实际电路和电路模型
电路分析基础基本概念
电路分析基础基本概念电路分析基础基本概念1实际电路:实际电路是各个器件按照一定的方式相互连接而构成电流的通路。
以实现电能或电信号的产生、传输、转换、控制和处理等。
模型:是对实体的特征和变化规律的一种表示或者抽象。
理想电路元件:理想电路元件是用数学关系式严格定义的假想元件,每一种理想电路元件都可以表示其实际器件的其中主要的一种电磁性能,理想电路元件是电路模型的最小组成单元。
R、L、C是电路中的三类基本元件电路模型:电路模型是实际电路在一定条件下的科学抽象和足够精确的数学描述。
集总概念:当实际电路的尺寸远小于电路工作时电磁波的波长时,可以把元件的作用集总起来,这样的元件叫做集总元件,这样的电路参数叫做集总参数,由集总元件构成的电路称为集总电路。
分布概念:当实际电路的尺寸可以电路工作时电磁波的波长相比拟时,电路中同一瞬间相邻两点的电位和电流都不相同,这样的元件叫做分布元件,这样的电路参数叫做分布参数,由分布元件构成的电路叫做分布电路。
1集总电路的分类:(1)静态电路(2)动态电路二端元件:具有两个端子的元件叫做二端元件,又叫单口元件支路:电路的每一个二端元件称为一条支路,流经元件的电流叫做支路电流,元件的端电压叫做支路电压。
节点:电路中两条或两条以上的支路的公共连接点叫做节点。
回路:电路中由支路组成的任一闭合路径称为回路。
网孔:内部不含有支路的回路叫做网孔。
网络:一般把含有元件较多的电路称为网络。
有源网络:内部含有独立电源的网络无源网络:内部不含独立电源的网络平面网络:可以画在一个平面上而不出现任何支路交叉现象的网络。
非平面网络:不属于平面网络即为非平面网络。
KCL:对于任一集总电路的任一节点,在任一时刻,流进(或流出)改节点的支路电流的代数和为零。
或表示为流入任一节点的支路电流的等于流出任一节点的支路电流。
KVL:对于任一集总电路的任一回路,在任一时刻,沿着该回路的所有支路电压的代数和为零。
或表示为回路中各支路电压升的代数和等于各支路电压降的代数和。
电路分析基础第一章 电路模型和电路定律
+
–
+
–
+
实际方向
实际方向
+
U >0
U<0
上页
下页
电压参考方向的两种表示方式
(1) 用正负极性表示
+
(2) 用双下标表示
U
A
UAB
B
UAB =UA- UB= -UBA
上页 下页
3. 关联参考方向 元件或支路的u,i 采用相同的参考方向称之为关联 采用相同的参考方向称之为 参考方向,即电流从电压的“+”极流入,从“-” 极流出该元件。反之,称为非关联参考方向。 极流出该元件
P6吸 = U 6 I 3 = (−3) × (−1) = 3W
上页 下页
注
对一完整的电路,发出的功率=吸收的功率
3. 电能(W ,w)
在电压、电流一致参考方向下,在t0到t的时间内 该部分电路吸收的能量为
w(t0 , t ) = ∫ p (τ ) dτ = ∫ u (τ )i (τ ) dτ
t0 t0
电源 Sourse
灯 Lamp
RS US 电路模型
R
Circuit Models 干电池 Battery
上 页 下 页
电路理论中研究的是 理想电路元件构成的电路(模型)。
电路模型,不仅能够反映实际电路及 其器件的基本物理规律,而且能够对 其进行数学描述。这就是电路理论把 电路模型作为分析研究对象的实质所 在。
干电池 Battery 电路理论中,“电路”与“网络”这两个术语可通用。“网络” 的含义较为广泛,可引申至非电情况。
例:手电筒电路
开关 灯泡
10BASE-T wall plate
大学电路理论第1章
电路的基本概念和基本定律
本章学习中的基本问题
什么叫电路、电路元件? 电路模型的意义? 本章涉及到的基本定律是什么? 其内涵? 本章涉及到的基本元件有哪些?其基本性质?
1.1 实际电路与电路模型 1.2 电路的基本物理量
1.3 基尔霍夫定律
1.4 电路的基本元件及方程 1.5 应用
思考
? a.
+ 3 _ 设各元件为 基本单位。
1 1 1 a
i=? b
1 + 1 1 2 _
i=0
b. + 3 _
1 1 1 d
i3 i = ? 1
e + 1 1 2 _ f i4
i=0
3、基尔霍夫电压定律 (KVL)
在任一时刻,沿任一闭合路径( 按固定绕向 ), 各支路 电压的代数和为零。 即 u(t ) 0
推论: 电路中任意两点间的电压等于两点间任一条路径
经过的各元件电压的代数和。 元件电压方向与路径绕行方向一致时取正号,相反取负号。 A
A + US1 _ l2 1
2 U2
I2
l1
U3 U1
3
I3
B
UAB (沿l1)=UAB (沿l2) 电位/电压单值性
I1
_
I4 U4
US4+
4 B
U AB U 2 U 3
1.4.1 电阻元件 ( Resistive Element )
线性电阻
1. 符号
R
2. 方程--欧姆定律 (Ohm’s Law)
电压与电流的参考方向一致时 i R
uRi
+
u (Ohm,欧姆)
R 称为电阻, 基本单位: (欧)
课件-第1章 电路分析的基本概念
(1.2)
7 式中dW是电场力所作的功,单位是焦耳(J);dq为电荷量,单 位是C);电压U 的单位是伏特,简称伏(V)。电压也有恒定电 压和和时变电压之分,分别用符号U和 u 表示(直流量有时不 分大小写)。
图1-4 电压参考方向
电压参考方向(参考极性)的选择同样具有任意性,通常在 电路图上用“+”表示参考方向的高电位端,“-”表示参考方向 的低电位端,如图1-4所示。或用双下标表示电压的参考方向, 如uab 表示电压参考方向从a点指向b点。电压实际方向的判定 与电流的类似。
例1.2 电路如图1.12所示,各支路电流参考方向已标出, 已知 I1 = 8 A ,I2 = 3 A ,I3 = -1 A ,I5 = 2 A,求I4 。
13
解: 对于结点a ,根据KCL可得 I 1–I2 –I3 + I4 –I5 = 0 所以 I4 = -I1 + I2 + I3 + I5 = -8 + 3 +(-1)+ 2 = - 4 A I4为负值,说明I4的实际方向与参考方向相反,即I4实际流出 结点a 。
U、I间关联参考方向:今后在求电压电流时,必须事 先规定好参考方向,否则求出的值无意义。而且为了 分析方便,通常将某元件上电压电流参考方向选为一 致,即电流的参考方向由电压的“+”指向“-”,这 样选定的参考方向称为关联参考方向,简称关联方向。
电位的概念及计算: 将电路中任一点作为参考点, 把a点到参考点的电压称为a点电位,用符号Va(或Ua) 表示。电路中a、b两点间的电压与该两点电位有以 下关系: Uab = Va - Vb (1.3) 今后如未说明,通常选接地点作参考点,并且参 考点电位为零。引入电位概念后,两点间电压的实 际方向即由高电位指向低电位。
电子信息工程技术《实际电路与电路模型》
第八页,共九页。
内容总结
电工电子技术。电工电子技术。第一章 电路的根本概念与根本物理量。11 实际电路与电路模型。 11 实际电路与电路模型。2〕、实现电信号的传输、处理和存储。电路理论就是研究电路中发生的电磁 现象,用电流、电压、电荷、磁通等物理量来描述其中的过程。主要计算电路中各电气器件端子通过 的电流、端子间的电压。电路的两种含义: 1 实际电路。电路模型是实际电路抽象而成,它近似地反映实际电路的电气特性
实际电路的作用: 1〕、实现电能的传输和转换。〔强电〕
2〕、实现电信号的传输、处理和存储。〔弱电〕
11 实际电路与电路模型
第五页,共九页。
电路理论就是研究电路中发生的电磁现象,用电流、电压、电荷 、磁通等物理量来描述其中的过程。主要计算电路中各电气器件 端子通过的电流、端子间的电压。
电路的两种含义: 1 实际电路;
第九页,共九页。
电工电子技术
电子信息工程技术
第一章 电路的根本概念与根本物理量
第一页,共九页。
本课程的几个根本概念
电路
电在日常生活、生产和科学研究工作中广泛应用。如收录机、电视机、录 像机、音响设备、计算机、通信系统和电力网络中都可以看到各种各样的 电路。
11 实际电路与电路模型
第二页,共九页。
电池
电容器
晶体管
2 电路模型。
11 实际电路与电路模型
第六页,共九页。
电路模型是实际电路抽象而成,它近似地反映实际电路的电气特性。
电路模型由一些理想电路元件用理想导线连结而成。用不同特性的电路元件按照不同的方 式连结就构成不同特性的电路。
11 实际电路与实际电路与电路模型
电工电子技术
11 实际电路与电路模型
实际电路与电路模型
实际电路与电路模型
实际电路是由实际电气器件相互连接而成,是构成各种电子系统的基本构件。
实际的电气器件(如电阻器,电容器,电感器,晶体管,集成电路,乃至发电机,电动机等),其共同特点是在工作时其内部存在电磁过程。
由实际电路可构成各种应用系统,如通信,计算机,掌握,动力,信号处理系统等。
在电路理论中,我们并不直接讨论实际电路,而是讨论实际电路的数学模型,即电路模型。
电路模型是由抱负化的电路元件相互连接构成的。
什么是抱负化的电路元件呢?抱负化电路元件(简称电路元件)是从实际器件的电磁特性抽象出来的数学模型,它与实际电气器件的区分和其作用在于:
1. 实际器件是物理实体,而电路元件是实际器件的科学抽象。
实际器件的种类繁多,而电路元件只有几种类型。
2. 实际器件除了具有某种主要的电磁特性外,还有某些其他的次要特性,对它们无法做出精确的定义。
而电路元件只体现某一方面的电磁特性,可以用严格的数学关系来描述。
3. 一个实际器件可用一个电路元件或多个电路元件的组合来作为它的模型,而且在不同的工作条件下,可以有不同的模型。
所以,电路模型是实际电路的近似和抽象。
用抱负化的模型,可以抓住电路的主要特性,简化分析过程。
以后,本课程争论的电路和元件,均指电路模型和电路元件。
模电第1章-电路模型和电路的基本定律
1.4 电路的基本元件及其特性
电路的基本元件是构成电路的基本元素。电路中 普遍存在着电能的消耗、磁场能[量]的储存和电场能 [量]的储存这三种基本的能[量]转换过程。表征这 三种物理性质的电路参数是电阻、电感和电容。 只含一个电路参数的元件分别称为理想电阻元 件、理想电感元件和理想电容元件,通常简称电 阻元件、电感元件和电容元件。 元件的基本物理性质是指当把它们接入电路时, 在元件内部将进行什么样的能量转换过程以及表现 在元件外部的特征。
1.4 电路的基本元件及其特性
1.4.1 电阻元件和欧姆定律 电阻:是电路中阻止电流流动、表示能量损耗大 小的参数。电阻有线性电阻和非线性电阻之分(这 里只讨论线性电阻)。 所谓线性电阻,是指电阻元件的阻值R是个常数, 加在该电阻元件两端的电压u和通过该元件中的电流 i之间成正比关系,即 u=Ri 非线性电阻的伏安特性:其曲线可以是通过坐标原点 或不通过坐标原点的曲线,也可以是不通过坐标原点 的直线。
P UI
或 p ui
(2)当电流、电压取非关联的参考方向时
P -UI 或 p -ui
如果P>0(或p>0)时,表示元件吸收功率,是负载 如果P<0(或p<0)时,表示元件发出功率,是电源
1.2.2 功率的计算 例: 如图所示各元件电流和电压的参考方向,已知 U1=3V,U2=5V,U3=U4=-2V,I1=-I2=-2A, I3=1A,I4=3A。试求各元件的功率,并指出是吸收 还是发出功率?是电源还是负载?整个电路的总功 率是否满足功率守恒定律?(a)(b)来自1.2.2 功率的计算
电功率: 该元件两端的电压与通过该元件电流的乘积
P UI
如果电压和电流都是时变量时,瞬时功率写成
p ui
第1章 电路的基本概念与定律
第1章 电路的基本概念与定律
注意 若选定的参考方向与电流的实际方向一致,则电流 为正值,即I>0 ; 若选定的参考方向与电流的实际方向相反,则电流 为负值,即I<0 。
电流的实际方向 电流的实际方向
I a
I
R
b
a
R
b
电流的参考方向 I>0
电流的参考方向 I<0
第1章 电路的基本概念与定律
二、电压和电动势及其参考方向 电压 电场力把单位正电荷从电场中的一点移到另一点所作的功, 叫做这两点间的电压。
C
q u
式中q的单位为库仑,u的单位为伏特,C的单位为法拉,简称 法,用字母F表示。由于法拉的单位太大,通常采用微法(μF)或 皮法(pF)表示。
1F 1 0 F 1 0
6 12
pF
当电容电压和电流为关联参考方向时,由电流的定义
i dq dt C du dt
在任一时刻,电路中电容的电流与其端电压的变化率成正比。 对于恒定电压,电容中的电流为零。所以电容对直流电而言相当于 开路。
响应
由激励产生的结果(如某个元件上的电流和电压等) 称之为响应。 激励和响应的关系就是作用和结果的关系。
电路分析就是在已知激励、电路结构和参数(电路模型) 的情况下,根据电路的基本定律对由理想元件组成的电路模型 进行分析,求出各元件上的电压、电流及功率等物理量,预测 实际电路的特性,以便设计更优化的电路。
N
第1章 电路的基本概念与定律
如果忽略导线电阻中消耗能量等次要因素,就可以用电感 元件作为实际线圈的模型。如下图所示。 i
+
u L e
将单位电流所能产生的磁链定义为电感元件的自感系数。电 感元件的自感系数简称电感,用字母L 来表示,即
电工第一章
+
Φ
ψ
O i
1.3.2 电感元件 用导线绕制的线圈, ·电感线圈 — 用导线绕制的线圈,通 时可产生磁场,磁通为Φ; 过电流 i 时可产生磁场,磁通为 ;
i
常用单位: 常用单位: mH = 10-3 H, µH =10-6 H • 电感中电流、电压的关系: 电感中电流、电压的关系: u、i 取ARD,且u与e的RD一致时 , 与 的 一致时
1.2.1 电流 i (电流强度) 电流强度) 定义:单位时间内通过导体横截面的电荷量。 ① 定义:单位时间内通过导体横截面的电荷量。 dq 定义式: 定义式: i ( t ) = dt i 的大小和方向均不随时间变化 — 直流电(DC) 大小和方向均不随时间变化 直流电( ) i 的大小和方向按正弦规律变化 — 交流电(AC) 的大小和方向按正弦规律 正弦规律变化 交流电( ) 单位:安培A 库仑 库仑/秒 ② 单位:安培 (库仑 秒) — 简称安
p 恒大于 ,故电阻 为耗能元件。 恒大于0, 电阻R为耗能元件。 ·电气设备的额定值与实际值 ① 额定值:使电气设备能正常运行而规定的允许值。 额定值:使电气设备能正常运行而规定的允许值。 额定电压U 额定电流I 额定功率P 如:额定电压 N、额定电流 N、额定功率 N=UNIN等。 实际值:电气设备实际工作条件下的值。 ② 实际值:电气设备实际工作条件下的值。 电压U、电流I、功率P等 如:电压 、电流 、功率 等。 实际值不一定等于 额定值。 额定工作状态。 额定值。实际值等于额定值 — 称额定工作状态。
(1-11)
u Φ _ e
电感线圈可储存磁场能。 电感线圈可储存磁场能。 可储存磁场能 N 匝线圈的磁通链 = NΦ。 匝线圈的磁通链 磁通链Ψ 。
C1 电路理论基本概念
应用举例
例:1-2下图所示电路中,已知:US1=15V,US2=5V,R=5Ω,
试求电流I和各元件的功率,并验证功率守恒。
解: I U S1 U S2 15 5 2A R 5
元件US1的功率
R + US1 UR
I
+
-
US2
PS1 US1 I 15 2 30W (发出功率)
一、实际电路
是为完成某种应用目的,由若干电气器件和设备按一定方式 连接而成的电流通路。 1.功能 (1)实现电能的传输和转换。(如电力工程——强电电路) (2)进行信号的传递与处理。(如信息工程——弱电电路) 2.基本组成 电 源 中间环节 负 载
非电能→电能 的设备
导线、开关 保护装臵等
电能→非电能 的设备
一、电流及其参考方向
1.定义:单位时间内流过某导体横截面的电荷。即: dq Q i(t ) I dt t 电流形式有:直流电流I: Direct Current (DC) 交流电流i(t)或i : Alternative Current (AC) 2.单位及换算:安培(A)=库仑(C)/秒(s) 千安、安培、毫安、微安之间换算关系:
I2
C
D
4.关联参考方向
元件电流的参考方向与电压 的参考方向一致,则把电流和电压的这种参考 方向称为关联参考方向;否则为非关联参考方向。
i
+ u
关联参考方向
i – + u
非关联参考方向
–
关联参考方向:电流参考方向从电压参考方向的正极指向负极
(1) 电压和电流的参考方向是任意假定的。分析电路前必须标明。 (2) 参考方向一经假定,必须在图中相应位臵标注 (包括方向和 符号),在计算过程中不得任意改变。参考方向不同时,其 表达式符号也不同,但实际方向不变。
第一章 电路的基本概念和基本定律
第一章电路的基本概念和基本定律电路的基本概念和基尔霍夫定律是电工技术和电子技术的基础。
§1-1 电路中的物理现象和电路模型一、实际电路电路:由电气器件或设备,按一定方式连接起来,完成能量的传输、转换或信息的处理、传递。
组成:电源、负载和中间环节。
日光灯实际电路二、理想电路元件、电路模型实际电路的分析方法:用仪器仪表对实际电路进行测量,把实际电路抽象为电路模型,用电路理论进行分析、计算。
1、理想电路元件实际的电路是由一些按需要起不同作用的元件或旗舰所组成,如发电机、变压器、电动机、电池、电阻器等,它们的电磁性质是很复杂的。
例如:一个白炽灯在有电流通过时,如下图所示:为了便于分析与计算实际电路,在一定条件下常忽略实际部件的次要因素而突出其主要电磁性质,把它看成理想电路元件。
2、电路模型将实际电路中的元件用理想电路元件表示、连接,称为实际电路的电路模型。
如下图所示:U S三、电路的分类1、分布参数电路电路本身的几何尺寸相对于工作波长不可忽略的电路。
2、集中参数电路如果电路本身的几何尺寸l相对于电路的工作频率所对应的波长λ小的多,则在分析电路时可以忽略元件和电路本身几何尺寸。
例如:工作频率为50Hz,波长λ=6000km,所以在工频情况下,多数电路满足l<<λ,可以认为是集中参数电路。
集中参数电路分为:线性电路(元件参数为常数)★非线性电路(元件参数不为常数)§1-2电路中的基本物理量一、电流及电流的参考方向1、电流:带电粒子或电荷在电场力作用下的定向运动形成的电流。
dtdqi =(单位时间内通过某一截面的电荷量) 电流的单位:A (安培)、kA (千安)、mA(毫安)、μA (微安)A 10A 1 , A 10mA 1 , A 10kA 1-633===-μ2、电流的参考方向电流的实际方向:正电荷运动的方向或负电荷运动的反方向(客观存在) 电流的参考方向:任意假定。
实际方向(2A )(参考方向与实际方向相同)A)2( 0=>i i 实际方向(2A )(参考方向与实际方向相反)A)2( 0-=<i i二、电压、电位及电压的参考方向1、电位(物理中的电势)电场力把单位正电荷从一点移到参考点所做的功。
电路原理上册1章
RC第一章基尔霍夫定律和电阻元件§1 1 电路和电路模型一、实际电路1、若干电气设备或器件按照一定方式组合起来,构成了电流的通路,称为电路(或电网络)。
电路在现代社会的各个领域有着极广泛的应用。
如在电力、电机、自动控制、计算机、通讯等领域都应用了各种电路。
2、电路部件:组成电路的这些设备或器件都称为电路的部件,如电池、发电机、电动机、电阻器、电感器、电感线圈、电容器、晶体管、集成电路、变压器、联接线、开关…等。
负载:吸收电源发出的电能,换为其它形式的能量,加以消耗或储存的部件。
电源:能把其它形式的能量(机、水、热、化学、太阳、原子),转变为电能量的装置。
3、电路的作用:电能的输送和分配;传输和处理各种电信号(语言、图象、控制信号等)。
总之是转换能量。
4、电路的参数:(1)电阻参数:反映耗能的特征,用R表示。
(2)电容和电感参数:表征储存电场能量和磁场能量的特征,用C、L和M表示。
(3)分布参数与集中参数:严格的说,耗能和储能都是连续分布的,但在一定条件下可近似认为是分别集中在R、C、L和M中进行。
整个上册和下册的前4章都是研究集中参数电路。
下册5、6章为分布参数电路。
二、电路模型:将实际电路进行抽像,用符号代表几种集中参数元件如下:这些是理想的电路元件(以后还要陆续介绍其它元件)联结在一起构成的电路图,就是实际电路的数学模型。
可用数学方程描述。
不同的实际部件可抽像为不同的电路模型,同一个实际部件视不同的工作条件及技术要求也可抽像为不同的电路模型。
如电感线圈三,电路的分类:按参数,按元件,按激励函数…§1-2 电流与电压的参考方向一、电流:单位时间通过导体横截面的电量称电流强度。
其数学表达式为 td qd )t (i =变化率为常量时是直流I1、电流的真实方向:正电荷运动的方向。
2、电流的参考方向:一段电路中电流的真实方向可能有两个,往往不能预先判定。
即使是直流电路中,也不能预先仅凭观察就能定性判断所有支路电流的实际方向,比如桥型电路的中心桥臂支路电流的真实方向。
电路分析基础第一章
I =-2A
在求解电路中的电流时,应该首先选定电流的 参考方向(正方向),然后根据假设的电流方向进 行分析求解。 若求得I > 0,则电流的实际方向与参考方向一致 若求得I < 0,则电流的实际方向与参考方向相反
二、受控源的类型
电压控制电压源(VCVS) 电压控制电流源(VCCS) 电流控制电压源(CCVS); 电流控制电流源(CCCS)
三、受控源的符号
+ u1 + + u1 -
u1
-
+
u1
-
电压控制电压源
电压控制电流源
i1
i1
-
i1
gi1
电流控制电压源
电流控制电流源
1-4 基尔霍夫定律
在电路理论中,电路元件的电压、电流受自身伏安关系的 约束。当各元件联接成一个电路以后,电路中的电压、电流除 了必须满足元件自身的约束方程以外,还必须同时满足电路结 构的约束。这种约束体现为基尔霍夫的两个定律,即基尔霍夫 电流定律(Kirchhoff’s Current Law),简写为KCL)和基尔 霍夫电压定理(Kirchhoff’s Voltage Law),简写为KVL。
1-2 电路的基本变量
1-2-1 电流
一、电流的定义
电荷的定向移动形成电流,电流的大小 用电流强度来描述,符号为I或i。电流强度 定义为电位时间流过导体横截面的电量,即
dq i dt
如果电流的大小方向随时间变化,称为交流电 流;若电流的大小方向不随时间变化,称为直流电 流。在这种情况下,通过导体横截面的电量Q与时间 t呈正比,即
i iS u / RS
实际电路与电路模型示例
实际电路与电路模型示例
实际电路的电路模型由抱负电路元件相互连接而成,抱负元件是组成电路模型的最小单元。
在肯定的工作条件下,抱负电路元件及它们的组合足以模拟实际电路中部件、器件中发生的物理过程。
在电路模型中各抱负元件的端子是用“抱负导线”连接起来的。
依据元件对外端子的数目,抱负电路元件可分为二端、三端、四端元件等。
为了便于对实际电路进行分析和用数学描述,将实际元件抱负化(或称模型化),即在肯定条件下突出其主要的电磁性质,忽视其次要因素,把它近似地看作抱负电路元件。
由一些抱负电路元件所组成的电路,就是实际电路的电路模型,它是对实际电路电磁性质的科学抽象和概括。
在抱负电路元件(今后“抱负”两字常略去不写)中主要有电阻元件、电感元件、电容元件和电源元件等。
这些元件分别由相应的参数来表征。
图1(a)所示为一个简洁的实际电路,这是一个由干电池和小灯泡用两根导线组成的照明电路。
其电路模型如图1(b)所示。
图中的电阻元件R作为小灯泡的电路模型,反映了将电能转换为热能和光能这一物理现象;干电池用电压源Us和电阻元件Rs的串联组合作为模型,分别反映了电池内储化学能转换为电能以及电池本身耗能的物理过程。
连接导线用抱负导线(其电阻设为零)即线段表示。
图1 实际电路与电路模型示例
本课程所涉及的电路均是由抱负电路元件构成的电路模型,同时将
抱负电路元件简称为电路元件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
激励:电源对电路的作用称为激励。 响应:电路中由于电源的作用产生的所有电压、 电流都成为响应。
实际电路和电路模型
四、电路模型 实际电路元件的电磁性质比较复杂,为了便于对 实际电路进行分析,可将实际电路元件理想化(或 称模型化),忽略其次要因素,将其近似地看作理 想元件,简称元件。例如白炽灯主要作用是消耗 电能,主要呈现电阻特性,其它特性很微弱,因 而将其近似地看作纯电阻元件。
ห้องสมุดไป่ตู้
维尔纳·冯·西门子 (Ernst Werner von Siemens)(1816-1892)德国工程学家 ,西门 子集团的创始人。
u 线性电阻R是一个与电压和电流无关的常数。
电工基础
实际电路和电路模型
第一节 实际电路和电路模型
一、实际电路
电路(网络):为了完成某种特定功能由某些电气设备或器 件(例如电容器、电阻器)按一定方式连接组合起来,构 成电流的通路。简单的说,电流流通的路径。
电池
开关 电灯
导线
话筒
放 大 器
扬声器
两个电路分别实现了什么功能?
实际电路和电路模型
二、电路的作用
开
关
电
电
池
灯
导 线
实际电路和电路模型
实际电路和电路模型
第二节 电流、电压及其参考方向
一 电路的主要物理量 1. 电流及其参考方向
带电粒子的有规则的移动形成电流。
电流的大小用电流强度表示,定义为单位时间内通过 电路某一横截面的电荷量。
i dq dt
电流的单位为A(安培)。当 dq=1库仑,dt1 秒, i 1A
提示:所有电路方程都是在标定了参考 方向的基础上建立的,不然毫无意义!
实际电路和电路模型
元件(导线)中电流流动的实际方向有两种可能:
实际方向
实际方向
参考方向:任意选定一个方向即为电流的参考方向。
i
参考方向
A
B
• 用箭头表示:箭头的指向为电流的参考方向。
• 用双下标表示:如 iAB实际, 电电路流和电的路模参型考方向由A指向B。
如何 理解?
实际电路和电路模型
几种常见的 电阻元件
普通金属 膜电阻
绕线 电阻
电阻排
电阻元件
实际电路和电路模型
热敏 电阻
第三节 电阻元件
一 . 线性定常电阻元件:任何时刻端电压与其电流成正比 的电阻元件。
1. 符号
R
2. 欧姆定律 (Ohm’s Law) (1) 电压与电流的参考方向设定为一致的方向
+
U
(3) 用双下标表示:如 UAB , 由A指向B的方向为电压 (降)的参考方向
A
UAB
B
实际电路和电路模型
注意
• 电流、电压的实际方向是客观存在的,但往往 难于事先判定。参考方向是人为规定的电流、 电压的方向,在分析问题时需要先规定参考方 向,然后根据规定的参考方向列写方程。
• 参考方向一经规定,在整个分析过程中就必须 以此为准,不能变动。
二端元件 多端元件
实际电路和电路模型
常用理想元件: 电阻:只消耗电能,是实际电阻器的理想化。 电感:只储存磁场能量,是实际线圈的理想化。 电容:只储存电场能量,是实际电容器的理想化。 导线:连接导线耗能极少,所以导线的理想化就是
理想导线。
实际电路和电路模型
四、电路模型
理想电路元件是对实际电路元件的科学抽象。 理想电路元件中主要有电阻元件、电容元件、 电感元件和电源元件等。由一些理想电路元件 组成的电路,就是实际电路的电路模型。通常 把理想电路元件称为元件,将电路模型简称为 电路。
➢实现电能的传输和转换、分配。 ➢把电作为信号载体,以实现信号的传输、处理或存储。
三、电路的组成
电源:将其他形式的能量转换为电能的设备。(发电机、蓄电池等) 负载:将电能转换为其他形式能量的设备。(电动机、电灯等)
连接导线:沟通电路、输送电能的作用。 开关(控制、保护装置) :控制电路通断。
实际电路和电路模型
A B
实际电路和电路模型
2. 电压(降)的参考方向
+ 实际方向
实际方向 +
参考方向
+
U
–
参考方向
+
U
–
+ 实际方向
U>0
- 实际方向 +
U <0
实际电路和电路模型
电压参考方向的三种表示方式:
(1) 用箭头表示:箭头指向为电压(降)的参考方向
U
(2) 用正负极性表示:由正极指向负极的方向为电压
(降低)的参考方向
IAB 3A
A
B
IAB 2A
实际电路和电路模型
2. 电压 :电场中某两点A、B间的电压(降)UAB 等于将 点电荷q从A点移至B点电场力所做的功WAB与该点电 荷q的比值,即
U
AB
def
W AB q
单位:V (伏) (Volt,伏特)
电压实际如电路何和电测路模量型 请自学10.3.2节!
电压需要参考方向吗?
实际电路和电路模型
电流实际方向 规定:正电荷的移动方向为电流实际方向。
Or
现在可以确定虚线框中支路实际电流方向吗? 实际电路和电路模型
电流参考方向
在复杂的电路中,电流的实际方向往往是 无法预知的,为此在分析之前,我们给它们假 定一个方向作为电路分析和计算时的参考,这 个假定的方向称为参考方向。然后根据所假设 的参考方向列出电路方程进行求解。
• 不标明参考方向而说某电流或电压的值为正或 为负是没有意义的。
• 参考方向的设定会影响实际方向吗?
不会。因为参考方向相反时,解出的电流、电 压值也要改变正负号,最后得到的实际结果仍 然相同。
实际电路和电路模型
三 .关联参考方向
• 一个元件或者一段电路中电流和电压 的参考方向是可以任意设定的,二者可 以一致,也可以不一致。当电流和电压 的参考方向一致时,称为关联参考方向; 两者相反时称为非关联参考方向。在电 路中,负载上一般设定为关联参考方向。 电源上设定为非关联参考方向,如图所 示。
电流的参考方向与实际方向的关系:
i
参考方向
i
参考方向
实际方向
i>0
实际方向
i<0
因为所选定电流的参考方向不一定与电流的实际方向一致, 如果计算结果为正,则表示电流的实际方向与参考方向一致; 如果计算结果为负,则表示电流的实际方向与参考方向相反。
实际电路和电路模型
思考: 请问电流的实际方向是?
A
B
i
R
+u
实际电路和电路模型
u R i R 称为电阻
令 G 1/R G称为电导 则 欧姆定律也可表示为 i G u .
乔治·西蒙·欧姆 (Georg Simon Ohm, 1787~1854年) 德国物理学家
电阻的单位: (欧) (Ohm,欧姆)
电导的单位: S (西) (Siemens,西门子)