汽轮机主要零件结构
汽轮机原理6汽轮机主要零部件结构
1-高压转子
高压缸纵剖面图 2-高压外缸进汽端 3-高压外缸排汽端
高压内缸有中分面 设置于垂直方向将 汽缸分为左右两半, 采用高温螺栓进行 连接,螺栓不需要 承受内缸本身的重 量,可减少螺栓应 力,无高应力的高 温蠕变问题,安全 可靠性好。1级低 反动度叶片和13级 反动式扭叶片直接 装在内缸上。
中压主汽门和中压调门
在中压缸进口处必须设置中压主汽门来紧急切断来自再热器及管道的蒸汽。另 一方面在机组低负荷时为了维持锅炉再热器及旁路系统的稳定运行,保证再热 器有足够的冷却蒸汽流量,保护再热器不被烧坏,必须设置中压调门。
主汽门和调门组件
上汽1000MW超超临界汽 轮机采用全周进汽滑压运行 与补汽阀调频技ቤተ መጻሕፍቲ ባይዱ,设置有2 只高压主汽门和高压调门组 合件(简称高压联合汽门) 、2只中压主汽门和中压调门 组合件(简称中压联合汽门 )及2只补汽调门,所有的汽 门均通过弹簧弹力来关闭, 运行安全可靠。
低压缸纵剖面图 1-低压转子 2-低压外缸上半 3-低压内缸上半 4-低压外缸 6-低压内缸下半 7-低压外缸下半
(三) 进汽部分和中低压连通管
1 进汽部分 (1)定义:进汽部分是指调节汽阀后蒸汽进入汽缸第一级喷嘴的这 段区域。它包括调节汽阀至喷嘴室的主蒸汽(再热蒸汽)导管、导管与汽 缸的连接部分和喷嘴室。它是汽缸中承受蒸汽压力温度最高的部分。
(2)台板(搭脚)支承
低压缸的温度低,外形尺寸较大,低压缸 一般采用下缸伸出的搭脚直接支撑在基础 台板上,虽然它的支撑面比汽缸中分面低 ,但因排汽缸温度低,膨胀小,故影响不 大。轴向两端预埋入基础的固定板确定了 低压缸的轴向位置,在两轴向定位板连线 上,汽缸不允许轴向位移,轴向定位板连 线和横向定位板连线的交点,既是低压缸 的膨胀死点
汽轮机的工作原理和结构-附图
汽輪機工作原理和結構一、汽輪機工作原理汽輪機是將蒸汽の熱能轉換成機械能の蝸輪式機械。
在汽輪機中,蒸汽在噴嘴中發生膨脹,壓力降低,速度增加,熱能轉變為動能。
如圖1所示。
高速汽流流經動葉片3時,由於汽流方向改變,產生了對葉片の衝動力,推動葉輪2旋轉做功,將蒸汽の動能變成軸旋轉の機械能。
圖1 衝動式汽輪機工作原理圖1-軸;2-葉輪;3-動葉片;4-噴嘴二、汽輪機結構汽輪機主要由轉動部分(轉子)和固定部分(靜體或靜子)組成。
轉動部分包括葉柵、葉輪或轉子、主軸和聯軸器及緊固件等旋轉部件。
固定部件包括氣缸、蒸汽室、噴嘴室、隔板、隔板套(或靜葉持環)、汽封、軸承、軸承座、機座、滑銷系統以及有關緊固零件等。
套裝轉子の結構如圖2所示。
套裝轉子の葉輪、軸封套、聯軸器等部件和主軸是分別製造の,然後將它們熱套(過盈配合)在主軸上,並用鍵傳遞力矩。
圖2 套裝轉子結構1-油封環2-油封套3-軸4-動葉槽5-葉輪6-平衡槽汽輪機主要用途是在熱力發電廠中做帶動發電機の原動機。
為了保證汽輪機正常工作,需配置必要の附屬設備,如管道、閥門、凝汽器等,汽輪機及其附屬設備の組合稱為汽輪機設備。
圖3為汽輪機設備組成圖。
來自蒸汽發生器の高溫高壓蒸汽經主汽閥、調節閥進入汽輪機。
由於汽輪機排汽口の壓力大大低於進汽壓力,蒸汽在這個壓差作用下向排汽口流動,其壓力和溫度逐漸降低,部分熱能轉換為汽輪機轉子旋轉の機械能。
做完功の蒸汽稱為乏汽,從排汽口排入凝汽器,在較低の溫度下凝結成水,此凝結水由凝結水泵抽出送經蒸汽發生器構成封閉の熱力迴圈。
為了吸收乏汽在凝汽器放出の凝結熱,並保護較低の凝結溫度,必須用迴圈水泵不斷地向凝汽器供應冷卻水。
由於汽輪機の尾部和凝汽器不能絕對密封,其內部壓力又低於外界大氣壓,因而會有空氣漏入,最終進入凝汽器の殼側。
若任空氣在凝汽器內積累,凝汽器內壓力必然會升高,導致乏汽壓力升高,減少蒸汽對汽輪機做の有用功,同時積累の空氣還會帶來乏汽凝結放熱の惡化,這兩者都會導致熱迴圈效率の下降,因而必須將凝汽器殼側の空氣抽出。
汽轮机结构
汽轮机结构结构部件由转动部分和静止部分两个方面组成。
转子包括主轴、叶轮、动叶片和联轴器等。
静子包括进汽部分、汽缸、隔板和静叶栅、汽封及轴承等。
汽缸汽缸是汽轮机的外壳,其作用是将汽轮机的通流部分与大气隔开,形成封闭的汽室,保证蒸汽在汽轮机内部完成能量的转换过程,汽缸内安装着喷嘴室、隔板、隔板套等零部件;汽缸外连接着进汽、排汽、抽汽等管道。
汽缸的高、中压段一般采用合金钢或碳钢铸造结构,低压段可根据容量和结构要求,采用铸造结构或由简单铸件、型钢及钢板焊接的焊接结构。
高压缸有单层缸和双层缸两种形式。
单层缸多用于中低参数的汽轮机。
双层缸适用于参数相对较高的汽轮机。
分为高压内缸和高压外缸。
高压内缸由水平中分面分开,形成上、下缸,内缸支承在外缸的水平中分面上。
高压外缸由前后共四个猫爪支撑在前轴承箱上。
猫爪由下缸一起铸出,位于下缸的上部,这样使支承点保持在水平中心线上。
中压缸由中压内缸和中压外缸组成。
中压内缸在水平中分面上分开,形成上下汽缸,内缸支承在外缸的水平中分面上,采用在外缸上加工出来的一外凸台和在内缸上的一个环形槽相互配合,保持内缸在轴向的位置。
中压外缸由水平中分面分开,形成上下汽缸。
中压外缸也以前后两对猫爪分别支撑在中轴承箱和1号低压缸的前轴承箱上。
低压缸为反向分流式,每个低压缸一个外缸和两个内缸组成,全部由板件焊接而成。
汽缸的上半和下半均在垂直方向被分为三个部分,但在安装时,上缸垂直结合面已用螺栓连成一体,因此汽缸上半可作为一个零件起吊。
低压外缸由裙式台板支承,此台板与汽缸下半制成一体,并沿汽缸下半向两端延伸。
低压内缸支承在外缸上。
每块裙式台板分别安装在被灌浆固定在基础上的基础台板上。
低压缸的位置由裙式台板和基础台板之间的滑销固定。
转子转子是由合金钢锻件整体加工出来的。
在高压转子调速器端用刚性联轴器与一根长轴连接,此节上轴上装有主油泵和超速跳闸机构。
所有转子都被精加工,并且在装配上所有的叶片后,进行全速转动试验和精确动平衡。
第六章 汽轮机主要零件结构与振动
图6-48 叶片组的切向A型振动
图6-49叶片组的切向 B0型振动
(2)轴向振动 叶片组的轴向振动往往 与叶轮的轴向振动耦合在 一起,必然伴随这叶片的 扭转振动。 2.叶片组的扭转振动 在叶片扭转振动发生时, 围带与叶片保持便捷连续, 围带必然产生弯曲振动。 所以叶片组的扭转振动分 为组内各叶片的牛转子振 动和叶片组的扭转振动。
图6-15 铸造隔板
1—外缘;2—静叶片;3—隔板体
2、隔板套 隔板套用于固定隔板。现代高参数大功率汽轮机往往将 相邻的几级隔板状在同一隔板套中,隔板套在固定于汽缸 上。隔板套结构的分级基本上是由汽轮机抽汽情况决定的, 相邻隔板套之间有抽汽,这样可充分利用隔板套之间的环 状汽流通道,而无须借加大轴向尺寸的办法取得必要的抽 汽通流面积。 隔板套分为上下两半,而只通过中分面法兰用螺栓和定 位螺栓连接在一起。隔板套在汽缸内的支承和定位采用悬 挂销(搭子)和键的结构。隔板套通过其下半部分两侧的 搭子支承在下汽缸上,其上下中心位置由其底部的定位销 或平键定位。为保证隔板套的自由膨胀,装配时隔板套与 汽缸凹槽之间留有1~2mm的间隙。
图6—18 油膜的工作原理
(a)有相对运动,无施加垂直方向载荷作态; (b)无相对运动,有垂直方向荷载状态; (c)既有相对运动,也有垂直方向载荷状态; (d)两平面间构成楔形,有相对运动和垂直方向的载荷状态
(二)径向支承轴承 1及油楔中的压力分布(周向) (b)油楔中的压力分布(轴向) l—轴承长度;d—轴颈直径
2π n fd = = in 2π / i
2、高频激振力:(由喷嘴的尾迹扰动产生)
2π n fg = = Zn 2π / Z
对于部分进汽的 级,激振力的频率为 Z fg = n e
汽机本体部件结构介绍
高压转子(11级)
调节级(带 高压转子图
高压缸内缸下半部分
汽轮机低压缸部分说明
低压缸共有2×7级反动级,蒸汽通流部分中 间进汽,反向流动做功后的乏汽经两端的排 汽口进入凝汽器。
调速级叶片为双层铆接围带结构。动叶片除 低压缸末三级为扭曲叶片外,其余均为等截 面叶片,调速级叶片和末三级叶片为调频叶 片。高中低压缸隔板静叶均为扭转叶片。末 级为905mm的自由叶片。
汽轮机本体部件组成
静止部分:包括汽缸、隔板套、隔板、喷嘴、 汽封、轴承、滑销系统及紧固零件等。
转动部分:包括主轴、叶轮、叶片、围带、 拉金、联轴器和紧固件等。
汽轮机高压缸部分说明
高、中压缸合缸,通流部分反向布置,低压缸对称分流布置。 该布置方式既可减小轴向推力,又可缩短转子长度,提高机 组的稳定性。
汽轮机轴承
低压转子图
末级长叶片(905mm)
拉金
汽轮机中压缸部分说明
蒸汽经高压缸做功后,从外缸下部的排汽口 排出进入锅炉再热器,再热后的蒸汽返回汽 轮机经左右两个中压主汽门,分别进入左右 两只中压调速汽门。中压调速汽门出口通过 滑动接头与中压缸下缸的进汽室相连。中压 缸共有9级反动级,蒸汽在中压缸膨胀做功后 经连通管进入低压缸。
高压缸为冲动、反动混合式,共有十二级叶片,其中第一级 (单列调节级)为冲动式,其余十一级为反动式。
该汽轮机为反动式汽轮机,轴向推力较大。为减少轴向推力, 采用鼓式转子,且高中压缸通流部分反向布置,形成锥体状, 低压缸为对称分流布置。这样可使轴向推力得到初步平衡。 剩余的轴向推力由设在高中压缸中部的高、中压平衡活塞和 设在高压排汽区的低压平衡活塞平衡。其中高、中压平衡活 塞平衡高压叶片通道上的轴向推力,低压平衡活塞平衡中压 缸通道上的轴向推力。
《汽轮机》 讲义
《汽轮机》讲义一、汽轮机的定义与工作原理汽轮机是一种将蒸汽的热能转化为机械能的旋转式动力机械。
它在现代工业中有着广泛的应用,特别是在发电领域。
其工作原理基于热力学中的朗肯循环。
高温高压的蒸汽进入汽轮机后,通过一系列的喷嘴和动叶片,蒸汽的热能被转化为动能,进而推动叶片旋转,输出机械能。
蒸汽在汽轮机中的流动过程是一个连续的能量转换过程。
从喷嘴出来的高速蒸汽冲击动叶片,使动叶片带动转子旋转。
在这个过程中,蒸汽的压力和温度逐渐降低,流速也相应发生变化,最终以低温低压的状态排出汽轮机。
二、汽轮机的分类根据不同的分类标准,汽轮机可以分为多种类型。
按工作原理,可分为冲动式汽轮机和反动式汽轮机。
冲动式汽轮机中,蒸汽主要在喷嘴中膨胀加速,在动叶片中不膨胀或膨胀很小;而反动式汽轮机中,蒸汽在喷嘴和动叶片中都膨胀做功。
按热力特性,可分为凝汽式、背压式、抽汽式和多压式汽轮机等。
凝汽式汽轮机是最常见的类型,其排汽在凝汽器中凝结成水,循环使用;背压式汽轮机的排汽压力高于大气压,可直接用于供热;抽汽式汽轮机则在运行过程中可抽出部分蒸汽用于供热或其他用途;多压式汽轮机则是在不同的压力段采用不同的热力循环,以提高效率。
按蒸汽参数,可分为低压、中压、高压、超高压、亚临界和超临界汽轮机等。
蒸汽参数越高,汽轮机的效率通常也越高。
按用途,可分为电站汽轮机、工业汽轮机和船用汽轮机等。
电站汽轮机主要用于发电;工业汽轮机用于驱动各种工业设备,如压缩机、风机等;船用汽轮机则用于船舶的动力系统。
三、汽轮机的结构汽轮机的结构复杂,主要由静止部分和转动部分组成。
静止部分包括汽缸、隔板、喷嘴、汽封等。
汽缸是汽轮机的外壳,承受蒸汽的压力和温度;隔板将汽缸分成若干个汽室,引导蒸汽的流动;喷嘴将蒸汽的热能转化为动能;汽封则用于减少蒸汽的泄漏。
转动部分包括转子、叶轮、叶片和联轴器等。
转子是汽轮机的核心部件,由主轴和安装在其上的叶轮、叶片等组成;叶轮用于安装叶片,并传递扭矩;叶片则是实现能量转换的关键部件;联轴器用于连接汽轮机的转子和其他设备的轴。
汽轮机 - 结构
汽缸
汽轮机下缸及转子图
(二)汽缸的支承方式
IP Turbine HP Turbine
内缸的支撑
(三)、 滑销系统(结构、作 用)和汽轮机的热膨胀
❖ 一)滑销系统的基本结构 ❖ 1) 纵销 ❖ 位置: 轴承座底部和台板之间 ❖ 结构:轴承座底部和台板开矩形纵向槽,
中间装入长条形销(键) ❖ 作用:限制轴承座横向运动,确保轴承
座在汽缸膨胀推动下严格地沿纵向移动。
2)横销
❖汽缸支撑横销:猫爪横销或(低压缸与基座)
3) 立销
❖位置:轴承座纵向内端面中心处(横 向)、汽缸两端中心处(横向)。
❖ 结构:轴承座纵向内端面中心处(横向) 焊T形销,汽缸前端中心(横向)处焊U 形槽
❖ 作用:限制汽缸、轴承座之间中心的相 对运动
❖4) 角销 ❖位置:前轴承座底部纵向凸出边沿上
❖结构:类似角铁状,压在轴承座底部纵向凸 出边沿上
❖ 缸的数目:单缸、多缸 ❖ 排汽口的数目:单排汽口、多排汽口 ❖ 轴的数目:单轴、双轴 汽轮机的发展历程:单级、多级、多缸、双轴 多级:功率、压差增大的要求。 多缸:功率、流量增大的要求。 双轴:功率、流量增大,排汽口增多,若仍用
单轴,则轴变长,刚度下降。
~
HP
LP
~
单缸单排汽口 双缸单排汽口
HP
❖作用: 防止前轴承座纵向滑动过程中翘起, 确保座底面与台板紧密接触,轴承中心线与 地面平行,转子中心线与地面平行.
汽轮机主要零件结构
式中, n----- 转速; fh n z
(6—47)
z ---- 级内喷嘴数。
当部分进汽度e < 1 时,则有
fh n z' z' z
式中, z ' ——为当量喷嘴数。
e
11
三 叶片振动的基本振型
叶片振动的基本形式有弯曲振动和扭转振动。而弯曲振动又分切向振动和轴向振 动:
❖ 绕叶片截面最小主惯性轴(Ⅰ—Ⅰ轴)的弯曲振动称为切向振动; ❖ 绕叶片截面最大主惯性轴(Ⅱ—Ⅱ轴)的弯曲振动称为轴向振动; ❖ 沿着叶片长度方向绕通过截面型心轴线往复作转过一角度的振动称为扭转振
7
第三节 叶片的振动
❖ 叶片的受力 ❖ 引起叶片振动的激振力 ❖ 叶片振动的基本振型 ❖ 叶片的自振频率 ❖ 叶片频率的测定 ❖ 叶片动强度的安全准则和叶片调频
8
一 叶片的振动 汽轮机的叶片在工作时,会受到不均匀汽流力(激振力)
的作用,使叶片产生振动。特别是当叶片的自振频率等于激振 力或者为其整数倍时,叶片将发生共振,就可能使叶片疲劳断 裂。运行经验表明,叶片损坏主要原因是由于振动造成的。因 此,研究叶片的振动,就应该研究引起叶片振动的激振力和叶 片本身的自振频率。 二 引起叶片振动的激振力
3
三 轴承 轴承是汽轮机的一个重要组成部分。
1. 轴承工作原理 2. 径向支持轴承 3. 推力轴承
4
第二节 汽轮机转动部分结构
汽轮机的转动部分包括动叶栅、叶轮(或转鼓)、主轴 和联轴器以及紧固件等旋转部件。 一 转子
汽轮机的转动部分总称为转子,主要由主轴叶轮(或 轮鼓)动叶及联轴器等组成,它是汽轮机最主要的部件之一, 起着工质能量转换及扭矩传递的任务。
上述几种情况产生的激振力,都会使动叶片每旋转一周,就要受到一 次(或几次)激振力的作用,故称为低频激振力。
汽轮机原理(第六章)
(2)种类 ①焊接隔板 将铣制或精密铸造、模压、冷拉的静叶 片嵌在冲有叶型孔槽的内、外围带上, 焊成环形叶栅,然后再将其焊在隔板体 和隔板外缘之间,如图6-13所示。
特点:具有较高的强度和刚度,适用于 高于350℃的高中压级隔板。 ②铸造隔板 将已成型的喷嘴叶片在浇铸隔板体的同 时放入其中,一体浇铸而成,如图6-14 所示。 特点:加工制造简单, 成本低,但通流部分光 洁度较差,且受温度影 响较大,适低于350℃ 的级中。
第三节
一、叶片的受力分析
叶片振动
(1)叶片、围带、拉金的质量产生的离心力 离心力作用:产生拉应力、弯曲应力 (2)高速汽流冲动叶片—汽流力(轴向、圆周 方向的应力)
不随时间变化的应力—静应力(静的弯应力)
随时间而变化的应力—交变应力(振动应力) (3)启停时由于温差引起的热应力
二、引起叶片振动的激振力
五、 盘车装置
1. 盘车装置的作用 (1)防止转子受热不均产生热弯曲。 (2)机组启动前盘动转子,可用来检查机组是 否具备启动条件。
如:动静部分是否摩擦,主轴弯曲值是否正常, 润滑油系统工作是否正常等。
(3)减少汽轮机启动时的冲转力矩。 2. 盘车装置的分类 (1)按驱动力来源 电动盘车和液动盘车。 (2)按盘车转速 高速盘车和低速盘车。
第二节 汽轮机转动部分结构
一、 转子
1. 转子的作用 将蒸汽的动能转变为机械能,并 传递扭矩。 2. 转子的分类 (1) 按有无叶轮 ①轮式转子 有叶轮,用于冲动式汽轮机。 ②鼓式转子 无叶轮,用于反动式汽轮机。
(2)按主轴与其他部件间的组合轴上, 如图6-26所示。
(1)按汽缸进汽参数:高压缸,中压缸,低 压缸。
(2)按汽缸的层数:单层缸,多层缸。 3.多层缸的作用 (1)加快机组的启停和变负荷速度。 (2)节约贵重金属。 4.300MW汽轮机汽缸简介 (1)高压缸 采用双层缸,如图 6-1,6-2,6-3所示。 (2)中压缸
汽轮机介绍之转动部分的结构及作用
汽轮机介绍之转动部分的结构及作用汽轮机是一种将热能转化为机械能的热能机械装置,广泛应用于发电、航空、航天等领域。
汽轮机的转动部分是整个机组的核心,负责将高速旋转的热能转化为机械能。
本文将介绍汽轮机转动部分的结构以及其作用。
汽轮机的转动部分由以下几个组成部分构成:1.转子:转子是汽轮机转动部分的核心部件,通常由高强度材料制成,如铸铁、钢等。
转子由主叶轮、中叶轮和末叶轮组成,每个叶轮上安装有叶片。
转子的作用是将热能转化为机械能,通过高速旋转带动轴系转动,进而驱动发电机或其他设备。
2.轴系:轴系是支持和连接转子的重要组成部分。
轴系通常由轴、轴承、油封等零部件构成。
轴是负责承载转子旋转力的重要组件,需要具备足够的强度和刚度。
轴承则用于支撑和定位转子,使其能够稳定旋转,并承受轴向和径向力。
油封用于防止润滑油泄漏,保证轴系的正常运转。
3.换向器:换向器位于转子的高速旋转部分,其作用是改变蒸汽流动的方向。
换向器通常由固定叶片和转动叶片组成,通过改变叶片的位置,使蒸汽在叶片上产生反作用力,从而改变蒸汽的流向,实现能量的传递和转换。
4.冷却系统:汽轮机转动部分会因为高温和高速旋转而产生大量热量,如果不及时散热,可能导致转子变形甚至损坏。
因此,冷却系统是汽轮机转动部分中非常重要的组成部分。
冷却系统通常通过沿轴向布置的冷却通道和冷却空气来实现,这些冷却通道可以将热量从转子中传导出去,降低转子的工作温度,确保转子的正常运转。
汽轮机转动部分的作用是将蒸汽能量转化为旋转机械能,并输出给发电机或其他设备。
在汽轮机工作过程中,蒸汽从汽轮机的锅炉进入转动部分,通过主叶轮和中叶轮的叶片将其动能转化为机械能,驱动轴系旋转。
而末叶轮则将剩余的能量进一步转化为机械能,提高汽轮机的整体效率。
此外,汽轮机的转动部分还具有以下作用:1.平衡作用:汽轮机的转动部件需要精确制造和安装,以确保转子在高速旋转时能够保持平衡。
平衡失调会导致振动和噪音增加,甚至使整个机组发生故障。
汽轮机主要零部件的结构与作用
汽轮机主要零部件的结构与作用一、基础与机座基础是由钢筋混凝土构成的整体结构。
其型式根据机组的结构特点及大小而定。
基础主要承受着汽轮机、凝汽器、工作机(及冷却器)等的重量,此外还承受着由于机组的转动部分质量不平衡所引起的离心力。
机座(台板)是用来支承机组并使其牢固地固定在基础上的部件。
小型机组采用整块式台板,是用铸铁浇铸的空心结构。
台板与基础之间置有垫铁,汽缸找平后,拧紧地脚螺栓,然后在空心台板内灌入混凝土,使台板牢固地固定在基础上。
连接台板与基础的地脚螺栓一般有双头螺栓和带钩式螺栓两种型式。
二、汽缸1.汽缸的作用及受力汽缸是汽轮机的外壳。
其作用是将汽轮机的通流部分与大气隔开,形成封闭的汽室,保证蒸汽在汽轮机内完成其能量转换过程。
汽缸内部装有喷咀室、喷咀、隔板套、隔板和汽封等零部件,汽缸外部装有调节汽阀及进汽、排汽和回热抽汽管路。
汽缸的受力情况比较复杂,而且随着汽轮机的运行工况改变而变化,为了掌握正确地运行方式,保证机组的安全,必须了解汽缸在工作时的受力情况。
汽缸在工作时承受的作用力主要有:(1)汽缸内外的压力差,使汽缸壁承受一定的作用力。
(2)隔板和喷咀作用在汽缸上的力,这是由隔板前后的压力差及汽流流过喷咀时的反作用所引起的。
(3)汽缸本身和安装在汽缸上零部件的重量。
(4)轴承座与汽缸铸成一体或轴承座螺栓连接下汽缸的机组,汽缸还承受着转子的重量及转子转动时产生的不平衡力。
(5)进排汽管道作用在汽缸上的力。
(6)汽轮机在运行中,汽缸各部分存在着温度差引起的热应力。
因此,在考虑汽缸结构时,必须保证汽缸有足够的强度和刚度,保证各部分受热时自由膨胀,根据汽流压力、温度和容积的变化要求通流部分有比较大地流通特性;在满足强度和刚度的情况下,尽量减薄汽缸和法兰壁的厚度,力求汽缸形状简单、对称。
在汽轮机运行时,必须合理地控制汽缸的温度变化速度,以避免汽缸产生过大的热应力和热变形及由此引起的汽缸结合面不严密或汽缸裂纹。
汽轮机系统知识大全
汽轮机系统知识大全一、认识汽机专业:1、汽机专业的任务:用锅炉送来的蒸汽,维持汽轮机转速(未并网)或负荷(并网),将做完工的乏汽凝结成水,利用抽汽加热后再送回锅炉。
2、汽机专业的系统:(1)汽轮机本体:将蒸汽的热能转换成机械能,维持高速旋转。
(2)辅助系统:汽轮机旋转所必须的支持系统;为了提高热效率而设置的回热系统(把水加热后再送回锅炉);辅机、发电机冷却系统。
二、汽机主系统:汽机热力系统简图三、汽轮机本体:1、汽轮机本体:转子——叶轮、叶片,静止部分:隔板、喷嘴、汽缸,其他:汽封、轴瓦。
汽轮机本体结构详解图:汽轮机本体主要由转子、静子、轴承及轴承箱、盘车装置四大部分构成,如下图:转子:汽轮机通流中的转动部分,由主轴、叶轮、叶片、联轴器等主要零部件组成,转子工作时,作高速旋转,除了要转换能量,传送扭矩外,还要承受动叶片和主轴上各零件质量所产生的离心力,各部温差引起的热应力,所以转子是汽轮机中极为重要的部件之一,结构详解图如下:汽轮机各转子之间以及汽轮机转子与发电机转子之间均采用联轴器连接,用以传递扭矩和轴向力,联轴器结构图如下:静子: 汽轮机通流中的静止部分及汽轮机的外壳部分,由汽缸、隔板及隔板套、进汽部分、排汽部分、汽封和轴封等主要零部件组成,结构详解图如下:其中,气缸是汽轮机的外壳,内部装有喷嘴室、喷嘴、隔板、隔板套和汽封等零部件,外部装有调节汽阀及进汽、排汽和回热抽汽管道等,作用是将汽轮机的通流部分与大气隔开,形成封闭的汽室,保证蒸汽在汽轮机内完成其能量转换过程,汽轮机气缸结构图如下:汽轮机有静子和转子两大部分,运行时转子高速旋转.静子固定,因此转子和静子之间必须保持一定的间隙,才能不使相互碰磨。
蒸汽流过汽轮机各级工作时,压力、温度逐级下降,在隔板两侧存在着压差。
当动叶有反动度时,动叶片前后也存在着压差。
蒸汽除了绝大部分从导叶、动叶的通道中流过作功外,一小部分将会从各处间隙中流过而不作功,成为一种损失,降低了汽轮机的效率。
汽轮机结构
汽轮机结构概述汽轮机是一种将热能转化为机械能的设备,常用于发电厂和工业领域。
汽轮机的结构可以分为以下几个主要部分:汽轮机转子、汽轮机定子、汽轮机叶轮和汽轮机外壳。
汽轮机转子汽轮机转子是汽轮机的核心部件,主要由转子盘、转子叶轮和轴承组成。
转子盘转子盘是汽轮机转子的主体部分,它连接着所有的转子叶轮,并通过轴承支撑整个转子。
转子叶轮转子叶轮是汽轮机转子上最重要的部分,它通过叶轮叶片将高速高温的工作流体(一般为蒸汽)的动能转化为机械能。
轴承轴承是支撑和定位转子的重要组件,可以减小转子的摩擦和磨损,并增强汽轮机的稳定性和寿命。
汽轮机定子汽轮机定子位于汽轮机转子的周围,主要由定子盘、定子叶轮和定子外壳组成。
定子盘定子盘是汽轮机定子的主体部分,它通过固定定子叶轮和定子外壳,保持定子的整体结构稳定。
定子叶轮定子叶轮是汽轮机定子上的关键部分,它通过叶轮叶片引导工作流体流过转子叶轮,以进一步提高汽轮机的工作效率。
定子外壳定子外壳是汽轮机定子的保护层,它不仅可以保护定子叶轮和定子盘不受损坏,还可以对工作流体进行导向和控制。
汽轮机叶轮汽轮机叶轮是汽轮机中的关键零部件,主要包括转子叶轮和定子叶轮。
转子叶轮转子叶轮可以将高速高温的工作流体的动能转化为机械能,通过与转子盘相连,将转子的动力传递给发电机。
定子叶轮定子叶轮通过工作流体流过叶轮叶片,加速流体并增加压力,提高汽轮机的工作效率。
汽轮机外壳汽轮机外壳是汽轮机的外部保护层,它主要由上下两部分组成:汽轮机上部外壳和汽轮机下部外壳。
汽轮机上部外壳汽轮机上部外壳主要保护转子和转子叶轮,同时将蒸汽导向发电机。
汽轮机下部外壳汽轮机下部外壳主要保护定子和定子叶轮,同时引导工作流体流动,并与上部外壳连接。
总结汽轮机结构的主要部分包括转子、定子、叶轮和外壳。
转子由转子盘、转子叶轮和轴承组成,定子由定子盘、定子叶轮和定子外壳组成。
叶轮包括转子叶轮和定子叶轮,外壳则分为上部外壳和下部外壳。
这些部件共同工作,将热能转化为机械能,实现汽轮机的正常运转和发电功能。
第六章-2.汽轮机转动部分结构
五、盘车装置
具有链轮—涡轮—蜗杆的电动盘车装置
由电动机、传动轮系、 操纵杆及连锁装置等 组成。
电动机通过链轮链条、 涡轮蜗杆及几级齿轮 传动减速后带动转子 旋转。
55
五、盘车装置
盘车投入时间要求 汽轮机冲转前,要投入盘车装置(因为有轴封供汽); 再热机组旁路系统投入前,应投入盘车装置(因为低压缸 的受热); 停机后,要投入盘车装置; 盘车投入时,油系统必须先投入。
冷却部位:高压转子(调节级区域)和中压转子进汽部分表面 冷却工质:温度较低的蒸汽
15
一、转子
高压转子(调节级区域)表面的冷却
蒸汽来源:第一级喷嘴后和调节级后的部分蒸汽。
冷却蒸汽流动过程:喷嘴后的部分蒸汽,在压差作用下通过 动静之间的间隙,经过喷嘴室内圈上的孔径降低喷嘴室内圈 的温度(第一次冷却),然后进入压力级;调节级后的部分
加快汽缸内的热交换,减小上、下缸之间及转子内部温差,缩 短机组启停时间,并可以在轴承内较好的建立起油膜,保护轴 瓦和轴径。 (2)按结构特点分:具有螺旋轴的电动盘车、具有摆动齿轮的 电动盘车和具有链条-蜗轮蜗杆的电动盘车。
对盘车装置的要求 既能盘动转子,又能在汽轮机转子冲转后转速高于盘车转速
时自动脱开,并使盘车装置停止转动。 51
冷却蒸汽流动过程:通 过中压平衡活塞持环与 中压转子表面之间的间 隙和叶片根部的槽沟。
去向:在中压第一级的 喷嘴后和动叶根部完全 混合。
再热蒸汽进口区域内转子的冷却 17
二、叶轮
组成:由轮缘、轮面和轮毂组成。
轮缘——轮盘的外缘安装工作叶片 轮毂——与轴相连接部分 轮辐——连接轮缘和轮毂部分
作用:(主要用于冲动式汽轮机)用 来安装动叶片并将动叶片上的转 矩传递给主轴。
汽轮机结构及零件强度
(二)叶片的拉应力 叶片的拉应力由叶型 部分的离心拉应力及围带、 拉金离心力引起的拉应力 组成。 1.叶型部分离心力引 起的拉应力 2 dFx Ax ( R0 x) dx
Fx1 Ax ( R0 x) dx
2 x1
lb
2
x1
x1 2
A
Fx1 Ax1 Ax1
第四章
汽轮机结构及零件强度
汽轮机本体由转动部分和静止部分组成。转 动部分称为转子,主要部件有动叶片、主轴和叶 轮(反动式汽轮机为转鼓)、联轴器等;静止部 分称为静子,主要部件有汽缸、隔板、轴承和汽 封等。 第一节 动叶片 动叶片是蒸汽动能转换成转子机械能的重要 部件。它在运行中受力复杂,工作条件又很恶劣。 因此它不但要有良好的流动特性,以保证较高的 能量转换效率,还要有足够的强度和完善的振动 特性。 一、动叶片的结构 动叶片由叶型、叶根、叶顶三部分组成
lb x1
2
lb
x1
Ax ( R0 x)dx
lb
x1
Ax ( R0 x)dx
A( R0 x)dx
2
2
(R
0
l b ) 2 ( R0 x1 ) 2
由上式可知,等截面叶片的离心拉应力与横截 面积无关,即增大截面积并不能降低离心力引起的 拉应力。在ω、R0、lb已定的情况下,采用密度较 小的叶片材料,是降低叶片离心拉应力的有效办法。 由于等截面叶片的横截面积沿叶高不变,其根 部承受的离心力最大,因此根部的离心拉应力最大, 为:
对于变截面叶片,横截面积沿叶高是变化的, 2 在求拉应力时,通常将其沿叶高分成若干段,把每 段看作等截面体,然后计算出每段的离心力及每一 截面的离心拉应力。通过对各个截面的计算比较, 可找出离心拉应力最大的截面。
汽轮机结构讲解
汽轮机结构讲解
汽轮机是一种将热能转化为动能的设备,主要由转子、静子和附件三部分组成。
1.转子
汽轮机的转子包括高压转子和低压转子。
高压转子通常由几个高温区域和中间几个低温区域组成,需要高温材料承受高温高压。
低压转子则由多个低温区域组成,可以采用高强度材料。
转子通常采用重点部位类似叶片的‘I’梁型结构,可以大幅提高承受力和高速平衡性能。
2.静子
汽轮机的静子包括高压缸、中压缸和低压缸。
其中,高压缸位于气流进口处,收缩后气流经过中压缸和低压缸继续排出。
不同压力区域的静子使用不同的材料和结构。
3.附件
汽轮机的附件包括轴承、密封件、润滑系统等。
轴承是支撑转子的重要组件,需要承受高速旋转和负载,通常采用油膜滑动轴承或气膜滑动轴承。
密封件是防止气流泄漏的重要组件,通常采用各种不同类型的装置来实现。
润滑系统是为了降低各组件间摩擦损耗和保证零件的长期性能而设计的。
总体而言,汽轮机属于高温高压环境下运转的设备,因此各个组
件要承受极高的压力、温度和振动力。
设计和制造汽轮机需要高度专
业化的技能和精密的加工工艺,以确保设备能够长期高效稳定地运行。
汽轮机的工作原理和结构-附图
汽轮机工作原理和结构一、汽轮机工作原理汽轮机是将蒸汽的热能转换成机械能的蜗轮式机械。
在汽轮机中,蒸汽在喷嘴中发生膨胀,压力降低,速度增加,热能转变为动能。
如图1所示。
高速汽流流经动叶片3时,由于汽流方向改变,产生了对叶片的冲动力,推动叶轮2旋转做功,将蒸汽的动能变成轴旋转的机械能。
图1 冲动式汽轮机工作原理图1-轴;2—叶轮;3-动叶片;4-喷嘴二、汽轮机结构汽轮机主要由转动部分(转子)和固定部分(静体或静子)组成。
转动部分包括叶栅、叶轮或转子、主轴和联轴器及紧固件等旋转部件.固定部件包括气缸、蒸汽室、喷嘴室、隔板、隔板套(或静叶持环)、汽封、轴承、轴承座、机座、滑销系统以及有关紧固零件等。
套装转子的结构如图2所示。
套装转子的叶轮、轴封套、联轴器等部件和主轴是分别制造的,然后将它们热套(过盈配合)在主轴上,并用键传递力矩.图2 套装转子结构1-油封环2-油封套3—轴4—动叶槽5—叶轮6—平衡槽汽轮机主要用途是在热力发电厂中做带动发电机的原动机。
为了保证汽轮机正常工作,需配置必要的附属设备,如管道、阀门、凝汽器等,汽轮机及其附属设备的组合称为汽轮机设备。
图3为汽轮机设备组成图。
来自蒸汽发生器的高温高压蒸汽经主汽阀、调节阀进入汽轮机.由于汽轮机排汽口的压力大大低于进汽压力,蒸汽在这个压差作用下向排汽口流动,其压力和温度逐渐降低,部分热能转换为汽轮机转子旋转的机械能。
做完功的蒸汽称为乏汽,从排汽口排入凝汽器,在较低的温度下凝结成水,此凝结水由凝结水泵抽出送经蒸汽发生器构成封闭的热力循环。
为了吸收乏汽在凝汽器放出的凝结热,并保护较低的凝结温度,必须用循环水泵不断地向凝汽器供应冷却水。
由于汽轮机的尾部和凝汽器不能绝对密封,其内部压力又低于外界大气压,因而会有空气漏入,最终进入凝汽器的壳侧。
若任空气在凝汽器内积累,凝汽器内压力必然会升高,导致乏汽压力升高,减少蒸汽对汽轮机做的有用功,同时积累的空气还会带来乏汽凝结放热的恶化,这两者都会导致热循环效率的下降,因而必须将凝汽器壳侧的空气抽出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(6——48)
----叶片各点振幅,它是x的函数。也称为振动的“振
----圆频率, = 2f(f为频率);
----初相角。
叶片作自由振动时,没有外力作用。振动时,弹性力与惯性力 大小相等、方向相反,保持平衡。把叶片看成为在任意一时刻在 惯性力载荷作用下的静止梁。则作用在单位长度上的惯性力为 2
图6—43 各种振型
13
1. 切向振动:
叶片切向振动如图6--43a所示。而叶片切向振动又有不同 的振动型式:
A型振动:根部固定、叶顶自由的振动(图6—44)。根据节点数的
多少,A型振动又依次有 A0型振动、 A型振动、 A2 型振动„等, 1 即有无穷多个振型。其中, 型振动的振幅最大、频率最低, A0 随着振动阶次增加,其振幅逐渐减小,振动频率逐渐增大。对 于等截面而言,其频率之间有一定比例关系,比值为: f A0:f A1:f A2 1 : 6.27 : 17.6 B型振动:根部固定、叶顶为铰支的振动(图6—45)。叶片作B型 振动时,叶顶不产生位移,但要产生旋转。B型振动也依次有
5. 汽缸的支承和滑销系统
3
二
隔板、隔板套和静叶环、静叶持环
1. 隔板
隔板是汽轮机各级的间壁,用以固定汽轮机各级的静 叶片和阻止级间漏气,并将汽轮机通流部分分隔成若干个级。
2. 隔板套
隔板套用来固定隔板。 3. 静叶环和静叶持环 在反动式汽轮机中没有叶轮和隔板,动叶片直接装在 转子的外缘上,静叶则固定在汽缸内壁或静叶持环上。静叶 持环的分级一般是考虑便于抽气口的布置而定的。静叶环和 静叶持环一般为水平中分式。
引起叶片振动的原因是叶片在工作时受到周期性的汽流 激振力的作用。作用在叶片上的激振力按其产生原因可分为两 类:一类是由于结构上的因素产生的;一类是由于制造、安装 的误差产生的。前者称为高频激振力,后者称为低频激振力。
10
1. 低频激振力
低频激振力产生的原因是由于结构件的制造、安装误差而导致汽流力 分布不均所致。具体情况有如下几种: (1)上下隔板接口结合不良,当汽流流过接口处的喷嘴通道时,汽流速度的大 小及方向不同,形成一个(或两个)激振源。 (2)由于喷嘴或者隔板导叶制造误差,使个别喷嘴异常,其出口汽流速度的过 大或过小,也就形成了一个激振力。 (3)对于喷嘴调节的汽轮机,采当部分进汽,调节阀依次开启,当叶片通过装 有喷嘴弧段时,受到汽流力的作用,而叶片通过没有喷嘴弧段时,又不受 汽流力的作用,从而引起了一个激振力。
(6—54)
对于等截面叶片来说,I,F为常数,则上式可写为:
令
2y 4y F 2 EI 0 4 t x EI 2 2 a 4y ,则上式可写为: y a2 0 F 2 4
(6—55)
t
x
(6—56)
再将此偏微分方程式变成常微分方程式。设叶单个叶片振动为简谐振动,圆频率为 。 则叶片的点在某一瞬间的位移为:
y Y sin(t )
可得:
(6—57)
对式(6—57)关于时间t求二阶导数,关于x求4阶导数,然后代入式(6—56),经整理
令
k4
2
a
2
F 2
EI
d 4Y 2 2 Y 0 4 dx a
(6—58)
22
则有
d 4Y k 4Y 0 dx 4
(6—59) (6—60)
d 3Y ,则: 3 0 dx 23
。
将以上边界条件代入式(6—60),经过推导变化之后可得 以系数 C1、 C、 C3 C4 、 为未知数的线性方程组,求解此方程组后, 2 就最后得到包含未知量kl 的频率方程式 (6—61) cos(kl)ch(kl) 1
A0 、 B0 、 A1 型振动;而更高阶次的振动,不容易发生,即使发
生了,振幅也不大,也不危险。
除了产生切向振动之外,叶片组也回产生轴向振动和扭转振动。
16
作业:
1、造成叶片振动的激振力有哪些?各是怎样产生的?
2、叶片的振型有哪些?并画出示意图。
17
四 叶片振动自振频率计算
这里所讲的频率是指叶片不动时的静频率。实际上叶片是随大轴、 叶轮一起旋转的,旋转时要产生离心力,在离心力作用下,叶片的弯曲 刚度增加,故自振频率增高。叶片自振频率可以用实验测得,也可以通 过理论计算求得。 1. 单个等截面叶片弯曲振动自振频率计算
② 单个等截面叶片弯曲振动自振频率
A型振动的自振频率
A型振动的边界条件:叶根固定,即根部的挠度和转角均为零;叶 顶自由,即顶部的弯矩和切力均为零。其数学形式为: (ⅰ)当
x = 0 , 0 Y
;
(ⅱ)当 x l ,M ( x) 0 ,则有:
dY 0 dx d 2Y
;
) 0
B B0 型振动、 1型振动、 B2 型振动„等。对于等截面各阶振动,有: f B0:f B1:f B2 1 : 3.2 : 6.8
14
2. 轴向振动 叶片轴向振动的振型如图6---43b所示。与切向振动 类似,叶片轴向振动分为A型振动和B型振动。
3. 扭转振动
叶片扭转振动的振型如图6---43c所示。按频率高低 不同,扭转振动也分为第一、二、三阶等次的振动。
①
叶片弯曲振动微分方程式:
这里把叶片看成是均布载荷的弹性梁,并作一些简化处理: 不考虑阻尼的作用;
a.
b.
c.
对于叶高而言,叶片的断面尺寸很小,振动发生在一个平内,
为单纯弯曲无扭转振动,叶片弯曲平面保持平面。
18
叶片是简谐振动,y随时间t的变化为正弦规律变化,因此叶片的 挠度曲线可用下式描述:
y Y ( x) sin(t )
8
第三节 叶片的振动
叶片的受力 引起叶片振动的激振力 叶片振动的基本振型 叶片的自振频率 叶片频率的测定 叶片动强度的安全准则和叶片调频
9
一 叶片的振动
汽轮机的叶片在工作时,会受到不均匀汽流力(激振力) 的作用,使叶片产生振动。特别是当叶片的自振频率等于激振 力或者为其整数倍时,叶片将发生共振,就可能使叶片疲劳断 裂。运行经验表明,叶片损坏主要原因是由于振动造成的。因 此,研究叶片的振动,就应该研究引起叶片振动的激振力和叶 片本身的自振频率。 二 引起叶片振动的激振力
叶片一般由叶型部分、叶根和叶顶连接件组成。
四 联轴器
联轴器又叫靠背轮或对轮,用来连接汽轮机的各个转子以及发 电机的转子并将汽轮机的扭矩传给发电机。 联轴器一般有三种形式:刚性联轴器、半挠性联轴器和挠性联轴 器。
五
盘车装置
在汽轮机内不进蒸汽时就能使转子保持转动状态的装置称为盘 车装置。盘车装置的作用是在汽轮机启动冲转前或停机后,让转子以 一定的速度连续转动起来以保证转子均匀受热或冷却,从而避免转子 产生热弯曲。
d y .q(x) F 2 (6—49) dt 式中 F — —断面面积 ——材料密度;式中的负号是因为
惯性力的方向和加速度的方向是相反的。
19
惯性力为作用在梁上的分布 栽荷。取一微元叶高进行研 究(图5—48)。距叶根x处,
其弯矩为M,切力为Q。当
x变化 dx 时,弯矩和切力变 化,则微元叶高 dx 段右边 的弯矩 M 1 和切力 Q1 为:
三 叶片振动的基本振型
叶片振动的基本形式有弯曲振动和扭转振动。而弯曲振动又分切向振动和轴向振 动:
绕叶片截面最小主惯性轴(Ⅰ—Ⅰ轴)的弯曲振动称为切向振动; 绕叶片截面最大主惯性轴(Ⅱ—Ⅱ轴)的弯曲振动称为轴向振动; 沿着叶片长度方向绕通过截面型心轴线往复作转过一角度的振动称为扭转振 动。各种振型如图6—43所示。
6
1. 整锻转子
2. 套装转子 3. 焊接转子 4. 组合转子 二 叶轮
叶轮是用来装置叶片并传递气流力在叶栅上产生的扭矩
的。 三 动叶片
动叶片就是在汽轮机工作过程中随汽轮机转子一起转动 的叶片,也称工作叶片,动叶片安装在叶轮或转鼓上,由多 个叶片组成动叶栅,其作用是将蒸汽的热能转换为动能,再 将动能转换为汽轮机转子旋转机械能,使转子旋转。 7
M M1 M dx x
Q Q1 Q dx x
图5—48
20
Q 力的平衡: f y 0:Q q( x)dx (Q dx) 0 x Q q( x) 0 化简后为: x
叶片自由振动时,作用在微元体上的力和力矩应保持平衡,即 (6—50)
M 1 M 0:M Qdx dx[q( x)dx] ( M dx) 0 力矩的平衡: 2 M x Q 化简并略去高阶微量得: (6—51) x
4
三
轴承
轴承是汽轮机的一个重要组成部分。
1. 轴承工作原理 2. 径向支持轴承 3. 推力轴承
5
第二节 汽轮机转动部分结构
汽轮机的转动部分包括动叶栅、叶轮(或转鼓)、主轴 和联轴器以及紧固件等旋转部件。 一 转子 汽轮机的转动部分总称为转子,主要由主轴叶轮(或 轮鼓)动叶及联轴器等组成,它是汽轮机最主要的部件之一, 起着工质能量转换及扭矩传递的任务。
将式(6—51)代入式(6—50)中得
2M 2y F 0 2 2 x t
根据材料力学中挠度和弯矩的关系得
(6—52)
d2y M 2 EI dx
(6-53)
式中,E——材料弹性模量; I——叶片截面惯性矩;(EI)——叶片抗 弯刚度。
21
将式(6—53)代(6—52)得
2y 2y ( EI ) F 2 0 2 2 x x t
汽轮机主要零件结构与振动
第一节 第二节 第三节 第四节
汽轮机静止部分结构 汽轮机转动部分结构 叶片振动 汽轮机转子振动