《电路原理》邱关源ppt课件

合集下载

电路课件(邱关源五版)

电路课件(邱关源五版)
视在功率是指电路中电压和电流的有效值的乘积, 用于衡量电源提供的总功率。
04
三相电路
三相电源
三相电源的组成
三相电源由三个频率相同、幅值相等、相位差互为120度的交流 电源组成。
星形连接与三角形连接
三相电源可以接成星形或三角形,两种连接方式下的电压和电流特 性不同。
三相电源的功率
三相电源的总功率等于各相功率之和,且总功率恒定。
产生原因
非正弦周期电压和电流的产生通常是由于电路中存在非线性元件,如电阻、电容、电感等 ,这些元件的伏安特性不是线性的,因此会导致电压或电流随时间变化呈现出非正弦周期 的特性。
特点
非正弦周期电压和电流具有随机性和复杂性,其波形通常由多个不同频率的正弦波叠加而 成,因此难以用简单的数学模型描述。
非正弦周期电路的谐波分析法
一阶电路的时域分析
一阶电路
由一个动态元件和电阻组成的简单电路。
一阶电路的响应特性
电压和电流随时间按指数规律变化,具有延 时、振荡和稳态等不同阶段。
时域分析方法
采用一阶常微分方程描述电路,通过求解微 分方程得到电压和电流的时域响应。
一阶电路的分析步骤
建立微分方程、求解微分方程、分析响应特 性。
二阶电路的时域分析
频率响应
频率响应分析电路在不同频率下 的性能表现,包括幅频特性和相
频特性。
一阶电路分析
一阶电路是指包含一个动态元件 的电路,其分析方法主要是三要
素法。
功率计算
有功功率
有功功率是指电路中实际消耗的功率,用于衡量 能量转换的效果。
无功功率
无功功率是指电路中交换的功率,用于衡量储能 元件的能量交换。
视在功率
电路课件(邱关源五版 )

西安交通大学邱关源电路PPT课件

西安交通大学邱关源电路PPT课件

a
Wab q
8V2V 4
各值。
u a bab (2 0 )V 2 V
u b cbc [0 ( 3 )]V 3 V
cW qcbW qbc14V 23V
.
返 回 上 页 1下8 页
解 (2) c 0
a
b
c
a
Wac812V5V q4
b
Wbc q
12V3V 4
u a bab (5 3 )V 2V
u b cbc (3 0 )V 3 V
结论 电路中电位参考点可任意选择;参考点
一经选定,电路中各点的电位值就唯一确定;当 选择不同的电位参考点时,电路中各点电位值将 改变,但任意两点间电压保持不变。
.
返 回 上 页 1下9 页
问题 在复杂电路或交变电路中,两点间电压的
实际方向往往不易判别,给实际电路问题 的分析、计算带来困难。
电压(降)的参考方向
参考方向
+
u

假设高电位指向低电
位的方向。
参考方向
+
u

+ 实际方向 – – 实际方向 +
u >0
u <0
.
返 回 上 页 2下0 页
电压参考方向的三种表示方式: (1) 用箭头表示:
u
(2)用正、负极性表示:
+u
(3)用双下标表示:
A
uAB
.
B
返 回 上 页 2下1 页
3.关联参考方向
祝同学们 身体好 学习好 工作好
.
1
电路
教材:《电路》 罗先觉修订 邱关源主编
主讲: 范敏
.
2
绪论

电路邱关源课件PPT第1章

电路邱关源课件PPT第1章

q I = t
电流方向
正电荷运动的方向
元件
A
i>0
B
A
元件
B
i<0
−i
对于复杂电路或电路中的电流随时间变化时, 对于复杂电路或电路中的电流随时间变化时,电 流的实际方向往往很难事先判断。 流的实际方向往往很难事先判断。
电路模型和电路定律
2.电压
电位ϕ 电压U 单位正电荷q 从电路中一点移至参考 时电场力做功的大小。 点(ϕ=0)时电场力做功的大小 。 单位正电荷q 从电路中一点移至另 一点时电场力做功(W)的大小。 的大小。
t= -∞时,u(-∞ )=0
1 2 Wc = Cu (t ) 2
电容吸收的能量以电场能量的形式储存在元件中
电路模型和电路定律
t1--t2 电容吸收的能量
WC = C ∫
u ( t2 )
u ( t1 )
1 2 1 2 udu = Cu (t 2 ) − Cu (t1 ) 2 2
= Wc (t2 ) −Wc (t1)
电路模型和电路定律
功率 -∞到t
t
du (t ) p = u (t )i (t ) = Cu (t ) dt
吸收的能量
t
du (ξ) dξ = C Wc = ∫ u (ξ )i (ξ )dξ = ∫ Cu(ξ) −∞ −∞ dξ

u(t )
u ( −∞ )
udu
1 2 1 2 = Cu (t ) − Cu (−∞) 2 2
电路模型和电路定律
例:已知 U a = −4V ,U b = 0, 求
u1 = ?, u2 = ?
+
A
u1

B

西安交通大学邱关源电路PPT课件

西安交通大学邱关源电路PPT课件
但与空间坐标无关。因此,任何时刻,流入两 端元件一个端子的电流等于从另一端子流出的 电流;端子间的电压为确定值。
.
返 回 上 页 3下0 页
例 两线传输线的等效电路。
当两线传输线的长度 l 与电磁波的波长满足:
l
集总参 数电路
z
i i
LR
+
i(t)
u(t) C
-
.
返 回 上 页 3下1 页
当两线传输线的长度 l 与电磁波的波长满足:
a
Wab q
8V2V 4
各值。
u a bab (2 0 )V 2 V
u b cbc [0 ( 3 )]V 3 V
cW qcbW qbc14V 23V
.
返 回 上 页 1下8 页
解 (2) c 0
a
b
c
a
Wac812V5V q4
b
Wbc q
12V3V 4
u a bab (5 3 )V 2V
dt
dq
i dq dt
pdwdwdqui dt dq dt
功率的单位:W (瓦[特]) 能量的单位:J (焦[耳])
.
返 回 上 页 2下4 页
2. 电路吸收或发出功率的判断
u, i 取关联参考方向
+
p=ui 表示元件吸收的功率
u p>0 吸收正功率 (实际吸收)
i
- p<0 吸收负功率 (实际发出)
电压(降)的参考方向
参考方向
+
u

假设高电位指向低电
位的方向。
参考方向
+
u

+ 实际方向 – – 实际方向 +

邱关源 电路课件完整版33页PPT

邱关源 电路课件完整版33页PPT

谢谢
11、越是没有本领的就越加自命不凡。——邓拓 12、越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 13、知人者智,自知者明。胜人者有力,自胜者强。——老子 14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。——歌德 15、最具挑战性的挑战莫过于提升自我。——迈克尔·F·斯特利
邱关源 电路课件完整版
1、纪律是管理关系的形式。——阿法 纳西耶 夫 2、改革如果不讲纪律,就难以成功。
3、道德行为训练,不是通过语言影响 ,而是 让儿童 练习良 好道德 行为, 克服懒 惰、轻 率、不 守纪律 、颓废 等不良 行为。 4、学校没纪律便如磨房里没有水。 ——夸 美纽斯
5、教导儿童服从真理、服从集体,养 成儿童 自觉的 纪律性 ,这是 儿童道 德教育 最重要 的部分 。—— 陈鹤琴

电路课件_第1章(第五版_邱关源_高等教育出版社)

电路课件_第1章(第五版_邱关源_高等教育出版社)

+
+
_
(2) 电压、电流的参考方向关联;
+
u
P uS i
吸收功率,充当负载
_
物理意义: 电场力做功 , 电源吸收功率。

计算图示电路各元件的功率。
R 5
5V
_
i
_
PR Ri 5 1 5W
2
满足:P(发)=P(吸)
+
10V
uR
+
_ +

uR (10 5) 5V
i
§1-3 电功率和能量(power)
一.电功率 电压的定义: 电流的定义:
dW u dq
dq i dt
电功率:
dW u dq u i dt p u i dt dt dt
(Watt,瓦特) (Joule,焦耳)
功率的单位:W (瓦) 能量的单位: J (焦)
二.判断元件是吸收功率还是发出功率

具有相同的主要电磁性能的实际电路部件, 在一定条件下可用同一模型表示; 同一实际电路部件在不同的应用条件下,其 模型可以有不同的形式

§1-2 电流和电压的参考方向
一、问题的引入
电流方向?
考虑电路中每个电阻的电流方向
5Ω 3Ω
10V
9V
1.2 电压和电流的参考方向
1. 电路基本物理量的实际方向 物理中对基本物理量规定的方向 物理量 电流 I 实 际 方 向 正电荷运动的方向 高电位 低电位 (电位降低的方向) 低电位 高电位 (电位升高的方向) 单 位 kA 、A、mA、 μA kV 、V、mV、 μV kV 、V、mV、 μV

电路_邱关源教材课件_第3章

电路_邱关源教材课件_第3章

- Im1
30
I Im2
2A
所以 Im2=2A 不必再列网孔2的方程。 解得:Im1=-0.4A
例3、列网孔方程
解: (KVL)m1: (KVL)m2: (KVL)m3:
R1
R2
i m1
+
i s1
R3
im1 is1
u s2 +i + i s 4 m3 R 5 im 2 u s4
us6
R6
R2im1 (R2 R5 )im2 us2 us4
+
im1 R4 + u s4
R3
R1
us1
R5
R2 +
R 6 im2
u s2
im3 +
u s3
一、定义 1、网孔电流:是一种 沿着网孔边界流动的假 想电流。 如图中im1、im2、im3
+
R1 u s1 im1 R4 + R2 + R5 i m2 R6
u s4
R3
+
im3
u s2
u s3
电路中所有支路电流都可以用网孔电流线性表 示。 2、网孔分析法:以网孔电流为变量,运用KVL 求解电路的方法。
+
R1 u s1 im1 R4 +
R2 + R5 i m2 R6
+
u s4
R3
im3
u s2
u s3
1、自电阻:各自网孔内所有电阻之和。永为正 值。如:R11、R22、R33。
2、互电阻:两网孔之间公有电阻之和。有正值或 负值,两网孔电流的参考方向一致时,取正值。 如:R12、 R13 、R21 、R23 、 R31 、 R32 。 3、us11 , us22 , us33 为各网孔电压源电压升的代数和。 推广之,具有多个网孔的电路有相同形式的方程。

第10章电路邱关源课件PPT

第10章电路邱关源课件PPT

电路第十章含有耦合电感的电路电路§1010--1 1 互互感1121i 111'22'L 2N 2L 1N 1i 222212ΨΨΨ+±=12111ΨΨΨ±=电路22122111i L Mi ΨMi i L Ψ+±=±=1111i L Ψ=2222i L Ψ=21212i M Ψ=12121i M Ψ=**ML 1L 2+−i 1i 2u 1u 2+−11'22'dt di Mdt di L dt d u 21111±=Ψ=dtdi L dt di M dt d u 22122+±=Ψ=ML 1L 2+−i 1i 2u 1u 2+−122122111i L Mi ΨMi i L Ψ+±=±=2111I M j I L j U &&&ωω+=2212I L j I M j U &&&ωω+=Mj Z M ω=121≤=L L Mk 22211112ΨΨΨΨ=k电路§1010--2 2 含有耦合电感电路的计算含有耦合电感电路的计算I L j R U &&)(111ω+=[]I M L L j R R U &&)22121(−+++=ω1R R 1L −+1u −+uM••i 1R R ML −21−+1u −+ui I L j R U &&)(222ω+=[]I M I M j L j R &&)(−=−+11ωω[]I M I M j L j R &&)(−=−+22ωω电路[])22121(M L L j R R U I−+++=ω&&))222111((M M L j R Z L j R Z −−+=+=ωω)22121(M L L j R R Z −+++=ω))222111((M M L j R Z L j R Z ++=++=ωω)22121(M L L j R R Z ++++=ω电路cos10002**12M1R 2+−iu s4522000°∠Z cos 22121×L L ∠2电路1R R 1L −+1u −+uM••i SS 826.05.125.782121=×===L L ML L M k ωωωΩ−∠=−=−+=o46.904.35.03)(111j M L j R Z ωΩ∠=+=−+=o4237.65.45)(222j M L j R Z ωΩ∠=+=+=o57.2694.84821j Z Z Z o &050∠=U57.2659.557.2694.8050−∠=∠∠==oo &&Z U I1212121Z I X jI R I S =+=AV 63.14025.1564237.659.52222⋅+=∠×==j Z I S oAV 12525057.2659.550*⋅+=∠×==j I U S o &&21S S S +=A V .....⋅−=−∠×=631575934690435952j o1R R 2L j ω1L j ω−+U&••I&1I &I &Mj ω2111I j I L j R U M &&&ωω++=)(1R R 2L j ω1L j ω−+U&••I&1I &I &Mj ω22212111)()(I L j R I j U I j I L j R U M M &&&&&&ωωωω++−=−+=2221I L j R I j U M &&&)(ωω++=2112I I I I I I &&&&&&−=−=[]I j I M L j R M &&m ωω±+=111)(1R R ML −1−+U&I&1I &I &ML −21R R ML +1−+U&I&1I &I &ML +222212111)()(I L j R I j U I j I L j R U M M &&&&&&ωωωω++±=±+=[]222I M L j R I j U M &m &&)(ωω++±=)()(1111I I j I L j R U M &&&&−±+=ωω电路410CL =ωH 05.0662410510411===−×××C L ωA87.36025.0240320010)(2111o o &&−∠=+∠=−+−+=j M L M L j R U I AB ωV13.53387.36025.0120)(12o o &&∠=−∠×=−=j I M L j U ED ωW2.0025.03202211=×==I R P电路+−U S500 V o13ΩIR 25Ω1j ωL 2I 1**j ωM+−U S500 V o13ΩIR 25Ω1j (+)ωL M 2I 1()22电路()+−U S500 V o13ΩIR 25Ω1j (+)ωL M 2I 1电路§1010--3 3 空心变压器空心变压器()21111I j I L j R U M &&&ωω++=11Z22Z MZ 2221112221111)(Y M Z U Y Z Z U I M ω+=−=&&&1R 1L j ω••−+1U &1′••2R 2L j ωR ω••2′2221)(0I jX R L j R I j L L M &&++++=ωω1222⋅−=I Z Z I M &1⋅I电路11222111112221112)(Y M jX R L j R U MY j Y Z Z U Y Z I L L M M ωωω++++−=−−=&&&−+1U &222)(Y M ω1I 12221112221111)(Y M Z U Y Z Z U I M ω+=−=&&&Z 2I −+111U MY j &ω1222⋅−=I Z Z I M &电路1R 1L j ω••−+1U &1′••2R 2L j ωR ω••2′Ω==50111j L j Z ωΩ+=++=123222j jX R L j Z L L ωΩ−=+=37.3184.7123400)(222j j Y M ωo &021001∠=U o &&2.675.337.3184.7502/100)(2221111−∠=−+=+=j j Y M Z U I ωo o &&84.12666.51232.675.3202212∠=+−∠×=−=j j Z I M j I ω)84.12610cos(266.5)2.6710cos(25.321oo +=−=t i t i电路cos3142115**+−u sa i 112L 1L 2R LM电路+−a b422Ω−Ωj189U 1I 1电路§1010--3 3 理想变压器理想变压器1N ••1−+1u ••2N ••−+u 21i n −••1−+1••11u n 2211N u N u =12211=+i N i N 122211=+i u i u 1N N电路11N ••1−+1u ••2N ••−+u 21in ••1−+1••11u n −22211nu u N N u −=−=212112ii i n N N ==电路11N ••1−+1u ••2N ••Z ••1−+1u 11I U Z in &&=1N ••1−+1u ••2N ••Z Ln in Z n I U n I U Z 221211=−==&&&&L n Z n I U n 2212=−=&&电路1−+s u ••Z −+2u −+1u 110:Ω+=+×==300300)33(1022j j Z n Z L in inZ −+sU &1I 13003001000220011j Z R U I in s ++∠=+=&&09.3644.0−∠=211I nI &&−=12I n I &&=A9.364.4−∠=电路21210I nI I &&&==1−+s u ••−+2u −+1u 1n sU U &&=1000221∠==s c U nU &&22I U Z in &&=Ω===1)1(12111R n I n U n &&9.364.433102202−∠=++∠=+=j Z Z U I L in oc &&in−+oc u 2i电路1••iI &−+1U &22••2I &−+2U &−+1u 1:2R 1I &ii I U R &&1=221212)11(1I U R R U R &&&−=++−11U U n &&=)(22112R U U I n I n I i &&&&&−−=−=121U U n &&=i I n R n nR nR U &&=−++)211(2121Ω==381ii I U R &&电路Ω−5j V 4=sU &Ω−=)5(222j n Z in Ω+−=5120141222n j j Y 05120122=+−n j j 22=n 2211Z n Z in =100=Ω=42Z 100421=n 51=n W 04.01004422m ax=×=×=ssUR U P电路)1(21==R R 21122111I L j I M j U I M j I L j U &&&&&&ωωωω+=+=21,1)2(L L M k ==1R 1L j ω••−+1U &1′••2R 2L j ωR ω••2′−+2U&2121u u L L =121212L L L L L L 221212221111I L j I L L j U I L L j I L j U &&&&&&ωωωω+=+=n=电路nL L L =∞→211211i ni −=212111I L L L j U I &&&−=ω2121I L L I &&−=n L L =21)3(221111I L L j I L j U &&&ωω+=电路M j Z L j R Z L j R Z M ωωω=+=+=222111221211I Z I Z U I Z I Z U M M &&&&&&+±=±=U Z Z Z Z Z I MM &m &22121−=U Z Z Z Z Z I MM &m &22112−=U Z Z Z Z Z Z I I I M M &m &&&2212121−+=+=22212111)()(I L j R I j U I j I L j R U M M &&&&&&ωωωω++±=±+=电路。

电路原理邱关源第3章 电阻电路的一般分析PPT课件

电路原理邱关源第3章 电阻电路的一般分析PPT课件

I3
+
6A 1
7
70V

b 由于I2已知,故只列写两个方程
结点a: –I1+I3=6
避开电流源支路取回路: 7I1+7I3=70
返回 上页 下页
*例5 列写支路电流方程.(电路中含有受控源)
7 +
70V –
a
I1
1
I2 +
5U_
11 + U
2_
I3 解 7
结点a:
–I1–I2+I3=0 7I1–11I2=70-5U
当不需求a、c和b、d 间的电流时,(a、c)( b、 d)可分别看成一个结点。
(1) 应用KCL列结点电流方程
对结点 a: I1 + I2 –I3 = – 7
因所选回路不包含
(2) 应用KVL列回路电压方程 恒流源支路,所以,
对回路1:12I1 – 6I2 = 42 3个网孔列2个KVL方
对回路2:6I2 + 3I3 = 0
解1 (1) n–1=1个KCL方程:
结点a: –I1–I2+I3=0
(2) b–( n–1)=2个KVL方程:
设电流 源电压
7I1–11I2=70-U
a
11I2+7I3= U 增补方程:I2=6A
I1 7 I2 11
+
70V –
1 6A
+ U
2
_
I3 7
b
返回 上页 下页
a
解2
I1 7 I2 11
2、如何以最少的方程以及最简化的方法求解电 路的未知变量。
章目录 上一页 下一页 返回 退出
3.3 支路电流法

第8章电路邱关源课件PPT

第8章电路邱关源课件PPT

i = i1 + i2= Re 2 I&1e jωt + Re 2 I&2 e jωt
jω t 1 2
] [ ] & +I & + L)e ] = Re [ 2 I &e ] = Re [ 2 ( I
jω t
[
&=I & +I & +L I 1 2
相 量 法
电 路 例8-2 设两个同频率正弦电压分别为
F2 = −7.07 + j 7.07 F1 + F2 = (3 − j 4) + (−7.07 + j 7.07) = −4.07 + j 3.07 3.07 = 143o arg( F1 + F2 ) = arctan − 4.07
F1 + F2 = (−4.07) 2 + 3.07 2 = 5.1
相 量 法
电 路 正弦量的有效值 在相同时间内, 在相同时间内,正弦电流 正弦电流 i 对电阻R所做的功 == 直流电流I 在R 所做的功, 所做的功, I 就称为正弦 就称为正弦电流 正弦电流i 的有效值。 的有效值。
1 T

T
0
i Rdt = I R
2 2
1 T

T
0
i 2 dt = I 2

& =U & +U & = 200∠10o + 300∠ − 30o U s1 s2
= 197 + j17.4 + 259.8 − j150 = 456.8 − j132.6 = 475.8∠ − 16.2o
u = 475.8 sin( ωt − 16.2o )

《电路》邱关源 第五版 PPT第一章

《电路》邱关源 第五版  PPT第一章

4、电路的功率
(1)、功率: 功率: 功率 单位时间内从A 单位时间内从A到B的电荷量
dq i= dt
u AB
dw = dq
关联
单位时间内从A移动到B所作的功 单位时间内从A移动到B 将单位电荷从A移动到B 将单位电荷从A移动到B所作的功
dw dw dq p= = = ui dt dq dt
p = ui
Vc = 0
U ac = Va
U dc = Vd
KVL
U a − U dc = Va − Vd
两点间的电压等于两点间的电位差
U V U 例:U ab = 1.5V , bc = 1.5V , 求 Va , b ,Vc , ac
为参考点, (1)a为参考点, Va = 0
实际方向
i>0
表示电流参考方向的两种方法: 表示电流参考方向的两种方法: 箭头 双下标(iAB):参考方向从 指向B 双下标( ):参考方向从A指向 参考方向从 指向
i<0
例:
A
10Ω 10V
I1
I = 1A
实际方向从A到 实际方向从 到B
I
I2
B
如果参考方向为I 如果参考方向为 1, I1=1A 如果参考方向为I 如果参考方向为 2, I2=-1A
i
i a b
O
i = Im sin ωt
T 0 < t < ,i > 0 2 T < t < T,i < 0 2
T /2
T
t
如何求电流? 如何求电流? 实际方向与参考方向相同 实际方向与参考方向相反
(2)电流的参考方向 电流的实际方向
实际方向
实际方向

电路课件(邱关源版)

电路课件(邱关源版)
三相负载 三相输电线路 目前世界上电力系统采用的主要供电方式,绝 大多数是三相制,日常用电是取自三相制中的一相。
返 回 上 页 下 页
1.对称三相电源的产生
同步发电机结构:
A Y º I º N S X Z
定子
w
B
A
+

B
+

C
+

转子
X
Y
Z
C
铁心(作为导磁路经) 匝数相同 定子: 三相绕组 空间排列互差120
转子 : 直流励磁的电磁铁
返 回 上 页 下 页
三相同步发电机
A Y C º I º N S X
Z
w
B
通常由三相同步发电机 产 生 , 三 相 绕 组 在 空 间 互 差 120° , 当 转 子 以 均 匀角速度 w 转动时,在三相 绕组中产生感应电压,从而 形成对称三相电源。
返 回
上 页
下 页
③Y形联接的对称三相负载,根据相、线电压、电 3U 30 , I I 流的关系得: U AB AN A A'
2. Y–联接
+
IA

A’
A’ Z/3

设 U A U0


0
UA
UB U 120 o UC U120 o Z | Z | φ

A
UB U 120 o UC U120 o U AB U A U0o UBC UB U 120 o U CA UC U120 o
线电压等于对应的相电压



注意 ①以上关于线电压和相电压的关系也适用

《电路》邱关源第五版第一章课件

《电路》邱关源第五版第一章课件
件组成的电路。
欧姆定律的应用非常广泛, 它可以帮助我们计算电流、
电压和电阻等电路参数。
通过欧姆定律,我们可以计算出 电流 $I = frac{V}{R}$ 或 $V = IR$,以及电阻 $R = frac{V}{I}$。 这些公式可以帮助我们解决电路 中的各种问题,例如计算功率、
分析电路的动态响应等。
基尔霍夫定律
描述了电路中电流和电压 的约束关系,包括电流定 律和电压定律。
功率守恒定律
描述了电路中功率的约束 关系,即任意电路中输入 功率等于输出功率。
03
电路的基本定律
欧姆定律
总结词
详细描述
总结词
详细描述
欧姆定律是电路分析中最基 本的定律之一,它描述了电 路中电压、电流和电阻之间
的关系。
欧姆定律是指在一个线性电阻元 件中,电压与电流成正比,即 $V = IR$,其中 $V$ 是电压,$I$ 是 电流,$R$ 是电阻。这个定律适 用于金属导体和电解液等线性元
动态变化
暂态过程中,电路中的电压和电流会随时间动态变化。
持续时间短
暂态过程的时间常数很小,通常在微秒或毫秒级别。
能量转换
暂态过程中,电路中的储能元件会进行能量的转换和传递 。
一阶电路的暂态过程
01
一阶电路的数学模 型
一阶电路由一个电容或一个电感 组成,其数学模型可以用微分方 程表示。
02
一阶电路的暂态过 程分析
电压
电场力做功的量度,表示为V 。
电功率
表示电场力做功快慢的物理量 ,表示为P。
电能量
表示电荷在电场中做功本领大 小的物理量,表示为W。
02
电路的状态和元件的约束关系
电流和电压

第2章电路邱关源课件PPT

第2章电路邱关源课件PPT

等效电阻
Req = ∑ Rk
k =1
n
各电阻上的电压为
Rk uk = Rk i = u, k = 1, 2,L, n Req
各电阻上的分压值与其电阻值成正比
电阻的并联
i 1 i1 + u
i2
G1

G2
Gn
i 1 + u

Geq
1′
1′
根据KCL 根据KCL写作 KCL写作
i = i1 + i2 + L + in
n个电流源并联, 个电流源并联,可等效为一个电流源
iS 1 iS 2 iSn
n
iS = iS 1 + iS 2 + L + iSn = ∑ iSk
k =1
iS
电 路
+ us −
+ us −
+ us −
iS
iS
iS
iS
只有电压相等极性一致的电压源才允许并联, 只有电压相等极性一致的电压源才允许并联, 等效电路为 其中任一电压源。 其中任一电压源。 只有电流相等且方向一致的电流源才允许串联, 只有电流相等且方向一致的电流源才允许串联, 等效电路 为其中任一电流源. 为其中任一电流源. 电阻电路的等效变换
ia
+
1 ib G2
ic + G1 U1

2
is1 + U2

G4
3
+
Us

G3
U3
is 2

1 ib G2
+
2
is1 + U2
− +
1

电路课件(邱关源)上交版

电路课件(邱关源)上交版
详细描述
节点电压法是一种基于基尔霍夫定律的电路分析方法,通过设定每个节点的电 压为未知数,并根据电路的结构建立相应的方程组,然后求解未知数的值。这 种方法适用于具有多个节点的电路分析。
叠加定理和替代定理
总结词
叠加定理是线性电路中多个电源作用下的基本分析方法,替代定理则是用来简化电路分析的一种技巧 。
01
三相负载主要有三相电动机、三相变压器等,它们在工业生产
和日常生活中发挥着重要作用。
三相负载的工作原理
02
三相负载利用三相交流电的特性,通过电磁感应原理实现能量
的转换和传输。
三相负载的特点
03
三相负载具有结构简单、效率高、维护方便等优点,是现代工
业生产中的重要设备。
三相电路的分析方法
相电压和线电压
详细描述
叠加定理是指在多个电源共同作用的线性电路中,各电源单独作用产生的响应可以叠加得到总响应。 替代定理则是指在一个电路中,如果某个元件可以被另一个元件等效替代而不改变电路的性能,那么 在分析和计算时可以用等效元件替代原元件,从而简化电路模型。
04
正弦稳态电路分析
正弦电压和电流
正弦电压
正弦电流
时域分析法
时域分析法是将非正弦周期电流电路中的电压和 电流作为时间函数进行分析,通过求解微分方程 或差分方程来得到电路的响应。
仿真软件分析法
仿真软件分析法是一种基于计算机仿真的分析方 法,通过使用电路仿真软件(如Multisim、 Simulink等)对非正弦周期电流电路进行仿真和 分析,可以得到电路的响应波形和参数。
一阶电路的时域分析
一阶电路的定义
一阶电路是指由一个动态元件和若干静态元件组成的线性电路。
一阶电路的时域分析方法

第6章电路邱关源课件PPT

第6章电路邱关源课件PPT

线性电容
C +q + u -q -
du i =C dt
1 t uc (t ) = ∫ ic (ξ )d ξ C -∞
任意时刻
1 t uc (t ) = uc (t0 ) + ∫t ic (ξ )dξ C 0
1 0+ uc (0 + ) = uc (0 − ) + ∫0 ic dt C −
电 路
t0 = 0- t = 0+
3 −3
一 阶 电 路
电 路 例3 图示电路, 图示电路,t<0时,开关S 开关S闭合, 闭合,电路已达稳态。 电路已达稳态。在t=0时 刻,打开开关S 打开开关S,求初始值iL(0+)、uC(0+)、 i(0+)、 iC(0+)、 du C uL(0+)、 diL 、 和稳态值iL(∞)、uC(∞) 。 dt 0+ dt 0+ 解 : t<0 时 , 电容相当于开 i 路,电感相当于短路
换路前i 换路前i1(0-)+i2(0-)≠0,换路后i 换路后i1(0+)+i2(0+) =0(KCL), =0(KCL),i1、i2 发生跃变, 发生跃变 ,但总磁链不变 一 阶 电 路
§6-2 一阶电路的零输入响应
电 路
零输入响应: 没有外施激励( 没有外施激励(输入为零), 输入为零),由电路中动态元件 ),由电路中动态元件 的初始储能引起的响应。 的初始储能引起的响应。 S (t = 0 )
一 阶 电 路
线性电感
i + L u (t) -
dψ di(t ) u (t ) = =L dt dt
电 路
换路 0-到 0+的瞬间

《电路原理》邱关源ppt课件

《电路原理》邱关源ppt课件
i(t)deΔ flti m0Δ Δqt ddqt
单位正电荷q 从电路中一点移至另一点时 电场力做功(W)的大小
U
def
dW
dq
为什么要设电流参考方
向?
简单电a 路
+
+
I
U
E
Uab

b-
I1 R1
R2 I2
复杂+ 电路
U6
I3

IS
I4
R3
R4
电流的实际方向 可知
各电I5流+ 的US 实- 际方向 未知
(b) 若iS为变化的电源,则某一时刻的伏安关系也是 这样 电流为零的电流源,伏安曲线与 u 轴重合, 相当于开路元件
(4). 理想电流源的短路与开路
i
(a) 短路:R=0, i= iS ,u=0 ,电流
+
源被短路。
iS
u
R (b) 开路:R,i= iS ,u 。若强
_
迫断开电流源回路,电路模型为病
i为有限值时,u=0。
当R=,视其为开路。
u为有限值时,i=0。 * 理想导线的电阻值为零。
5.其他电阻元件
负电阻: (negative resistance),在u、i 取关联参考方向时,负电阻的电压、
电流关系位于Ⅱ、Ⅳ象限,即R<0,G<0 。负电阻将输出电功率(电功率
小于零),对外提供电能。所以负电阻是一种有源元件(active element)。
例 i

AU B

电压电流参考方向如图中所标, 问:对A、两部分电路电压电流参考方向 关联否?
答: A 电压、电流参考方向非关联;
B 电压、电流参考方向关联。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《电路》教学课件
主讲:
邮政编码:400050 电子信箱: 联系电话:
第一章 电路模型和电路定律
1.1 电路和电路模型 1.2 电流和电压的参考方向 1.3 电功率和能量 1.4 电路元件 1.5 电阻元件
1.6 电压源和电流源 1.7 受控电源 1.8 基尔霍夫定律
重点: 1. 电压、电流的参考方向 2. 电阻、电源元件特性 3. 基尔霍夫定律
1.1 电路和电路模型(model)
1、概念:
电路---------是电流的通路,是为了某种需要由某些电工设备
或 元件(电气器件)按一定的方式组合起来的。
电路主要由电源、负载、连接导线及开关等构成。 电源(source):提供能量或信号.由于电路中的电压和电流是
在电源的作用下产生的,所以又称激励。
例: I
aR b
若 I = 5A ,则实际方向与参考方向一致,
若 I =-5A ,则实际方向与参考方向相反。
5、关联参考方向:
R i
+ u-
当电压的参考方向指定后,指定电流从标以电压参考 方向的“+”极性端流入,并从标“—”端流出,即电流 的参考方向与电压的参考方向一致,也称电流和电压 为关联参考方向。反之为非关联参考方向。
i(t)deΔ flti m0Δ Δqt ddqt
单位正电荷q 从电路中一点移至另一点时 电场力做功(W)的大小
U
def

dW
dq
为什么要设电流参考方
向?
简单电a 路
+
+
I
U
E
Uab

b-
I1 R1
R2 I2
复杂+ 电路
U6
I3

IS
I4
R3
R4
电流的实际方向 可知
各电I5流+ 的US 实- 际方向 未知
2. 电流参考方向
电流(代数量) 大小 方向(正负)
任意假定一个正电荷运动的方向即为电 流的参考方向。
i A
参考方向
B
电流的参考方向与实际方向的关系:
i 参考方向
i 参考方向
A
BA
实际方向
实际方向 B
i>0
i<0
电流参考方向的两种表示:
• 用箭头表示:箭头的指向为电流的参考方向。
i
A
B
• 用双下标表示:如 iAB , 电流的参考方向由A指向B。
导线
手电筒的电路模型
Ro
+
R


E
-
S

开关

5、几种基本的电路元件 电阻元件:表示消耗电能的元件 电感元件:表示产生磁场,储存磁场能量的元件 电容元件:表示产生电场,储存电场能量的元件 电源元件:表示各种将其它形式的能量转变成电能的元件
理想电路元件:有某种确定的电磁性能 的理想元件
(1)具有相同的主要电磁性能的实际电路部件,在 一定条件下可用同一模型表示; (2) 同一实际电路部件在不同的应用条件下,其模 型可以有不同的形式
功率的单位:W (瓦) (Watt,瓦特) 能量的单位: J (焦) (Joule,焦耳)
2. 电路吸收或发出功率的判断 u, i 取关联参考方向
+ P吸=ui 表示元件吸收的功率
u
P吸>0 吸收正功率 (实际吸收)
i
-
P吸<0 吸收负功率 (实际发出)
u, i 取非关联参考方向
-
P发 = ui 表示元件发出的功率

1.2 电流和电压的参考方向
1、实际方向:
物理中对电量规定的方向。
物理量


实际 方向
电流 I A、 mA 、μA 正电荷运动的方向
电动势 E 电压 U
kV、 V、mV、 电位升高的方向
μV
(低电位 Ù 高电位)
kV、V、mV、 电位降低的方向
μV
( 高电位 Ù 低电位)
电流 电压U
单位时间内通过导体横截面的电荷量
(3) 参考方向不同时,其表达式符号也不同,但实际方向不变。
iR
iR
+
u

u = Ri
+
u

u = –Ri
1.3电功率和能量
1. 电功率
p

dw dt
单位时间内电场力所做的功。
u dw dq
i

dq dt
p
dw dt
dwdq dq dt
ui
w t u( )i( )d t0
A
iAB
B
电压参考方向的三种表示方式:
(1) 用箭头表示
U
(2) 用正负极性表示
+
U
(3) 用双下标表示
A
UAB
B
3、实际方向与参考方向的关系
实际方向与参考方向一致,电流(或电压)值为正; 实际方向与参考方向相反,电流(或电压)值为负。 4、注意:
在参考方向选定后,电流(或电压) 值才有正负之分。 对任何电路分析时都应先指定各处的 i , u 的参考方向。
u i
+
P发>0 发出正功率 (实际发出) P发<0 发出负功率 (实际吸收)
例 + U1
+ U6 -
1
6
Hale Waihona Puke I1 +-
+
2 U2 -
U4 4 +
I2
U5 5 -
I3

+
3- U3
求图示电路中各方框 所代表的元件消耗或 产生的功率。已知: U1=1V, U2= -3V, U3=8V, U4= -4V, U5=7V, U6= -3V I1=2A, I2=1A, I3= -1A
P1发U1I1 122W(实际发出P4) 吸U4I2 (4)14W(实际发
P2吸U2I1(3)26W(实际发 P5吸出 U5) I37(1)7W(实际发
P3吸U3I18216W(实际吸P收 6吸U ) 6I3(3)(1)3W(实际吸

对一完整的电路,发出的功率=吸收的功率
1.4 电路元件
集总元件假定: 在任何时刻,流入二端元件的一个端子的电流一定等于从 另一端子流出的电流,两个端子之间的电压为单值量。 端子数目可分为二端、三端、四端元件等。
负载(load):将电能转化为其它形式的能量,或对 信号进行处理.
响应:由激励在电路中产生的电压、电流。 导线(line)、开关(switch)等:将电源与负载接成通路.
2、作用: 1. 实现电能的传输、分配与转换




2.实现信号的传递与处理
话筒
放 扬声器 大 器
4、电路模型:
为了便于用数学方法分析电路,一般要将实际电路模型化, 用足以反映其电磁性质的理想电路元件或其组合来模拟实际电 路中的器件,从而构成与实际电路相对应的电路模型。
例 i

AU B

电压电流参考方向如图中所标, 问:对A、两部分电路电压电流参考方向 关联否?
答: A 电压、电流参考方向非关联;
B 电压、电流参考方向关联。
小结:
(1) 分析电路前必须选定电压和电流的参考方向。
(2) 参考方向一经选定,必须在图中相应位置标注 (包括方 向和符号),在计算过程中不得任意改变。
相关文档
最新文档