式中 L 0――标距,用于测量拉伸变形,单位为mm;A 0――标距部分试件的断面积;K ――系数,K =5.56或K =11.3,前者称为短试件,后者称为长试件。
据此,直径为d 0的短、长圆形试件的标距长度L 0分别为5d 0和10d 0;非比例试件的标距与其横截面间则无上述关系,而是根据制品(薄板、薄带、细管、细丝、型材等)的尺寸和材料的性质规定出平行长度L 和标距长度L 0。
长试件见图1-1。
试件两端较粗的部分为装入试验机夹头中的夹持部分,起传递拉力之用。
它的形状及尺寸可根据试验的夹头形式而定。
本实验采用非比例试件。
图1-1 圆形拉伸试件(2)实验装置:万能试验机或拉力试验机。
试验机的夹头有各种形式,一般采用夹板式,如图1-2。
图形截面试件所用的夹板如图1-3所示。
拉伸实验
实验一、拉伸实验一、实验目的1.测定低碳钢的机械性质:屈服极限σs、强度极限σb、延伸率δ及断面收缩率Ψ;2.测定铸铁的机械性质:强度极限σb。
二、试件按GB228—76规定,本实验试件采用圆棒长试件。
取d0=10,L=100,如图所示:三、实验设备及仪器1、液压式万能材料实验机;2、游标卡尺;3、划线机(铸铁试件不能使用)。
一、低碳钢的拉伸实验实验原理及方法1.屈服极限σs的测定P—ΔL曲线实验时,在向试件连续均匀地加载过程中。
当测力的指针出现摆动,自动绘图仪绘出的P—ΔL 曲线有锯齿台阶时,说明材料屈服。
记录指针摆动时的最小值为屈服载荷P s,屈服极限σs计算公式为σs=P s/A02、屈服极限σs的测定实验时,试件承受的最大拉力Pb所对应的应力即为强度极限。
试件断裂后指针所指示的载荷读数就是最大载荷Pb,强度极限σb 计算公式为:σb=P b/A03、延伸率δ和断面收缩率Ψ的测定计算公式分别为:δ=(L1-L)/L x 100%Ψ=(A0-A1)/A0 x 100%L:标距(本实验L=100)L1:拉断后的试件标距。
将断口密合在一起,用卡尺直接量出。
A0:试件原横截面积。
A1:断裂后颈缩处的横截面积,用卡尺直接量出。
(三)实验步骤1.试件准备:量出试件直径d0,用划线机划出标距L和量出L;2.按液压万能实验机操作规程1——8条进行;3.加载实验,加载至试件断裂,记录Ps 和Pb ,并观察屈服现象和颈缩现象;4.按操作规程10——14进行;5.将断裂的试件对接在一起,用卡尺测量d1和L1 ,并记录。
二、铸铁的拉伸实验实验原理及方法1、强度极限σb的测定铸铁没有屈服阶段,其断裂时的载荷读数对应的应力就是强度极限,其计算公式为:σb=Pb/A02、铸铁拉伸实验步骤(1)试件准备:量出试件的直径d0;(2)按操作规程进行,记录Pb.实验二、压缩实验一、实验目的1、测定铸铁的抗压强度极限σb,低碳钢压缩时的屈服极限σs。
实验拉伸实验报告
一、实验目的1. 理解拉伸实验的基本原理和方法。
2. 掌握拉伸实验的操作步骤和注意事项。
3. 通过实验,测定材料的弹性模量、屈服强度、抗拉强度、延伸率等力学性能指标。
4. 分析实验结果,了解材料的力学特性。
二、实验原理拉伸实验是测定材料力学性能的一种基本方法。
在实验过程中,将材料样品固定在拉伸试验机上,逐渐施加拉伸力,使材料产生拉伸变形,直至断裂。
通过测量拉伸过程中的力、变形等参数,可以计算出材料的弹性模量、屈服强度、抗拉强度、延伸率等力学性能指标。
三、实验设备与材料1. 实验设备:电子万能试验机、游标卡尺、夹具、引伸计等。
2. 实验材料:低碳钢试样、铸铁试样等。
四、实验步骤1. 准备试样:根据实验要求,选取合适的试样,并按照国家标准制作成标准试样。
2. 安装试样:将试样安装在拉伸试验机的夹具中,确保试样与夹具紧密接触。
3. 调整试验机:设置试验机的工作参数,如拉伸速度、加载方式等。
4. 进行拉伸实验:启动试验机,使试样受到拉伸力,记录拉伸过程中的力、变形等数据。
5. 分析实验数据:根据实验数据,绘制拉伸曲线,计算材料的弹性模量、屈服强度、抗拉强度、延伸率等力学性能指标。
五、实验结果与分析1. 弹性模量:通过拉伸曲线,可以找到线性部分,根据胡克定律,计算材料的弹性模量。
2. 屈服强度:在拉伸曲线上,找到屈服点,计算屈服强度。
3. 抗拉强度:在拉伸曲线上,找到最大载荷点,计算抗拉强度。
4. 延伸率:在拉伸过程中,测量试样原始长度和断裂后长度,计算延伸率。
六、实验结论通过本次拉伸实验,我们成功测定了低碳钢和铸铁的弹性模量、屈服强度、抗拉强度、延伸率等力学性能指标。
实验结果表明,低碳钢具有较好的弹性和塑性,而铸铁则表现出较高的脆性。
实验过程中,我们掌握了拉伸实验的操作步骤和注意事项,提高了对材料力学性能的认识。
七、实验总结本次拉伸实验,我们了解了拉伸实验的基本原理和方法,掌握了拉伸实验的操作步骤和注意事项。
试验一轴向拉伸试验
实验一 轴向拉伸实验预习要求:1、复习教材中有关材料在拉伸时力学性能的内容;2、预习本实验内容及微控电子万能试验机的原理和使用方法;一、实验目的1、测定低碳钢的屈服强度eL R (s σ)、抗拉强度m R (b σ)、断后伸长率A 11.3(δ10)和断面收缩率Z (ψ)。
2、测定铸铁的抗拉强度m R (b σ)。
3、比较低碳钢(塑性材料)和铸铁(脆性材料)在拉伸时的力学性能和断口特征。
注:括号内为GB/T228-2002《金属材料 室温拉伸试验方法》发布前的旧标准引用符号。
二、设备及试样1、电液伺服万能试验机(自行改造)。
2、0.02mm 游标卡尺。
3、低碳钢圆形横截面比例长试样一根。
把原始标距段L 0十等分,并刻画出圆周等分线。
4、铸铁圆形横截面非比例试样一根。
注:GB/T228-2002规定,拉伸试样分比例试样和非比例试样两种。
比例试样的原始标距0L 与原始横截面积0S 的关系满足00S k L =。
比例系数k 取5.65时称为短比例试样,k 取11.3时称为长比例试样,国际上使用的比例系数k 取5.65。
非比例试样0L 与0S 无关。
三、实验原理及方法低碳钢是指含碳量在0.3%以下的碳素钢。
这类钢材在工程中使用较广,在拉伸时表现出的力学性能也最为典型。
ΔL (标距段伸长量)O低碳钢拉伸图(F—ΔL 曲线)以轴向力F 为纵坐标,标距段伸长量ΔL 为横坐标,所绘出的试验曲线图称为拉伸图,即F—ΔL 曲线。
低碳钢的拉伸图如上图所示,F eL 为下屈服强度对应的轴向力,F eH 为上屈服强度对应的轴向力,F m 为最大轴向力。
F—ΔL 曲线与试样的尺寸有关。
为了消除试样尺寸的影响,把轴向力F 除以试样横截面的原始面积S 0就得到了名义应力,也叫工程应力,用σ表示。
同样,试样在标距段的伸长ΔL 除以试样的原始标距LO 得到名义应变,也叫工程应变,用ε表示。
σ—ε曲线与F—ΔL 曲线形状相似,但消除了儿何尺寸的影响,因此代表了材料本质属性,即材料的本构关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料力学III实验一、拉伸实验Testing for Tension适用专业:机械类、土建类、近机类、近土建类各相关专业。
实验学时:1.5 实验类型:操作性实验所属模块:工程力学实验模块实验指导书名称:材料力学实验相关理论课程名称:材料力学开课学院与学科部:机电学院工程力学学科部撰稿人: 王慕 日期:2001.10一.目的与任务观察、比较低碳钢和铸铁的拉伸过程及破坏现象,测定其主要的力学性能指标,并比较其机械性能。
二.内容、要求与安排方式1.内容、要求:测定拉伸时的低碳钢屈服极限、强度极限;延伸率和断面收缩率。
铸铁强度极限。
要求同时了解国标的有关规定和实验项目。
2.实验安排方式: 分组:3人/组; 同时安排组数:6组。
三.场地与设备1.实验场地:材力实验室;地点:一教; 使用面积:100平米。
2.所用设备:液压式万能材料试验机 300KN 4台机械式材料拉伸试验机 50 KN 2台游标卡尺 、分规 6套计算机、复印机 6套材料试验机数据采集系统 6套3.消耗性器材:拉伸试件: 低碳钢和铸铁(或铝试件)计算机、复印机耗材四.考核与成绩评定1考核的内容: 实验方法、实验设备操作与材料性能。
2 成绩评定的方法:口试或考题。
五.实验大纲说明此实验是2000级新大纲的内容,新拉伸实验提高了基本实验的起点和更加贴近工程实际。
实验二、压缩实验Testing for Tension适用专业:机械类、土建类、近机类、近土建类各相关专业。
实验学时:0.5 实验类型:操作性实验所属模块:工程力学实验模块实验指导书名称:材料力学实验相关理论课程名称:材料力学开课学院与学科部:机电学院工程力学学科部撰稿人:王慕 日期:2001.10一.目的与任务观察、比较低碳钢和铸铁的压缩过程及破坏现象,测定其主要的力学性能指标,并比较其机械性能。
二.内容、要求与安排方式1.内容、要求测定压缩时的低碳钢屈服极限;铸铁强度极限。
要求观察破坏现象分析其原因。
2.实验安排方式: 分组:4人/组; 同时安排组数:4组三.场地与设备1.实验场地:材力实验室;地点:一教; 使用面积:60平米。
2.所用设备:CSS-1110电子万能材料试验机 100KN 4台3.消耗性器材:压缩试件 : 低碳钢和铸铁四.考核与成绩评定1考核的内容:实验方法、实验设备操作与材料性能。
2 成绩评定的方法:口试或考题。
五.实验大纲说明此实验是2000级新大纲的内容,突出了材料性能基本实验的地位与作用。
实验三、弹性模量E及泊松比υ的测定Testing for Determination of Elastic Modulus E and Poisson ratioυ实验学时:1.5 实验类型:操作性实验所属模块:工程力学实验模块实验指导书名称:材料力学实验相关理论课程名称:材料力学适用专业:机械类、土建类、近机类、近土建类各相关专业。
开课学院与学科部:机电学院工程力学学科部撰稿人:王慕 日期:2001.10一.目的与任务1.在比例极限内,测定钢材的弹性模量E和泊松比υ,并验证虎克定律。
2.了解电测法的基本原理和方法,初步熟悉电阻应变仪的使用方法。
二.内容、要求与安排方式1.内容、要求测定钢拉伸试件的弹性模量E和泊松比υ。
要求验证虎克定律。
2.实验安排方式:分组:3人/组; 同时安排组数:8组三.场地与设备1.负责此实验的实验室:材力实验室 地点:一教 使用面积:60平米2.所用设备:1-5-2型拉力试验机 50KN 8台YJR-6型静态数字应变仪 8台3.消耗性器材:拉伸试件、电测耗材四.考核与成绩评定1考核的内容:实验方法、实验设备操作与电测原理和桥路。
2 成绩评定的方法:口试或考题。
五.实验大纲说明此实验是2000级新大纲的内容,强调了重视基本实验的基本功。
实验四、扭转实验Testing for Torsion实验学时:0.5 实验类型:操作性实验所属模块:工程力学实验模块实验指导书名称:材料力学实验相关理论课程名称:材料力学适用专业:机械类、土建类、近机类、近土建类各相关专业。
开课学院与学科部:机电学院工程力学学科部撰稿人:王慕 日期:2001.10一.目的与任务观察、比较低碳钢和铸铁的受扭过程及破坏现象,测定其扭转性能指标,并比较其机械性能。
二.内容、要求与安排方式1. 内容、要求测定低碳钢的扭转屈服极限、强度极限,铸铁的扭转强度极限,要求对低碳钢和铸铁的扭转各阶段应力分布和破坏方向进行分析与推导公式。
2.实验安排方式:分组:16人/组; 同时安排组数:1组三.场地与设备1.实验场地:材力实验室 ;地点:一教; 使用面积:60平米。
2.所用设备:NJ-100B型扭转试验机 1台3.消耗性器材:扭转试件:低碳钢和铸铁四.考核与成绩评定1.考核的内容:实验方法与材料性能分析。
2.成绩评定的方法:口试或考题。
五.实验大纲说明此实验是2000级新大纲的内容,强调了重视基本实验的基本功训练。
实验五、金属材料的冲击实验Testing for Impact of Metal Material实验学时:0.5 实验类型:演示性实验所属模块:工程力学实验模块实验指导书名称:材料力学实验相关理论课程名称:材料力学适用专业:机械类、土建类、近机类、近土建类各相关专业。
开课学院与学科部:机电学院工程力学学科部撰稿人: 王慕 日期:2001.10一.目的与任务测定金属材料的冲击韧性,并观察其破坏情况。
二.内容、要求与安排方式1.内容、要求:测定低碳钢和铸铁的冲击韧度,并比较其破坏情况。
2.实验安排方式:分组:16人/组; 同时安排组数:1组三.场地与设备1.负责此实验的实验室:材力实验室;地点:一教 ;使用面积:60平米。
2.所用设备:JB-30A冲击试验机 1台3.消耗性器材:低碳钢和铸铁试件四.考核与成绩评定1.考核的内容:实验方法、实验设备操作。
2.成绩评定的方法:口试或考题。
五.实验大纲说明此实验是2000级新大纲的内容,即保留了基本实验的完整性。
实验六、叠梁弯曲实验Bending Testing for on Overlapped Beam实验学时:2 实验类型:操作性实验所属模块:工程力学实验模块实验指导书名称:材料力学实验相关理论课程名称:材料力学适用专业:机械类、土建类、近机类、近土建类各相关专业。
开课学院与学科部:机电学院工程力学学科部撰稿人:王慕 日期:2001.10一.目的与任务1.测定矩形截面叠梁在纯弯曲时的正应力分布,并与理论值比较,以验证弯曲正应力公式。
2.进一步熟悉电测方法及电阻应变仪的使用。
二.内容、要求与安排方式1.内容、要求测定组合实验台装置矩形截面叠梁在纯弯曲时的正应力分布。
要求推导其理论公式,验证弯曲正应力公式。
2.实验安排方式:分组:2人/组; 同时安排组数:10组; 实验方式:开放。
三.场地与设备1.实验场地:材力实验室;地点:一教;使用面积:60平米。
2.所用设备:组合实验台装置和加载车装置 10台YJR-6型静态数字应变仪 10台3.消耗性器材:调试工具和插头、焊锡等四.考核与成绩评定1.考核的内容:实验方法、实验设备操作与理论分析。
2.成绩评定的方法:口试或考题。
五.实验大纲说明此实验是2000级新大纲的内容,提高了原实验的起点和难度。
材料力学IV、V实验一、薄壁圆管弯扭组合的应力测定 Determination of Stress with Bead and Torsion on Thin-walled Tube ofMetals实验学时:2 实验类型:综合性实验所属模块:工程力学实验模块实验指导书名称:材料力学实验相关理论课程名称:材料力学适用专业:机械类、土建类、近机类、近土建类各相关专业。
开课学院与学科部:机电学院工程力学学科部撰稿人:王慕 日期:2001.10一.目的与任务1.用应变花测定平面应力状态下的主应力和主方向。
2.熟悉不同的桥路接线方法及在组合变形情况下测取单一成分应变的方法。
二.内容、要求与安排方式1.内容、要求:测定薄壁曲拐一点的主应力和主方向及单一成分应变。
要求用半桥和全桥测量。
2.实验安排方式: 分组:2人/组; 同时安排组数:10组 实验方式:开放三.场地与设备1.实验室名称:材力实验室;地点:一教;使用面积:60平米。
2.所用设备:组合实验台装置和加载车装置 10台YJR-6型静态数字应变仪 10台3.消耗性器材: 调试工具、插头和焊锡等四.考核与成绩评定1.考核的内容: 实验方法、实验设备操作,理论分析和桥路运用。
2.成绩评定的方法: 口试或考题。
五.实验大纲说明此实验是2000级新大纲的内容,体现了理论分析和实验的综合性。
实验二、电测综合型实验Comprehensive Electro Metric Test实验学时:4 实验类型:设计性实验所属模块:工程力学实验模块实验指导书名称:材料力学实验相关理论课程名称:材料力学适用专业:机械类、土建类、近机类、近土建类各相关专业。
开课学院与学科部:机电学院工程力学学科部撰稿人:王慕 日期:2001.10一.目的与任务1.用电测方法和其它方法结合分析构件的应力或内力等。
2.通过自行制定实验方案,实施方案(贴片、布线、测试等),并结合其它方法,分析实验结果的全过程,对一较复杂问题进行实验的综合训练。
以培养实验动手能力和科学严谨的工作作风。
二.内容、要求与安排方式1.内容:试件类型与加载方式10余种。
要求:测定某截面应力分布,或沿杆轴线的内力分布。
利用不同桥路测量组合变形中单一成分应变。
可与光测方法或数值模拟方法比较。
与材力理论比较并提出改进意见。
2.实验安排方式: 分组:2人/组; 同时安排组数:8组三.场地与设备1.负责此实验的实验室:材力实验室; 地点:一教;使用面积:60平米。
2.所用设备:1-5-2型拉力试验机 50KN 8台YJR-6型静态数字应变仪 8台计算机和ANSYS有限元程序408型光弹仪 1台3.消耗性器材:贴片工具 、棉花、酒精、砂纸、电阻片、导线等四.考核与成绩评定1.考核的内容:实验方法、实验设备操作及综合实验分析。
2. 成绩评定的方法:口试、考题或小论文宣讲。
五.实验大纲说明此实验是2000级新大纲的新内容,体现综合设计性和全过程能力培养,属有较高水平实验。
实验三、弹塑性与电测综合型实验Testing for Elastic-Plastic Comprehensive Electro Metric实验学时:4 实验类型:设计性实验所属模块:工程力学实验模块实验指导书名称:材料力学实验相关理论课程名称:材料力学适用专业:机械类、土建类、近机类、近土建类各相关专业。
开课学院与学科部:机电学院工程力学学科部撰稿人:王慕 日期:2001.10一. 目的与任务1、加深理解材料的弹塑性过程,材料进入塑性后的性态与卸载后的残余应力分布情况。