八年级上册数学知识点复习

合集下载

八年级数学上册知识点归纳

八年级数学上册知识点归纳

八年级数学上册知识点归纳八年级数学上册必备知识梯形(一) 1、梯形的相关概念一组对边平行而另一组对边不平行的四边形叫做梯形。

梯形中平行的两边叫做梯形的底,通常把较短的底叫做上底,较长的底叫做下底。

梯形中不平行的两边叫做梯形的腰。

梯形的两底的距离叫做梯形的高。

2、梯形的判定(1)定义:一组对边平行而另一组对边不平行的四边形是梯形。

(2)一组对边平行且不相等的四边形是梯形。

(二)直角梯形的定义:一腰垂直于底的梯形叫做直角梯形。

一般地,梯形的分类如下:一般梯形、梯形直角梯形、特殊梯形等腰梯形(三)等腰梯形1、等腰梯形的定义两腰相等的梯形叫做等腰梯形。

2、等腰梯形的性质(1)等腰梯形的两腰相等,两底平行。

(2)等腰梯形同一底上的'两个角相等,同一腰上的两个角互补。

(3)等腰梯形的对角线相等。

(4)等腰梯形是轴对称图形,它只有一条对称轴,即两底的垂直平分线。

3、等腰梯形的判定(1)定义:两腰相等的梯形是等腰梯形(2)定理:在同一底上的两个角相等的梯形是等腰梯形(3)对角线相等的梯形是等腰梯形。

八年级数学知识总结一、整式的乘法1.同底数幂的乘法:am²an=a m+n(m,n都是正整数)即同底数幂相乘,底数不变,指数相加。

2.幂的乘方法则:(am)n=amn(m,n都是正整数)幂的乘方,底数不变,指数相乘。

3.积的乘方法则:(ab)n = an²bn(n为正整数) 积的乘方=乘方的积4.单项式与单项式相乘法则:(1)系数与系数相乘(2)同底数幂与同底数幂相乘(3)其余字母及其指数不变作为积的因式5.单项式与多项式相乘:就是用单项式去乘多项式的每一项,再把所得的积相加。

6.多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

二、乘法公式1.平方差公式:(a+b)(a-b)=a2-b2。

2.完全平方公式:(a±b)2=a2±2ab+b2口诀:前平方,后平方,积的两倍中间放,中间符号看情况。

八年级上册数学知识点(通用15篇)

八年级上册数学知识点(通用15篇)
4推论(AAS)有两角和其中一角的对边对应相等的两个三等
6斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等
7定理1在角的平分线上的点到这个角的两边的距离相等
8定理2到一个角的两边的距离相同的点,在这个角的平分线上
9角的平分线是到角的两边距离相等的所有点的集合
定理:等腰三角形的两个底角相等(简称:等边对等角)
推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。
推论2:等边三角形的各个角都相等,并且每个角都等于60°。
②、等腰三角形的其他性质:
(1)等腰直角三角形的两个底角相等且等于45°
(2)等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。
(3)等腰三角形的三边关系:设腰长为a,底边长为b,则
(4)等腰三角形的三角关系:设顶角为顶角为∠A,底角为∠B、∠C,则∠A=180°—2∠B,∠B=∠C=
③、等腰三角形的判定
等腰三角形的判定定理及推论:
定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。这个判定定理常用于证明同一个三角形中的边相等。
15推论1三个角都相等的三角形是等边三角形
16推论2有一个角等于60°的等腰三角形是等边三角形
17在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
18直角三角形斜边上的中线等于斜边上的一半
19定理线段垂直平分线上的点和这条线段两个端点的距离相等
20逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
21推论1等腰三角形顶角的平分线平分底边并且垂直于底边
22等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

八年级上册全部知识点总结

八年级上册全部知识点总结

八年级上册全部知识点总结1. 整数与有理数:
正整数、负整数、零及其运算规则;
分数、小数和百分数的概念和相互转化;
有理数的大小比较和绝对值。

2. 平方根与立方根:
平方数和完全平方根的概念;
立方数和立方根的概念;
计算平方根和立方根的方法。

3. 代数基础:
代数式的定义和基本性质;
同类项、合并同类项的方法;
公式的运用和推导。

4. 一元一次方程:
方程的概念和解的含义;
解一元一次方程的方法;
应用一元一次方程解决实际问题。

5. 几何基础:
点、线、面的基本概念;
角的概念及角的分类;
相关角的性质和计算。

6. 图形的认识与运动:
二维图形的命名和性质;
图形的旋转、平移和翻折等基本变换;
利用坐标进行图形的描述和判断。

7. 数据的收集与整理:
数据的收集和分类;
统计图表的绘制和解读;
数据的分析和判断。

以上是八年级上册的主要知识点总结,希望能对你有所帮助!如有其他问题,请随时提问。

八年级数学上册期末复习资料

八年级数学上册期末复习资料

初二上册数学全册.第十一章全等三角形综合复习1. 全等三角形的概念及性质;2. 三角形全等的判定;3. 角平分线的性质及判定。

知识点一:证明三角形全等的思路通过对问题的分析,将解决的问题归结到证明某两个三角形的全等后,采用哪个全等判定定理加以证明,可以按下图思路进行分析:⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩SAS SSSHL AAS SAS ASAAAS ASA AAS 找夹角已知两边找第三边找直角边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一对边切记:“有三个角对应相等”和“有两边及其中一边的对角对应相等”的两个三角形不一定全等。

. 例1. 如图,,,,A F E B 四点共线,AC CE ⊥,BD DF ⊥,AE BF =,AC BD =。

求证:ACF BDE ∆≅∆。

知识点二:构造全等三角形 例2. 如图,在ABC ∆中,BE 是∠ABC 的平分线,AD BE ⊥,垂足为D 。

求证:21C ∠=∠+∠。

例3. 如图,在ABC ∆中,AB BC =,90ABC ∠=。

F 为AB 延长线上一点,点E 在BC 上,BE BF =,连接,AE EF 和CF 。

求证:AE CF=。

知识点三:常见辅助线的作法..1. 连接四边形的对角线例4. 如图,AB //CD ,AD //BC ,求证:AB CD =。

2. 作垂线,利用角平分线的知识..例5. 如图,,AP CP 分别是ABC ∆外角MAC ∠和NCA ∠的 平分线,它们交于点P 。

求证:BP 为MBN ∠的平分线。

例6. 如图,D 是ABC ∆的边BC 上的点,且CD AB =,ADB BAD ∠=∠,AE 是ABD ∆的中线。

求证:2AC AE =。

4. “截长补短”构造全等三角形.例7. 如图,在ABC ∆中,AB AC >,12∠=∠,P 为AD 上任意一点。

八年级上册数学必背知识点

八年级上册数学必背知识点

八年级上册数学必背知识点一、三角形。

1. 三角形的概念与分类。

- 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

- 按角分类:锐角三角形(三个角都是锐角)、直角三角形(有一个角是直角)、钝角三角形(有一个角是钝角)。

- 按边分类:不等边三角形(三边都不相等)、等腰三角形(至少两边相等),其中等腰三角形包括等边三角形(三边都相等)。

2. 三角形的三边关系。

- 三角形两边的和大于第三边,三角形两边的差小于第三边。

例如,已知三角形的两边长分别为3和5,则第三边x的取值范围是2 < x<8。

3. 三角形的高、中线与角平分线。

- 高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高。

- 中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

三角形的三条中线相交于一点,这点叫做三角形的重心。

- 角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

三角形的三条角平分线相交于一点。

4. 三角形的内角和与外角性质。

- 三角形内角和定理:三角形三个内角的和等于180°。

- 三角形的外角:三角形的一边与另一边的延长线组成的角,叫做三角形的外角。

- 三角形的外角性质:三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于与它不相邻的任何一个内角。

二、全等三角形。

1. 全等三角形的概念与性质。

- 能够完全重合的两个三角形叫做全等三角形。

- 全等三角形的性质:全等三角形的对应边相等,对应角相等。

2. 全等三角形的判定。

- SSS(边边边):三边对应相等的两个三角形全等。

- SAS(边角边):两边和它们的夹角对应相等的两个三角形全等。

- ASA(角边角):两角和它们的夹边对应相等的两个三角形全等。

- AAS(角角边):两角和其中一角的对边对应相等的两个三角形全等。

- HL(斜边、直角边):斜边和一条直角边对应相等的两个直角三角形全等。

八年级上册数学笔记知识点

八年级上册数学笔记知识点

八年级上册数学笔记知识点一、有理数1. 有理数:在现实生活中存在着大量的具有相反意义的量,如向东走与向西走,盈利与亏损等。

用一种符号表示具有相反意义的量就得到有理数。

2. 有理数的分类:整数和分数统称为有理数。

注意:0既不是正数也不是负数。

二、数轴1. 数轴:规定了原点、正方向和单位长度的直线叫做数轴。

2. 建立数轴:先确定原点、再确定正方向、最后确定单位长度。

3. 理解数轴上的点与实数是一一对应的关系。

三、绝对值1. 定义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

2. 规律总结:一个正数的绝对值是大于它本身;一个负数的绝对值是小于它的实际绝对值;0的绝对值是它本身。

四、相反数1. 定义:只有符号不同的两个数叫做互为相反数。

2. 注意:互为相反数的两个数不一定是异号,但一定是非零的数;符号不同的两个数也互为相反数。

如-a和a互为相反数,并且有绝对值较大的一个符号决定相反数的符号。

五、公式定理部分1. 代数式求值:把已知条件整体代入代数式中求出未知量的值。

2. 代数式的变形:根据代数式中数字与字母的特点,灵活运用乘法对加法的分配律,提取公因式以及公式法等使代数式得到简化。

3. 特殊三角形:等边三角形、等腰三角形、直角三角形等,分别根据其性质得出有关边、角的关系式,并注意综合运用。

六、三角形部分1. 等腰三角形:根据等腰三角形的特点综合运用勾股定理、三角形内角和定理、三角形稳定性等知识求出角度的大小。

2. 直角三角形:根据直角三角形的特点综合运用勾股定理、三角函数等知识求出线段的长或角的度数。

七、四边形部分平行四边形和梯形是两种最基本的四边形,其它四边形都是由这两种基本四边形通过转化而得到的或是它们的特例。

因此,在研究四边形的有关性质时,应从基本四边形的性质入手,结合具体四边形的特点进行转化(通过添加辅助线)来解决。

八、函数部分函数思想是初中数学中的一个重要思想,应通过具体问题来培养这种思想,应弄清一个函数包括定义域和对应法则两部分,注意函数的定义域优先的原则。

八年级上册数学复习知识点优秀

八年级上册数学复习知识点优秀

八年级上册数学复习知识点优秀八年级上册数学复习知识点优秀1(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。

如果把乘法公式反过来就是把多项式分解因式。

于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就可以用来把某些多项式分解因式。

这种分解因式的方法叫做运用公式法。

(二)平方差公式1、平方差公式(1)式子:a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。

这个公式就是平方差公式。

(三)因式分解1、因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2、因式分解,必须进行到每一个多项式因式不能再分解为止。

(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2 =(a+b)2a2-2ab+b2 =(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。

上面两个公式叫完全平方公式。

(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号相同。

③有一项是这两个数的积的两倍。

(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。

这里只要将多项式看成一个整体就可以了。

(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。

(五)分组分解法我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式。

如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式。

原式=(am +an)+(bm+ bn)=a(m+ n)+b(m +n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义。

八年级上册数学知识点总结归纳

八年级上册数学知识点总结归纳

八年级上册数学知识点总结归纳一、代数1. 一元一次方程与一元一次不等式1) 一元一次方程的定义及解法2) 一元一次不等式的定义及解法3) 实际生活中的应用案例2. 二元一次方程组1) 二元一次方程组的定义及解法2) 二元一次方程组的几何意义3) 实际生活中的应用案例3. 整式的加减和乘除1) 整式的概念2) 整式的加减法规则3) 整式的乘除法规则4) 实际生活中的应用案例4. 因式分解1) 因式分解的基本概念2) 因式分解的公式及方法3) 实际生活中的应用案例二、平面几何1. 直角三角形1) 直角三角形的性质及判定方法2) 特殊直角三角形(30-60-90三角形、45-45-90三角形)3) 直角三角形的应用题2. 平行线与相交线1) 平行线与转化线的基本概念2) 平行线与转化线的判定方法3) 平行线与转化线的性质3. 圆1) 圆的基本概念2) 圆的性质及判定3) 圆的应用题4. 规则图形1) 正方形、矩形、菱形、平行四边形的性质2) 规则图形的面积和周长计算方法3) 规则图形的应用题三、空间与立体几何1. 空间图形的投影1) 正投影与侧投影的概念2) 空间图形的投影绘制方法3) 实际生活中的应用案例2. 三棱柱与三棱锥1) 三棱柱与三棱锥的定义及性质2) 三棱柱与三棱锥的表面积和体积计算方法3) 实际生活中的应用案例3. 直角坐标系1) 直角坐标系的建立及性质2) 直角坐标系中点、距离的计算方法3) 实际生活中的应用案例四、统计与概率1. 统计图1) 条形图、折线图、饼状图的绘制方法2) 统计图的解读及应用2. 概率1) 随机事件与概率的基本概念2) 概率的计算方法及性质3) 实际生活中的应用案例以上就是八年级上册数学知识点的总结归纳,希望同学们能够通过系统的学习和复习,牢固掌握这些知识点,为将来更深入的学习打下坚实的基础。

八年级数学上册全册全知识点

八年级数学上册全册全知识点

八年级数学上册全册全知识点八年级数学上册包含以下主题和知识点:
1. 实数
- 整数、有理数、无理数的概念和性质
- 实数的比较和顺序关系
- 实数的运算:加法、减法、乘法、除法等
2. 代数式及其运算
- 代数式的概念和性质
- 代数式的加减法、乘法和约束
- 代数式的乘方和除法
- 一元一次方程和一元一次不等式的解法
3. 图形与变换
- 平面直角坐标系
- 点的坐标和点与点的距离
- 线段的长度和中点坐标
- 直线和斜率的概念
- 图形的平移、旋转、翻折和投影变换
4. 数的运算与应用
- 合并同类项和整理表达式
- 等式和方程的性质和解法
- 百分数和百分比的计算
- 利息和本金的关系和计算
- 速度和时间的关系和计算
5. 几何图形的认识
- 平面图形和空间图形的概念
- 三角形的性质和判定
- 四边形的性质和判定
- 圆的性质和判定
- 三角形和四边形的面积计算
以上总结了八年级数学上册的主要知识点和内容。

希望对你的研究有所帮助!。

八年级上册数学知识点

八年级上册数学知识点

八年级上册数学知识点八年级上册数学知识点(15篇)在平凡的学习生活中,相信大家一定都接触过知识点吧!知识点就是一些常考的内容,或者考试经常出题的地方。

哪些才是我们真正需要的知识点呢?以下是店铺收集整理的八年级上册数学知识点,仅供参考,欢迎大家阅读。

八年级上册数学知识点1一、平面直角坐标系:在平面内有公共原点而且互相垂直的两条数轴,构成了平面直角坐标系。

二、知识点与题型总结:1、由点找坐标:A点的坐标记作A( 2,1 ),规定:横坐标在前,纵坐标在后。

2、由坐标找点:例找点B( 3,-2 ) ?由坐标找点的方法:先找到表示横坐标与纵坐标的点,然后过这两点分别作x轴与y轴的垂线,垂线的交点就是该坐标对应的点。

各象限点坐标的符号:①若点P(x,y)在第一象限,则x > 0,y > 0 ;②若点P(x,y)在第二象限,则x < 0,y > 0 ;③若点P(x,y)在第三象限,则x < 0,y < 0 ;④若点P(x,y)在第四象限,则x > 0,y < 0 。

典型例题:例1、点P的坐标是(2,-3),则点P在第四象限。

例2、若点P(x,y)的坐标满足xy>0,则点P在第一或三象限。

例3、若点A的坐标为(a^2+1, -2–b^2) ,则点A在第四象限。

4、坐标轴上点的坐标符号:坐标轴上的点不属于任何象限。

① x轴上的点的纵坐标为0,表示为(x,0),② y轴上的点的横坐标为0,表示为(0,y),③原点(0,0)既在x轴上,又在y轴上。

例4、点P(x,y )满足xy = 0,则点P在x轴上或y轴上。

.5、与坐标轴平行的两点连线:①若AB‖ x轴,则A、B的纵坐标相同;②若AB‖ y轴,则A、B的横坐标相同。

例5、已知点A(10,5),B(50,5),则直线AB的位置特点是(A )A、与x轴平行B、与y轴平行C、与x轴相交,但不垂直D、与y轴相交,但不垂直6、象限角平分线上的点:①若点P在第一、三象限角的平分线上,则P( m, m );②若点P在第二、四象限角的平分线上,则P( m, -m )。

八年级上册数学知识点归纳

八年级上册数学知识点归纳

八年级上册数学知识点归纳八年级上册数学知识点归纳11、函数一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

2、自变量取值范围使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。

3、函数的三种表示法及其优缺点关系式(解析)法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。

列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

图象法用图象表示函数关系的方法叫做图象法。

4、由函数关系式画其图像的一般步骤列表:列表给出自变量与函数的一些对应值。

描点:以表中每对对应值为坐标,在坐标平面内描出相应的点。

连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

5、正比例函数和一次函数①正比例函数和一次函数的概念一般地,若两个变量x,y间的关系可以表示成y=kx+b (k,b为常数,k 不等于 0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。

特别地,当一次函数y=kx+b中的b=0时(k为常数,k 不等于0),称y是x的正比例函数。

②一次函数的图像:所有一次函数的`图像都是一条直线。

③一次函数、正比例函数图像的主要特征一次函数y=kx+b的图像是经过点(0,b)的直线;正比例函数y=kx的图像是经过原点(0,0)的直线。

④正比例函数的性质一般地,正比例函数有下列性质:当k>0时,图像经过第一、三象限,y随x的增大而增大;当k⑤一次函数的性质一般地,一次函数有下列性质:当k>0时,y随x的增大而增大;当k⑥正比例函数和一次函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式y=kx(k 不等于0)中的常数k。

八年级数学上册重点知识点归纳

八年级数学上册重点知识点归纳

八年级数学上册重点知识点归纳数学是一门普及性极高的学科,它的知识点丰富而广泛。

针对八年级数学上册,以下是一些重点知识点的归纳总结,希望对同学们的学习有所帮助。

一. 代数与函数1. 代数式的运算1.1 同底数幂的乘法与除法1.2 幂的乘法法则与除法法则1.3 乘方的运算规律2. 一元一次方程与实际问题2.1 抽象问题的建模与解答2.2 一元一次方程的解法:解方程法、等式法2.3 实际问题的应用:工程实践、生活实例等3. 二元一次方程与解法3.1 二元一次方程的解法:代入法、消元法3.2 解二元一次方程的几何意义3.3 实际问题的解答与应用:图形问题、线性方程组等二. 几何与形状1. 平面图形的性质与分类1.1 三角形的分类与性质:等边三角形、等腰三角形、直角三角形等1.2 四边形的分类与性质:矩形、平行四边形等1.3 多边形的分类与性质:正多边形、对称多边形等2. 平面图形的计算2.1 平行四边形的面积计算2.2 三角形的面积计算:海伦公式、高度法等2.3 圆的周长与面积计算:圆周率的性质、弧长与扇形面积等3. 空间图形的认识3.1 空间图形的基本要素:点、线、面、体3.2 空间图形的投影与展开:正视图、俯视图、展开图等3.3 空间图形的表达与分析:尺度、比例等三. 数据与统计1. 统计调查与样本问题1.1 样本容量与抽样方法1.2 数据的搜集与整理:频数、频率表等1.3 数据的分析与应用:中心趋势与离散程度等2. 概率与事件2.1 实验与随机现象2.2 概率的计算与性质:理论概率、条件概率等2.3 事件的组合与应用:排列组合、互斥事件等四. 实际问题的数学分析与解决1. 数学建模与实际应用1.1 实际问题的数学表达:问题转化、函数建模等1.2 使用数学方法解决实际问题:方程求解、函数图像分析等1.3 结果与实际问题的对比与解释以上仅为八年级数学上册的部分重点知识点归纳,通过系统学习与掌握这些知识点,同学们将能够更好地应对课堂考试与实际问题,提高数学素养和解决问题的能力。

人教版八年级数学上册知识点总结和复习要点

人教版八年级数学上册知识点总结和复习要点

人教版八年级数学上册知识点总结和复习要点一、全等三角形1全等三角形的概念与性质概念:能够完全重合的两个三角形叫做全等三角形。

性质:全等三角形的对应边相等,对应角相等。

2全等三角形的判定条件SSS(边边边):三边对应相等的两个三角形全等。

SAS(边角边):两边及其夹角对应相等的两个三角形全等。

ASA(角边角):两角及其夹边对应相等的两个三角形全等。

AAS(角角边):两角及其一角的对边对应相等的两个三角形全等。

HL(直角、斜边):在一对直角三角形中,斜边及另一条直角边相等。

例子:若△ABC与△DEF中,AB = DE,AC = DF,∠A = ∠D,则根据SAS判定条件,△ABC ≌△DEF。

二、轴对称1轴对称的概念概念:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

2轴对称的性质性质:轴对称图形上对应点到对称轴的距离相等;对应点的连线与对称轴垂直。

例子:等腰三角形是轴对称图形,其对称轴是底边上的高(中线或顶角平分线)。

三、实数1平方根与立方根的概念平方根:如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方根)。

立方根:如果一个数的立方等于a,那么这个数就叫做a的立方根(或三次方根)。

2实数的分类与性质实数可以分为有理数和无理数两大类。

有理数包括整数和分数,而无理数则是无限不循环小数。

实数具有封闭性、有序性和传递性等性质。

例子:√4 = 2,是4的平方根;∛8 = 2,是8的立方根。

四、一次函数1一次函数的概念概念:一般地,形如y = kx + b(k,b是常数,k ≠0)的函数,叫做一次函数。

2一次函数的性质性质:一次函数的图像是一条直线;当k > 0时,函数值y随x的增大而增大;当k < 0时,函数值y随x的增大而减小。

例子:函数y = 2x + 1是一次函数,其图像是一条斜率为2、截距为1的直线。

五、整式的乘法与因式分解1整式的乘法整式的乘法包括单项式乘单项式、单项式乘多项式、多项式乘多项式等。

八年级上册数学知识点总结(实用10篇)

八年级上册数学知识点总结(实用10篇)

八年级上册数学知识点总结(实用10篇)八年级上册数学知识点总结(1)第十一章三角形一、知识框架:知识概念:三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.多边形的内角:多边形相邻两边组成的角叫做它的内角.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形. 平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.⑶多边形内角和公式:边形的内角和等于·180°⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形.②边形共有条对角线.第十二章全等三角形一、知识框架:二、知识概念:基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.全等三角形的判定定理:⑴边边边():三边对应相等的两个三角形全等.⑵边角边():两边和它们的夹角对应相等的两个三角形全等.⑶角边角():两角和它们的夹边对应相等的两个三角形全等.⑷角角边():两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边():斜边和一条直角边对应相等的两个直角三角形全等.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.第十三章轴对称一、知识框架:二、知识概念:基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.②对称的图形都全等.⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等.②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.⑶关于坐标轴对称的点的坐标性质八年级上册数学知识点总结(2)把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。

八年级数学上册-知识点复习总结

八年级数学上册-知识点复习总结

《数学》(八年级上册)知识点总结第一章 勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。

3、勾股数:满足222c b a =+的三个正整数,称为勾股数。

第二章 实数一、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数值,如sin60o等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。

2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。

(|a|≥0)。

零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。

3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

5、估算三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。

特别地,0的算术平方根是0。

八年级上册数学知识点汇总

八年级上册数学知识点汇总

八年级上册数学知识点汇总一、代数与函数1. 代数运算:加减乘除、加法交换律、结合律、分配律、简单的整式求值。

2. 解一元一次方程:原理是等式两边同时做相同的运算,消去未知数的系数和常数项,求得未知数的值。

3. 一次函数:y = kx + b 的标准式,斜率是 k,截距是 b。

4. 平面直角坐标系:确定点的位置,解决几何问题。

5. 平移、相似、对称、旋转等基本变换。

二、图形的初步认识1. 图形的基本概念:点、线、面等基本元素。

2. 基本图形的性质:三角形、四边形、圆等基本图形的内角和、面积、周长等性质。

3. 图形的相似:形状相同,大小不同;相似三角形的性质。

三、三角形的性质和计算1. 三角形的分类:按角度分为锐角三角形、直角三角形、钝角三角形;按边长分为等边三角形、等腰三角形、普通三角形。

2. 三角形重心、垂心、外心和内心:位置和计算公式。

3. 三角形的面积公式:海伦公式、正弦公式、余弦公式和面积公式。

四、列方程解几何问题1. 利用方程解几何问题:列方程、解方程,求出未知数。

2. 分析几何问题:确定已知量和未知量,列方程求解。

五、形状的运动1. 平移、相似、对称、旋转等基本变换。

2. 图形的运动:平移、相似、对称、旋转变换的概念和性质。

3. 图形的复合变换:多个变换连续作用的情况。

六、数学中的单位换算1. 长度单位的换算:米、厘米、毫米等常用单位的换算。

2. 面积单位的换算:平方米、平方厘米、平方毫米等常用单位的换算。

3. 容积单位的换算:立方米、立方厘米等常用单位的换算。

4. 质量、时间和速度单位的换算。

七、简单的概率统计1. 事件、样本空间和概率:事件发生的可能性,概率的定义和计算方法。

2. 相关概念:随机事件、独立事件、互不影响事件等相关概念。

3. 统计图表的制作和读取:折线图、条形图、饼图等常见图表的制作和读取方法。

以上是八年级上册数学知识点的汇总,这些知识点是数学学习中的基础,各位同学需要熟练掌握,才能更好地应对数学考试,完成数学作业。

八年级上册数学知识点归纳(5篇)

八年级上册数学知识点归纳(5篇)

八年级上册数学知识点归纳(5
篇)
新学期已经开始,同学们即将进入紧张的学习生活。

以下是白话文编写的八年级上册数学知识点总结(5篇精选),希望能给你一些参考和帮助。

八年级上册数学知识点篇一
1、二元一次方程
①二元一次方程、含有两个未知数,并且所含未知数的项的次数都是1的整式方程叫做二元一次方程。

②二元一次方程的解、适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

2、二元一次方程组
①含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。

②二元一次方程组的解二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。

③二元一次方程组的解法代入(消元)法、加减(消元)法
④一次函数与二元一次方程(组)的关系:
一次函数与二元一次方程的关系:直线y=kx+b上任意一点的坐标都是它所对应的二元一次方程kx- y+b=0的解
线性函数与二元线性方程组的关系:二元线性方程组的解可以看作是两个线性函数之和的像的交集。

当函数图象有交点时,说明相应的二元一次方程组有解;
当函数图像(直线)平行,即没有交点时,说明对应的二元线性方程组无解。

数学初二上册知识点篇二
乘法和除法,因式分解和三角形的分数,全等三角形,轴对称和代数表达式。

(1)三角形:是初中数学的基础,中考命题中的重点。

中考试题分值约为18-24分,以填空,选择,解答题,也会出现一些证明题目。

数学八年级上册知识点(15篇)

数学八年级上册知识点(15篇)

数学八年级上册知识点(15篇)数学八年级上册知识点1I线段的垂直平分线①定义:垂直并且平分线段的直线叫做线段的垂直平分线或中垂线②性质:a、线段的垂直平分线上的点到线段两端点的距离相等的点在线段的垂直平分线上;b、到线段两端点距离相等的点在线段的垂直平分线上;c、线段是轴对称图形,线段的垂直平分线是线段的一条对称轴,另一条是线段所在的直线。

II角平分线的性质①角平分线上的点到角两边的距离相等②到角两边距离相等的点在角的角平分线上③角是轴对称图形,角平分线所在的直线是该角的对称轴。

数学八年级上册知识点21、刻画数据的集中趋势〔平均水平〕的量:平均数、众数、中位数2、平均数平均数:一般地,对于n个数,我们把它们的和与n之商叫做这n个数的算术平均数,简称平均数。

加权平均数。

3、众数一组数据中出现次数最多的那个数据叫做这组数据的众数。

4、中位数一般地,将一组数据按大小顺序排列,处于最中间位置的一个数据〔或最中间两个数据的平均数〕叫做这组数据的中位数。

第七章平行线的证明1、平行线的性质一般地,如果两条线互相平行的直线被第三条直线所截,那么同位角相等,内错角相等,同旁内角互补。

也可以简单的说成:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。

2、判定平行线两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。

也可以简单说成:同位角相等两直线平行两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果同旁内角互补,那么这两条直线平行。

其他两条可以简单说成:内错角相等两直线平行同旁内角相等两直线平行数学八年级上册知识点3全等三角形一.知识框架二.知识概念1.全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。

2.全等三角形的性质:全等三角形的对应角相等、对应边相等。

3.三角形全等的判定公理及推论有:(1)“边角边〞简称“SAS〞(2)“角边角〞简称“ASA〞(3)“边边边〞简称“SSS〞(4)“角角边〞简称“AAS〞(5)斜边和直角边相等的两直角三角形(HL)。

八年级上册数学知识点归纳

八年级上册数学知识点归纳

八年级上册数学知识点归纳一、有理数1. 有理数的定义2. 有理数的四则运算3. 有理数的乘方运算4. 有理数的相反数和绝对值5. 有理数的比较大小二、线段和角1. 线段的长度2. 角的度量3. 角的分类4. 角的平分线5. 相邻角、同位角、对顶角三、平行线与平面图形1. 平行线的判定条件2. 平行线的性质3. 平行线的平行截线定理4. 平行线的射影定理5. 平行线与平行四边形四、相交线与角1. 相交线的性质2. 垂线的性质3. 垂线的判定条件4. 垂直于同一条直线的两条平行线的性质5. 垂直于平面的直线的性质五、图形的相似1. 图形的相似比例2. 相似三角形的性质3. 相似三角形的判定条件4. 相似多边形的判定条件5. 相似多边形的性质六、圆与圆的切线1. 圆的定义和性质2. 切线的定义和性质3. 切线定理4. 切线的判定条件5. 弧长和扇形面积七、数据与统计1. 平均数、众数和中位数的计算2. 数据的图表表示3. 折线图和饼状图的制作4. 数据的处理和分析5. 概率与统计八、代数式的运算1. 代数式的加减乘除2. 代数式的化简3. 代数式的展开与因式分解4. 因式分解公式5. 二次根式的加减乘除九、方程与不等式1. 一元一次方程的基本概念2. 一步一元一次方程的解法3. 两步一元一次方程的解法4. 一元一次方程组的解法5. 不等式的基本概念及解法十、直角三角形1. 直角三角形的性质2. 正弦定理和余弦定理3. 解直角三角形的应用4. 解直角三角形的方法5. 平面向量运算及相关性质。

八年级上册数学知识点全汇总

八年级上册数学知识点全汇总

八年级上册数学知识点全汇总在八年级的数学学习中,同学们需要掌握许多重要的知识点,以下是本学期数学课程的全面汇总:一、代数1. 代数式的基本概念:代数式由数字、字母和运算符号组成,可以进行加减乘除等运算。

2. 一元一次方程:学习如何解一元一次方程,掌握用分配律、合并同类项等方法求解方程。

3. 二元一次方程组:了解二元一次方程组的概念,学会通过消元法、代入法等途径解决方程组。

4. 实数:复习实数的分类及性质,包括有理数和无理数的定义,以及实数的运算规律。

5. 负数:掌握负数的加减乘除运算,学会运用数轴等方式理解负数概念。

二、几何1. 角的概念:认识锐角、直角、钝角等不同类型的角,了解相邻角、对顶角等相关概念。

2. 三角形的性质:学习三角形的内角和为180度的性质,掌握直角三角形、等腰三角形等基本性质。

3. 四边形的性质:认识平行四边形、矩形、菱形等四边形的性质,学会计算各角度大小。

4. 圆的性质:理解圆的直径、半径、弧长等基本概念,掌握圆的周长和面积的计算方法。

5. 三视图:了解物体的主视图、俯视图和侧视图的关系,学会观察和绘制物体的三视图。

三、概率与统计1. 事件与概率:学习概率的基本概念,理解事件发生的可能性与概率的关系。

2. 抽样调查:了解抽样调查的方法及应用范围,学会通过样本推断总体的特征。

3. 统计图表:掌握各种统计图表的绘制方法,包括直方图、饼图、折线图等。

四、函数1. 函数的概念:认识函数的定义及符号表示,理解自变量和因变量之间的关系。

2. 一次函数:学习一次函数的表示形式及性质,掌握一次函数图像的特点。

3. 二次函数:了解二次函数的一般式及标准式,学会通过变换等方法研究二次函数。

通过本文对八年级上册数学知识点的全面汇总,相信同学们能够更好地理解和掌握本学期的数学内容。

希望大家在学习中勤加练习,不断提升自己的数学能力,取得优异的成绩!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章 分式
一、分式的概念及基本性质
1.分式的定义:
类似地,一个整式 f 除以一个非零整式g (g 中含有字母),所得的商记作 ,把代数式 叫作分式,其中f 是分式的分子,g 是分式的分母,g ≠0.
2.分式有意义的条件: g ≠0
分式无意义的条件: g = 0
分式值为 0 的条件: f =0且 g ≠0
3.分式的基本性质
分式的分子与分母都乘同一个非零整式,所得分式与原分式相等.
即对于分式 ,有 = ﹒ ﹒ (h ≠0)
分式的符号法则: = = =- 二、分式的运算
1.分式的乘除法法则
分式的乘法 分式的除法 分式的乘方
· = ÷ =
· ( )n = 2.分式的加减 (1)同分母分式相加减 =
(2)异分母分式加减时需通分化为同分母分式加减.这个相同的
分母叫公分母.
(确定公分母的方法:一般取各分母系数的最小公倍数与各分母各个因式的最高次幂的积为公分母)
三、整数指数幂
1.同底数幂除法:
=a m-n (a ≠0,m ,n 为正整数且m>n)
2.0次幂、负整数指数幂:a 0=1(a ≠0) a -n = n =
3. 用科学记数法表示绝对值小于1的数: 四、分式方程及其应用
1.解分式方程的思路:
运用转化思想把分式方程去分母转化成整式方程求解.
2.解分式方程的一般步骤:
(1)化:方程的两边都乘以最简公分母,约去分母,化成整式
方程;
(2)解:解这个整式方程;
(3)验:把整式方程的解代入最简公分母,如果最简公分母的
10n -=
值不为0,则整式方程的解是原分式方程的解;否则,
这个解不是原分式方程的解,而是其增根,舍去;
(4)写根:写出原方程的根.
3.列分式方程解应用题的一般步骤:
(1)审:审清题意,弄清楚已知量和未知量的关系;
(2)找:找出题目中的等量关系;
(3)设:根据题意设出未知数;
(4)列:列出分式方程;
(5)解:解这个分式方程;
(6)验:检验,既要检验所求的解是否为所列分式方程
的解,又要检验所求得的解是否符合实际意义;
(7)答:写出答案.
考点一分式的值为0,有、无意义
例1如果分式的值为0,那么x的值为 1 .
【解析】根据分式值为0的条件:分子为0而分母不为0,列出关于x的方程,求出x的值,并检验当x的取值时分式的分母的对应值是否为零.由题意可得:x2-1=0, 解得x=±1.当x=-1时,x+1=0;当x=1时,x+1 ≠0.
【答案】1
方法总结
分式有意义的条件是分母不为0;分式无意义的条件是分母的值为0;分式的值为0的条件是:分子为0而分母不为0
针对训练
1.若分式无意义,则a的值为-3 .
2.如果分式的值为零,则a的值为 4 .
考点二分式的有关计算
例2 已知分式x=2,y= 1,求(+)÷值
【解析】本题中给出字母的具体取值,因此要先化简分式再代入求值.
解:原式=() =
把x= 2 ,y=1代入得原式==
方法总结
对于一个分式,如果给出其中字母的取值,我们可以先将分式进行化简,再把字母取值代入,即可求出分式的值.但对于某些分式的求值问题,却没有直接给出字母的取值,而只是给出字母满足的条件,这样的问题较复杂,需要根据具体情况选择适当的方法.
针对训练
3.已知x2-5x+1=0,求出的值.
解:因为x2-5x+1=0,得x-5+=0,即x+=5
又因为=()2-2=[(x+)2-2]2-2=(25-2)2-2=527
考点三分式方程的解法
例3 解下列分式方程:
(1)+=0 (2)=2-
【解析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可确定出分式方程的解.
解:(1)去分母得x+1+x﹣1=0,解得x=0,
经检验x=0是分式方程的解;
(2)去分母得x﹣4=2x+2﹣3,解得x=﹣3,
经检验x=﹣3是分式方程的解.
方法总结
解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
针对训练
4.解方程:=
解:最简公分母为(x+2)(x﹣2),
去分母得(x﹣2)2﹣(x+2)(x﹣2)=16,
整理得﹣4x+8=16,解得x=﹣2,
经检验x=﹣2是增根,故原分式方程无解.
考点四分式方程的增根
例4 若分式方程+=0有增根x=2,求a的值.
【解析】增根是分式方程化成整式方程的根,是使最简公分母为0的未知数的值.分式方程去分母得a(x+2)+1+2(x+2)(x-2)=0,若原分式方程有增根x=2,即可求出a.
解:原分式方程去分母,得a(x+2)+1+2(x+2)(x-2)=0,
把x=2代入所得方程,得4a+1=0, a=,
∴当a=时,x=2.
方法总结
分式方程的增根必须满足两个条件:第一能使原分式方程的最简公分母的值为0;第二是原分式方程去掉分母后得到的整式方程的解.
5.关于x的方程=有增根,求m的值.
解:若分式方程有增根,则增根必须使2x-6=0,
所以增根为x=3.原方程可化为2(x-1)=m2,
把x=3代入得m=±2.
考点五分式方程的实际应用
例5某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次
每支的进价是第一次进价的倍,购进数量比第一次少了30支.求第一次每支铅笔的进价是
多少元?
解:设第一次每支铅笔进价为x元,根据题意列方程,得
=30 解得x=4 经检验,故x=4原分式方程的解
答:第一次每支铅笔的进价为4元
在实际问题中,列分式方程的方法与列一元一次方程解应用题的方法相同,不同
之处在于列方式方程解应用题时,既要检验是不是所列分式方程的解,又要检验是否符合实际的意义.
6.某市在道路改造过程中,需要甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.问甲、乙两个工程队每天各能铺设多少米?
解:设乙工程队每天能铺设x米;则甲工程队每天能铺设(x+20)米,
依题意,得
解得x=50,
经检验,x=50是原方程的解,且符合题意.
答:甲工程队每天能铺设70米,乙工程队每天能铺设50米.
第2章三角形
一、三角形
1. 三角形的三边关系
三角形的任意两边之和大于第三边
2. 三角形的分类
3. 三角形的内角和与外角
(1)三角形的内角和等于180°
(2)三角形的一个外角等于与它不相邻的两个内角的和,
并且大于和它不相邻的任何一个内角.。

相关文档
最新文档