电路邱关源第五版65页PPT
合集下载
电路第五版邱关源ppt课件.ppt
。例如电阻、电感、电容。..
返回 上页 下页
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
2.集总参数电路
由集总元件/构成的电路
集总元件
假定发生的电磁过程都集中在元
件内部进行。
集总条件 d
注意集总参数电路中u、i 可以是时间的函数,
电压参考方向的三种表示方式: (1) 用箭头表示:
u
(2)用正、负极性表示:
+u
(3)用双下标表示:
A
uAB
B
返回 上页 下页
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
3.关联参考方向
元件或支路的u,i 采用相同的参考方向称为关联 参考方向。反之,称为非关联参考方向。
问题 在复杂电路或交变电路中,两点间电压的
实际方向往往不易判别,给实际电路问题 的分析、计算带来困难。
电压(降)的参考方向
参考方向
+
u
–
假设高电位指向低电 位的方向。
参考方向
+
u
–
+ 实际方向 – – 实际方向 +
u >0
u <0
返回 上页 下页
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
电路第五版邱关源PPT学习教案
第26页/共87页
返回 上页 下页
例1-5 图为RC选频网络,求u1和u2同相位的条件及
解 设:Z1=R+jXC, Z2=R//jXC
U 2
U1Z2 Z1 Z2
+
u1
R jXC
U1 U 2
?
U1 U 2
Z1 Z2 Z2
1
Z1 Z2
jXC
-
+
R
u2
-
Z1
R jX C
(R jX C )2
Z2 jRXC (R jX C )
Z
1 Y
1 G jB
G jB G2 B2
R
jX
R
G G2B2
,
X
B G2B2
| Y | 1 |Z|
,
φZ φ-2 RL串联电路如图,求在=106rad/s时的等效并
联电路。
50
解 RL串联电路的阻抗为
XL L 106 0.06 103Ω 60Ω
Z R jXL (50 j60)Ω 78.1 50.2 Ω
-
-
第6页/共87页
返回 上页 下页
(3)L<1/C, X<0, Z <0,电路为容性,
电压落后电流。 U
Z
U
U R U
I
U2 R
U
2 X
U2 R
(UC
U L )2
I + U R -
UX
UC
L
等效电 路
+
.
U
-
R 1
+U X
jCeq -
(UU4CL)电L压=U1与/R电C流,同XI=相0等路。,效电Z=0,电+-路U 为电IR阻性-U+, R
电路分析基础第五版邱关源通用课件
一阶动态电路的微分方程及其响应
总结词
求解微分方程
详细描述
根据微分方程的特性和初始条件,求 解微分方程以获得电路元件的状态变 量随时间变化的规律。常用的求解方 法包括分离变量法、常数变易法、线 性化法等。
一阶动态电路的微分方程及其响应
总结词:分析响应
详细描述:根据求解出的状态变量,分析电路元件的响应特性。响应特性包括稳 态响应和暂态响应,其中暂态响应指的是电路从初始状态达到稳态的过程。
电路分析基础第五版邱关源 通用课件
目录
• 绪论 • 电路的基本定律和定理 • 电阻电路的分析 • 一阶动态电路的分析 • 二阶动态电路的分析 • 正弦稳态电路的分析 • 三相电路的分析 • 非正弦周期电流电路的分析
01
绪论
电路分析的目的和任务
目的
电路分析是电子工程和电气工程学科中的基础课程,其目的是理解和掌握电路的基本原理、基本概念 和基本分析方法,为后续专业课程的学习打下基础。
)
三相电源或三相负载的端点相互 连接,每相负载承受的电压为电 源线电压。
混合连接
在某些情况下,电路中可能同时 存在星形和三角形连接的负载, 这称为混合连接。
三相电路的电压和电流分析
1 2
相电压与线电压
在星形连接中,相电压等于电源电压;在三角形 连接中,线电压等于电源电压。
对称三相电路
当三相电源和三相负载对称时,各相的电压和电 流大小相等,相位互差120°。
一阶电路的阶跃响应和冲激响应
总结词:阶跃响应
详细描述:阶跃响应是指当输入信号为一个阶跃函数时,电路的输出响应。阶跃响应的特点是初始时刻电路输出突然跳变到 某一值,然后逐渐趋近于稳态值。
一阶电路的阶跃响应和冲激响应
电路第五版ppt(邱关源
i
R
u 则欧姆定律写为 u = –R i
-
+
i = –G u
公式和参考方向必须配套使用! 公式和参考方向必须配套使用!
3. 功率和能量 功率: 功率: R
说明电阻元件 在任何时刻总 是消耗功率的。 是消耗功率的。
i
+
i
u
R
-
p = u i = i2R =u2 / R
关联: 关联:吸收能量
假定发生的电磁过程 都集中在元件内部进行
电路元件按照一定的规则进行连接 电路元件按照一定的规则进行连接
线性 ━非线性 时变 ━ 时不变 分布参数 ━ 集总参数
d << λ
6000km
求开关闭合后的电流i 求开关闭合后的电流 i
R 1
C
∽
R2 R4
Us1 RL
Us2
L
R3
研究的手段
基本定律、定理、 基本定律、定理、原理必须掌握 时域分析法 基本方法 频域分析法
用箭头表示:箭头的指向为电流的参考方向 电流的参考方向。 • 用箭头表示:箭头的指向为电流的参考方向。
i A B
• 用双下标表示:如 iAB , 电流的参考方向由 指向 。 用双下标表示: 电流的参考方向由A指向 指向B。
A
iAB
B
2. 电压的参考方向 (voltage reference direction)
10BASE-T wall plate
电 池
功能
a b
柎的 的 枱 枞。 枞。
惊电路枞案
2. 电路模型 (circuit model)
10BASE-T wall plate
电 池 导线 电路模型
《电路原理》第五版,邱关源,罗先觉第五版课件最全包括所有章节及习题解答
i º
R1
º
i1
R2
i2
1 R1 R2i i1 i 1 R1 1 R2 R1 R2
1 R2 R1i i2 i (i i1 ) 1 R1 1 R2 R1 R2
功率
p1=G1u2, p2=G2u2,, pn=Gnu2 p1: p2 : : pn= G1 : G2 : :Gn
=R1i2+R2i2+ +Rni2
=p1+ p2++ pn
表明
电阻串连时,各电阻消耗的功率与电阻大小成正比 等效电阻消耗的功率等于各串连电阻消耗功率的总和
2、电阻并联 (Parallel Connection)
i + 电路特点 u _
R1
i1 R2
i2 Rk
ik Rn
in
各电阻两端分别接在一起,两端为同一电压 (KVL); 总电流等于流过各并联电阻的电流之和 (KCL)。
或
GΔ Y相邻电导乘积 GY
Y变
特例:若三个电阻相等(对称),则有
R12 R1 外大内小 R2 R23 R31 R3
R = 3RY
注意
等效对外部(端钮以外)有效,对内不成立。 等效电路与外部电路无关。 用于简化电路
例
桥 T 电路 1k 1k 1k 1k R
1/3k
1/3k 1/3k
– 3
2 +
u23Y
接: 用电压表示电流 i1 =u12 /R12 – u31 /R31 i2 =u23 /R23 – u12 /R12 i3 =u31 /R31 – u23 /R23 (1)
Y接: 用电流表示电压 u12Y=R1i1Y–R2i2Y u23Y=R2i2Y – R3i3Y u31Y=R3i3Y – R1i1Y i1Y+i2Y+i3Y = 0 (2)
电路第三章第5版邱关源.ppt
–
–
网孔1、网孔2之间的互电阻。
b
uSl1= uS1-uS2 网孔1中所有电压源电压的代数和。 uSl2= uS2 网孔2中所有电压源电压的代数和。
注意 ①自电阻总为正。
②当两个网孔电流流过相关支路方向相同
时,互电阻取正号;否则为负号。
返回 上页 下页
③当电压源电压方向与该网孔电流方向一致时,取
负号;反之取正号。
R1 i2 il1 + uS2
R2 il2
–
b
i3 观察可以看出如下规律:
R3 R11=R1+R2
网孔1中所有电阻之和, 称网孔1的自电阻。
返回 上页 下页
R22=R2+R3
i1
网孔2中所有电阻之和,称 +
网孔2的自电阻。
uS1
R1 i2 il1 + uS2
R2 il2
i3 R3
R12= R21= –R2
避开电流源支路取回路: 7I1+7I3=70
返回 上页 下页
例3 列写支路电流方程.(电路中含有受控源)
7 +
70V –
a
I1
1
I2 +
5U_
11 + U
2_
I3 解 7
结点a:
–I1–I2+I3=0 7I1–11I2=70-5U
11I2+7I3= 5U
b
增补方程:U=7I3
注意 有受控源的电路,方程列写分两步:
返回 上页 下页
基本回路(单连支回路) 基本回路具有独占的一条连支
6
5
6
45
2
1
3
2
1
电路原理第五版邱关源罗先觉第五版课件最全包括所有章节及习题解答
R3
- R1il1+ (R1 +R3) il2 =-uS1
uS1 –
uS2 –
b
总结:
R11=R1+R2 回路1的自电阻,等于回路1中所有电阻之和
R22=R1+R3 回路2的自电阻,等于回路2中所有电阻之和 自电阻总为正
R12= R21= –R1 回路1、回路2之间的互电阻 当两个回路电流流过相关支路方向相同时,互电阻 取正号;否则为负号。
其中:
R11il1+R12il1+ …+R1l ill=uSl1 R21il1…+R22il1+ …+R2l ill=uSl2 Rl1il1+Rl2il1+ …+Rll ill=uSll
Rkk:自电阻(为正) + : 流过互阻的两个回路电流方向相同
Rjk:互电阻 - : 流过互阻的两个回路电流方向相反 0 : 无关
线性组合表示,来求得电路的解。
a
图中有两个网孔,支路电流 i1
i2
i3
可表示为:
R1
R2
i1 im1
i3 im2
+ im1 + im2
uS1
uS2
R3
i2 im2 im1
–
–
b
列写的方程
各支路电流可以表示为有关网孔电流的代数和,所以
KCL自动满足。因此网孔电流法是对个网孔列写KVL方
i1
i2
i3
R1
R2
+ im1 +
im2
R3
uS1
uS2
–
–
b
总结:
R11=R1+R2 网孔1的自电阻。等于网孔1中所有电阻之和 R22=R2+R3 网孔2的自电阻。等于网孔2中所有电阻之和
《电路》第五版邱关源罗先觉课件
频率特性的概念
网络函数随频率变化的特性,包括幅频特性和相频特性。
频率特性的分析方法
通过求解电路在正弦稳态下的响应,得到网络性
RC电路的基本构成
由电阻和电容元件组成的电路。
RC电路的频率特性
随着频率的变化,RC电路的阻抗、 相位等都会发生变化,表现出不 同的频率响应特性。
视在功率为电压与电流的复数模的乘积,有功功率 为平均功率,无功功率为电路中储能元件与电源之 间交换的功率
功率因数的提高
通过改善电路元件参数或采用补偿装置来提 高功率因数,减少无功功率的传输,提高电 力系统的效率
06 频率特性及多频正弦稳态 电路分析
网络函数与频率特性
网络函数的定义
表示线性时不变电路在单一频率正弦激励下,响应的相量 与激励相量比值,即电压传递函数或电流传递函数。
电功率与电能
电功率
单位时间内电场力所做的功称为 电功率。
电能
一段时间内电场力所做的功称为电 能。
功率守恒
在一个闭合电路中,电源发出的功 率等于各负载吸收的功率之和。
电阻元件及欧姆定律
电阻元件
表示消耗电能的元件,用R表示。
欧姆定律
在一段不含电源的导体中,导体 中的电流I与导体两端的电压U成 正比,与导体的电阻R成反比。
串联谐振电路的应用
在通信、电子测量等领域广泛应用,如选频 电路、振荡电路等。
RLC并联谐振电路
RLC并联电路的基本构成
由电阻、电感和电容元件并联组成的 电路。
并联谐振的概念
当电路中的感抗等于容抗时,电路发 生谐振,此时电路的阻抗最大,电压 最高。
并联谐振电路的频率特性
在谐振频率附近,电路的幅频特性出 现深谷,相频特性发生突变。
网络函数随频率变化的特性,包括幅频特性和相频特性。
频率特性的分析方法
通过求解电路在正弦稳态下的响应,得到网络性
RC电路的基本构成
由电阻和电容元件组成的电路。
RC电路的频率特性
随着频率的变化,RC电路的阻抗、 相位等都会发生变化,表现出不 同的频率响应特性。
视在功率为电压与电流的复数模的乘积,有功功率 为平均功率,无功功率为电路中储能元件与电源之 间交换的功率
功率因数的提高
通过改善电路元件参数或采用补偿装置来提 高功率因数,减少无功功率的传输,提高电 力系统的效率
06 频率特性及多频正弦稳态 电路分析
网络函数与频率特性
网络函数的定义
表示线性时不变电路在单一频率正弦激励下,响应的相量 与激励相量比值,即电压传递函数或电流传递函数。
电功率与电能
电功率
单位时间内电场力所做的功称为 电功率。
电能
一段时间内电场力所做的功称为电 能。
功率守恒
在一个闭合电路中,电源发出的功 率等于各负载吸收的功率之和。
电阻元件及欧姆定律
电阻元件
表示消耗电能的元件,用R表示。
欧姆定律
在一段不含电源的导体中,导体 中的电流I与导体两端的电压U成 正比,与导体的电阻R成反比。
串联谐振电路的应用
在通信、电子测量等领域广泛应用,如选频 电路、振荡电路等。
RLC并联谐振电路
RLC并联电路的基本构成
由电阻、电感和电容元件并联组成的 电路。
并联谐振的概念
当电路中的感抗等于容抗时,电路发 生谐振,此时电路的阻抗最大,电压 最高。
并联谐振电路的频率特性
在谐振频率附近,电路的幅频特性出 现深谷,相频特性发生突变。
电路 邱关源第五版通用课件
时域分析法
时域分析法是一种基于微分方 程或差分方程的方法,直接在 时间域内对非正弦周期电压和 电流进行分析,可以更直观地 了解电路的工作过程。
复数分析法
复数分析法是一种基于复数运 算的方法,通过将实数域中的 非正弦周期电压和电流转换为 复数域进行分析,可以简化计 算过程。
非正弦周期电流电路的功率
非正弦周期功率的概念
总结词
网孔电流法是一种求解电路中电压和电流的方法,通过设置网孔电流并利用基尔 霍夫定律建立方程式求解。
详细描述
网孔电流法的基本思想是将电路中的网孔电流作为未知数,根据基尔霍夫电压定 律建立网孔电压方程,然后求解网孔电流。通过网孔电流法,我们可以得到电路 中各支路的电流和电压。
叠加定理
总结词
叠加定理是一种求解线性电路中电压和电流的方法,它基于 线性电路的性质,即多个激励源共同作用时,各激励源分别 产生的响应可以叠加起来得到总响应。
在正弦稳态电路中,有功功率是指电 路中消耗的功率,其计算公式为 $P=UIcostheta$,其中$U$和$I$分 别为电压和电流的有效值,$theta$ 为电压与电流之间的相位差。无功功 率是指电路中交换的功率,其计算公 式为$Q=UIsintheta$。有功功率和 无功功率都是标量,但无功功率带有 符号。
非正弦周期功率是指非正弦周期电压和电流在一定时间内 所做的功或所消耗的能量,其计算需要考虑电压和电流的 有效值和相位差等因素。
非正弦周期功率的计算方法
非正弦周期功率可以通过计算电压和电流的有效值之积, 再乘以时间得到。也可以通过傅里叶级数展开的方法,分 别计算各次谐波的功率再求和得到。
非正弦周期功率的测量方法
电场力对电荷所做的功,通常用符号U表示。电压的 大小等于电场力把单位正电荷从一点移动到另一点 所做的功。
邱关源罗先觉电路第五版全部课件.ppt
i1 ?
R2i R1 ? R2
i2 ?
? R1 i R1 ? R2
11
4. 功率
p1=G1u2, p2=G2u2,? , pn=Gnu2
总功率 表明:
p=Gequ2 = (G1+ G2+ …+Gn ) u2 =G1u2+G2u2+ ? +Gnu2 =p1+ p2+? + pn
(1) 电阻并连时,各电阻消耗的功率与电阻大小成反比 (2) 等效电阻消耗的功率等于各并联电阻消耗功率的总和
12
三. 电阻的串并联
例 计算各支路的电压和电流。
6?
i1 5 ?
i1 5 ?
+
165V
-
i2 6 ? i3
+
18 ?
4? i4
165 V
i5
-
12 ?
i2
i3
18 ?
9?
i1 ? 165 11 ? 15 A i2 ? 90 18 ? 5 A i3 ? 15 ? 5 ? 10 A i4 ? 30 4 ? 7.5 A
u ? u1 ? ???? u k ? ???? un
5
2. 等效电阻
R1
Rk
Rn
i
+ u1 _ + u k _ + un _ 等效
i
+
u
由欧姆定律:
_
+
Req u_
u ? R1i ? ? ? RK i ? ? ? Rn i ? ( R1 ? ? ? Rn )i ? Req i
n
? Req ? R1 ? ? ? Rk ? ? ? Rn ? Rk ? Rk
电路第五版 邱关源 课件
叠加定理
总结词
叠加定理是线性电路分析的基本定理之一,它表明在多个独立源共同作用的线性 电路中,任何一个元件的响应等于各个独立源单独作用于该元件所产生的响应的 代数和。
详细描述
叠加定理是线性电路分析的重要工具,它可以用来求解多个独立源共同作用下的 电路问题。通过应用叠加定理,可以将多个独立源分别单独作用于电路,然后将 其对电路的影响(即电压或电流)叠加起来,得到最终的响应。
电路第五版 邱关源 课件
目录
• 电路的基本概念 • 电路分析方法 • 正弦稳态电路分析 • 三相电路 • 非正弦周期电流电路 • 一阶动态电路分析
01
电路的基本概念
Chapter
电流、电压和电阻
电流
电荷在导体中流动的现象称为电流。电流的大小用单位时间内通过导体横截面的电荷量来 表示,通常用字母I表示。
由三个幅值相等、频率相同、相 位互差120度的正弦电压源组成 。
三相负载
分为对称和不对称两类。对称负 载有星形和三角形连接方式,不 对称负载则可能存在单相或多相 的连接方式。
三相电路的分析方法
相电压和线电压
在三相四线制中,相电压 是各相与中性点之间的电 压,线电压是任意两相之 间的电压。
相电流和线电流
}}{1.732}$。
视在功率
表示电路的总功率,计算公式为 $S = sqrt{P^2 + Q^2}$。
05
非正弦周期电流电路
Chapter
非正弦周期电流电路的分析方法
傅里叶级数展开法
将非正弦周期电流或电压表示为傅里叶级数的形式,然后对每一 个展开项分别进行计算。
平均值法
将非正弦周期函数表示为直流和交流成分的平均值,适用于分析线 性非正弦周期电路。
电路_第五版邱关源第九章PPTPPT学习教案
B
X R2 X
2
| Y | 1 |Z|
,
φY φZ
第18页/共64页
返回 上页 下页
同样,若由Y变为Z,则有
G
Y
jB
R
Z
jX
Y G jB | Y | φY , Z R jX | Z | φZ
Z
1 Y
1 G jB
G jB G2 B2
R
jX
R
G G2B2
,
X
B G2B2
| Y | 1 |Z|
②
一端口N0中如不含受控源,则有
| | 90 或 Z
但有受控源时,可能会出现
| | 90 或 Z
其实部将为负值,其等效电路要设定 受控源 来表示 实部。
| Y | 90 | Y | 90
第21页/共64页
返回 上页 下页
注意
③
一端口N0的两种参数Z和Y具有同等效 用,彼 此可以 等效互 换,其 极坐标 形式表 示的互 换条件 为
(130 j100)Ω
第25页/共64页
返回 上页 下页
9-2 电路的相量图
分析阻抗(导纳)串、并联电路时 ,可以 利用相 关的电 压和电 流相量 在复平 面上组 成的电 路的相 量图。
1. 并联电路相量图的画法
①
参考电路并联部分的电压相量。
②
根据支路的VCR确定各并联支路的电 流相量 与电压 相量之 间的夹 角。
Z R jL j 1 (15 j56.5 j26.5)Ω C
33.54 63.4 Ω
第8页/共64页
返回 上页 下页
I U Z
5 60 33.54 63.4
A 0.149
《电路》课件第五版原著邱关源修订罗先觉(内蒙(精)
+
1
整理得:
6V
u g(u) 6 0.5cost
iS i + u
R
返回 上页 下页
u g(u) 6 0.5cost
R
①求电路的静态工作点,令 iS(t) 0
u2 u 6 0
u 2 u 3
不符题意
得静态工作点: UQUQ2V ,2IVQ,IQUQ2 UQ24A4A
④根据小信号等效电路进行求解 。
返回 上页 下页
2.典型例题
例1 求电路在静态工作点处由小信号所产生的u(t)
和i(t)。已知iS(t)=0.5cosωt ,非线性电阻的伏安
解
特性为:
i
g
(u)
u 2
0
应用KCL和KVL:
( u 0) (u0 )
i0
i i0 iS
u Us Ri0 6 1 i0
例 一非线性电阻的伏安特性 u 100i i3
(1) 求 i1 = 2A, i2 = 10A时对应的电压 u1,u2;
解
u1
100 i1
i3
1
208V
u2
100i2
i3
2
2000V
返回 上页 下页
(2) 求 i =2cos(314t)时对应的电压 u;
解 u 100i i3 200cos314t 8cos3314t
按泰勒级数展开
忽略高次项
dg IQ i1(t) g(UQ ) du UQ u1(t)
IQ g(UQ )
i1(t)
《电路原理》第五版_邱关源_罗先觉第五版课件最全包括所有章节与习题解答
G3uS 3 G2 G3
iS1 G2 G3
b1iS1
b2uS 2
b3uS3
i (1)
2
i(2)
2
i(3)
2
i3
(un1
uS3 )G3
( G2 G2 G3
)uS 2
( G3 G2 G3
G3 )uS3
iS1 G2 G3
i (1)
3
i(2)
3
i(3)
a
50 +
50 Isc
(2) 求等效电阻Req 用开路电压、短路电流法
40V –
b
Isc 40 / 100 0.4A
Req
Uoc I sc
10 / 0.4
25
a
Req
+ Uoc
–
25 IL 5
-
10V
50V
+
b
IL
Uoc 50 25 5
60 30
2A
PL
求电流源的电压和发出 的功率
+
2 + 2A u
10V
3 -
3
10V电源作用: u(1) (3 2) 10 2V -
55
2
2A电源作用:u(2) 2 3 2 2 4.8V 5
u 6.8V P 6.8 2 13.6W
为两个简 单电路
+ 画出分 电路图 10V
1
1
R1
i2
i3
R2
+
= R3
《电路原理》邱关源ppt课件
i(t)deΔ flti m0Δ Δqt ddqt
单位正电荷q 从电路中一点移至另一点时 电场力做功(W)的大小
U
def
dW
dq
为什么要设电流参考方
向?
简单电a 路
+
+
I
U
E
Uab
-
b-
I1 R1
R2 I2
复杂+ 电路
U6
I3
-
IS
I4
R3
R4
电流的实际方向 可知
各电I5流+ 的US 实- 际方向 未知
(b) 若iS为变化的电源,则某一时刻的伏安关系也是 这样 电流为零的电流源,伏安曲线与 u 轴重合, 相当于开路元件
(4). 理想电流源的短路与开路
i
(a) 短路:R=0, i= iS ,u=0 ,电流
+
源被短路。
iS
u
R (b) 开路:R,i= iS ,u 。若强
_
迫断开电流源回路,电路模型为病
i为有限值时,u=0。
当R=,视其为开路。
u为有限值时,i=0。 * 理想导线的电阻值为零。
5.其他电阻元件
负电阻: (negative resistance),在u、i 取关联参考方向时,负电阻的电压、
电流关系位于Ⅱ、Ⅳ象限,即R<0,G<0 。负电阻将输出电功率(电功率
小于零),对外提供电能。所以负电阻是一种有源元件(active element)。
例 i
+
AU B
-
电压电流参考方向如图中所标, 问:对A、两部分电路电压电流参考方向 关联否?
答: A 电压、电流参考方向非关联;
B 电压、电流参考方向关联。
单位正电荷q 从电路中一点移至另一点时 电场力做功(W)的大小
U
def
dW
dq
为什么要设电流参考方
向?
简单电a 路
+
+
I
U
E
Uab
-
b-
I1 R1
R2 I2
复杂+ 电路
U6
I3
-
IS
I4
R3
R4
电流的实际方向 可知
各电I5流+ 的US 实- 际方向 未知
(b) 若iS为变化的电源,则某一时刻的伏安关系也是 这样 电流为零的电流源,伏安曲线与 u 轴重合, 相当于开路元件
(4). 理想电流源的短路与开路
i
(a) 短路:R=0, i= iS ,u=0 ,电流
+
源被短路。
iS
u
R (b) 开路:R,i= iS ,u 。若强
_
迫断开电流源回路,电路模型为病
i为有限值时,u=0。
当R=,视其为开路。
u为有限值时,i=0。 * 理想导线的电阻值为零。
5.其他电阻元件
负电阻: (negative resistance),在u、i 取关联参考方向时,负电阻的电压、
电流关系位于Ⅱ、Ⅳ象限,即R<0,G<0 。负电阻将输出电功率(电功率
小于零),对外提供电能。所以负电阻是一种有源元件(active element)。
例 i
+
AU B
-
电压电流参考方向如图中所标, 问:对A、两部分电路电压电流参考方向 关联否?
答: A 电压、电流参考方向非关联;
B 电压、电流参考方向关联。
相关主题