Matlab常用白平衡算法
面阵ccd颜色识别与变换matlab代码
一、引言面阵CCD(Charge-Coupled Device)是一种常用的图形传感器,可用于获取图像信息。
在计算机视觉领域,图像的颜色识别与变换是一项重要的任务,而MATLAB作为一种强大的技术计算软件,提供了丰富的工具和函数,可以帮助我们实现对面阵CCD图像的颜色识别与变换。
本文将介绍如何利用MATLAB实现对面阵CCD图像的颜色识别与变换,并给出相应的代码和示例。
二、面阵CCD颜色识别1. 获取图像在进行面阵CCD颜色识别之前,首先需要获取一张面阵CCD图像。
可以通过MATLAB的图像处理工具箱中的函数来读取图像,例如imread函数。
2. 颜色空间转换面阵CCD图像通常以RGB颜色空间表示,而在进行颜色识别时,通常会将图像转换到其他颜色空间,比如HSV或Lab颜色空间。
可以利用MATLAB提供的rgb2hsv和rgb2lab函数来实现颜色空间的转换。
3. 颜色分割一旦图像转换到目标颜色空间,就可以进行颜色分割操作,将目标颜色区域提取出来。
MATLAB提供了一系列的图像分割函数,比如imfindcircles和regionprops,可以根据特定的颜色特征来分割图像。
三、面阵CCD颜色变换1. 色彩空间转换对于面阵CCD图像的颜色变换,我们可以利用MATLAB提供的颜色空间转换函数,比如rgb2gray和rgb2hsv,将图像转换到目标色彩空间。
2. 色彩增强一旦图像转换到目标色彩空间,就可以对图像进行色彩增强操作。
MATLAB中的imadjust函数可以帮助我们对图像的色彩进行调整,以实现颜色的变换和增强。
3. 色彩映射我们还可以利用MATLAB提供的颜色映射函数,比如ind2rgb和imfuse,将图像的颜色映射到其他色彩空间或者进行多通道的颜色融合。
四、MATLAB代码示例以下是一个简单的MATLAB代码示例,用于实现面阵CCD图像的颜色识别与变换:```matlab读取图像img = imread('ccdim.png');颜色空间转换img_hsv = rgb2hsv(img);颜色分割mask = img_hsv(:,:,1) > 0.5 img_hsv(:,:,2) > 0.3;显示结果subplot(1,2,1), imshow(img), title('原始图像');subplot(1,2,2), imshow(mask), title('颜色分割结果');```五、结论本文介绍了如何利用MATLAB实现对面阵CCD图像的颜色识别与变换,并给出了相应的代码和示例。
matlab中 gamma变换
matlab中 gamma变换(原创实用版)目录1.MATLAB 中 Gamma 变换的概述2.Gamma 变换的公式表示3.MATLAB 中实现 Gamma 变换的方法4.Gamma 变换在图像处理中的应用5.总结正文【1.MATLAB 中 Gamma 变换的概述】Gamma 变换是一种常用于图像处理的非线性变换,它可以改变图像的亮度和对比度,使图像更易于观察或者满足特定的应用需求。
在 MATLAB 中,我们可以使用内置函数实现 Gamma 变换。
【2.Gamma 变换的公式表示】Gamma 变换的数学公式表示为:out = in * (gamma * exp((-gamma * (in - 1)) / (gamma - 1)) 其中,in 表示输入图像,out 表示输出图像,gamma 表示变换的参数,取值范围通常在 0 到 1 之间。
【3.MATLAB 中实现 Gamma 变换的方法】在 MATLAB 中,我们可以使用以下步骤实现 Gamma 变换:1.创建一个输入图像(可以是灰度图像或者彩色图像);2.使用`im2double`函数将图像转换为双精度浮点数;3.使用`exp`函数计算指数部分;4.使用` gammainv`函数计算 Gamma 变换后的值;5.使用`im2double`函数将结果转换回图像格式;6.显示或者保存输出图像。
【4.Gamma 变换在图像处理中的应用】Gamma 变换在图像处理中有广泛的应用,例如:1.增强图像对比度:通过增加 Gamma 值,可以使图像的亮度和对比度更高,便于观察;2.提高图像可视化效果:通过减小 Gamma 值,可以使图像的亮度和对比度更低,提高图像的美观性;3.图像特征提取:通过对图像进行 Gamma 变换,可以提取出图像的特征,用于图像分类、识别等任务。
【5.总结】Gamma 变换是图像处理中常用的一种非线性变换,可以通过改变图像的亮度和对比度,提高图像的可视化效果或者提取图像特征。
Matlab常用白平衡算法
灰色世界法(grey world method)要计算未知光源的特性必须从图片中提取相关的统计特性。
当我们能够仅使用一个统计特性就获得未知光源特性时,算法就变得非常简单了。
在这种情况下,未知光源必须在整幅图片上都是统一的。
均值于是就成为了此类方法之下最好的统计指标。
而灰色世界法正是利用了均值作为估算未知光源的关键统计量。
从物理意义上说,灰色世界法假设自然界景物对于光线的平均反射的均值在总体上是个定值,这个定值近似地为“灰色”。
在给定图片的白平衡算法中,灰色世界假设图片中的反射面足够丰富,以至于可以作为自然界景物的一个缩影。
若这幅图片是在经典光源下拍摄的,其均值就应该等于灰色。
若这幅图是在非经典光源下拍摄的,那么均值就会大于或者小于灰色值。
而该均值对于灰色的偏离程度则反映了未知光源相对于已知光源的特性。
虽然这个方法比较简单,但是仍然可以从一些方面进行调整。
一个方面就是对于灰色的定义形式的选择。
包括对于光谱的定义、对于光谱成分的定义和在经典光源之下的RGB 的响应。
另一个更加重要的调整方面就是对于灰色的选择。
不管如何定义灰色,最佳的灰色之选必然是自然界实事上出现的灰色。
但是这个值是无法获得的(除非是合成数据),所以对于灰色的选择是不同的灰色世界算法的一个重要的区别点。
一个方法是假设这个灰色就是实事上的灰色。
也就是说反射光谱是均衡的。
给定光源之下的RGB 响应是纯白色对此光源的响应值的一部分。
比方说,可以使用50%作为反射率(虽然这个灰色值对于人眼视觉习惯而言可能过于明亮)。
另一种方法,就是根据大量的数据提炼出一个均值,并把它定义为灰色。
这种方法提炼的灰色值可能因为数据库使用的不同而有所不同。
最终提炼的灰色也能仅适用于原始的数据库,而对于数据库未包括的图片的适用度就会比较差一些。
确定下来的灰色表达形式可以用Grey i c来表示。
下标i 表示信道,上标c 为canonical 的首字母,表示经典光源。
白平衡 色坐标
白平衡色坐标白平衡是指调整数码相机或摄像机的色彩表现,以使拍摄的图像在相机显示器或是电脑上的显示器上呈现真实的颜色。
当我们使用数码相机或摄像机进行拍摄时,由于不同的光源或环境条件下,图像的颜色会出现偏差。
白平衡的作用就是校正这种颜色偏差,使所拍摄的图像色彩更为真实、自然。
在摄影和摄像中,我们常常使用"白色"进行校正,因为白色在光线下是不带有色彩的。
然而,不同的光源在发出的光线中所含的颜色成分是不同的,这就导致了图像出现色彩偏差。
白平衡的目的就是通过调整相机的参数,使得拍摄出来的白色真实呈现。
白平衡有几种常见的调整方式,分别是自动白平衡,预设白平衡和手动白平衡。
自动白平衡是指相机根据场景中的色彩情况自动调整白平衡参数。
这种方式适用于大多数情况下,能够在相对短的时间内自动完成对光源的识别和调整。
预设白平衡是指相机内置了一系列场景模式,用户可以根据实际拍摄情况选择相应的模式,相机会根据预设的场景参数进行白平衡的调整。
常见的预设模式有晴天、阴天、白炽灯、荧光灯等。
手动白平衡是指用户根据实际情况手动调整相机的白平衡参数。
这种方式适用于一些特殊场景下,如夜间拍摄、室内拍摄等。
用户需要根据实际的光源情况,调整相机的白平衡参数,以达到最佳的色彩效果。
在白平衡调整过程中,我们经常听到的是色温和色坐标的概念。
色温是指光源的发光色彩的冷暖程度,一般用单位"开尔文"(K)来表示。
常见的光源如自然阳光的色温在5500K左右,白炽灯的色温在2700K左右。
通过调整相机的白平衡参数,我们可以将色温设置得更加接近实际光源的色温,从而使拍摄出来的图像色彩更为真实。
而色坐标则是用来描述光源发出的光线在颜色空间中的位置。
在拍摄过程中,相机根据所选的白平衡参数,将光线的色坐标调整到合适的位置,以使拍摄出来的图像色彩更加真实自然。
色坐标用于描述光线的颜色,通常使用CIE(国际照明委员会)的标准颜色空间。
白平衡算法总结
Cb(i, j) − Mb ) N Cr(i, j) − Mr ) N
Dr =
i ,j (
为了提高算法的稳健性,将图片分为几个区域并且计算每个区域 的 Mb、Mr、Db、Dr,如果一个区域的 Db,Dr 太小,那么这个区域 就没有足够的色彩变化,就可以丢弃掉了。这样可以避免大面积的统 一色调对结果的影响。
8
%计算 Cb、Cr 的均值 Mb、Mr% Mb=sum(sum(Cb)); Mr=sum(sum(Cr)); Mb=Mb/(x*y); Mr=Mr/(x*y); %计算 Cb、Cr 的均方差% Db=sum(sum(Cb-Mb))/(x*y); Dr=sum(sum(Cr-Mr))/(x*y); %根据阀值的要求提取出 near-white 区域的像素点% cnt=1; for i=1:x for j=1:y b1=Cb(i,j)-(Mb+Db*sign(Mb)); b2=Cr(i,j)-(1.5*Mr+Dr*sign(Mr)); if (b1<abs(1.5*Db) & b2<abs(1.5*Dr)) Ciny(cnt)=Lu(i,j); tst(i,j)=Lu(i,j); cnt=cnt+1; end end end cnt=cnt-1;
9
iy=sort(Ciny,'descend');%将提取出的像素点从亮度值大的点到小 的点依次排列% nn=round(cnt/10); Ciny2(1:nn)=iy(1:nn);%提取出 near-white 区域中 10%的亮度值较 大的像素点做参考白点% %提取出参考白点的 RGB 三信道的值% mn=min(Ciny2); c=0; for i=1:x for j=1:y if tst(i,j)<mn tst(i,j)=0; else tst(i,j)=1; c=c+1; end end end R=im(:,:,1); G=im(:,:,2); B=im(:,:,3); R=double(R).*tst;
白平衡算法——gamma算子
传统CRT:
二、基于伽马变换的图像增强
原理步骤:
归一化
补偿
反归一化
二、伽马变换原理
归一化: y cr , r [0,1]
将像素值转换为 0 ~ 1 之间的实数。 算法如下 :r= ( i + 0. 5)/256 这里包含 1 个除 法和 1 个加法操作。对于像素 A 而言 , 其对应的归一化值为 0. 783203 。
LUT[i] = intTemp; }
二、程序的实现
//单通道 if (resultImage->nChannels == 1) {
for (int i = 0; i < resultImage->height; i++) {
for (int j = 0; j < resultImage->width; j++) {
假设像素值 i=200
1 1 0.4545
gamma 2.2 0.783203 0.894872
二、伽马变换原理
反归一化:
将经过预补偿的实数值反变换为 0 ~ 255 之间的整数值。具体算法为 : f*256 - 0.
5 此步骤包含一个乘法和一个减法运算。续前 例 , 将 A 的预补偿结果 0. 894872
float f = (i + 0.5f) / 255; f = (float)(pow(f, kFactor)); int intTemp = f*255.0f - 0.5f; if(intTemp<0) {
intTemp=0; } else if(intTemp>255) {
intTemp=255; }
第9章 焊缝边缘检测算法对比分析与MATLAB实现
2
第九章
MATLAB优化算法案例分析与应用
•9.3.4 形态学处理
图9- 4 形态学处理流程
第九章
edge magnitude edge magnitude extraction
MATLAB优化算法案例分析与应用
sobel Edge Detection
图9- 5 Sobel边缘检测
edge magnitude edge magnitude extraction Prewitt Edge Detection
第九章
MATLAB优化算法案例分析与应用
•9.1 转向架构架焊缝边缘检测研究现状
目前很多机械关键部件主要采用焊接加工制造,难免由于人为误差,导 致焊缝质量不合理,造成构架结构变形,性能下降,严重影响列车运行安 全性。随着计算机技术和电子技术的发展,在大规模生产中,广泛应用焊 接机器人。焊接缺陷识别是焊接生产自动化和提高焊接质量的关键。焊接 过程中,所摄焊缝图像往往存在很多噪声,图像预处理一般包括图像平滑 滤波和图像矫正等。边缘检测是图像测量、检测和位置阶跃变化的集合。 通常边缘检测算法有梯度检测,统计性方法,数学形态学,小波多尺度检 测、模糊算法、基于边缘检测方法的积分变换等等。现行的焊缝质量检测 手段有,对工程常见焊接缺陷(烧穿、夹杂、气孔等)基于X射线焊缝图 像缺陷自动提取与识别技术;采用超声相控阵检测图像特征与识别,统计 焊缝缺陷的特征规律,总结不同的典型缺陷特征;采用 Canny边缘检测算 法对焊缝边缘提取,通过直方图对比分析,判断焊缝是否合格。采用遗传 算法对焊缝图像边缘进行检测并提取焊缝边缘。广大学者多集中在构架的 强度分析和焊接温度场模拟以及焊缝内部检测上,对于转向架构架焊缝表 面质量检测,很少有学者进行图像检测和识别研究。
自动白平衡(AWB)算法
自动白平衡(AWB)算法色温曲线本文大体讲解了白平衡的算法流程,适用于想了解和学习白平衡原理的筒子们.一般情况下要实现AWB算法需要专业的图像和算法基础,本文力图通过多图的方式,深入浅出,降低初学者理解上的门槛,让大家都理解到白平衡算法流程.看到这里还在继续往下瞄的同学,一定知道了色温的概念,并且知道sensor原始图像中的白色如果不经AWB处理,在高色温(如阴天)下偏蓝,低色温下偏黄,如宾馆里的床头灯(WHY!OTZ) (如下图).下面这个T恤的图片非常经典,怎么个经典后续再说,不过大体可以看出有偏黄和偏蓝的情况.虽然如此,却已经是AWB矫正以后的效果.所以,为了眼前的女神白富美在镜头里不变成阿凡达和黄脸婆,这时就需要白平衡来工作了.流程原理很简单:1,在各个色温下(2500~7500)拍几张白纸照片,假设拍6张(2500,3500…7500),可以称作色温照.2,把色温照进行矫正,具体是对R/G/B通道进行轿正,让偏色的白纸照变成白色,并记录各个通道的矫正参数.实际上只矫正R和B通道就可以,这样就得到了6组矫正参数(Rgain,Bgain).3,上面是做前期工作,爱思考的小明发现,只要知道当前场景是什么色温,再轿正一下就可以了.事实上也就是如此.所以,AWB算法的核心就是判断图像的色温,是在白天,晚上,室内,室外,是烈日还是夕阳,还是在阳光下的沙滩上.或者是在卧室里”暖味”的床头灯下.之前拍了6张色温照以及6组矫正参数.可是6够么,当然不够, 插值一下可以得到无数个值,我们把点连成线, 得到了一个神奇的曲线------色温曲线.大概是下面这个样子.上面提到了三个值(RG,BG,色温),这应该是个三维的.没关系,我们再来一条RG跟色温的曲线,这样只要知道色温,就知道RG,知道RG,就知道BG,知道RG,BG就能轿正了,yes!至此,我们的前期工作已经全部做完了, 并得到了AWB的色温曲线,下一步只要计算得到当前色温,顺藤摸瓜就能得到当前的矫正参数(Rgain,Bgain),那白平衡的工作就作完了.(放心,当然没这么简单)第一部分先到这里,下一部分将讲解AWB算法的核心------计算图像色温.涉及到的知识点大致有图像分块, 判断白区, 根据色温曲线划分不同光源, 对不同光源加权平均得到实际色温.色温计算首先简单说一下流程:1, 取一帧图像数据,并分成MxN块,假设是25x25,并统计每一块的基本信息(,白色像素的数量及R/G/B通道的分量的均值).2, 根据第1步中的统计值, 找出图像中所有的白色块,并根据色温曲线判断色温.3, 至此,我们得出来了图像中所有的可能色温,如果是单一光源的话,可以取色温最多的,当作当前色温.比如25x25=625 个块中,一共找出了100个有效白色块, 里面又有80个白色块代表了色温4500左右, 那当前色温基本就是4500.根据4500色温得出的Rgain,Bgain来调整当前图像,就不会差(很多!).下面我们再详细讲解一下,每一步中需要做的工作:第1步, 计算每一块的基本信息.关于白色像素统计,大家知道sensor原始图像是偏色的,怎么统计块中的白色点呢,那只有设置一个颜色范围,只要在范围中,就可以认为是白色像素,范围见下图:统计白色像素个数的用处是,1,如果块中的白色像素太少,可以抛弃掉. 2,如果白色像素太多,多到每一个像素点都是,那也要抛弃掉,因为很可能在该区域过曝了接着把统计到的白色像素点R/G/B取均值, 并得到该block 的R/G, B/G值至此,我们得到了每一块的白点数目及R/G,B/G的值. (请自动对应第1部分中色温曲线).第二步计算当前色温这个比较复杂, 大自然绚丽多彩,景色万千. 上一步中统计的”白色点”难免会有失误的地方,比较常见的如黄色皮肤容易被误判为低色温下的白点,淡蓝色的窗帘,容易被误判为高色温下的白点,一张图中既有白色,也有黄色,也有蓝色的时候,是不是感觉情况有点复杂,其它的大家可继续脑补.这时我们需要一定的策略来正确的判断出到哪个才是真的白.通常我们会把取到的白色块,计算一下到曲线的距离,再设置相应的权重.话不多说,上个图大家就都明白了.假设有上面这样一幅图,该图是在没有开AWB的前提下截取的,可以看到左边白色地方略有偏绿,当前色温是室内白炽灯,大概4000~5000k左右.(请忽略颜色不正的问题,我们在讨论白平衡)下面我们就根据之前的统计信息和测量好的色温曲线进行白平衡矫正.首先要找出白区,如下图:上面这个图中的数字标示出了检测到的白色区域,数字相同的表示一个白区,根据统计信息(白点数,rg/bg值)来区分的.可以看到有误判的地方,比如色卡左上第二块的肤色块.还有最右边从上面数第二块也是容易被判断成低色温白块的情况.针对这种误判的情况,对不同块根据统计信息进行权重设置,以求让误判的区域对最终结果影响小一些.上面这个图标注了权重,基本是根据统计信息中白点数来确定的.可以看到图中一片白色被标识了高权重.其它情况被标识了低权重. 权重高低一是看块中白色点数量,二是看rg/bg到色温曲线的距离.通过上面两个图,大家就可以明显的找到白色区,并根据曲线来矫正,即使不通过曲线矫正,把白色区的r/g,b/g值向1趋近,让r=g=b,也会得到非常好的白平衡效果.如下图所示:至此,白平衡的基本流程就讲完了,有图有真相,大家一定看着也方便.总结一下:第一次做白平衡,感觉理论很简单,不用什么基础也能看懂.实际算法调试时,可谓差之毫厘,失之千里.总是感觉不由自主就走上歪路.中间参考了大量资料,比如网上有许多基于色温/灰度世界/白点检测的白平衡算法,实际个人感觉应该把它们都结合起来,让算法强壮,健康才是我们想要的.还记得第一章中开始的那两张白色T恤的图么,算了,我再贴一下:这张图可以理解为在多光源下的白平衡调整.阴影色温比阳光下色温要高一些,如果阳光下是5000k,阴影可能是7000k.有光就有影,它们经常出现在一个镜头里,对着其中一个色温调,另一边就会偏色.为了整体效果好,要把翘翘板平衡起来,可以加一些策略在里面.。
matlab实现自适应阈值的canny算法
一、背景介绍随着数字图像处理技术的不断发展,图像边缘检测一直是计算机视觉和图像处理领域的关键问题之一。
Canny算法作为一种经典的边缘检测算法,在实际应用中具有较高的准确性和鲁棒性,因此被广泛应用于各种图像处理任务中。
Canny算法的核心思想是利用图像的梯度信息来检测图像中的边缘,同时通过非极大值抑制和双阈值检测来提取最终的边缘信息。
二、Canny算法原理1. 高斯模糊:为了减少图像中的噪声对边缘检测的影响,Canny算法首先对图像进行高斯模糊处理,通过平滑图像来减少噪声的影响。
2. 梯度计算:接下来,Canny算法利用Sobel算子计算图像的梯度幅值和方向,得到图像的梯度信息。
3. 非极大值抑制:Canny算法通过比较图像中每个像素点的梯度方向,来抑制非边缘像素,从而得到更细化的边缘信息。
4. 双阈值检测:Canny算法利用双阈值检测来进一步筛选边缘像素,从而得到最终的边缘信息。
三、Matlab实现Canny算法1. 读取图像:使用Matlab的imread函数读取待处理的图像,并将其转换为灰度图像。
2. 高斯模糊:利用Matlab中的imgaussfilt函数对灰度图像进行高斯模糊处理,减少图像中的噪声。
3. 计算梯度:使用Matlab中的imgradient函数计算图像的梯度幅值和方向。
4. 非极大值抑制:编写代码实现对图像的非极大值抑制处理,保留图像中的边缘像素。
5. 双阈值检测:通过设定合适的高低阈值,使用Matlab中的imbinarize函数对图像进行双阈值检测,得到最终的边缘信息。
6. 显示结果:使用Matlab中的imshow函数将原始图像和处理后的边缘图像进行显示,观察算法的效果。
四、自适应阈值优化1. 传统Canny算法中,阈值的设定是一个固定的数值,对于不同图像可能会产生较大的误差。
2. 为了进一步提高Canny算法的准确性和鲁棒性,在阈值的设定上可以引入自适应阈值技术。
数字图像处理12-白平衡算法
其中 max 代表最大值,w 代表设定的 white 值。 这种算法实际上是一种类似反求光源的算法。Rgb 值最高的一点如果确实是对应白色的
话,那么其在原本图像中呈现的颜色,就能很好的反应光源的颜色。然后把这个点通过增 益调整为白色,其实就相当于把环境光由非纯白色调整为纯白色,这样就达到了白平衡的 效果。 但是同前面一种算法一样,这种算法也有一定的局限性,需要优化。首先就是一个点的颜 色很可能具有偶然性,比如全图中最亮的像素本身就是黄色的,那么白平衡的结果就是把 所有黄色都变淡了。因此使用这种算法时多是取最亮的几个点的平均值作为最大值,或者 与其他算法配合起来使用。 然后就要提到 GW 和 PR 正交组合算法,这个算法的具体运算过程如下:
可以看到这里也是如上用到了平均值与最大值,但是和之前不同的是,这里有了一次分量和二 次分量,而且也有了 uv 两个参数。其基本的原理就是先确定一个二次的白平衡公式:
随后通过两个确定的目标模型求出 uv 值,就可以进行白平衡的运算了。第一个模型是平均值 的模型,也就是把 r 值向 rgb 的平均值的方向平衡。这里给了两个参数 R(ave)和 K (ave),分别是 r 分量的平均值和 rgb 三个分量的平均值的平均值。通过这个式子就可以得 到第一个方程,这里就是按照 gw 算法的思想写出的式子。同理下一个式子就是按照 pr 算法的 思想写出的式子。这两个式子联立就可以得到 uv 的值,进而就可以得到白平衡的运算结果。 程序也是实现了这一功能,进而得到了白平衡的运算结果。首先读取图片,获得图片的长宽 值。随后初始化一些值,比如输出图片的矩阵,记录最大值,平均值的变量等。随后利用一个 循环,遍历图像矩阵中每一个像素值,分别求出 rgb 三个通道平均值与最大值。随后求出三个 通道平均值的平均值与最大值的平均值记为 ak 与 mk,参与后续的运算。
matlab颜色设置的代码
matlab颜色设置的代码Matlab是一款广泛使用的数学软件,它提供了丰富的可视化功能,让用户可以通过简单的命令和脚本来实现各种图形展示。
其中,颜色设置是一个非常重要的功能,不仅可以美化图形,还可以用来增强数据的可读性和理解性。
下面,我们将详细讲解如何在Matlab中进行颜色设置的代码。
步骤一:选择颜色在Matlab中,可以通过RGB、HSV、CMYK等多种方式来选择颜色。
RGB颜色是由红、绿、蓝三种基本颜色混合而成的,其中红色的RGB值为[1 0 0],绿色的RGB值为[0 1 0],蓝色的RGB值为[0 0 1]。
HSV颜色模型则由色相、饱和度和亮度三个参数共同控制颜色,即H、S和V值,其中H表示色相,取值范围为0到360,S表示饱和度,取值范围为0到1,V表示亮度,也取值范围为0到1。
CMYK颜色模型则由青、洋红、黄、黑四种颜色混合而成,分别对应的CMYK值为[1 0 0 0]、[0 1 0 0]、[0 0 1 0] 和[0 0 0 1]。
根据具体需求,选择合适的颜色模型来定义颜色。
步骤二:代码设置Matlab中可以通过以下代码来设置颜色:%设置直线颜色plot(x,y,'color','red');%通过RGB颜色值来设置颜色plot(x,y,'color',[0.8 0.1 0.1]);%通过HSV颜色值来设置颜色plot(x,y,'color',hsv2rgb([0.25 1 1]));%通过CMYK颜色值来设置颜色plot(x,y,'color',cmyk2rgb([0 0.5 0.5 0]));其中,'color'参数指定颜色,可以输入字符串来表示颜色名,也可以输入RGB、HSV或CMYK颜色值。
steps三:调整颜色属性在设置颜色后,还可以对颜色属性进行调整,包括修改线条颜色、填充颜色、字体颜色等。
matlab中 gamma变换
文章标题:深入探讨 Matlab 中的 Gamma 变换一、引言在数字图像处理中,Gamma 变换是一种常见的像素灰度调整方法。
它通过非线性变换来调整图像的对比度和亮度,对于图像增强和色彩调整具有重要作用。
在 Matlab 中,Gamma 变换是一种简单但有效的图像处理技术,本文将深入探讨 Gamma 变换的原理、应用和实现方法。
二、 Gamma 变换的原理1. 什么是 Gamma 变换Gamma 变换是一种用来调整图像亮度和对比度的非线性变换方法。
其数学表达式为:\[I_{\text{out}} = I_{\text{in}}^\gamma\]其中,\(I_{\text{in}}\) 表示输入图像的像素值,\(\gamma\) 为Gamma 值,\(I_{\text{out}}\) 表示经过 Gamma 变换后的输出图像像素值。
2. Gamma 值的影响Gamma 值大于1 时,可以增强图像的对比度,使图像更加清晰饱满;Gamma 值小于 1 时,可以降低对比度,使图像更加柔和亮丽。
三、 Gamma 变换的应用1. 图像增强通过调整 Gamma 值,可以对图像进行局部增强或整体增强,使细节更加清晰或颜色更加鲜艳。
2. 色彩调整Gamma 变换也可以用于对图像的色彩进行调整,加深或减淡图像的色彩饱和度。
3. 视觉心理学Gamma 变换还与人类视觉特性有关,通过合适的 Gamma 值可以更好地符合人眼对亮度的感知。
四、 Matlab 中的 Gamma 变换实现在 Matlab 中,可以通过以下步骤来实现 Gamma 变换:1. 读入原始图像通过 imread 函数读入原始图像,得到图像矩阵。
2. Gamma 变换公式根据 Gamma 变换的公式,对图像矩阵进行非线性变换,得到输出图像矩阵。
3. 显示输出图像通过 imshow 函数显示经过 Gamma 变换后的输出图像。
五、个人观点和理解在实际图像处理中,Gamma 变换是一种简单而有效的增强图像对比度和亮度的方法。
matlab图像处理教程1
基本概念一点通从理论上讲,图像是一种二维的连续函数,然而在计算机上对图像进行数字处理的时候,首先必须对其在空间和亮度上进行数字化,这就是图像的采样和量化的过程。
空间坐标(x,y)的数字化称为图像采样,而幅值数字化称为灰度级量化。
对一幅图像采样时,若每行(横向)采样数为M,每列(纵向)采样数为N,则图像大小为M*N个像素,f(x,y)表示点(x,y) 处的灰度值,则F(x,y)构成一个M*N 实数矩阵****************************经验分享:“像素”的英文为“pixel”,它是“picture”和“element”的合成词,表示图像元素的意思。
我们可以对“像素”进行如下理解:像素是一个面积概念,是构成数字图像的最小单位。
****************************把采样后所得的各像素灰度值从模拟量到离散量的转换称为图像灰度的量化。
量化是对图像幅度坐标的离散化,它决定了图像的幅度分辨率。
量化的方法包括:分层量化、均匀量化和非均匀量化。
分层量化是把每一个离散样本的连续灰度值只分成有限多的层次;均匀量化是把原图像灰度层次从最暗至最亮均匀分为有限个层次,如果采用不均匀分层就称为非均匀量化。
当图像的采样点数一定时,采用不同量化级数的图像质量不一样。
量化级数越多,图像质量越好;量化级数越少,图像质量越差。
量化级数小的极端情况就是二值图像。
****************************经验分享:“灰度”可以认为是图像色彩亮度的深浅。
图像所能够展现的灰度级越多,也就意味着图像可以表现更强的色彩层次。
如果把黑——灰——白连续变化的灰度值量化为256个灰度级,灰度值的范围为0~255,表示亮度从深到浅,对应图像中的颜色为从黑到白。
****************************因此,对数字图像进行处理,也就是对特定的矩阵进行处理。
在C语言中,对M×N数字图像处理的核心代码如下:for (j=1;j<N+1;j++)for(i=1;i<M+1;i++){对I(i,j)的具体运算};在Matlab中,对M×N数字图像处理的核心代码如下:for i=1:Nfor j=1:M对I(i,j)的具体运算endend一幅数字图像可以用一个矩阵来表示,对数字图像进行处理,实质上就是对特定的图像矩阵进行变换的过程,因此,图像变换是数字图像处理技术的基础。
白平衡算法
灰色世界法(grey world method)要计算未知光源的特性必须从图片中提取相关的统计特性。
当我们能够仅使用一个统计特性就获得未知光源特性时,算法就变得非常简单了。
在这种情况下,未知光源必须在整幅图片上都是统一的。
均值于是就成为了此类方法之下最好的统计指标。
而灰色世界法正是利用了均值作为估算未知光源的关键统计量。
从物理意义上说,灰色世界法假设自然界景物对于光线的平均反射的均值在总体上是个定值,这个定值近似地为“灰色”。
在给定图片的白平衡算法中,灰色世界假设图片中的反射面足够丰富,以至于可以作为自然界景物的一个缩影。
若这幅图片是在经典光源下拍摄的,其均值就应该等于灰色。
若这幅图是在非经典光源下拍摄的,那么均值就会大于或者小于灰色值。
而该均值对于灰色的偏离程度则反映了未知光源相对于已知光源的特性。
虽然这个方法比较简单,但是仍然可以从一些方面进行调整。
一个方面就是对于灰色的定义形式的选择。
包括对于光谱的定义、对于光谱成分的定义和在经典光源之下的RGB 的响应。
另一个更加重要的调整方面就是对于灰色的选择。
不管如何定义灰色,最佳的灰色之选必然是自然界实事上出现的灰色。
但是这个值是无法获得的(除非是合成数据),所以对于灰色的选择是不同的灰色世界算法的一个重要的区别点。
一个方法是假设这个灰色就是实事上的灰色。
也就是说反射光谱是均衡的。
给定光源之下的RGB 响应是纯白色对此光源的响应值的一部分。
比方说,可以使用50%作为反射率(虽然这个灰色值对于人眼视觉习惯而言可能过于明亮)。
另一种方法,就是根据大量的数据提炼出一个均值,并把它定义为灰色。
这种方法提炼的灰色值可能因为数据库使用的不同而有所不同。
最终提炼的灰色也能仅适用于原始的数据库,而对于数据库未包括的图片的适用度就会比较差一些。
确定下来的灰色表达形式可以用来表示。
下标i 表示信道,上标c 为canonical 的首字母,表示经典光源。
在确定灰色的表达形式后只要用RGB 响应与经典光源下灰色的比值来归一化图片就可以了。
摄影白平衡知识:如何运用最新调整白平衡的AI算法和软件
摄影白平衡知识:如何运用最新调整白平衡的AI算法和软件摄影白平衡知识:如何运用最新调整白平衡的AI算法和软件白平衡是摄影中非常重要的一个参数,它直接影响照片的色彩还原效果,保证照片的色彩真实、自然。
在拍摄时,不同的光照条件下,照片的色温也会有所不同,如果不能正确地调整白平衡,就会出现色偏现象,照片的质量会受到影响。
因此,掌握如何调整白平衡是摄影爱好者必须掌握的技能。
最近几年来,随着技术的进步,AI算法的应用越来越广泛,也包括了调整白平衡。
AI算法在图像处理上表现出了非常出色的效果,可以快速、自动地调整照片的白平衡,让照片看起来更加自然、真实。
如何调整白平衡在理解如何利用AI算法调整白平衡之前,我们需要了解如何手动调整白平衡。
一般来说,我们可以通过几种方式来调整白平衡:使用白平衡卡,手动设置白平衡,使用RAW格式照片进行后期处理等。
1.使用白平衡卡白平衡卡是供摄影者使用的一种卡片,它能够反射出纯白色的光线,通过对白平衡卡进行测量,可以轻松地获得正确的白平衡值。
拍摄时,在同样的光照条件下,将白平衡卡放到照片中间拍摄一张照片,然后调整相机的白平衡选项至该照片上即可。
2.手动设置白平衡手动设置白平衡是一种非常灵活的方式,它可以通过色温、色调和亮度等参数进行调节。
手动调节白平衡需要在摄影者对光照环境有一定的了解,能够准确把握光线色温和环境色彩,调节出符合要求的白平衡效果。
3.使用RAW格式照片进行后期处理使用RAW格式拍摄照片,可以在后期处理时,进行更加精确的白平衡调节。
由于RAW格式保存的照片没有进行任何处理,可以对其进行更高精度的色彩还原处理,如果照片存在色偏,可以通过后期处理软件轻松地进行校正。
然而,以上这些方法都需要摄影者具备一定的技术技巧和经验,才能真正的做到调整白平衡的效果。
最新AI算法调整白平衡AI算法的发展让图像处理变得更加简单和高效,也包括白平衡的调整。
最新的AI算法可以通过对图像进行学习,准确地识别和调整图像中存在的色偏问题,达到自动快速地调整白平衡的效果。
利用 Matlab 和 Dcraw 处理数码相机 Raw 文件的完整流程 _ Capbone
Select a pageViewpointsLEGOTechInternetMobileArchivesMisc.AboutBlogrollRSSDonate!ViewpointsLEGOTechInternetMobileArchivesMisc.AboutBlogrollRSSDonate!利用 Matlab 和 Dcraw 处理数码相机 Raw 文件的完整流程这篇文章要说的当然不是如何用 PS、LightRoom 来处理 Raw 文件,而是一种更加彻底、数据化的办法 利用 Matlab 直接处理数码相机的 CFA(Color Filter Array) 数据。
接触过摄影的人都知道,对于数码相机来说 Raw Data 是原始的、未被处理的数据,相比 JPEG,Raw 文件记录了更多的场景信息,保留了更宽广的色域以及动态范围,也留下了更为自由的后期处理空间。
Raw Data 只是一种图像数据的封装形式而并不是一种文件格式,不同厂商的相机一般都拥有自己的 Raw Data 格式,比如常见的 *.CR2、*.NEF、*.ARW、*.ORF(Olympus)、*.RAF(Fuji)、*.DNG(Adobe、Leica)等。
对于大部分人来说,处理 Raw Data 的软件不外乎就那么几种,Camera Raw、LightRoom、Aperture、DxO 以及各厂商自带的处理软件。
这些软件虽然通过图形界面提供了简洁易懂的处理流程,但是遗憾的是它们能导出的都并非真正意义上的 “Raw Data”,即传感器直接记录的、与照度成线性关系的第一手数据。
对于摄影、媒体、艺术领域,这些软件已经足够强大,但是在图像处理、计算机视觉等研究领域,我们需要的是把照片中的信息转换为能够通过数字来定量表示的形式,或者通过一些公式、算法直接对图像(或图像的某一部分)进行处理,再或者对两张图片之间的差别进行量化表示,这时候 LightRoom 这些软件就显得有些无能为力了。
Camera-AWB算法分析(汇编)
自动白平衡(AWB)算法1,色温曲线白平衡算法---色温曲线本文大体讲解了白平衡的算法流程,适用于想了解和学习白平衡原理的筒子们.一般情况下要实现AWB算法需要专业的图像和算法基础,本文力图通过多图的方式,深入浅出,降低初学者理解上的门槛,让大家都理解到白平衡算法流程.看到这里还在继续往下瞄的同学,一定知道了色温的概念,并且知道sensor原始图像中的白色如果不经AWB处理,在高色温(如阴天)下偏蓝,低色温下偏黄,如宾馆里的床头灯(WHY!OTZ) (如下图).下面这个T恤的图片非常经典,怎么个经典后续再说,不过大体可以看出有偏黄和偏蓝的情况.虽然如此,却已经是AWB矫正以后的效果.所以,为了眼前的女神白富美在镜头里不变成阿凡达和黄脸婆,这时就需要白平衡来工作了.流程原理很简单:1,在各个色温下(2500~7500)拍几张白纸照片,假设拍6张(2500,3500…7500),可以称作色温照.2,把色温照进行矫正,具体是对R/G/B通道进行轿正,让偏色的白纸照变成白色,并记录各个通道的矫正参数.实际上只矫正R和B通道就可以,这样就得到了6组矫正参数(Rgain,Bgain). 3,上面是做前期工作,爱思考的小明发现,只要知道当前场景是什么色温,再轿正一下就可以了.事实上也就是如此.所以,AWB算法的核心就是判断图像的色温,是在白天,晚上,室内,室外,是烈日还是夕阳,还是在阳光下的沙滩上.或者是在卧室里”暖味”的床头灯下.之前拍了6张色温照以及6组矫正参数.可是6够么,当然不够, 插值一下可以得到无数个值,我们把点连成线, 得到了一个神奇的曲线------色温曲线.大概是下面这个样子.上面提到了三个值(RG,BG,色温),这应该是个三维的.没关系,我们再来一条RG跟色温的曲线,这样只要知道色温,就知道RG,知道RG,就知道BG,知道RG,BG就能轿正了,yes!至此,我们的前期工作已经全部做完了, 并得到了AWB的色温曲线,下一步只要计算得到当前色温,顺藤摸瓜就能得到当前的矫正参数(Rgain,Bgain),那白平衡的工作就作完了.(放心,当然没这么简单)第一部分先到这里,下一部分将讲解AWB算法的核心------计算图像色温.涉及到的知识点大致有图像分块, 判断白区, 根据色温曲线划分不同光源, 对不同光源加权平均得到实际色温.2. 色温计算本文主要讲解了白平衡算法中估算当前场景色温的流程.色温计算的原理并不复杂,但是要做好,还是要细心做好每一步工作,这需要大量的测试,并对算法不断完善.首先简单说一下流程:1, 取一帧图像数据,并分成MxN块,假设是25x25,并统计每一块的基本信息(,白色像素的数量及R/G/B通道的分量的均值).2, 根据第1步中的统计值, 找出图像中所有的白色块,并根据色温曲线判断色温. 3, 至此,我们得出来了图像中所有的可能色温,如果是单一光源的话,可以取色温最多的,当作当前色温.比如25x25=625 个块中,一共找出了100个有效白色块, 里面又有80个白色块代表了色温4500左右, 那当前色温基本就是4500.根据4500色温得出的Rgain,Bgain来调整当前图像,就不会差(很多!).下面我们再详细讲解一下,每一步中需要做的工作:第1步, 计算每一块的基本信息.关于白色像素统计,大家知道sensor原始图像是偏色的,怎么统计块中的白色点呢,那只有设置一个颜色范围,只要在范围中,就可以认为是白色像素,范围见下图:统计白色像素个数的用处是,1,如果块中的白色像素太少,可以抛弃掉. 2,如果白色像素太多,多到每一个像素点都是,那也要抛弃掉,因为很可能在该区域过曝了接着把统计到的白色像素点R/G/B取均值, 并得到该block 的R/G, B/G值至此,我们得到了每一块的白点数目及R/G,B/G的值. (请自动对应第1部分中色温曲线).第二步计算当前色温这个比较复杂, 大自然绚丽多彩,景色万千. 上一步中统计的”白色点”难免会有失误的地方,比较常见的如黄色皮肤容易被误判为低色温下的白点,淡蓝色的窗帘,容易被误判为高色温下的白点,一张图中既有白色,也有黄色,也有蓝色的时候,是不是感觉情况有点复杂,其它的大家可继续脑补.这时我们需要一定的策略来正确的判断出到哪个才是真的白.通常我们会把取到的白色块,计算一下到曲线的距离,再设置相应的权重.话不多说,上个图大家就都明白了.假设有上面这样一幅图,该图是在没有开AWB的前提下截取的,可以看到左边白色地方略有偏绿,当前色温是室内白炽灯,大概4000~5000k左右.(请忽略颜色不正的问题,我们在讨论白平衡)下面我们就根据之前的统计信息和测量好的色温曲线进行白平衡矫正.首先要找出白区,如下图:上面这个图中的数字标示出了检测到的白色区域,数字相同的表示一个白区,根据统计信息(白点数,rg/bg值)来区分的.可以看到有误判的地方,比如色卡左上第二块的肤色块.还有最右边从上面数第二块也是容易被判断成低色温白块的情况.针对这种误判的情况,对不同块根据统计信息进行权重设置,以求让误判的区域对最终结果影响小一些.上面这个图标注了权重,基本是根据统计信息中白点数来确定的.可以看到图中一片白色被标识了高权重.其它情况被标识了低权重. 权重高低一是看块中白色点数量,二是看rg/bg到色温曲线的距离.通过上面两个图,大家就可以明显的找到白色区,并根据曲线来矫正,即使不通过曲线矫正,把白色区的r/g,b/g值向1趋近,让r=g=b,也会得到非常好的白平衡效果.如下图所示:至此,白平衡的基本流程就讲完了,有图有真相,大家一定看着也方便.总结一下:第一次做白平衡,感觉理论很简单,不用什么基础也能看懂.实际算法调试时,可谓差之毫厘,失之千里.总是感觉不由自主就走上歪路.中间参考了大量资料,比如网上有许多基于色温/灰度世界/白点检测的白平衡算法,实际个人感觉应该把它们都结合起来,让算法强壮,健康才是我们想要的.还记得第一章中开始的那两张白色T恤的图么,算了,我再贴一下:这张图可以理解为在多光源下的白平衡调整.阴影色温比阳光下色温要高一些,如果阳光下是5000k,阴影可能是7000k.有光就有影,它们经常出现在一个镜头里,对着其中一个色温调,另一边就会偏色.为了整体效果好,要把翘翘板平衡起来,可以加一些策略在里面.下面给出一幅<怎样画马>,让大家体会一下流程.。
有关白平衡的理论知识
白平衡在一般的图像处理书籍都很少会提及,因为说到底白平衡只是一种对人眼视觉特性的模拟,说不上是对图像这个二维数据域的空间变换。
简言之,白平衡是传感器设备具备正确识别“白色”的能力。
我们先来看白平衡的“白”是什么。
不同的光源具有不同的光谱成分和分布,这在色度学上称之为色温(色温是颜色的定义,以K(凯氏)为单位;对黑体(黑铁棒)加热,3200K时黑体发出的颜色定为白色;5600K时定为蓝色等;在Microsoft Picture Managemnet中色温称为色值)。
物体本身反射入射光而显示出颜色,若光源色彩成分有变,势必会影响入射光的颜色,也直接或间接地改变了物体本来的颜色,形成色差。
如一个白色的物体,在低色温的光线照射下会偏红,而在高色温的光线照射下会偏蓝。
实际生活中,不论是晴天、阴天、室内白炽灯或日光灯下,人们所看到的白色物体总是是白色的,这就是视觉修正的结果。
人脑对物体的颜色有一定先验知识,可依据之侦测并且更正这种色差。
但对于固体图像传感器而言,没有办法直接修正这种色温的改变,必须依靠内建的“白平衡”功能作调整。
物体颜色的改变特别是在使用人造光源的场合容易发生,因为传感器还是默认做正常光照下的白平衡,而人工光源色温与之的不同会导致拍得的照片会有不同程度的色差。
如白炽灯照明下拍出的照片易偏黄;而在户外日光充足则拍摄出来景物也会偏蓝。
同理若选用不同色温条件拍摄同一景物,也会呈诸多色差。
白平衡之“平衡”就是要对不同色温所引起的的色差进行校正,从而使白色的物体呈现真正的白色。
数码相机中白平衡一般采用光学粗调和电路微调的方法进行。
由于CCD、CMOS 图像传感器具有一定的光谱特性,因此必须在镜头前加上匹配的光学滤色镜,将红外等光线滤除,然后进行软件或电路微调。
为了提高易用性,数码相机一般还支持自动白平衡。
对于CCM来说,添加镜头来做调节不现实,只有靠自动白平衡算法来保证拍摄照片不失真了。
因此,必须开发适合数码相机的自动白平衡算法,以保证拍摄照片不会失真。
高斯白噪声及Matlab常用实现方法
高斯白噪声及Matlab常用实现方法一、概念英文名称:white Gaussian noise; WGN定义:均匀分布于给定频带上的高斯噪声;所谓高斯白噪声中的高斯是指概率分布是正态函数,而白噪声是指它的二阶矩不相关,一阶矩为常数,是指先后信号在时间上的相关性。
这是考察一个信号的两个不同方面的问题。
高斯白噪声:如果一个噪声,它的幅度服从高斯分布,而它的功率谱密度又是均匀分布的,则称它为高斯白噪声。
热噪声和散粒噪声是高斯白噪声。
二、matlab举例Matlab有两个函数可以产生高斯白噪声,wgn( )和awgn( )。
1. WGN:产生高斯白噪声y = wgn(m,n,p)y = wgn(m,n,p) %产生一个m行n列的高斯白噪声的矩阵,p以dBW为单位指定输出噪声的强度。
y = wgn(m,n,p,imp)y = wgn(m,n,p,imp) %以欧姆(Ohm)为单位指定负载阻抗。
y = wgn(m,n,p,imp,state)y = wgn(m,n,p,imp,state) %重置RANDN的状态。
2. AWGN:在某一信号中加入高斯白噪声y = awgn(x,SNR)y = awgn(x,SNR) %在信号x中加入高斯白噪声。
信噪比SNR以dB为单位。
x的强度假定为0dBW。
如果x是复数,就加入复噪声。
clear,clc;N=0:1000;fs=1024;t=N./fs;y=3*sin(2*pi*t);x=wgn(1,1001,2);i=y+x;% i=awgn(y,2); subplot(3,1,1),plot(x); subplot(3,1,2),plot(y); subplot(3,1,3),plot(i);。