专题七:立体几何
高中立体几何知识点及经典题型
高中立体几何知识点及经典题型立体几何是高中数学中的重要部分,它研究了在三维空间内的几何形体。
本文将介绍高中立体几何的主要知识点和经典题型。
知识点以下是高中立体几何的主要知识点:1. 空间几何基础:点、线、面的概念及性质。
2. 参数方程和一般式方程:用参数或方程表示几何体的方法。
3. 立体图形的投影:点、直线、平面在投影中的表现形式。
4. 空间几何中的平行与垂直:直线、平面之间的平行关系及垂直关系。
5. 直线与面的位置关系:直线与平面之间的交点、垂线、倾斜角等概念。
6. 空间角的性质:二面角、棱锥、棱台等形体的角度关系。
7. 空间几何中的直线及曲线:空间中直线与曲线的方程及性质。
8. 空间立体角:球、球台、球扇等形体的角度关系。
9. 空间的切线:曲线在空间中的切线方程及其性质。
10. 空间的幂:圆、球及其他形体的幂的概念和性质。
经典题型以下是高中立体几何的经典题型:1. 求直线与平面的位置关系问题:例如,给定一直线和一个平面,求它们之间的交点、垂直线、倾斜角等。
2. 求空间角的问题:例如,给定两个平面的交线,求二面角的度数。
3. 求直线与曲线的位置关系问题:例如,给定一条直线和一个曲面,求它们之间的位置关系。
4. 求切线和法平面的问题:例如,给定一个曲线和一个点,求曲线在该点处的切线方程及法平面方程。
5. 求空间形体的幂问题:例如,给定一个球和一个平面,求平面关于球的幂及其性质。
以上只是一些经典的立体几何题型,通过解答这些题目,可以加深对立体几何知识的理解和运用。
希望本文对高中立体几何知识点和题型的介绍能够帮助到你。
祝你在学习立体几何时取得好成绩!。
立体几何(解析版)
立体几何(解析版)立体几何(解析版)立体几何是数学中的一个重要分支,研究物体的空间形状、尺寸以及相互关系。
通过立体几何的学习,我们可以更好地理解并描述物体的形状,并运用相关理论方法解决实际问题。
本文将以解析的方式介绍立体几何的基本概念、性质和定理,并探讨其在实际问题中的应用。
1. 点、线、面的基本概念在立体几何的世界中,点、线、面是最基本的几何元素。
点是没有大小的,只有位置的几何对象。
线由无数个点组成,是长度没有宽度的几何对象。
面是由无数个点和线组成,有着长度和宽度的几何对象。
了解这些基本概念是理解立体几何的第一步。
2. 空间几何关系的性质在立体几何中,物体之间有着各种各样的空间几何关系。
例如,平行是最基本的几何关系之一。
当两条直线或两个平面在空间中永远不相交时,我们称它们为平行。
此外,垂直、相交、共面等几何关系都在立体几何中发挥着重要作用。
通过研究这些几何关系的性质,可以更好地理解物体在空间中的位置和相互关系。
3. 空间几何图形的性质和分类空间几何图形是由点、线、面组成的。
常见的空间几何图形包括球、立方体、锥体等。
每种空间几何图形都有其独特的性质和分类标准。
例如,球是由所有距离圆心相等的点组成的,而立方体则有六个平面和八个顶点等。
通过深入研究这些性质和分类标准,我们能够更好地认识和应用空间几何图形。
4. 空间几何定理及其应用在立体几何中,有许多重要的定理和定律来描述和证明空间几何图形的性质。
例如,欧几里得空间中的平行公设和垂直公设是我们研究空间几何的基础。
此外,勾股定理、皮亚诺定理、欧拉公式等也为我们解决实际问题提供了强大的工具。
在实际问题中,我们可以通过运用这些定理和定律,推导出几何图形之间的关系,解决诸如面积、体积、距离等方面的问题。
5. 立体几何的应用立体几何的应用广泛而重要。
在建筑设计中,我们需要合理利用立体几何理论,确定房屋的尺寸和结构,确保建筑的稳定和美观。
在工程测量中,立体几何被用于计算地表面积和体积,指导建设工程的施工。
高中数学立体几何知识要点
高中数学立体几何知识要点在高中数学的学习中,立体几何是一个重要的板块。
它不仅能够培养我们的空间想象力和逻辑思维能力,还在实际生活中有着广泛的应用。
接下来,让我们一起梳理一下高中数学立体几何的知识要点。
一、空间几何体1、棱柱棱柱是由两个平行且全等的多边形底面和若干个平行四边形侧面围成的多面体。
棱柱根据侧棱与底面的关系可分为直棱柱和斜棱柱。
直棱柱的侧棱垂直于底面,斜棱柱的侧棱不垂直于底面。
2、棱锥棱锥是由一个多边形底面和若干个三角形侧面围成的多面体。
棱锥的顶点到底面的距离叫做棱锥的高。
3、棱台棱台是由棱锥被平行于底面的平面所截,截面和底面之间的部分。
4、圆柱圆柱是以矩形的一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。
5、圆锥圆锥是以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。
6、圆台圆台是用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分。
7、球球是以半圆的直径所在直线为轴,将半圆旋转一周所形成的曲面所围成的几何体。
二、空间几何体的表面积和体积1、棱柱、棱锥、棱台的表面积棱柱、棱锥、棱台的表面积就是各个面的面积之和。
棱柱的侧面积等于底面周长乘以侧棱长。
棱锥的侧面积等于各个侧面三角形面积之和。
棱台的侧面积等于各个侧面梯形面积之和。
2、圆柱、圆锥、圆台的表面积圆柱的表面积等于侧面积加上两个底面积,侧面积等于底面圆的周长乘以圆柱的高。
圆锥的表面积等于侧面积加上底面积,侧面积等于底面圆的周长乘以母线长的一半。
圆台的表面积等于侧面积加上上底面积和下底面积,侧面积等于上底面圆的周长与下底面圆的周长之和乘以母线长的一半。
3、球的表面积球的表面积公式为\(S = 4\pi R^2\),其中\(R\)为球的半径。
4、棱柱、棱锥、棱台的体积棱柱的体积等于底面积乘以高。
棱锥的体积等于\(\frac{1}{3}\)乘以底面积乘以高。
棱台的体积等于\(\frac{1}{3}\)乘以高乘以(上底面积加下底面积加上底面积乘以下底面积的平方根)。
微专题7 立体几何中的“三球”问题 归纳 课件
PA∩AB=A,PA⊂平面 PAB,AB⊂平面 PAB,所以 BC⊥
平面 PAB.又 PB⊂平面 PAB,所以 BC⊥PB,所以△PAC,
△PBC 都是以 PC 为斜边的直角三角形.如图,取 PC 的中点 O,连接
OA,OB,则 OA=OB=OP=OC,即点 O 为三棱锥 P-ABC 外接球的球
心.因为在 Rt△PAC 中,PA=3,AC=2,所以 PC= 32+22= 13,所
【答案】80π
3 已知菱形ABCD的边长为2,且∠DAB=60°,沿BD把△ABD折 起,得到三棱锥A′-BCD,且二面角A′-BD-C的平面角为120°,则 三棱锥A′-BCD外接球的表面积为________.
【解析】如图,取BD的中点H,连接A′H,CH.因为ABCD为菱形, 所以A′H⊥BD,CH⊥BD,故∠A′HC为二面角A′-BD-C的平面角, 即∠A′HC=120°.由题意,得△A′BD,△BCD为正三角形,则外接 球的球心位于过△A′BD,△BCD的中心且和它们所在面垂直的直线上, 故分别取△A′BD,△BCD的重心为G1,G2,过点G1,G2分别作两个平 面的垂线交于点O,则点O为三棱锥外接球的球心.由题意,得球心到
面 ABC,又因为 OH∥AD,所以 AD⊥平面 ABC.因为
AB⊂平面 ABC,所以 AD⊥AB.在 Rt△ABD 中,AD=
BD2-AB2=2.在 Rt△ABC 中,AB=2BC=2,所以 AC= AB2-BC2= 3,
所以
S△ABC=12AC·BC=
23,故
VD-ABC=13AD·S△ABC=
【答案】C
3 已知在直三棱柱 ABC-A1B1C1 中,AB=AA1=2,BC= 3AC, 则当该三棱柱的体积最大时,其外接球的体积为( C )
专题07 立体几何小题常考全归类(精讲精练)(原卷版)
专题07 立体几何小题常考全归类【命题规律】高考对该部分的考查,小题主要体现在两个方面:一是有关空间线面位置关系的命题的真假判断;二是常见一些经典常考压轴小题,难度中等或偏上.【核心考点目录】核心考点一:球与截面面积问题核心考点二:体积、面积、周长、角度、距离定值问题 核心考点三:体积、面积、周长、距离最值与范围问题 核心考点四:立体几何中的交线问题核心考点五:空间线段以及线段之和最值问题 核心考点六:空间角问题 核心考点七:轨迹问题核心考点八:以立体几何为载体的情境题 核心考点九:翻折问题【真题回归】1.(2022·北京·高考真题)已知正三棱锥-P ABC 的六条棱长均为6,S 是ABC 及其内部的点构成的集合.设集合{}5T Q S PQ =∈≤,则T 表示的区域的面积为( ) A .34π B .πC .2πD .3π2.(2022·浙江·高考真题)如图,已知正三棱柱1111,ABC A B C AC AA -=,E ,F 分别是棱11,BC A C 上的点.记EF 与1AA 所成的角为α,EF 与平面ABC 所成的角为β,二面角F BC A --的平面角为γ,则( )A .αβγ≤≤B .βαγ≤≤C .βγα≤≤D .αγβ≤≤3.(多选题)(2022·全国·高考真题)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则( )A .322V V =B .31V V =C .312V V V =+D .3123V V =4.(多选题)(2022·全国·高考真题)已知正方体1111ABCD A B C D -,则( ) A .直线1BC 与1DA 所成的角为90︒ B .直线1BC 与1CA 所成的角为90︒ C .直线1BC 与平面11BB D D 所成的角为45︒D .直线1BC 与平面ABCD 所成的角为45︒5.(多选题)(2021·全国·高考真题)在正三棱柱111ABC A B C 中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则( )A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值 C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥ D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 6.(2020·海南·高考真题)已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 5BCC 1B 1的交线长为________.【方法技巧与总结】1、几类空间几何体表面积的求法(1)多面体:其表面积是各个面的面积之和. (2)旋转体:其表面积等于侧面面积与底面面积的和.(3)简单组合体:应弄清各构成部分,并注意重合部分的删、补. 2、几类空间几何体体积的求法(1)对于规则几何体,可直接利用公式计算.(2)对于不规则几何体,可采用割补法求解;对于某些三棱锥,有时可采用等体积转换法求解.(3)锥体体积公式为13V Sh =,在求解锥体体积时,不能漏掉3、求解旋转体的表面积和体积时,注意圆柱的轴截面是矩形,圆 锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形.4、球的截面问题 球的截面的性质: ①球的任何截面是圆面;②球心和截面(不过球心)圆心的连线垂直于截面;③球心到截面的距离d 与球的半径R 及截面的半径r 的关系为=+222R r d .注意:解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的位置关系和数量关系;选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.5、立体几何中的最值问题有三类:一是空间几何体中相关的点、线和面在运动,求线段长度、截面的面积和体积的最值;二是空间几何体中相关点和线段在运动,求有关角度和距离的最值;三是在空间几何体中,已知某些量的最值,确定点、线和面之间的位置关系.6、解决立体几何问题的思路方法:一是几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值;通过降维的思想,将空间某些量的最值问题转化为平面三角形、四边形或圆中的最值问题;涉及某些角的三角函数的最值,借助模型求解,如正四面体模型、长方体模型和三余弦角模θαβ=cos cos cos (θ为平面的斜线与平面内任意一条直线l 所成的角,α为该斜线与该平面所成的角,β为该斜线在平面上的射影与直线l 所成的角).7、立体几何中的轨迹问题,这是一类立体几何与解析几何的交汇题型,既考查学生的空间想象能力,即点、线、面的位置关系,又考查用代数方法研究轨迹的基本思想,培养学生的数学运算、直观想象等素养.8、解决立体几何中的轨迹问题有两种方法:一是几何法.对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法(解析法).在图形中,建立恰当的空间直角坐标系或平面直角坐标系.9、以立体几何为载体的情境题大致有三类:(1)以数学名著为背景设置问题,涉及中外名著中的数学名题名人等; (2)以数学文化为背景设置问题,包括中国传统文化,中外古建筑等; (3)以生活实际为背景设置问题,涵盖生产生活、劳动实践、文化精神等.10、以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.图形怎么阅读?一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【核心考点】核心考点一:球与截面面积问题 【规律方法】 球的截面问题 球的截面的性质: ①球的任何截面是圆面;②球心和截面(不过球心)圆心的连线垂直于截面;③球心到截面的距离d 与球的半径R 及截面的半径r 的关系为=+222R r d . 【典型例题】例1.(2022·全国·高三阶段练习)已知四棱锥P -ABCD 的底面ABCD 是矩形,且该四棱锥的所有顶点都在球O 的球面上,P A ⊥平面ABCD , 22,PA AB BC === ,点E 在棱PB 上,且2EB PE =, 过E 作球O 的截面,则所得截面面积的最小值是____________. 例2.(2022·湖北省红安县第一中学高三阶段练习)球体在工业领域有广泛的应用,某零件由两个球体构成,球1O 的半径为10,,P Q 为球1O 表面上两动点,16,PQ M =为线段PQ 的中点.半径为2的球2O 在球1O 的内壁滚动,点,,A B C 在球2O 表面上,点2O 在截面ABC 上的投影H 恰为AC 的中点,若21O H =,则三棱锥M ABC -体积的最大值是___________. 例3.(2022·江西·高三阶段练习(理))如图,正方体1111ABCD A B C D -的棱长为6,11113C E CD =,点F 是CD 的中点,则过1B ,E ,F 三点的平面α截该正方体所得截面的面积为_________.例4.(2022·北京市十一学校高三阶段练习)如图,在棱长为2的正方体1111ABCD A B C D -中,,M N 分别是棱1111,A B A D 的中点,点P 在线段CM 上运动,给出下列四个结论:①平面CMN 截正方体1111ABCD A B C D -所得的截面图形是五边形; ②直线11B D 到平面CMN 2; ③存在点P ,使得1190B PD ∠=; ④1PDD △45. 其中所有正确结论的序号是__________.核心考点二:体积、面积、周长、角度、距离定值问题 【规律方法】几类空间几何体体积的求法(1)对于规则几何体,可直接利用公式计算.(2)对于不规则几何体,可采用割补法求解;对于某些三棱锥, 有时可采用等体积转换法求解.(3)锥体体积公式为13V Sh =,在求解锥体体积时,不能漏掉【典型例题】例5.(2022·河南省实验中学高一期中)如图,在正方体1111ABCD A B C D -中,2AB =,M ,N 分别为11A D ,11B C 的中点,E ,F 分别为棱AB ,CD 上的动点,则三棱锥M NEF -的体积( )A .存在最大值,最大值为83B .存在最小值,最小值为23C .为定值43D .不确定,与E ,F 的位置有关例6.(2022·山西运城·模拟预测(文))如图,正方体1111ABCD A B C D -的棱长为1,线段1CD 上有两个动点E ,F ,且12EF =,点P ,Q 分别为111A B BB ,的中点,G 在侧面11CDD C 上运动,且满足1B G ∥平面1CD PQ ,以下命题错误的是( )A .1AB EF ⊥B .多面体1AEFB 的体积为定值C .侧面11CDD C 上存在点G ,使得1B G CD ⊥ D .直线1B G 与直线BC 所成的角可能为6π例7.(2022·全国·高三专题练习)如图所示,在正方体1111ABCD A B C D -中,过对角线1BD 的一个平面交1AA 于E ,交1CC 于F ,给出下面几个命题:①四边形1BFD E 一定是平行四边形; ②四边形1BFD E 有可能是正方形;③平面1BFD E 有可能垂直于平面1BB D ;④设1D F 与DC 的延长线交于M ,1D E 与DA 的延长线交于N ,则M 、N 、B 三点共线; ⑤四棱锥11B BFD E -的体积为定值. 以上命题中真命题的个数为( ) A .2B .3C .4D .5核心考点三:体积、面积、周长、距离最值与范围问题 【规律方法】几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值【典型例题】例8.(2022·全国·高三专题练习)如图,正方形EFGH 的中心为正方形ABCD 的中心,22AB =P EFGH -(A ,B ,C ,D 四点重合于点P ),则此四棱锥的体积的最大值为( )A 1286B 1285C .43D 15例9.(2022·江西南昌·三模(理))已知长方体1111ABCD A B C D -中,2AB =,22BC =13AA =,P 为矩形1111D C B A 内一动点,设二面角P AD C --为α,直线PB 与平面ABCD 所成的角为β,若αβ=,则三棱锥11P A BC -体积的最小值是( ) A 2 B .321C 2D 32例10.(2022·浙江·高三阶段练习)如图,在四棱锥Q EFGH -中,底面是边长为22方形,4QE QF QG QH ====,M 为QG 的中点.过EM 作截面将此四棱锥分成上、下两部分,记上、下两部分的体积分别为1V ,2V ,则12V V 的最小值为( )A .12 B .13C .14D .15例11.(2022·河南省实验中学高一期中)如图,在正方体1111ABCD A B C D -中,2AB =,M ,N 分别为11A D ,11B C 的中点,E ,F 分别为棱AB ,CD 上的动点,则三棱锥M NEF -的体积( )A .存在最大值,最大值为83B .存在最小值,最小值为23C .为定值43D .不确定,与E ,F 的位置有关核心考点四:立体几何中的交线问题 【规律方法】 几何法 【典型例题】例12.(2022·浙江宁波·一模)在棱长均相等的四面体ABCD 中,P 为棱AD (不含端点)上的动点,过点A 的平面α与平面PBC 平行.若平面α与平面ABD ,平面ACD 的交线分别为m ,n ,则m ,n 所成角的正弦值的最大值为__________.例13.(2022·全国·高三专题练习)已知一个正四面体的棱长为2,则其外接球与以其一个顶点为球心,1为半径的球面所形成的交线的长度为___________.例14.(2022·福建福州·三模)已知正方体1111ABCD A B C D -31A 为球心,半径为2的球面与底面ABCD 的交线的长度为___________.例15.(2022·陕西·武功县普集高级中学高三阶段练习(理))如图,在四面体ABCD 中,DA ,DB ,DC 两两垂直,2DA DB DC ===D 为球心,1为半径作球,则该球的球面与四面体ABCD 各面交线的长度和为___.核心考点五:空间线段以及线段之和最值问题 【规律方法】几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值【典型例题】例16.(2022·全国·高三专题练习)已知正三棱锥S ABC -2,外接球表面积为3π,2SA <点M ,N 分别是线段AB ,AC 的中点,点P ,Q 分别是线段SN 和平面SCM 上的动点,则AP PQ +的最小值为( ) A 262-B 62+C 32D 2例17.(2022·全国·高三专题练习)在棱长为3的正方体1111ABCD A B C D -中,点E 满足112A E EB =,点F 在平面1BC D 内,则1A F EF +的最小值为( )A 29B .6C 41D .7例18.(2022·全国·高三专题练习)如图所示,在直三棱柱111ABC A B C -中,11AA =,3AB BC ==1cos 3ABC ∠=,P 是1A B 上的一动点,则1AP PC +的最小值为( )A 5B 7C .13+D .3核心考点六:空间角问题 【规律方法】1、用综合法求空间角的基本数学思想主要是转化与化归,即把空间角转化为平面角,进而转化为三角形的内角,然后通过解三角形求得.求解的一般步骤为:(1)作图:作出空间角的平面角.(2)证明:证明所给图形是符合题设要求的. (3)计算:在证明的基础上计算得出结果. 简称:一作、二证、三算.2、用定义作异面直线所成角的方法是“平移转化法”,可固定一条,平移另一条;或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.3、求直线与平面所成角的常见方法(1)作角法:作出斜线、垂线、斜线在平面上的射影组成的直角三角形,根据条件求出斜线与射影所成的角即为所求.(2)等积法:公式θ=sin hl,其中θ是斜线与平面所成的角,h 是垂线段的长,是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可构造三棱锥,利用等体积法来求垂线段的长.(3)证垂法:通过证明线面垂直得到线面角为90°. 4、作二面角的平面角常有三种方法(1)棱上一点双垂线法:在棱上任取一点,过这点分别在两个面内作垂直于棱的射线,这两条射线所成的角,就是二面角的平面角.(2)面上一点三垂线法:自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角.(3)空间一点垂面法:自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角.【典型例题】例19.(2022·浙江金华·高三期末)已知正方体1111ABCD A B C D -中,P 为1ACD △内一点,且1113PB D ACD S S =△△,设直线PD 与11A C 所成的角为θ,则cos θ的取值范围为( )A .3⎡⎢⎣⎦B .3⎡⎤⎢⎥⎣⎦C .10,2⎡⎤⎢⎥⎣⎦D .1,12⎡⎤⎢⎥⎣⎦例20.(2022·浙江·效实中学模拟预测)在等腰梯形ABCD 中,AD BC ∥,12AB AD CD BC ===,AC 交BD 于O 点,ABD △沿着直线BD 翻折成1A BD ,所成二面角1A BD C --的大小为θ,则下列选项中错误的是( )A .1A BC θ∠≤B .1AOC θ∠≥ C .1A DC θ∠≤D .11A BC A DC θ∠+∠≥例21.(2022·浙江·湖州中学高三阶段练习)如图,ABC 中,90C ∠=︒,1AC =,3BC =D 为AB 边上的中点,点M 在线段BD (不含端点)上,将BCM 沿CM 向上折起至'B CM △,设平面'B CM 与平面ACM 所成锐二面角为α,直线'MB 与平面AMC 所成角为β,直线MC 与平面'B CA 所成角为γ,则在翻折过程中,下列三个命题中正确的是( )①3tan βα,②γβ≤,③γα>. A .①B .①②C .②③D .①③例22.(2022·浙江·高三专题练习)已知等边ABC ,点,E F 分别是边,AB AC 上的动点,且满足EF BC ∥,将AEF △沿着EF 翻折至P 点处,如图所示,记二面角P EF B --的平面角为α,二面角P FC B --的平面角为β,直线PF 与平面EFCB 所成角为γ,则( )A .αβγ≥≥B .αγβ≥≥C .βαγ≥≥D .βγα≥≥例23.(2022·全国·高三专题练习)设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P AC B --的平面角是γ则三个角α,β,γ中最小的角是( ) A .αB .βC .γD .不能确定核心考点七:轨迹问题 【规律方法】解决立体几何中的轨迹问题有两种方法:一是几何法.对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法(解析法).在图形中,建立恰当的空间直角坐标系或平面直角坐标系.【典型例题】例24.(2022·北京·昌平一中高三阶段练习)设正方体1111ABCD A B C D -的棱长为1,E ,F 分别为AB ,1BD 的中点,点M 在正方体的表面上运动,且满足FM DE ⊥,则下列命题:①点M 可以是棱AD 的中点; ②点M 的轨迹是菱形; ③点M 轨迹的长度为25 ④点M 5. 其中正确的命题个数为( ) A .1B .2C .3D .4例25.(2022·全国·高三专题练习)已知正方体1111ABCD A B C D -的边长为2,点E ,F 分别为棱CD ,1DD 的中点,点P 为四边形11CDD C 内(包括边界)的一动点,且满足1B P ∥平面BEF ,则点P 的轨迹长为( ) A 2B .2C 2D .1例26.(2022·全国·模拟预测(理))如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,P A ⊥平面ABCD ,且2PA =,点E ,F ,G 分别为棱AB ,AD ,PC 的中点,下列说法错误的是( )A .AG ⊥平面PBDB .直线FG 和直线AC 所成的角为π3C .过点E ,F ,G 的平面截四棱锥P ABCD -所得的截面为五边形D .当点T 在平面ABCD 内运动,且满足AGT △的面积为12时,动点T 的轨迹是圆例27.(2022·浙江温州·高三开学考试)如图,正方体1AC ,P 为平面11B BD 内一动点,设二面角11A BD P --的大小为α,直线1A P 与平面11BD A 所成角的大小为β.若cos sin βα=,则点P 的轨迹是( )A .圆B .抛物线C .椭圆D .双曲线例28.(2022·全国·高三专题练习)如图,正方体ABCD A B C D -''''中,M 为BC 边的中点,点P 在底面A B C D ''''和侧面CDD C ''上运动并且使MAC PAC ''∠=∠,那么点P 的轨迹是( )A .两段圆弧B .两段椭圆弧C .两段双曲线弧D .两段抛物线弧核心考点八:以立体几何为载体的情境题 【规律方法】以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.图形怎么阅读?一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【典型例题】例29.(2022·宁夏·平罗中学高三阶段练习(理))设P 为多面体M 的一个顶点,定义多面体M 在P 处的离散曲率为()()1223111 1.2,3,32k i Q PQ Q PQ Q PQ Q i k π-∠+∠+⋯+∠=⋯≥其中,为多面体M 的所有与点P 相邻的顶点,且平面12Q PQ ,23Q PQ ,……,1k Q PQ 遍及多面体M 的所有以P 为公共点的面如图是正四面体、正八面体、正十二面体和正二十面体,若它们在各顶点处的离散曲率分别是a ,b ,c ,d ,则a ,b ,c ,d 的大小关系是( )A .a b c d >>>B .a b d c >>>C .b a d c >>>D .c d b a >>>例30.(2022·广东·广州市从化区第三中学高三阶段练习)北京大兴国际机场的显著特点之一是各种弯曲空间的运用,在数学上用曲率刻画空间弯曲性.规定:多面体的顶点的曲率等于2π与多面体在该点的面角之和的差(多面体的面的内角叫做多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各顶点的曲率之和.例如:正四面体在每个顶点有3个面角,每个面角是3π,所以正四面体在每个顶点的曲率为233πππ-⨯=,故其总曲率为4π.给出下列三个结论:①正方体在每个顶点的曲率均为2π; ②任意四棱锥的总曲率均为4π;③若某类多面体的顶点数V ,棱数E ,面数F 满足2V E F -+=,则该类多面体的总曲率是常数.其中,所有正确结论的序号是( ) A .①②B .①③C .②③D .①②③例31.(2022·辽宁·沈阳二十中三模)我国南北朝时期的著名数学家祖暅原提出了祖暅原理:“幂势既同,则积不容异.”意思是,夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意一个平面所截,若截面面积都相等,则这两个几何体的体积相等.运用祖暅原理计算球的体积时,构造一个底面半径和高都与球的半径相等的圆柱,与半球(如图①)放置在同一平面上,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥后得到一新几何体(如图②),用任何一个平行于底面的平面去截它们时,可证得所截得的两个截面面积相等,由此可证明新几何体与半球体积相等,即2311122323V R R R R R πππ=⋅-⋅=球.现将椭圆22149x y +=绕y 轴旋转一周后得一橄榄状的几何体(如图③),类比上述方法,运用祖暅原理可求得其体积等于( )A .32πB .24πC .18πD .16π例32.(2022·全国·高三专题练习)将地球近似看作球体.设地球表面某地正午太阳高度角为θ,δ为此时太阳直射纬度(当地夏半年取正值,冬半年取负值),ϕ为该地的纬度值,如图.已知太阳每年直射范围在南北回归线之间,即[]2326,2326δ''∈-︒︒.北京天安门广场的汉白玉华表高为9.57米,北京天安门广场的纬度为北纬395427'''︒,若某天的正午时刻,测得华表的影长恰好为9.57米,则该天的太阳直射纬度为( )A .北纬5527'''︒B .南纬5527'''︒C .北纬5533'''︒D .南纬5533'''︒核心考点九:翻折问题 【规律方法】1、处理图形翻折问题的关键是理清翻折前后长度和角度哪些发生改变,哪些保持不变.2、把空间几何问题转化为平面几何问题,把握图形之间的关系,感悟数学本质. 【典型例题】例33.(2022·全国·高三专题练习)如图,已知四边形ABCD ,BCD △是以BD 为斜边的等腰直角三角形,ABD △为等边三角形,2BD =,将ABD △沿对角线BD 翻折到PBD △在翻折的过程中,下列结论中不正确...的是( )A .BD PC ⊥B .DP 与BC 可能垂直C .直线DP 与平面BCD 所成角的最大值是45︒D .四面体PBCD 3例34.(2022·浙江·杭州高级中学模拟预测)如图,已知矩形ABCD 的对角线交于点,,1E AB x BC ==,将ABD △沿BD 翻折,若在翻折过程中存在某个位置,使得ABCE ,则x 的取值范围是( )A .03x <≤B .02x <≤C .01x <≤D .06x ≤<例35.(2022·全国·高三专题练习)如图1,在正方形ABCD 中,点E 为线段BC 上的动点(不含端点),将ABE 沿AE 翻折,使得二面角B AE D --为直二面角,得到图2所示的四棱锥B AECD -,点F 为线段BD 上的动点(不含端点),则在四棱锥B AECD -中,下列说法正确的是( )A .B 、E 、C 、F 四点一定共面 B .存在点F ,使得CF ∥平面BAEC .侧面BEC 与侧面BAD 的交线与直线AD 相交 D .三棱锥B ADC -的体积为定值例36.(2022·全国·高三专题练习)已知直角梯形ABCD 满足:AD ∥BC ,CD ⊥DA ,且△ABC 为正三角形.将△ADC 沿着直线AC 翻折至△AD 'C 如图,且AD BD CD '''<<,二面角D AB C '﹣﹣、D BC A '﹣﹣、D AC B '﹣﹣的平面角大小分别为α,β,γ,直线D A ',D B ',D C '与平面ABC 所成角分别是θ1,θ2,θ3,则( )A .123θθθαγβ>>,>>B .123θθθαβγ<<,>>C .123θθθαβγ>>,<<D .123θθθαβγ<<,<<【新题速递】1.(2022·安徽·高三阶段练习)如图,在棱长为a 的正四面体ABCD 中,点111,,B C D 分别在棱,,AB AC AD 上,且平面111B C D 平面1,BCD A 为BCD △内一点,记三棱锥1111A B C D -的体积为V ,设1AD x AD=,关于函数()V f x =,下列说法正确的是( )A .12220,,,133x x ⎛⎫⎛⎫∀∈∃∈ ⎪ ⎪⎝⎭⎝⎭,使得()()21f x f x =B .函数()f x 在1,12⎛⎫⎪⎝⎭上是减函数C .函数()f x 的图象关于直线12x =对称 D .()00,1x ∃∈,使得()016A BCD f x V ->(其中A BCD V -为四面体ABCD 的体积)2.(2022·重庆市长寿中学校高三阶段练习)如图所示,在直角梯形BCEF 中,90,CBF BCE A ∠∠==、D 分别是BF 、CE 上的点,//AD BC ,且22AB DE BC AF ===(如图1).将四边形ADEF 沿AD 折起,连接BE BF CE 、、(如图2).在折起的过程中,下列说法中错误的个数是( )①AC //平面BEF ; ②B C E F 、、、四点不可能共面;③若EF CF ⊥,则平面ADEF ⊥平面ABCD ; ④平面BCE 与平面BEF 可能垂直. A .1B .2C .3D .43.(2022·四川·成都市第二十中学校一模(理))如图, 在棱长为 2 的正方体1111ABCD A B C D -中,E F G H P 、、、、均为所在棱的中点, 则下列结论正确的有( )①棱 AB 上一定存在点Q , 使得1QC D Q ⊥ ②三棱锥F EPH -的外接球的表面积为8π③过点 E F G ,,作正方体的截面, 则截面面积为33④设点 M 在平面11BB C C 内, 且1//A M 平面AGH , 则1A M 与AB 所成角的余弦值的最大22A .1 个B .2 个C .3 个D .4 个4.(2022·四川·成都市锦江区嘉祥外国语高级中学有限责任公司模拟预测(文))在棱长为2的正方体1111ABCD A B C D -中,N 为11B C 的中点,点P 在正方体各棱及表面上运动且满足AP CN ⊥,则点P 轨迹所围成图形的面积为( )A .25B .42C .23D .45.(2022·上海市实验学校高三阶段练习)直线m ⊥平面α,垂足是O ,正四面体ABCD 的棱长为4,点C 在平面α上运动,点B 在直线m 上运动,则点O 到直线AD 的距离的取值范围是( )A .425425⎡-+⎢⎣⎦B .222,222⎡⎤⎣⎦C .322322⎡-+⎢⎣⎦D .322,322⎡⎤⎣⎦6.(2022·湖南·模拟预测)正三棱柱111ABC A B C 的底面边长是4,侧棱长是6,M ,N 分别为1BB ,1CC 的中点,若点P 是三棱柱内(含棱柱的表面)的动点,MP ∥平面1AB N ,则动点P 的轨迹面积为( ) A .53B .5C 39D 267.(2022·山西·高三阶段练习)已知正方体1111ABCD A B C D -的顶点都在表面积为12π的球面上,过球心O 的平面截正方体所得的截面为一菱形,记该菱形截面为S ,点P 是正方体表面上一点,则以截面S 为底面,以点P 为顶点的四棱锥的体积的最大值为( ) A .83B .73C .2D .538.(2022·浙江·高三阶段练习)在OAB △中,OA AB =,120OAB ∠=︒.若空间点P 满足1=2PABOABSS ,则直线OP 与平面OAB 所成角的正切的最大值是( )A .13B .12C 3D .19.(多选题)(2022·云南曲靖·高三阶段练习)已知正方体1111ABCD A B C D -的棱长为1,点P 为侧面11BCC B 内一点,则( )A .当1113C P C B =时,异面直线CP 与AD 所成角的正切值为2B .当11(01)C P C B λλ=<<时,四面体1D ACP 的体积为定值C .当点P 到平面ABCD 的距离等于到直线11A B 的距离时,点P 的轨迹为拋物线的一部分 D .当1112C P C B =时,四面体BCDP 的外接球的表面积为3π10.(多选题)(2022·辽宁·本溪高中高三阶段练习)如图,矩形BDEF 所在平面与正方形ABCD 所在平面互相垂直,2AD DE ==,G 为线段AE 上的动点,则( )A .AE CF ⊥B .多面体ABCDEF 的体积为83C .若G 为线段AE 的中点,则GB //平面CEFD .点M ,N 分别为线段AF ,AC 上的动点,点T 在平面BCF 内,则MT NT +43 11.(多选题)(2022·广东·东涌中学高三期中)如图,已知正方体1111ABCD A B C D -的棱长为1,E ,F ,G 分别为AB ,AD ,1BB 的中点,点P 在11A C 上,//AP 平面EFG ,则以下说法正确的是( )A .点P 为11A C 的中点B .三棱锥P EFG -的体积为148C .直线1BB 与平面EFG 3D .过点E 、F 、G 作正方体的截面,所得截面的面积是3312.(多选题)(2022·安徽·阜阳师范大学附属中学高三阶段练习)已知ABC 为等腰直角三角形,AB AC =,其高3AD =,E 为线段BD 的中点,将ABC 沿AD 折成大小为32ππθθ⎛⎫< ⎪⎝⎭的二面角,连接BC ,形成四面体A BCD -,动点P 在ACD 内(含边界),且//PE 平面ABC ,则在θ变化的过程中( )A .AD BC ⊥B .E 点到平面ADC 的距离的最大值为322C .点P 在ADC △2D .当BP AC ⊥时,BP 与平面ADC 所成角的正切值的取值范围为)22,⎡+∞⎣13.(多选题)(2022·江苏省泰兴中学高三阶段练习)棱长为1的正方体1111ABCD A B C D -内部有一圆柱12O O ,此圆柱恰好以直线1AC 为轴,且圆柱上下底面分别与正方体中以1A C ,为公共点的3个面都有一个公共点,以下命题正确的是( )A .在正方体1111ABCD ABCD -内作与圆柱12O O 3B .无论点1O 在线段1AC 上如何移动,都有11BO B C ⊥C .圆柱12O O 的母线与正方体1111ABCD A B C D -所有的棱所成的角都相等D .圆柱12O O 外接球体积的最小值为π6 14.(多选题)(2022·江苏盐城·高三阶段练习)已知正四面体ABCD 的棱长为2球的球心为O .点E 满足(01)AE AB λλ=<<,(01)CF CD μμ=<<,过点E 作平面α平行于AC 和BD ,平面α分别与该正四面体的棱BC ,CD ,AD 相交于点M ,G ,H ,则( )A .四边形EMGH 的周长为是变化的B .四棱锥A EMGH -的体积的最大值为6481 C .当14λ=时,平面α截球O 47 D .当12λμ==时,将正四面体ABCD 绕EF 旋转90︒后与原四面体的公共部分体积为43 15.(2022·安徽·石室中学高三阶段练习)已知三棱锥V ABC -的高为3D E F ,,,分别为VC VA VB ,,的中点,若平面ABD ,平面BCE ,平面ACF 相交于O 点,则O 到平面ABC 的距离h 为___________.16.(2022·北京八十中高三期末)如图,在正方体ABCD —1111D C B A 中,E 为棱11B C 的中点.动点P 沿着棱DC 从点D 向点C 移动,对于下列四个结论:。
高中数学立体几何定理总结
1、直线与平面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行.2、直线与平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.ba b a a ////⇒⎪⎭⎪⎬⎫=⊂βαβα3、平面与平面平行的判定定理:如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行.4、平面与平面平行的性质定理:①如果两个平面平行,那么某一个平面内的直线与另一个平面平行.βαβα//,//a a ⇒⊂②如果两个平行平面都和第三个平面相交,那么它们的交线平行. b a b a ////⇒⎪⎭⎪⎬⎫==γβγαβα γba βαβαββαα//////⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫=⊂⊂b a P b a b aααα////a b a b a ⇒⎪⎭⎪⎬⎫⊂⊄βαm l如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面.ααα⊥⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫=⊂⊂⊥⊥l P b a b a b l a l6、直线与平面垂直的性质定理:①如果一条直线与一个平面垂直,那么它就与平面内的任何一条直线垂直.b a b a ⊥⇒⊂⊥αα,②如果两条直线同垂直于一个平面,那么这两条直线平行.ba b a //⇒⎭⎬⎫⊥⊥αα7、平面与平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.8、平面与平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面.ββαβα⊥⇒⎪⎭⎪⎬⎫⊥⊂=b b b a βαβαβα⊥⇒⎪⎪⎭⎪⎪⎬⎫⊥⊂=⊥a b a a b1、直线与平面平行的判定定理:2、直线与平面平行的性质定理:3、平面与平面平行的判定定理:4、平面与平面平行的性质定理:①②6、直线与平面垂直的性质定理:①②7、平面与平面垂直的判定定理:8、平面与平面垂直的性质定理:。
007——微专题七:立体几何选择填空多选题中档题-解析
微专题七:立体几何选择填空多选题中档题一、单选题1.如图,在棱长为2的正方体1111ABCD A B C D -中,M 是11A B 的中点,点P 是侧面11CDD C 上的动点,且MP ∥截面1AB C ,则线段MP 长度的取值范围是( ).A .[2,6]B .[6,22]C .[6,23]D .[6,3]【答案】B 【分析】取CD 的中点为N,1CC 的中点为R,11B C 的中点为H,证明平面MNRH//平面1AB C ,MP ⊂平面MNRH ,线段MP 扫过的图形为MNR ∆,通过证明222MN NR MR =+,说明MRN ∠为直角,得线段MP 长度的取值范围为[],MR MN 即可得解. 【详解】取CD 的中点为N,1CC 的中点为R,11B C 的中点为H,作图如下:由图可知,11//,MB NC MB NC =,所以四边形1MNCB 为平行四边形, 所以1//MN B C ,因为1111//,//MH A C A C AC ,所以//MH AC , 因为1,MNMH M ACB C C ==, 故平面MNRH//平面1AB C ,因为MP ∥截面1AB C ,所以MP ⊂平面MNRH ,线段MP 扫过的图形为MNR ∆,由2AB =知,22,2MN NR ==,在1Rt MC R ∆中,22211MR C R C M =+,即()222156MR =+=,所以6MR =,所以222MN NR MR =+,即MRN ∠为直角,故线段MP 长度的取值范围为[],MR MN ,即6,22⎡⎤⎣⎦,故选:B【点睛】本题考查面面平行的判定定理与性质定理及空间两点间的距离;重点考查转化与化归的思想;属于难度大、抽象型试题.2.在正方体1111ABCD A B C D -中,E 是棱1CC 的中点,F 是侧面11BCC B 内的动点,且1A F 平面1D AE ,则1A F 与平面11BCC B 所成角的正切值t 构成的集合是( )A .25|235t t B .25|25t t C .|223t t D .|222t t【答案】D 【分析】为确定F 点位置,先找过1A 与平面1D AE 平行且与平面11B BCC 相交的平面,分别取111,B B B C 的中点,M N ,连接11,,A M MN A N ,可知平面1//A MN 平面1D AE ,故F 在线段MN 上,可知线面角为11A FB ∠,分析其正切值即可求出.【详解】设平面1AD E 与直线BC 交于点G ,连接,AG EG ,则G 为BC 的中点. 分别取111,B B B C 的中点,M N ,连接11,,A M MN A N ,则11//A M D E , ∵1A M平面1D AE ,1D E ⊂平面1D AE ,∴1//A M 平面1D AE ,同理可得//MN 平面1D AE . ∵1,A M MN 是平面1A MN 内的两条相交直线, ∴平面1//A MN 平面1D AE ,且1//A F 平面1D AE , 可得直线1A F ⊂平面1A MN ,即点F 是线段MN 上的动点.设直线1A F 与平面11BCC B 所成角为θ,运动点F 并加以观察,可得:当点F 与点M (或N )重合时,1A F 与平面11BCC B 所成角等于11A MB ,此时所成角θ达到最小值,满足111tan 2A B B Mθ;当点F 与MN 中点重合时,1A F 与平面11BCC B 所成角达到最大值,此时111111tan 2222A B A B B FB M θ,∴1A F 与平面11BCC B 所成角的正切值t 构成的集合为|222t t ,故选D.【点睛】本题主要考查了面面平行的判定与性质,线面角,及线面角正切的最值问题,属于难题.3.如图,PO 是平面α的斜线,O 是斜足,PA α⊥于点A ,BC 是α内过点O 的直线.若POB ∠是锐角,则有( ).A .POC COA ∠>∠B .POA BOA ∠<∠C .POC COA ∠<∠D .POB AOB ∠<∠【答案】C 【解析】【分析】由三余弦定理可得POB AOB ∠>∠,即POC COA ∠<∠,再逐一检验A,B,D 选项即可得解. 【详解】解:由三余弦定理可得:cos cos cos POB POA AOB ∠=∠∠, 又,,POB POA AOB ∠∠∠为锐角,所以cos cos POB AOB ∠<∠, 所以POB AOB ∠>∠,所以POB AOB ππ-∠<-∠, 即POC COA ∠<∠,故C 正确,则选项A 错误, 同理POB AOB ∠>∠,则选项D 错误,又,POA BOA ∠∠大小无法确定,则不能比较大小,即选项B 错误, 故选C.【点睛】本题考查了三余弦定理,属中档题.4.如图,在棱长为2的正方体1111ABCD A B C D -中,,,E F G 分别是棱1,,AB BC CC 的中点,P 是底面ABCD 内一动点,若直线1D P 与平面EFG 不存在公共点,则三角形1PBB 的面积的最小值为A .22B .1C 2D .2【答案】C 【分析】延展平面EFG ,可得截面EFGHOR ,其中H Q R 、、分别是所在棱的中点,可得1//D P 平面EFGHQR ,再证明平面1//D AC 平面EFGHQR ,可知P 在AC 上时,符合题意,从而得到P 与O 重合时三角形1PBB 的面积最小,进而可得结果. 【详解】延展平面EFG ,可得截面EFGHQR ,其中H Q R 、、分别是所在棱的中点, 直线1D P 与平面EFG 不存在公共点,所以1//D P 平面EFGHQR ,由中位线定理可得AC//EF ,EF 在平面EFGHQR 内,AC 在平面EFGHQR 外, 所以AC //平面EFGHQR ,因为1D P 与AC 在平面1D AC 内相交,所以平面1//D AC 平面EFGHQR ,所以P 在AC 上时,直线1D P 与平面EFG 不存在公共点, 因为B O 与AC 垂直,所以P 与O 重合时BP 最小, 此时,三角形1PBB 的面积最小,最小值为12222⨯⨯=,故选C.【点睛】 本题主要考查线面平行的判定定理、面面平行的判定定理,属于难题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.5.已知ABC ∆是由具有公共直角边的两块直角三角板(Rt ACD ∆与Rt BCD ∆)组成的三角形,如左下图所示.其中,45,60CAD BCD ∠=∠=.现将Rt ACD ∆沿斜边AC 进行翻折成1D AC ∆(1D 不在平面ABC 上).若,M N 分别为BC 和1BD 的中点,则在ACD ∆翻折过程中,下列命题不正确的是( )A .在线段BD 上存在一定点E ,使得EN 的长度是定值B .点N 在某个球面上运动C .存在某个位置,使得直线1AD 与DM 所成角为60D .对于任意位置,二面角1D AC B --始终大于二面角1D BC A -- 【答案】D 【分析】由题意,可得二面角1D AC B --和二面角1D BC A --有共同的平面角ABC ∠,且另一个面都过点1D ,过点1D 作平面ABC 的垂线,即可得到二面角1D AC B --和二面角1D BC A --的平面角,进而得大小关系即可. 【详解】不妨设1AD =,取AB 中点E ,易知E 落在线段BD 上,且11122EN AD ==, 所以点N 到点E 的距离始终为12,即点N 在以点E 为球心,半径为12的球面上运动, 因此A 、B 选项不正确;对于C 选项,作1//,AP DM AD 可以看成以AC 为轴线,以45为平面角的圆锥的母线,易知1AD 与AP 落在同一个轴截面上时,1PAD ∠ 取得最大值,则1PAD ∠的最大值为60,此时1D 落在平面ABC 上,所以160PAD ∠<,即1AD 与DM 所成的角始终小于60,所以C 选项不正确;对于D 选项,易知二面角1D AC B --为直二面角时,二面角1D AC B --始终大于二面角1D BC A --,当二面角1D AC B --为锐二面角时,如图所示作1D R ⊥平面ABC 与点R ,然后作,RO AC RS BC ⊥⊥分别交,AC BC 于,O S ,则二面角1D AC B --的平面角为1D OR ∠,二面角1D BC A --的平面角为1D SR ∠, 且1111tan ,tan D R D RD OR D SR OR SR∠=∠=,又因为OR SR <,所以11D OR D SR ∠>∠, 所以二面角1D AC B --始终大于二面角1D BC A --,故选D.【点睛】本题主要考查了空间几何体的结构特征,以及空间角的求解,其中解答中正确确定二面角的的平面角和异面直线所成的角是解答的关键,试题综合性强,难度大,属于难题,着重考查了空间想象能力,以及分析问题和解答问题的能力.6.如图,在棱长为1的正方体1111ABCD A B C D -中,点E F 、分别是棱BC ,1CC 的中点,P 是侧面11BCC B 内一点,若1A P //平面AEF ,则线段1A P 长度的取值范围是( )A .325(,)42B .325[,]42C .5[1,]2D .5[0,]2【答案】B 【解析】分析:先判断出点P 的位置,确定使得1A P 取得最大值和最小值时点P 的位置,然后再通过计算可求得线段1A P 长度的取值范围.详解:如下图所示,分别取棱111,BB B C 的中点M 、N ,连MN ,1BC ,∵,,,M N E F 分别为所在棱的中点,则11,MNBC EF BC ,∴MN ∥EF ,又MN ⊄平面AEF ,EF ⊂平面AEF ,∴MN ∥平面AEF .∵11,AA NE AA NE =,∴四边形1AENA 为平行四边形,∴1A N AE ∥,又1A N ⊄平面AEF ,AE ⊂平面AEF , ∴1A N ∥平面AEF ,又1A NMN N =,∴平面1A MN ∥平面AEF .∵P 是侧面11BCC B 内一点,且1A P ∥平面AEF ,∴点P 必在线段MN 上.在11Rt A B M ∆中,2221111151()2A M AB B M ++.同理,在11Rt A B N ∆中,可得15A N =∴1A MN ∆为等腰三角形. 当点P 为MN 中点O 时,1A P MN ⊥,此时1A P 最短;点P 位于M 、N 处时,1A P 最长. ∵2222115232()()244AO A M OM =-=-=,115A M A N ==.∴线段1A P 长度的取值范围是325[,]42.故选B .点睛:本题难度较大,解题时要借助几何图形判断得出使得1A P 取得最值时的点P 的位置,然后再根据勾股定理进行计算. 7.如图,正方体AC 1的棱长为1,过点A 作平面A 1BD 的垂线,垂足为点H .则以下命题中,错误的命题是A .点H 是△A 1BD 的垂心B .AH 垂直平面CB 1D 1C .AH 的延长线经过点C 1D .直线AH 和BB 1所成角为45°【答案】D 【详解】因为三棱锥A -A 1BD 是正三棱锥,故顶点A 在底面的射影是底面的中心,A 正确;平面A 1BD ∥平面CB 1D 1,而AH 垂直于平面A 1BD ,所以AH 垂直于平面CB 1D 1,B 正确;根据对称性知C 正确,故选D.二、多选题8.如图,在四棱锥E ABCD -中,底面ABCD 是边长为2的正方形,CDE △是正三角形,M 为线段DE 的中点,点N 为底面ABCD 内的动点,则下列结论正确的是( )A .若BC DE ⊥,则平面CDE ⊥平面ABCDB .若BC DE ⊥,则直线EA 与平面ABCD 所成的角的正弦值为64C .若直线BM 和EN 异面,则点N 不可能为底面ABCD 的中心D .若平面CDE ⊥平面ABCD ,且点N 为底面ABCD 的中心,则BM EN = 【答案】ABC 【分析】根据面面垂直的判定,线面夹角的求解办法,以及异面直线的定义,结合面面垂直的性质,对每个选项进行逐一分析,即可容易判断选择.【详解】 ∵BC CD ⊥,BC DE ⊥,CDDE D =,,CD DE ⊂平面CDE ,∴BC ⊥平面CDE ,∵BC ⊂平面ABCD ,∴平面ABCD ⊥平面CDE ,A 项正确;设CD 的中点为F ,连接EF 、AF ,则EF CD ⊥.∵平面ABCD ⊥平面CDE ,平面ABCD 平面CDE CD =,EF ⊂平面CDE ∴EF ⊥平面ABCD ,设EA 与平面ABCD 所成的角为θ,则EAF θ=∠,223EF CE CF =-=,225AF AD FD =+=,2222AE EF AF =+=,则6sin 4EF AE θ==,B 项正确; 连接BD ,易知BM ⊂平面BDE ,由B 、M 、E 确定的面即为平面BDE ,当直线BM 和EN 异面时,若点N 为底面ABCD 的中心,则N BD ∈, 又E ∈平面BDE ,则EN 与BM 共面,矛盾,C 项正确;连接FN ,∵FN ⊂平面ABCD ,EF ⊥平面ABCD ,∴EF FN ⊥, ∵F 、N 分别为CD 、BD 的中点,则112FN BC ==, 又3EF=,故222EN EF FN =+=,227BM BC CM =+=,则BM EN ≠,D 项错误. 故选:ABC . 【点睛】本题综合考查面面垂直的判定以及性质、异面直线的定义、线面夹角的求解,属综合困难题.9.如图,正三棱柱11ABC A B C -中,11BC AB ⊥、点D 为AC 中点,点E 为四边形11BCC B 内(包含边界)的动点则以下结论正确的是( )A .()1112DA A A B A BC =-+B .若//DE 平面11ABB A ,则动点E 的轨迹的长度等于22AC C .异面直线AD 与1BC 6D .若点E 到平面11ACC AEB ,则动点E 的轨迹为抛物线的一部分 【答案】BCD 【分析】根据空间向量的加减法运算以及通过建立空间直角坐标系求解,逐项判断,进而可得到本题答案. 【详解】解析:对于选项A ,()1112AD A A B A BC =-+,选项A 错误; 对于选项B ,过点D 作1AA 的平行线交11A C 于点1D .以D 为坐标原点,1DA DB DD ,,分别为,,x y z 轴的正方向建立空间直角坐标系Oxyz .设棱柱底面边长为a ,侧棱长为b ,则002a A ⎛⎫ ⎪⎝⎭,,,00B ⎛⎫ ⎪ ⎪⎝⎭,,10B b ⎛⎫ ⎪ ⎪⎝⎭,,102a C b ⎛⎫- ⎪⎝⎭,,,所以12a BC b ⎛⎫=- ⎪ ⎪⎝⎭,,,12a AB b ⎛⎫=- ⎪ ⎪⎝⎭,. ∵11BC AB ⊥,∴110BC AB ⋅=,即22202a b ⎫⎛⎫--+=⎪ ⎪⎪⎝⎭⎝⎭,解得2b a =. 因为//DE 平面11ABB A ,则动点E的轨迹的长度等于1BB =.选项B 正确. 对于选项C ,在选项A 的基础上,002a A ⎛⎫⎪⎝⎭,,,00B ⎛⎫ ⎪ ⎪⎝⎭,,()0,0,0D ,1022a C a ⎛⎫- ⎪ ⎪⎝⎭,,,所以002a DA ⎛⎫= ⎪⎝⎭,,,12a BC ⎛⎫=- ⎪ ⎪⎝⎭,因为2111cos ,6||||a BC DA BC DA BC DA a ⎛⎫- ⎪⋅<>===-,所以异面直线1,BC DA所成角的余弦值为6,选项C 正确.对于选项D ,设点E 在底面ABC 的射影为1E ,作1EF 垂直于AC ,垂足为F ,若点E 到平面11ACC A 的,即有12E F EB =,又因为在1CE F ∆中,112E F E C =,得1EB E C =,其中1E C 等于点E 到直线1CC 的距离,故点E 满足抛物线的定义,另外点E 为四边形11BCC B 内(包含边界)的动点,所以动点E 的轨迹为抛物线的一部分,故D 正确.故选:BCD 【点睛】本题主要考查立体几何与空间向量的综合应用问题,其中涉及到抛物线定义的应用.三、填空题10.如图,正方体1111ABCD A B C D -的棱长为a ,动点P 在对角线1BD 上,过点P 作垂直于1BD 的平面γ,记这样得到的截面多边形(含三角形)的周长为y ,设BP x =,则当323[,]33x a a ∈时,函数()y f x =的值域为______. 【答案】{}32a【分析】 当323,33x a a ⎡⎤∈⎢⎥⎣⎦时,截面多边形是六边形HIJKLM ,利用相似比可知邻边长之和为定值即可得到结果. 【详解】当323,33x a a ⎡⎤∈⎢⎥⎣⎦时,截面多边形是六边形HIJKLM ,设11HI AC =111B I B C =λ,则1IJ B C =111C I B C =1﹣λ, ∴HI +2a ,∴截面六边形的周长为32a ;故答案为{}32a【点睛】本题考查了几何体中动点问题,截面周长问题,考查了空间想象力,属于中档题.11.如图,半径为R 的球O 的直径AB 垂直于平面α,垂足为B ,BCD 是平面α内边长为R 的正三角形,线段AC ,AD 分别与球面交于点M 、N ,则三棱锥A BMN -的体积是__________.【答案】38375R 【分析】 2AB R =,BC R =,5AC R =,BCD ∆是平面α内边长为R 的正三角形,ABC AMB ∆∽,45AM AC =,类似有45AN AD =,24()5A BMN AMN A BCD ABCV S V S -∆-∆==,由此能求出三棱锥A BMN -的体积. 【详解】 2AB R =,BC R =,5AC R =,半径为R 的球O 的直径AB 垂直于平面α,垂足为B ,BCD ∆是平面α内边长为R 的正三角形, 线段AC ,AD 分别与球面交于点M 、N ,BAM BAC ∴∠=∠,90AMB ABC ∠=∠=︒,ABC AMB ∴∆∆∽,∴AB AC AM AB =,455AM R ∴=, ∴45AM AC =,类似有45AN AD =, ∴2416()525A BMN AMN A BCD ABC V S V S -∆-∆===,∴三棱锥A BMN -的体积: 231613832253475A BMN V R R R -=⨯⨯⨯⨯=.故答案为:38375R .【点睛】本题考查三棱锥的体积的求法,考查球、三棱锥的结构特征等基础知识,考查运算求解能力,是中档题. 12.如图,已知:在ABC 中,3CA CB ==,3AB =,点F 是BC 边上异于点B ,C 的一个动点,EF AB ⊥于点E ,现沿EF 将BEF 折起到PEF 的位置,使PE AC ⊥,则四棱锥P ACFE -的体积的最大值为________.2 过点D 作CD AB ⊥,由EF AB ⊥可知//EF CD ,进而证明PE ⊥平面ABC ,所以PE 为四棱锥P ACFE -的高,设BE PE x ==,通过题设条件分别求出BEF S 和ABC S 的表达式,进而得出ACFE S 四边形的表达式,记四棱锥P ACFE -的体积为(x)V ,由四棱锥的体积公式可得333()418V x x x =-(302x <<),然后利用导数求得(x)V 的最大值即可. 【详解】过点D 作CD AB ⊥,由EF AB ⊥可知//EF CD ,因为EF AB ⊥,所以翻折后PE EF ⊥,所以PE CD ⊥,又PE AC ⊥,AC CD D =,AC ,CD ⊂平面ABC ,所以PE ⊥平面ABC ,所以PE 为四棱锥P ACFE -的高, 因为3CA CB ==3AB =,CD AB ⊥,所以可得:()22223332CD AC AD ⎛⎫=-=-= ⎪⎝⎭ 设BE PE x ==,所以EF BE CD BD =332x =,即3EF x =, 所以2132BEF S BE EF x =⋅=△,又1332ABC S AB CD =⋅=△, 所以2333ACFE S x =四边形,记四棱锥P ACFE -的体积为(x)V , 所以323334133()34618x V x x x x ⎛⎫=⋅⋅=- ⎪ ⎪⎝⎭-(302x <<),2()V x x '=,令()0V x '=可得x =或x =(舍去),所以当0,2x ⎛∈ ⎝⎭时,()0V x '>,()V x '单调递增;当322x ⎛⎫∈ ⎪ ⎪⎝⎭时,()0V x '<,()V x '单调递减,因此当2x =时,(x)V 取得最大值,最大值为24V ⎛= ⎝⎭.故答案为:4. 【点睛】本题考查棱锥体积的求法,考查利用导数研究函数的最值,考查逻辑思维能力和运算求解能力,属于中档题.。
2021年高考数学经典例题专题七立体几何与空间向量含解析
专题七 立体几何与空间向量一、单项选择题1.假如棱长为A .12πB .24πC .36πD .144π【答案】C【解析】求出正方体的体对角线的一半,即为球的半径,利用球的外表积公式,即可得解.【详解】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R ==,所以,这个球的外表积为2244336S R πππ==⨯=.应当选:C.【点睛】此题考查正方体的外接球的外表积的求法,求出外接球的半径是此题的解题关键,属于根底题.求多面体的外接球的面积和体积问题,常用方法有:〔1〕三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;〔2〕直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;〔3〕如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心.2.某三棱柱的底面为正三角形,其三视图如下列图,该三棱柱的外表积为〔〕.A .63+B .623+C .123+D .1223+【答案】D【解析】首先确定几何体的结构特征,然后求解其外表积即可.【详解】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,如此其外表积为:()1322222sin 60122S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+ ⎪⎝⎭应当选:D.3.某几何体的三视图〔单位:cm 〕如下列图,如此该几何体的体积〔单位:cm 3〕是〔〕A .73B .143C .3D .6 【答案】A【解析】根据三视图复原原图,然后根据柱体和锥体体积计算公式,计算出几何体的体积.【详解】由三视图可知,该几何体是上半局部是三棱锥,下半局部是三棱柱,且三棱锥的一个侧面垂直于底面,且棱锥的高为1,棱柱的底面为等腰直角三角形,棱柱的高为2,所以几何体的体积为:11117211212232233⎛⎫⎛⎫⨯⨯⨯⨯+⨯⨯⨯=+= ⎪ ⎪⎝⎭⎝⎭. 应当选:A4.,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,假如⊙1O 的面积为4π,1AB BC AC OO ===,如此球O 的外表积为〔〕A .64πB .48πC .36πD .32π【答案】A【解析】由可得等边ABC 的外接圆半径,进而求出其边长,得出1OO 的值,根据球的截面性质,求出球的半径,即可得出结论.【详解】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r ππ=∴=,ABC 为等边三角形,由正弦定理可得2sin60AB r =︒=1OO AB ∴==1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====,∴球O 的外表积2464S R ππ==.应当选:A5.如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,如此该端点在侧视图中对应的点为〔〕A .EB .FC .GD .H【答案】A【解析】根据三视图,画出多面体立体图形,即可求得M 点在侧视图中对应的点.【详解】根据三视图,画出多面体立体图形,14D D 上的点在正视图中都对应点M ,直线34B C 上的点在俯视图中对应的点为N,∴在正视图中对应M ,在俯视图中对应N 的点是4D ,线段34D D ,上的所有点在侧试图中都对应E ,∴点4D 在侧视图中对应的点为E .应当选:A6.四面体ABCD 的顶点A ,B ,C ,D 在同个球面上,AD ⊥平面ABC ,3AD =,2AB =,3AC =,60CAB ∠=︒,如此该四面体的外接球的外表积为〔〕A .6πB .143πC .12πD .163π 【答案】C【解析】过ABC 外接圆1O ,作直线l ⊥平面ABC ,可得1123OO AD ==,在ABC 中,利用余弦定理求出BC =ABC 外接圆半径,利用勾股定理求出外接球半径,根据球的外表积公式即可求解.【详解】如下列图,作ABC 外接圆1O ,过1O 作直线l ⊥平面ABC ,又DA ⊥平面ABC ,//DA l ∴,连接1AO ,并延长交球O 于H ,连接DH ,与l 的交点为球心O ,OH OD R ==,如此112OO AD ==, 在ABC 中,由余弦定理得2222cos60BC AB AC AB AC =+-⋅⋅︒14922372=+-⨯⨯⨯=,BC ∴=,又由正弦定理得12sin 60BC O H =︒(1O H 为外接圆半径),13O H ∴= 222211621399R OH OO O H ∴==+=+=, 2412S R ππ∴==.应当选:C.7.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OAA处放置一个日晷,假如晷面与赤道所在平面平行,点A处的纬度为北纬40°,如此晷针与点A处的水平面所成角为〔〕A.20°B.40°C.50°D.90°【答案】B【解析】画出过球心和晷针所确定的平面截地球和晷面的截面图,根据面面平行的性质定理和线面垂直的定义判定有关截线的关系,根据点A 处的纬度,计算出晷针与点A 处的水平面所成角.【详解】画出截面图如如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直, 根据平面平行的性质定理可得可知//m CD 、根据线面垂直的定义可得AB m ⊥..由于40,//AOC m CD ∠=︒,所以40OAG AOC ∠=∠=︒,由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与点A 处的水平面所成角为40BAE ∠=︒.应当选:B8.△ABC 的等边三角形,且其顶点都在球OO 的外表积为16π,如此O 到平面ABC 的距离为〔〕A .32C .1D .2【答案】C【解析】根据球O 的外表积和ABC 的面积可求得球O 的半径R 和ABC 外接圆半径r ,由球的性质可知所求距离d =【详解】设球O 的半径为R ,如此2416R ππ=,解得:2R =.设ABC 外接圆半径为r ,边长为a ,ABC 的等边三角形,212a ∴=,解得:3a =,2233r ∴===∴球心O 到平面ABC 的距离1d ===.应当选:C.9.在三棱锥P ABC -中,BC ⊥平面PAB ,AP AB ⊥,D 是BC 的中点.假如45APB ∠=︒,60APC ∠=︒,如此直线PD 与平面ABC 所成角的正弦值为〔〕A .3B .2C D 【答案】C【解析】根据线面角的定义找到直线PD 与平面ABC 所成角的平面角,法一:应用几何法,根据线面垂直的性质、勾股定理求对应边,在直角三角形中求线面角的正弦值;法二:应用向量法,构建空间直角坐标系,并确定线面角两边所在直线的方向向量坐标,进而求其余弦值,由同角三角函数关系求正弦值.【详解】在三棱锥P ABC -中,BC ⊥平面PAB ,AP ⊂面PAB ,∴BC AP ⊥,又AP AB ⊥,AB BC B ⋂=,∴PA ⊥平面ABC ,即PDA ∠即直线PD 与平面ABC 所成角.法一:设PA a =,由45APB ∠=︒,60APC ∠=︒,得AB PA a ==,∴AC =,BC =.又D 是BC 的中点,如此2BD =,∴在Rt ABD △中,2AD a ==.又易知PA AD ⊥,在Rt PAD 中,PD ==,∴sin 5AP PDA PD ∠==.法二:过点A 在平面ABC 内作//Ax BC .易知直线AP ,AB ,Ax 两两垂直,可建立如下列图的空间直角坐标系A xyz -.不妨设1PA =,如此1AB =,ACBC =2BD =,有()0,0,0A ,()0,0,1P,2D ⎛⎫ ⎪ ⎪⎝⎭,∴1,0DA ⎛⎫=--⎪ ⎪⎝⎭,1,1DP ⎛⎫=-- ⎪ ⎪⎝⎭,如此3cos ,3DA DP DA DP DA DP ⋅===,∴10sin ,5DA DP =.应当选:C.,,,是同一个半径为4的球的球面上四点,ABC为等边三角形且其面积为,如10.设A B C D体积的最大值为〔〕此三棱锥D ABCA...D.【答案】B【解析】如下列图,点M 为三角形ABC 的中心,E 为AC 中点,当DM ⊥平面ABC 时,三棱锥D ABC -体积最大此时,OD OB R 4===2ABC S AB == AB 6∴=,点M 为三角形ABC 的中心2BM 3BE ∴==Rt OMB ∴中,有OM 2==DM OD OM 426∴=+=+=()max 163D ABC V -∴=⨯=应当选B.二、多项选择题11.矩形ABCD 中,4AB =,3BC =,将ABD △沿BD 折起,使A 到A '的位置,A '在平面BCD 的射影E 恰落在CD 上,如此〔〕A .三棱锥A BCD '-的外接球直径为5B .平面A BD '⊥平面A BC 'C .平面A BD '⊥平面ACD 'D .A D '与BC 所成角为60【答案】AB【解析】根据面面垂直的判定定理以与面面垂直的性质定理结合对选项BCD 逐一进展分析,对A 选项注意确定球心位置,然后利用勾股定理求解外接球的直径.【详解】由题意,A E '⊥平面BCD BC A E '⇒⊥,又BC CD ⊥,A E CD E '=,∴BC ⊥平面A CD BC A D ''⇒⊥.故D 错误;又A B A D ''⊥,A BBC B '=,可得A D '⊥平面A BC ',又A D '⊂平面A BD '⇒平面A BD '⊥平面A BC '.故B 正确; 对C ,假如平面A BD '⊥平面ACD ',如此由A B A D A B '''⊥⇒⊥平面90A CD BA C ''⇒∠=︒与90A CB '∠=︒矛盾,故C 错误;取BD 中点为O .如此OA OB OC OD '===,故O 为三棱锥A BCD '-的外接球球心,所以直径5d BD ===,故A 正确.应当选:AB三、填空题12.正方体ABCD -A 1B 1C 1D 1的棱长为2,M 、N 分别为BB 1、AB 的中点,如此三棱锥A -NMD 1的体积为____________ 【答案】13【解析】利用11A NMD D AMN V V --=计算即可.【详解】因为正方体ABCD -A 1B 1C 1D 1的棱长为2,M 、N 分别为BB 1、AB 的中点 所以11111112323A NMD D AMN V V --==⨯⨯⨯⨯= 故答案为:1313.如图,将正方体沿交于同一顶点的三条棱的中点截去一个三棱锥,如此共可截去八个三棱锥,得到一个有十四个面的半正多面体,它们的棱长都相等,其中八个为正三角形,六个为正方形,称这样的半正多面体为二十四等边体.假如用一小桶油漆刚好可以涂该二十四等边体的外表一遍,如此用该小桶油漆去涂与该二十四等边体棱长相等的正四面体魔方外表(也是涂一遍),那么至少可以涂___________个这样的正四面体魔方.(结果取整数)【答案】5【解析】设二十四等边体的棱长为1,计算其外表积,再计算正四面体魔方的外表积,即可解得.【详解】设该二十四等边体的棱长为1,如此正四面体魔方的棱长也为1,如此该二十四等边体的外表积为2218161622⨯⨯⨯+⨯=,正四面体的外表积为214122⨯⨯⨯=2 5.46=+≈,所以至少可以涂5个这样正四面体魔方. 故答案为:5.14.三棱锥P ABC -中,AP 、AB 、AC 三条棱两两垂直,且长度均为P 为球心,4为半径作一个球,如此该球面被三棱锥四个外表截得的所有弧长之和为______.【答案】3π【解析】采用数形结合,然后利用弧长公式计算即可.【详解】由题可知:AP 、AB 、AC 三条棱两两垂直,且长度均为如图:所以PC PB BC ====2AM AF ===,所以tan tanAPF APM ∠=∠==6APF APM π∠=∠= 所以12EPF CPM π∠=∠=,如此4123EF MN ππ==⨯=44,2332NE MF ππππ=⨯==⨯= 所以球面被三棱锥四个外表截得的所有弧长之和为42333ππππ⨯++= 故答案为:3π 15.直四棱柱ABCD –A1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D BCC 1B 1的交线长为________.. 【解析】根据条件易得1D E =1D E ⊥侧面11BC CB ,可得侧面11BC CB 与球面的交线上的点到E 可得侧面11BC CB 与球面的交线是扇形EFG 的弧FG ,再根据弧长公式可求得结果.【详解】如图:取11B C 的中点为E ,1BB 的中点为F ,1CC 的中点为G ,因为BAD ∠=60°,直四棱柱1111ABCD A BC D -的棱长均为2,所以△111D B C 为等边三角形,所以1D E=111D E B C ⊥,又四棱柱1111ABCD A BC D -为直四棱柱,所以1BB ⊥平面1111D C B A ,所以111BB B C ⊥, 因为1111BB B C B =,所以1D E ⊥侧面11BC CB ,设P 为侧面11BC CB 与球面的交线上的点,如此1DE EP ⊥,1D E =||EP === 所以侧面11BC CB 与球面的交线上的点到E因为||||EF EG =11BC CB 与球面的交线是扇形EFG 的弧FG ,因为114B EF C EG π∠=∠=,所以2FEG π∠=,所以根据弧长公式可得22FG π==.. 16.圆锥的底面半径为1,母线长为3,如此该圆锥内半径最大的球的体积为_________.【解析】将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值.【详解】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如下列图,其中2,3BC AB AC ===,且点M 为BC 边上的中点,设内切圆的圆心为O ,由于AM =122S =⨯⨯△ABC设内切圆半径为r ,如此:ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯ ()13322r =⨯++⨯=解得:22r ,其体积:3433V r π==.. 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出适宜的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.17.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体〞〔图1〕.半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体表现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的外表上,且此正方体的棱长为1.如此该半正多面体共有________个面,其棱长为_________.【答案】共26个面.1.【解析】由图可知第一层与第三层各有9个面,计18个面,第二层共有8个面,所以该半正多面体共有18826+=个面.如图,设该半正多面体的棱长为x ,如此AB BE x ==,延长BC 与FE 交于点G ,延长BC 交正方体棱于H ,由半正多面体对称性可知,BGE ∆为等腰直角三角形,,21)1BG GE CH x GH x x x ∴===∴=+==,1x ∴==1.18.四面体ABCD 的顶点A 、B 、C 、D 在同个球面上,AD ⊥平面ABC ,3AD =,2AB =,3AC =,60CAB ∠=,如此该四面体的外接球的外表积为___________.【答案】12π【解析】利用余弦定理计算出AB ,利用正弦定理计算出ABC 的外接圆半径r ,利用公式R =可计算出四面体ABCD 的外接球半径R ,利用球体面积可求得结果. 【详解】如如下图所示:圆柱12O O 的底面圆直径为2r ,母线长为h ,如此12O O 的中点 O 到圆柱底面圆上每点的距离都相等,如此O 为圆柱12O O 的外接球球心.可将三棱锥D ABC -放在圆柱12O O 内 ,使得圆2O 为ABC 的外接圆,点D 在圆1O 上,由余弦定理可得2222cos 7BC AB AC AB AC BAC =+-⋅∠=,如此BC =所以,ABC 的外接圆直径为2sin 3BC r BAC ==∠,r ∴=,AD ∴⊥平面ABC ,所以,四面体ABCD 的外接球半径为R ==因此,四面体ABCD 的外接球的外表积为2412R ππ=.故答案为:12π.【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以复原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径;③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,如此球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.四、解答题19.如图,四棱锥P ABCD 的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l .〔1〕证明:l⊥平面PDC;〔2〕PD AD1,Q为l上的点,QB2PB与平面QCD所成角的正弦值.【答案】〔1〕证明见解析;〔26【解析】AD l,利用线面垂直的判定定理证得AD⊥平面PDC,〔1〕利用线面平行的判定定理以与性质定理,证得//从而得到l⊥平面PDC;Q m,之后求得平面QCD 〔2〕根据题意,建立相应的空间直角坐标系,得到相应点的坐标,设出点(,0,1)<>,即可得到直线PB与平面QCD所成角的正弦值.的法向量以与向量PB的坐标,求得cos,n PB【详解】〔1〕证明:AD BC,在正方形ABCD中,//因为AD⊄平面PBC,BC⊂平面PBC,AD平面PBC,所以//又因为AD ⊂平面PAD ,平面PAD平面PBC l =,所以//AD l , 因为在四棱锥P ABCD -中,底面ABCD 是正方形,所以,,AD DC l DC ⊥∴⊥且PD ⊥平面ABCD ,所以,,AD PD l PD ⊥∴⊥因为CD PD D =所以l ⊥平面PDC ;〔2〕如图建立空间直角坐标系D xyz -,因为1PD AD ==,如此有(0,0,0),(0,1,0),(1,0,0),(0,0,1),(1,1,0)D C A P B ,设(,0,1)Q m ,如此有(0,1,0),(,0,1),(1,1,1)DC DQ m PB ===-,因为QB 1m ==设平面QCD 的法向量为(,,)n x y z =,如此00DC n DQ n ⎧⋅=⎨⋅=⎩,即00y x z =⎧⎨+=⎩,令1x =,如此1z =-,所以平面QCD 的一个法向量为(1,0,1)n =-,如此2cos ,1n PBn PB n PB ⋅<>==== 根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,所以直线与平面所成角的正弦值等于6|cos ,|3n PB <>=所以直线PB 与平面QCD 20.如图,在四棱锥P ABCD -中,底面ABCD 为正方形.且PA ⊥平面ABCD ,M ,N 分别为,PB PD 的中点.〔1〕求证://MN 平面ABCD ;〔2〕假如2PA AB ==,求CN 与平面PBD 所成角的正弦值.【答案】〔1〕详见解析;〔2【解析】〔1〕要证明线面平行,需证明线线平行,即转化为证明//MN BD ;〔2〕首先建立空间直角坐标系,求平面PBD 的法向量,利用线面角的向量公式求解.【详解】〔1〕连结BD ,,M N 分别是,PB PD 的中点,//MN BD ∴,MN ⊄平面ABCD ,BD ⊂平面ABCD ,//MN ∴平面ABCD ;〔2〕如图,以点A 为原点,,,AB AD AP 为,,x y z 轴的正方向建立空间直角坐标系, ()002P ,,,()2,0,0B ,()0,2,0D ()2,2,0C ,()0,1,1N ,()2,0,2PB =-,()2,2,0PD =-,()2,1,1CN =--,设平面PBD 的法向量(),,n x y z =,如此00PB n PD n ⎧⋅=⎨⋅=⎩,即220220x z x y -=⎧⎨-+=⎩,令1x =,如此1,1y z ==, ∴平面PBD 的法向量()1,1,1n =,如此21sin cos ,3CN nCN n CN n θ⋅-⨯-=<>===, 所以CN 与平面PBD 21.如图,在三棱柱111ABC A B C -中,1CC ⊥平面,,2ABC AC BC AC BC ⊥==,13CC =,点,D E 分别在棱1AA 和棱1CC 上,且12,AD CE M ==为棱11AB 的中点.〔Ⅰ〕求证:11C M B D ⊥;〔Ⅱ〕求二面角1B B E D --的正弦值; 〔Ⅲ〕求直线AB 与平面1DB E 所成角的正弦值.【答案】〔Ⅰ〕证明见解析;【解析】以C 为原点,分别以1,,CA CB CC 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.〔Ⅰ〕计算出向量1C M 和1B D 的坐标,得出110C M B D ⋅=,即可证明出11C M B D ⊥; 〔Ⅱ〕可知平面1BB E 的一个法向量为CA ,计算出平面1B ED 的一个法向量为n ,利用空间向量法计算出二面角1B B E D --的余弦值,利用同角三角函数的根本关系可求解结果; 〔Ⅲ〕利用空间向量法可求得直线AB 与平面1DB E 所成角的正弦值.【详解】依题意,以C 为原点,分别以CA 、CB 、1CC 的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系〔如图〕,可得()0,0,0C 、()2,0,0A 、()0,2,0B 、()10,0,3C 、 ()12,0,3A 、()10,2,3B 、()2,0,1D 、()0,0,2E 、()1,1,3M . 〔Ⅰ〕依题意,()11,1,0C M =,()12,2,2B D =--, 从而112200C M B D ⋅=-+=,所以11C M B D ⊥; 〔Ⅱ〕依题意,()2,0,0CA =是平面1BB E 的一个法向量,()10,2,1EB =,()2,0,1ED =-.设(),,n x y z =为平面1DB E 的法向量,如此100n EB n ED ⎧⋅=⎪⎨⋅=⎪⎩,即2020y z x z +=⎧⎨-=⎩, 不妨设1x =,可得()1,1,2n =-.2cos ,2C CA nA C n A n ⋅<>===⋅⨯, 230sin ,1cos ,6CA n CA n ∴<>=-<>=. 所以,二面角1B B E D --的正弦值为6 〔Ⅲ〕依题意,()2,2,0AB =-. 由〔Ⅱ〕知()1,1,2n =-为平面1DB E 的一个法向量,于是cos ,322AB nAB n ABn ⋅<>===-⋅. 所以,直线AB 与平面1DB E 22.如图,在正方体1111ABCD A BC D -中,E 为1BB 的中点.〔Ⅰ〕求证:1//BC 平面1AD E ;〔Ⅱ〕求直线1AA 与平面1AD E 所成角的正弦值.【答案】〔Ⅰ〕证明见解析;〔Ⅱ〕23. 【解析】〔Ⅰ〕证明出四边形11ABC D 为平行四边形,可得出11//BC AD ,然后利用线面平行的判定定理可证得结论; 〔Ⅱ〕以点A 为坐标原点,AD 、AB 、1AA 所在直线分别为x 、y 、z 轴建立空间直角坐标系A xyz ,利用空间向量法可计算出直线1AA 与平面1AD E 所成角的正弦值.【详解】〔Ⅰ〕如如下图所示:在正方体1111ABCD A BC D -中,11//AB A B 且11AB AB =,1111//A BCD 且1111A B C D =, 11//AB C D ∴且11AB C D =,所以,四边形11ABC D 为平行四边形,如此11//BC AD ,1BC ⊄平面1AD E ,1AD ⊂平面1AD E ,1//BC ∴平面1AD E ;〔Ⅱ〕以点A 为坐标原点,AD 、AB 、1AA 所在直线分别为x 、y 、z 轴建立如如下图所示的空间直角坐标系A xyz -,设正方体1111ABCD A BC D -的棱长为2,如此()0,0,0A 、()10,0,2A 、()12,0,2D 、()0,2,1E ,()12,0,2AD =,()0,2,1AE =,设平面1AD E 的法向量为(),,n x y z =,由100n AD n AE ⎧⋅=⎨⋅=⎩,得22020x z y z +=⎧⎨+=⎩, 令2z =-,如此2x =,1y =,如此()2,1,2n =-. 11142cos ,323n AA n AA n AA ⋅<>==-=-⨯⋅. 因此,直线1AA 与平面1AD E 所成角的正弦值为23. 23.如图,三棱台ABC —DEF 中,平面ACFD ⊥平面ABC ,∠ACB =∠ACD =45°,DC =2BC .〔I 〕证明:EF ⊥DB ;〔II 〕求DF 与面DBC 所成角的正弦值.【答案】〔I 〕证明见解析;〔II 【解析】〔I 〕作DH AC ⊥交AC 于H ,连接BH ,由题意可知DH ⊥平面ABC ,即有DH BC ⊥,根据勾股定理可证得BC BH ⊥,又//EF BC ,可得DH EF ⊥,BH EF ⊥,即得EF ⊥平面BHD ,即证得EF DB ⊥;〔II 〕由//DF CH ,所以DF 与平面DBC 所成角即为CH 与平面DBC 所成角,作HG BD ⊥于G ,连接CG ,即可知HCG ∠即为所求角,再解三角形即可求出DF 与平面DBC 所成角的正弦值.【详解】〔Ⅰ〕作DH AC ⊥交AC 于H ,连接BH .∵平面ADFC ⊥平面ABC ,而平面ADFC 平面ABC AC =,DH ⊂平面ADFC ,∴DH ⊥平面ABC ,而BC ⊂平面ABC ,即有DH BC ⊥.∵45ACB ACD ∠=∠=︒, ∴2CD BC CH =⇒=.在CBH 中,22222cos45BH CH BC CH BC BC =+-⋅︒=,即有222BH BC CH +=,∴BH BC ⊥. 由棱台的定义可知,//EF BC ,所以DH EF ⊥,BH EF ⊥,而BH DH H =,∴EF ⊥平面BHD ,而BD ⊂平面BHD ,∴EF DB ⊥.〔Ⅱ〕因为//DF CH ,所以DF 与平面DBC 所成角即为与CH 平面DBC 所成角.作HG BD ⊥于G ,连接CG ,由〔1〕可知,BC ⊥平面BHD ,因为所以平面BCD ⊥平面BHD ,而平面BCD 平面BHD BD =,HG ⊂平面BHD ,∴HG ⊥平面BCD .即CH 在平面DBC 内的射影为CG ,HCG ∠即为所求角.在Rt HGC △中,设BC a =,如此CH =,BH DH HG a BD ⋅===,∴sin3HG HCG CH ∠===..故DF与平面DBC所成角的正弦值为324.如图,四棱锥P-ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.〔1〕证明:l⊥平面PDC;〔2〕PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.【答案】〔1〕证明见解析;〔2【解析】AD l,〔1〕利用线面垂直的判定定理证得AD⊥平面PDC,利用线面平行的判定定理以与性质定理,证得//从而得到l⊥平面PDC;Q m,之后求得平面QCD 〔2〕根据题意,建立相应的空间直角坐标系,得到相应点的坐标,设出点(,0,1)<>的最大值,即为直线PB与平面QCD所成角的正弦值的的法向量以与向量PB的坐标,求得cos,n PB最大值.【详解】〔1〕证明:在正方形ABCD 中,//AD BC ,因为AD ⊄平面PBC ,BC ⊂平面PBC ,所以//AD 平面PBC ,又因为AD ⊂平面PAD ,平面PAD平面PBC l =, 所以//AD l ,因为在四棱锥P ABCD -中,底面ABCD 是正方形,所以,,AD DC l DC ⊥∴⊥且PD ⊥平面ABCD ,所以,,AD PD l PD ⊥∴⊥因为CD PD D =所以l ⊥平面PDC ;〔2〕如图建立空间直角坐标系D xyz -,因为1PD AD ==,如此有(0,0,0),(0,1,0),(1,0,0),(0,0,1),(1,1,0)D C A P B ,设(,0,1)Q m ,如此有(0,1,0),(,0,1),(1,1,1)DC DQ m PB ===-,设平面QCD 的法向量为(,,)n x y z =,如此00DC n DQ n ⎧⋅=⎨⋅=⎩,即00y mx z =⎧⎨+=⎩, 令1x =,如此z m =-,所以平面QCD 的一个法向量为(1,0,)n m =-,如此1cos ,3n PBn PB n PB ⋅+<>==根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,所以直线与平面所成角的正弦值等于|cos ,|n PB <>===≤≤=1m =时取等号,所以直线PB 与平面QCD25.在三棱锥A —BCD 中,CB =CD BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点.〔1〕求直线AB 与DE 所成角的余弦值;〔2〕假如点F 在BC 上,满足BF =14BC ,设二面角F —DE —C 的大小为θ,求sin θ的值.【答案】〔12 【解析】〔1〕建立空间直角坐标系,利用向量数量积求直线向量夹角,即得结果;〔2〕先求两个平面法向量,根据向量数量积求法向量夹角,最后根据二面角与向量夹角关系得结果.【详解】〔1〕连,CO BC CD BO OD CO BD ==∴⊥以,,OB OC OA 为,,x y z 轴建立空间直角坐标系,如此(0,0,2),(1,0,0),(0,2,0),(1,0,0)(0,1,1)A B C D E -∴(1,0,2),(1,1,1)cos ,AB DE AB DE ∴=-=∴<>==从而直线AB 与DE〔2〕设平面DEC 一个法向量为1(,,),n x y z =11200(1,2,0),00x y n DC DC x y z n DE ⎧+=⋅=⎧⎪=∴⎨⎨++=⋅=⎪⎩⎩ 令112,1(2,1,1)y x z n =∴=-=∴=- 设平面DEF 一个法向量为2111(,,),n x y z =11221117100171(,,0),4244200x y n DF DF DB BF DB BC n DE x y z ⎧⎧+=⋅=⎪⎪=+=+=∴⎨⎨⋅=⎪⎩⎪++=⎩ 令111272,5(2,7,5)yx z n =-∴==∴=- 12cos ,n n ∴<>==因此sin 13θ== 26.如图,在长方体1111ABCD A BC D -中,点,E F分别在棱11,DD BB 上,且12DE ED =,12BF FB =.〔1〕证明:点1C 在平面AEF 内; 〔2〕假如2AB =,1AD =,13AA =,求二面角1A EF A--的正弦值.【答案】〔1〕证明见解析;〔2〕7. 【解析】〔1〕连接1C E 、1C F ,证明出四边形1AEC F 为平行四边形,进而可证得点1C 在平面AEF 内; 〔2〕以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立空间直角坐标系1C xyz -,利用空间向量法可计算出二面角1A EF A --的余弦值,进而可求得二面角1A EF A --的正弦值.【详解】〔1〕在棱1CC 上取点G ,使得112C G CG =,连接DG 、FG 、1C E 、1C F ,在长方体1111ABCD A BC D -中,//AD BC 且AD BC =,11//BB CC 且11BB CC =,112C G CG =,12BF FB =,112233CG CC BB BF ∴===且CG BF =, 所以,四边形BCGF 为平行四边形,如此//AF DG 且AF DG =,同理可证四边形1DEC G 为平行四边形,1//C E DG ∴且1C E DG =,1//C E AF ∴且1C E AF =,如此四边形1AEC F 为平行四边形,因此,点1C 在平面AEF 内;〔2〕以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立如如下图所示的空间直角坐标系1C xyz -,如此()2,1,3A 、()12,1,0A 、()2,0,2E 、()0,1,1F , ()0,1,1AE =--,()2,0,2AF =--,()10,1,2A E =-,()12,0,1A F =-,设平面AEF 的法向量为()111,,m x y z =,由00m AE m AF ⎧⋅=⎪⎨⋅=⎪⎩,得11110220y z x z --=⎧⎨--=⎩取11z =-,得111x y ==,如此()1,1,1m =-, 设平面1A EF 的法向量为()222,,n x y z =,由1100n A E n A F ⎧⋅=⎪⎨⋅=⎪⎩,得22222020y z x z -+=⎧⎨-+=⎩,取22z =,得21x =,24y =,如此()1,4,2n =,3cos ,3m nm n m n ⋅<>===⨯⋅设二面角1A EF A --的平面角为θ,如此cos θ=,sin 7θ∴==.因此,二面角1A EF A --. 27.如图,在长方体1111ABCD A BC D -中,点E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =.证明:〔1〕当AB BC =时,EF AC ⊥;〔2〕点1C 在平面AEF 内.【答案】〔1〕证明见解析;〔2〕证明见解析.【解析】〔1〕根据正方形性质得AC BD ⊥,根据长方体性质得1AC BB ⊥,进而可证AC ⊥平面11BB D D ,即得结果; 〔2〕只需证明1//EC AF 即可,在1CC 上取点M 使得12CM MC =,再通过平行四边形性质进展证明即可.【详解】〔1〕因为长方体1111ABCD A BC D -,所以1BB ⊥平面ABCD ∴1AC BB ⊥,因为长方体1111,ABCD A B C D AB BC -=,所以四边形ABCD 为正方形AC BD ∴⊥因为11,BB BD B BB BD =⊂、平面11BB D D ,因此AC ⊥平面11BB D D ,因为EF ⊂平面11BB D D ,所以AC EF ⊥;〔2〕在1CC 上取点M 使得12CM MC =,连,DM MF ,因为111112,//,=D E ED DD CC DD CC =,所以11,//,ED MC ED MC =所以四边形1DMC E 为平行四边形,1//DM EC ∴因为//,=,MF DA MF DA 所以M F A D 、、、四点共面,所以四边形MFAD 为平行四边形,1//,//DM AF EC AF ∴∴,所以1E C A F 、、、四点共面,因此1C 在平面AEF 内28.如图,D 为圆锥的顶点,O 是圆锥底面的圆心,ABC 是底面的内接正三角形,P 为DO 上一点,∠APC =90°.〔1〕证明:平面PAB ⊥平面PAC ;〔2〕设DO,求三棱锥P −ABC 的体积.【答案】〔1〕证明见解析;〔2【解析】〔1〕根据可得PA PB PC ==,进而有PAC △≌PBC ,可得90APC BPC ∠=∠=,即PB PC ⊥,从而证得PC ⊥平面PAB ,即可证得结论;〔2〕将条件转化为母线l 和底面半径r 的关系,进而求出底面半径,由正弦定理,求出正三角形ABC 边长,在等腰直角三角形APC 中求出AP ,在Rt APO 中,求出PO ,即可求出结论.【详解】〔1〕连接,,OA OB OC ,D 为圆锥顶点,O 为底面圆心,OD ∴⊥平面ABC , P 在DO 上,,OA OB OC PA PB PC ==∴==, ABC 是圆内接正三角形,AC BC ∴=,PAC △≌PBC ,90APC BPC ∴∠=∠=︒,即,PB PC PA PC ⊥⊥,,PA PB P PC =∴⊥平面,PAB PC ⊂平面PAC ,∴平面PAB ⊥平面PAC ;〔2〕设圆锥的母线为l ,底面半径为r ,圆锥的侧面积为,rl rl π==2222OD l r =-=,解得1,r l ==2sin 603AC r ==在等腰直角三角形APC 中,2AP AC ==在Rt PAO 中,2PO ===,∴三棱锥P ABC -的体积为11333P ABC ABC V PO S -=⋅==△.29.如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC 是底面的内接正三角形,P 为DO 上一点,PO =.〔1〕证明:PA ⊥平面PBC ;〔2〕求二面角B PC E --的余弦值.【答案】〔1〕证明见解析;〔2. 【解析】〔1〕要证明PA ⊥平面PBC ,只需证明PA PB ⊥,PA PC ⊥即可;〔2〕以O 为坐标原点,OA 为x 轴,ON 为y 轴建立如下列图的空间直角坐标系,分别算出平面PCB 的法向量为n ,平面PCE 的法向量为m ,利用公式cos ,||||n m m n n m ⋅<>=计算即可得到答案. 【详解】〔1〕由题设,知DAE △为等边三角形,设1AE =,如此2DO =,1122CO BO AE ===,所以64PO DO ==,PC PB ====又ABC 为等边三角形,如此2sin 60BA OA =,所以2BA =, 22234PA PB AB +==,如此90APB ∠=,所以PA PB ⊥, 同理PA PC ⊥,又PC PB P =,所以PA ⊥平面PBC ;〔2〕过O 作ON ∥BC 交AB 于点N ,因为PO ⊥平面ABC ,以O 为坐标原点,OA 为x 轴,ON 为y 轴建立如下列图的空间直角坐标系,如此111(,0,0),(,(,244444E P B C ----,1(,4PC =-,1(4PB =-,1(,0,2PE =-, 设平面PCB 的一个法向量为111(,,)n x y z =,由00n PC n PB ⎧⋅=⎨⋅=⎩,得11111100x x ⎧-=⎪⎨-+=⎪⎩,令1x =111,0z y =-=, 所以(2,0,1)n =-,设平面PCE 的一个法向量为222(,,)m x y z =由00m PC m PE ⎧⋅=⎨⋅=⎩,得22222020x x ⎧--=⎪⎨-=⎪⎩,令21x =,得223z y ==,所以3(1,3m =故2cos ,||||3n m mn n m ⋅<>===⋅⨯ 设二面角B PC E --的大小为θ,如此cos θ=30.四棱锥P ABCD -中,//AB CD ,90PDA BAD ∠=∠=︒,12PD DA AB CD ===,S 为PC 中点,BS CD ⊥.〔1〕证明:PD ⊥平面ABCD ;〔2〕平面SAD 交PB 于Q ,求CQ 与平面PCD 所成角的正弦值.【答案】〔1〕证明见解析;〔2. 【解析】〔1〕取CD 中点为M ,得到BM CD ⊥,由BS CD ⊥,证得CD ⊥平面BSM ,得到CD SM ⊥,再根据CD PD ⊥,结合线面垂直的判定定理,证得PD ⊥平面ABCD ;〔2〕以,,DA DC DP 方向为,,x y z 轴的正方向,建立空间直角坐标系O xyz -,设1AB =,根据2PQ QB =,求得CQ 坐标,再求得平面PCD 的法向量,结合向量的夹角公式,即可求解.【详解】〔1〕取CD 中点为M ,如此DM AB =且//DM AB ,所以四边形ABMD 为平行四边形,可得//BM AD ,所以BM CD ⊥,又由BS CD ⊥,BM BS B ⋂=,所以CD ⊥平面BSM ,又因为SM ⊂平面BSM ,所以CD SM ⊥,又由//SM PD ,所以CD PD ⊥,AD PD ⊥,CD AD D =,所以PD ⊥平面ABCD .〔2〕延长CB ,DA 交于N ,连SN 与PB 交点即为Q ,因为B 为CN 中点,S 为PC 中点,故Q 为PNC △的重心,故2PQ QB =,以D 为原点,,,DA DC DP 方向为,,x y z 轴的正方向,建立空间直角坐标系O xyz -,不妨设1AB =,如此()1,1,0B ,()0,0.1P ,。
立体几何高中知识
立体几何高中知识一、立体几何的基本概念立体几何是研究空间中的几何图形的一门学科。
在立体几何中,我们主要研究的是三维空间中的点、线、面以及各种立体图形的性质和关系。
二、立体图形的分类1. 空间中的点:点是空间中最基本的图形,它没有大小和形状,只有位置。
2. 空间中的线:线是由无数个点组成的,它没有宽度,只有长度和方向。
3. 空间中的面:面是由无数个点和线组成的,它有两个维度,即长度和宽度,但没有厚度。
4. 空间中的体:体是由无数个点、线和面组成的,它有三个维度,即长度、宽度和厚度。
三、常见的立体图形1. 立方体:立方体是一种六个面都是正方形的立体图形。
它有八个顶点、十二条棱和六个面。
2. 正方体:正方体是一种六个面都是正方形的立体图形。
它有八个顶点、十二条棱和六个面。
3. 长方体:长方体是一种六个面都是矩形的立体图形。
它有八个顶点、十二条棱和六个面。
4. 圆柱体:圆柱体是一种两个底面都是圆形的立体图形。
它有两个圆底面、一个侧面和一个轴线。
5. 圆锥体:圆锥体是一种一个底面是圆形、一个顶点和一个侧面的立体图形。
6. 球体:球体是一种所有点到中心点的距离都相等的立体图形。
四、立体图形的性质和计算方法1. 立体图形的表面积:立体图形的表面积是指该图形所有面的总面积之和。
2. 立体图形的体积:立体图形的体积是指该图形所占据的空间大小。
3. 立体图形的投影:立体图形的投影是指该图形在某一平面上的投影形状。
4. 立体图形的相交关系:立体图形之间可以相互相交、相切或者不相交。
5. 立体图形的旋转和对称:立体图形可以进行旋转和对称操作,从而得到不同的图形。
五、立体几何的应用立体几何不仅是一门学科,也是一种实际生活中的应用技术。
它广泛应用于建筑设计、工程制图、计算机图形学等领域。
1. 在建筑设计中,立体几何可以帮助建筑师进行空间布局和结构设计。
2. 在工程制图中,立体几何可以帮助工程师进行三维模型的绘制和分析。
3. 在计算机图形学中,立体几何可以帮助程序员实现三维图形的渲染和动画效果。
立体几何和平面解析几何知识点
立体几何和平面解析几何知识点一、立体几何1.点、线、面和体:在立体几何中,点是没有大小和形状的,是具有位置的对象。
线由无数个点组成,线是没有宽度的。
面是由无数个线组成,面是二维的,具有长度和宽度。
体是由无数个面组成,体是三维的,具有长度、宽度和高度。
2.平行和垂直关系:在立体几何中,平行是两条线或两个面永远不会相交的关系,垂直是两条线或两个面相互垂直的关系。
3.点的投影:在立体几何中,点的投影是指垂直于水平面(或垂直于垂直面)的直线与平面的交点。
点的投影可以用来确定点在一些平面上的位置。
4.线和面的交点:在立体几何中,线和面的交点是指线与面相交的点。
线和面的交点可以用来确定线在一些面上的位置。
5.体的体积和表面积:在立体几何中,体的体积是指所占据的空间大小,可以通过计算底面积与高度的乘积来得到。
体的表面积是指体的外部空间的面积,可以通过计算底面积与侧面积的和来得到。
二、平面解析几何1. 直线的方程:在平面解析几何中,直线可以用一般式、截距式和斜截式等形式来表示。
一般式的直线方程是Ax + By + C = 0,其中A、B和C是常数;截距式的直线方程是x/a + y/b = 1,其中a和b分别是x轴和y轴上的截距;斜截式的直线方程是y = mx + c,其中m是斜率,c是y轴上的截距。
2.圆的方程:在平面解析几何中,圆可以用标准式和一般式来表示。
标准式的圆方程是(x-a)²+(y-b)²=r²,其中(a,b)是圆心的坐标,r是半径的长度;一般式的圆方程是x²+y²+Dx+Ey+F=0,其中D、E和F是常数。
3.直线和圆的交点:在平面解析几何中,直线和圆可以相交于零个、一个或两个交点。
可以通过求解直线方程和圆方程的联立方程组来确定直线和圆的交点。
4.曲线的方程:在平面解析几何中,曲线可以用隐式方程、参数方程和极坐标方程来表示。
隐式方程是F(x,y)=0,其中F是关于x和y的方程;参数方程是x=f(t),y=g(t),其中t是参数;极坐标方程是r=f(θ),其中r是距离原点的距离,θ是与x轴的夹角。
高中数学中的立体几何知识点总结
高中数学中的立体几何知识点总结立体几何是高中数学中一个重要的分支,它研究的是三维空间中的物体形状、大小以及它们之间的相互关系。
本文将对高中数学中的立体几何知识点进行总结,帮助同学们梳理和复习相关内容。
一、点、线、面的关系1. 点:点是空间中最基本的概念,没有大小和形状,只有位置坐标。
2. 线:两个点确定一条线段,线段有长度,可以延伸成直线。
3. 面:三个或三个以上的点确定一个面,面有面积,可以延伸成平面。
二、多面体1. 三棱锥:底面为三角形,侧面为三角形的四面体。
2. 四棱锥:底面为四边形,侧面为三角形的五面体。
3. 五棱锥:底面为五边形,侧面为三角形的六面体。
4. 正棱锥:底面为正多边形,侧面为等边三角形的多面体。
5. 正方体:六个面都是正方形的多面体。
6. 正四面体:四个面都是正三角形的多面体。
7. 正六面体:六个面都是正方形的多面体。
三、平面图形与立体图形1. 投影:图形在投影面上的图象。
2. 平行投影:平行于投影面的投影方式,不改变图形的形状和面积。
3. 斜投影:不平行于投影面的投影方式,改变图形的形状和面积。
4. 立体图形的展开图:将立体图形展开成平面图,便于计算和分析。
5. 空间几何体的视图:主视图、俯视图和侧视图,用来描述一个立体图形。
四、平行与垂直1. 平行关系:两条直线在同一个平面上,且永远不相交。
2. 垂直关系:两条直线在同一个平面上,且相交成直角。
五、角与平面的关系1. 角:由两条射线共同确定的图形,可以是平面角或空间角。
2. 平面角:两个相交的平面所夹的角,范围为0到180度。
3. 相对角:两个相交直线上相对的两个角。
六、面积与体积1. 面积:平面图形所占的面积,常见的有三角形、四边形、圆形的计算公式。
2. 体积:三维物体所占的空间大小,常见的有长方体、正方体、棱柱、棱锥、球体的计算公式。
七、相交与相切1. 相交:两个或多个图形交叠在一起。
2. 相切:两个或多个图形只有一个点是共同的。
【创新课堂】高考数学总复习 专题07 第1节 空间几何体的结构及其三视图和直观图课件 文
()
A. ①② B. ②③ C. ①③ D. ②④
4. 如图,几何体的正视图和侧视图都正确的是 ( )
5. 如图是利用斜二测画法画出的△ABO的直观图,已知O′B′=4, A′B′∥y′轴,且△ABO的面积为16,过A′作A′C′⊥x′轴,则A′C′的 长为________.
答案:
1. C 解析:由棱柱定义可判断,最简单的棱柱为三棱柱,故C
答案:2 3 解析:由正视图和俯视图可知几何体是正方体切割后的一部分
(四棱锥C1ABCD),还原在正方体中,如图所示.
多面体最长的一条棱即为正方体的体对角线,
由正方体棱长AB=2知最长棱的长为2 3
9.若一个底面是正三角形的直三棱柱的正视图如图所示,
则其侧面积等于
()
A. 3
B.2
C.2 3
D.6
图1
图2
高考体验
(2012 高考浙江文 3)已知某三棱锥的三视图(单位:cm)如图 所示,则该三棱锥的体积是
A.1cm3 B.2cm3 C.3cm3 D.6cm3
【答案】C
【解析】由题意判断出,底面是一个直角三角形,两个直角
边分别为 1 和 2,整个棱锥的高由侧视图可得为 3,所以三棱
锥的体积为
1 3
3. D 解析:由母线的定义可知①、③错.
4. B 解析:注意实、虚线的区别.
5.2 2 解析:由题意知,在△ABO中,边OB上的高AB=16/4*2=8,
则在直观图中A′B′=4,∴A′C′=A′B′sin 45°=4*
2 2 2. 2
6.如图所示,矩形O′A′B′C′是水平放置的一个平面图形的直观 图,其中O′A′=6 cm,O′C′=2 cm,则原图形是 ( )
2024年高考数学立体几何知识点总结
2024年高考数学立体几何知识点总结立体几何是数学中的一个重要分支,也是高考数学中的重要内容之一。
在高考中,立体几何的知识点主要包括空间几何、立体图形的面积与体积等方面。
下面是对2024年高考数学立体几何知识点的总结,供考生参考。
一、空间几何1. 空间几何中的点、线、面的概念和性质。
点是没有长度、宽度和高度的,只有位置的大小,用字母表示。
线是由一组无限多个点构成的集合,用两个点的字母表示。
面是由无限多条线构成的,这些线共面且没有相交或平行关系。
2. 空间几何中的垂直、平行等概念和性质。
两条线在同一平面内,如果相交角为90°,则称两线垂直。
两条线没有相交关系,称两线平行。
3. 点到直线的距离的计算。
点到直线的距离等于该点在直线上的正交投影点的距离。
二、立体图形的面积与体积1. 立体图形的分类和性质。
立体图形包括球体、圆柱体、圆锥体、棱柱体、棱锥体等。
各种立体图形具有不同的性质,如球体表面上每一点到球心的距离都相等。
2. 立体图形的面积计算。
(1)球体的表面积计算公式:S = 4πr²,其中r为球的半径。
(2)圆柱体的侧面积计算公式:S = 2πrh。
(3)圆柱体的全面积计算公式:S = 2πrh + 2πr²。
(4)圆锥体的侧面积计算公式:S = πrl,其中r为圆锥底面半径,l为斜高。
(5)棱柱体的侧面积计算公式:S = ph,其中p为棱柱底面周长,h为高。
3. 立体图形的体积计算。
(1)球体的体积计算公式:V = 4/3πr³,其中r为球的半径。
(2)圆柱体的体积计算公式:V = πr²h。
(3)圆锥体的体积计算公式:V = 1/3πr²h。
(4)棱柱体的体积计算公式:V = ph。
(5)棱锥体的体积计算公式:V = 1/3Bh,其中B为底面积,h为高。
三、立体几何的一般理论1. 点、线、面的位置关系。
在空间中,点、线、面可以相互相交、平行、垂直等。
高中数学立体几何知识点总结(超详细)
立体几何知识梳理一 、空间几何体 (一) 空间几何体的类型1 多面体:由若干个平面多边形围成的几何体.围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体.其中,这条直线称为旋转体的轴.(二) 几种空间几何体的结构特征 1 、棱柱的结构特征1.1 棱柱的定义:由一个平面多边形沿某一方向平移形成的空间几何体叫做棱柱. 1.2 棱柱的分类棱柱四棱柱平行六面体直平行六面体长方体正四棱柱正方体 性质:Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等;1.3 棱柱的面积和体积公式ch S 直棱柱侧(c 是底周长,h 是高)S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h2 、棱锥的结构特征2.1 棱锥的定义(1) 棱锥:当棱柱的一个底面收缩为一个点时,得到的几何体叫做棱锥.(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥.棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是四边形图1-1 棱柱2.2 正棱锥的结构特征Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形;Ⅲ、两个特征三角形:(1)POH ∆(包含棱锥的高、斜高和底面内切圆半径);(2)POB ∆(包含棱锥的高、侧棱和底面外接圆半径) 正棱锥侧面积:1'2S ch =正棱椎(c 为底周长,'h 为斜高) 体积:13V Sh =棱椎(S 为底面积,h 为高)正四面体:各条棱长都相等的三棱锥叫正四面体对于棱长为a 正四面体的问题可将它补成一个边长为a 22的正方体问题. 对棱间的距离为a 2(正方体的边长) 正四面体的高a 6(正方体体对角线l 32=) 正四面体的体积为32a (正方体小三棱锥正方体V V V 314=-) 正四面体的中心到底面与顶点的距离之比为3:1(正方体体对角线正方体体对角线:l l 2161=) 3 、棱台的结构特征3.1 棱台的定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台. 3.2 正棱台的结构特征(1)各侧棱相等,各侧面都是全等的等腰梯形;(2)正棱台的两个底面和平行于底面的截面都是正多边形; (3)正棱台的对角面也是等腰梯形; (4)各侧棱的延长线交于一点. 4 、圆柱的结构特征4.1 圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲ABC D POH面所围成的几何体叫圆柱.4.2 圆柱的性质(1)上、下底及平行于底面的截面都是等圆;(2)过轴的截面(轴截面)是全等的矩形.4.3 圆柱的侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形.4.4 圆柱的面积和体积公式S圆柱侧面= 2π·r·h (r为底面半径,h为圆柱的高)V圆柱= S底h = πr2h5、圆锥的结构特征5.1 圆锥的定义:以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆锥.5.2 圆锥的结构特征(1)平行于底面的截面都是圆,截面直径与底面直径之比等于顶点到截面的距离与顶点到底面的距离之比;(2)轴截面是等腰三角形;图1-5 圆锥(3)母线的平方等于底面半径与高的平方和:l2 = r2 + h25.3 圆锥的侧面展开图:圆锥的侧面展开图是以顶点为圆心,以母线长为半径的扇形.6、圆台的结构特征6.1 圆台的定义:用一个平行于底面的平面去截圆锥,我们把截面和底面之间的部分称为圆台.6.2 圆台的结构特征⑴圆台的上下底面和平行于底面的截面都是圆;⑵圆台的截面是等腰梯形;⑶圆台经常补成圆锥,然后利用相似三角形进行研究.6.3 圆台的面积和体积公式S圆台侧= π·(R + r)·l (r、R为上下底面半径)V圆台= 1/3 (π r2+ π R2+ π r R) h (h为圆台的高)7 球的结构特征7.1 球的定义:以半圆的直径所在的直线为旋转轴,半圆旋转一周形成的旋转体叫做球体.空间中,与定点距离等于定长的点的集合叫做球面,球面所围成的几何体称为球体.7-2 球的结构特征⑴ 球心与截面圆心的连线垂直于截面;⑵ 截面半径等于球半径与截面和球心的距离的平方差:r 2 = R 2 – d 2 ⑶注意圆与正方体的两个关系:球内接正方体,球直径等于正方体对角线; 球外切正方体,球直径等于正方体的边长. 7-3 球的面积和体积公式S 球面 = 4 π R 2 (R 为球半径); V 球 = 4/3 π R 3 (三)空间几何体的表面积与体积 空间几何体的表面积棱柱、棱锥的表面积:各个面面积之和圆柱的表面积 :222S rl r ππ=+圆锥的表面积:2S rl r ππ=+圆台的表面积:22S rl r Rl R ππππ=+++球的表面积:24S R π= 空间几何体的体积柱体的体积 :V S h =⨯底;锥体的体积 :13V S h =⨯底台体的体积:1)3V S S h =++⨯下上(;球体的体积:343V R π=斜二测画法:(1)平行于坐标轴的线依然平行于坐标轴;(2)平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变;二 、点、直线、平面之间的关系(一)、立体几何网络图:1、线线平行的判断:(1)平行于同一直线的两直线平行.(3)如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(6)如果两个平行平面同时和第三个平面相交,那么它们的交线平行.(12)垂直于同一平面的两直线平行.2、线线垂直的判断:(7)三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.(8)三垂线逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直.如图,已知PO⊥α,斜线PA在平面α内的射影为OA,a是平面α内一条直线.①三垂线定理:若a⊥OA,则a⊥PA.即垂直射影则垂直斜线.②三垂线定理逆定理:若a⊥PA,则a⊥OA.即垂直斜线则垂直射影.(10)若一直线垂直于一个平面,则这条直线垂直于平面内所有直线.补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条.3、线面平行的判断:(2)如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.(5)两个平面平行,其中一个平面内的直线必平行于另一个平面.判定定理:性质定理:★判断或证明线面平行的方法⑴利用定义(反证法):lα=∅,则l∥α (用于判断);⑵利用判定定理:线线平行线面平行(用于证明);⑶利用平面的平行:面面平行线面平行(用于证明);⑷利用垂直于同一条直线的直线和平面平行(用于判断).2线面斜交和线面角:l∩α = A2.1 直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角θ.2.2 线面角的范围:θ∈[0°,90°]注意:当直线在平面内或者直线平行于平面时,θ=0°;当直线垂直于平面时,θ=90°4、线面垂直的判断:(9)如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面.(11)如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面.(14)一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.(16)如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面.判定定理:性质定理:(1)若直线垂直于平面,则它垂直于平面内任意一条直线.即:(2)垂直于同一平面的两直线平行.即:★判断或证明线面垂直的方法⑴利用定义,用反证法证明.⑵利用判定定理证明.⑶一条直线垂直于平面而平行于另一条直线,则另一条直线也垂直与平面.⑷一条直线垂直于两平行平面中的一个,则也垂直于另一个.⑸如果两平面垂直,在一平面内有一直线垂直于两平面交线,则该直线垂直于另一平面.5、面面平行的判断:(4)一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行.(13)垂直于同一条直线的两个平面平行.6、面面垂直的判断:(15)一个平面经过另一个平面的垂线,这两个平面互相垂直.判定定理:性质定理:(1)若两面垂直,则这两个平面的二面角的平面角为90°;(2)(二)、其他定理结论:(1)确定平面的条件:①不共线的三点;②直线和直线外一点;③两条相交直线;④两条平行直线;(2)直线与直线的位置关系:相交;平行;异面;直线与平面的位置关系:在平面内;平行;相交(垂直是它的特殊情况);平面与平面的位置关系:相交;;平行;(3)等角定理:如果两个角的两边分别平行且方向相同,那么这两个角相等;如果两条相交直线和另外两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等;(4)射影定理(斜线长、射影长定理):从平面外一点向这个平面所引的垂线段和斜线段中,射影相等的两条斜线段相等;射影较长的斜线段也较长;反之,斜线段相等的射影相等;斜线段较长的射影也较长;垂线段比任何一条斜线段都短.(5)最小角定理:斜线与平面内所有直线所成的角中最小的是与它在平面内射影所成的角.(6)异面直线的判定:①反证法;②过平面外一点与平面内一点的直线,和平面内不过该点的直线是异面直线.(7)过已知点与一条直线垂直的直线都在过这点与这条直线垂直平面内.(8)如果—直线平行于两个相交平面,那么这条直线平行于两个平面的交线.(三)、唯一性定理结论:(1)过已知点,有且只能作一直线和已知平面垂直.(2)过已知平面外一点,有且只能作一平面和已知平面平行.(3)过两条异面直线中的一条能且只能作一平面与另一条平行.四、空间角的求法:(所有角的问题最后都要转化为解三角形的问题,尤其是直角三角形)(1)异面直线所成的角:平移转化,把异面直线所成的角转化为平面内相交直线o o(2)线面所成的角:①线面平行或直线在平面内:线面所成的角为o 0; ②线面垂直:线面所成的角为o 90;③斜线与平面所成的角:射影转化,即转化为斜线与它在平面内的射影所成的角.o o 线面所成的角范围090o o α≤≤ (3)二面角:关键是找出二面角的平面角,o o α≤<; 五、距离的求法:(1)点点、点线、点面距离:点与点之间的距离就是两点之间线段的长、点与线、面间的距离是点到线、面垂足间线段的长.求它们首先要找到表示距离的线段,然后再计算.注意:求点到面的距离的方法:①直接法:直接确定点到平面的垂线段长(垂线段一般在二面角所在的平面上); ②转移法:转化为另一点到该平面的距离(利用线面平行的性质); ③体积法:利用三棱锥体积公式.。
专题七 立体几何-2020版数学(理)二轮专项复习
专题07 立体几何§7-1 点、直线、平面之间的位置关系【复习要求】1.了解四个公理与等角定理;2.理解空间中线面平行、垂直的有关性质与判定定理;3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.【例题分析】例1如图,在正方体ABCD-A1B1C1D1中,E,F分别是AB,AA1的中点.求证:(Ⅰ)E、C、D1、F四点共面;(Ⅱ)CE、DA、D1F三线共点.例2在四棱锥P-ABCD中,底面ABCD是平行四边形,M,N分别是AB,PC的中点,求证:MN∥平面P AD.例3在直三棱柱ABC-A1B1C1中,AA1=AC,AB⊥AC,求证:A1C⊥BC1.例4在三棱锥P-ABC中,平面P AB⊥平面ABC,AB⊥BC,AP⊥PB,求证:平面P AC⊥平面PBC.例5如图,在斜三棱柱ABC-A1B1C1中,侧面A1ABB1是菱形,且垂直于底面ABC,∠A1AB=60°,E,F分别是AB1,BC的中点.(Ⅰ)求证:直线EF∥平面A1ACC1;(Ⅱ)在线段AB上确定一点G,使平面EFG⊥平面ABC,并给出证明.练习7-1一、选择题:1.已知m,n是两条不同直线,α ,β ,γ 是三个不同平面,下列命题中正确的是( )(A)若m∥α ,n∥α ,则m∥n(B)若m⊥α ,n⊥α ,则m∥n(C)若α ⊥γ ,β ⊥γ ,则α ∥β (D)若m∥α ,m∥β ,则α ∥β2.已知直线m,n和平面α ,β ,且m⊥n,m⊥α ,α ⊥β ,则( )(A)n⊥β (B)n∥β ,或n⊂β(C)n⊥α (D)n∥α ,或n⊂α3.设a,b是两条直线,α 、β 是两个平面,则a⊥b的一个充分条件是( )(A)a⊥α ,b∥β ,α ⊥β (B)a⊥α ,b⊥β ,α ∥β(C)a⊂α ,b⊥β ,α ∥β (D)a⊂α ,b∥β ,α ⊥β4.设直线m与平面α 相交但不垂直,则下列说法中正确的是( )(A)在平面α 内有且只有一条直线与直线m垂直(B)过直线m有且只有一个平面与平面α 垂直(C)与直线m垂直的直线不可能与平面α 平行(D)与直线m平行的平面不可能与平面α 垂直二、填空题:5.在三棱锥P -ABC 中,6==PB PA ,平面P AB ⊥平面ABC ,P A ⊥PB ,AB ⊥BC ,∠BAC =30°,则PC =______.6.在直四棱柱ABCD -A 1B 1C 1D 1中,当底面ABCD 满足条件______时,有A 1C ⊥B 1D 1.(只要求写出一种条件即可)7.设α ,β 是两个不同的平面,m ,n 是平面α ,β 之外的两条不同直线,给出四个论断: ①m ⊥n ②α ⊥β ③n ⊥β ④m ⊥α以其中三个论断作为条件,余下的一个论断作为结论,写出正确的一个命题______. 8.已知平面α ⊥平面β ,α ∩β =l ,点A ∈α ,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α ,m ∥β ,给出下列四种位置:①AB ∥m ;②AC ⊥m ;③AB ∥β ;④AC ⊥β , 上述四种位置关系中,不一定成立的结论的序号是______. 三、解答题:9.如图,三棱锥P -ABC 的三个侧面均为边长是1的等边三角形,M ,N 分别为P A ,BC 的中点.(Ⅰ)求MN 的长; (Ⅱ)求证:P A ⊥BC .10.如图,在四面体ABCD 中,CB =CD ,AD ⊥BD ,且E 、F 分别是AB 、BD 的中点.求证:(Ⅰ)直线EF ∥平面ACD ; (Ⅱ)平面EFC ⊥平面BCD .11.如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与ABCD 都是直角梯形,∠BAD =∠F AB=90°,BC ∥AD ,AF BE AF BE AD BC 21,//,21==,G ,H 分别为F A ,FD 的中点.(Ⅰ)证明:四边形BCHG 是平行四边形;(Ⅱ)C ,D ,F ,E 四点是否共面?为什么?(Ⅲ)设AB =BE ,证明:平面ADE ⊥平面CDE .§7-2空间几何体的结构【复习要求】1.了解柱、锥、台、球及其简单组合体的结构特征;2.会画出简单几何体的三视图,会用斜二侧法画简单空间图形的直观图; 3.理解球、棱柱、棱锥、台的表面积与体积的计算公式. 【例题分析】例1 如图,正三棱锥P -ABC 的底面边长为a ,侧棱长为b .(Ⅰ)证明:P A ⊥BC ;(Ⅱ)求三棱锥P -ABC 的表面积; (Ⅲ)求三棱锥P -ABC 的体积.例2 如图,正三棱柱ABC -A 1B 1C 1中,E 是AC 的中点.(Ⅰ)求证:平面BEC 1⊥平面ACC 1A 1;(Ⅱ)求证:AB 1∥平面BEC 1.例3 在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,AB ∥DC ,△P AD 是等边三角形,已知BD =2AD =8,542==DC AB .(Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面P AD ; (Ⅱ)求四棱锥P -ABCD 的体积.例4 如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图.它的主视图和左视图在下面画出(单位:cm) (Ⅰ)画出该多面体的俯视图;(Ⅱ)按照给出的尺寸,求该多面体的体积; (Ⅲ)在所给直观图中连结BC ',证明:BC '∥平面EFG .例5 在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,CD 的中点,求三棱锥F -A 1ED 1的体积.练习7-2一、选择题:1.将棱长为2的正方体木块削成一个体积最大的球,则这个球的表面积为( ) (A)2π (B)4π (C)8π (D)16π2.如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )(A)9π(B)10π(C)11π(D)12π3.有一种圆柱体形状的笔筒,底面半径为4 cm ,高为12 cm .现要为100个这种相同规格的笔筒涂色(笔筒内外均要涂色,笔筒厚度忽略不计).如果所用涂料每0.5 kg 可以涂1 m 2,那么为这批笔筒涂色约需涂料( ) (A)1.23 kg (B)1.76 kg (C)2.46 kg (D)3.52 kg4.某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a +b 的最大值为( ) (A)22(B)32(C)4(D)52二、填空题:5.如图,正三棱柱ABC -A 1B 1C 1的每条棱长均为2,E 、F 分别是BC 、A 1C 1的中点,则EF 的长等于______.6.将边长为1的正方形ABCD 沿对角线AC 折起,使得BD =1,则三棱锥D -ABC 的体积是______.7.一个六棱柱的底面是正六边形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上,且该六棱柱的高为3,底面周长为3,则这个球的体积为______.三、解答题:8.如图,在正四棱柱ABCD -A 1B 1C 1D 1中,E 是DD 1的中点.(Ⅰ)求证:BD 1∥平面ACE ;(Ⅱ)求证:平面ACE ⊥平面B 1BDD 1.9.如图,已知ABCD -A 1B 1C 1D 1是棱长为3的正方体,点E 在AA 1上,点F 在CC 1上,且AE =FC 1=1.(Ⅰ)求证:E ,B ,F ,D 1四点共面; (Ⅱ)若点G 在BC 上,32BG ,点M 在BB 1上,GM ⊥BF ,求证:EM ⊥面BCC 1B 1.§7-3 空间向量与立体几何【复习要求】1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示. 3.掌握空间向量的数量积及其坐标表示;能运用向量的数量积判断向量的共线与垂直. 4.理解直线的方向向量与平面的法向量.5.能用向量语言表述线线、线面、面面的垂直、平行关系. 6.能用向量方法解决线线、线面、面面的夹角的计算问题.【例题分析】例1 如图,在长方体OAEB -O 1A 1E 1B 1中,OA =3,OB =4,OO 1=2,点P 在棱AA 1上,且AP =2P A 1,点S 在棱BB 1上,且B 1S =2SB ,点Q ,R 分别是O 1B 1,AE 的中点,求证:PQ ∥RS .例2 已知正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点,求证:平面AMN ∥平面EFBD .例3 在正方体ABCD -A 1B 1C 1D 1中,M ,N 是棱A 1B 1,B 1B 的中点,求异面直线AM 和CN 所成角的余弦值.例4 如图,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为a 2,求直线AC 1与平面ABB 1A 1所成角的大小.例5 如图,三棱锥P -ABC 中,P A ⊥底面ABC ,AC ⊥BC ,P A =AC =1,2 BC ,求二面角A -PB -C 的平面角的余弦值.例6 如图,三棱锥P -ABC 中,P A ⊥底面ABC ,P A =AB ,∠ABC =60°,∠BCA =90°,点D ,E 分别在棱PB ,PC 上,且DE ∥BC .(Ⅰ)求证:BC ⊥平面P AC ;(Ⅱ)当D 为PB 的中点时,求AD 与平面P AC 所成角的余弦值;(Ⅲ)试问在棱PC 上是否存在点E ,使得二面角A -DE -P 为直二面角?若存在,求出PE ∶EC 的值;若不存在,说明理由.练习7-3一、选择题:1.在正方体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,则二面角E -A 1D 1-D 的平面角的正切值是( ) (A)2(B)2(C)5(D)222.正方体ABCD -A 1B 1C 1D 1中,直线AD 1与平面A 1ACC 1所成角的大小是( ) (A)30° (B)45° (C)60° (D)90°3.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( ) (A)31 (B)32 (C)33 (D)324.如图,α ⊥β ,α ∩β =l ,A ∈α ,B ∈β ,A ,B 到l 的距离分别是a 和b ,AB 与α ,β 所成的角分别是θ 和ϕ,AB 在α ,β 内的射影分别是m 和n ,若a >b ,则下列结论正确的是( )(A)θ >ϕ,m >n (B)θ >ϕ,m <n (C)θ <ϕ,m <n(D)θ <ϕ,m >n二、填空题:5.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为AA 1,AB ,BB 1,B 1C 1的中点,则异面直线EF 与GH 所成角的大小是______.6.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______.7.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为______.8.四棱锥P -ABCD 的底面是直角梯形,∠BAD =90°,AD ∥BC ,==BC AB AD 21,P A ⊥底面ABCD ,PD 与底面ABCD 所成的角是30°.设AE 与CD 所成的角为θ ,则cos θ =______.三、解答题:9.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在CC 1上,且C 1E =3EC .(Ⅰ)证明:A 1C ⊥平面BED ;(Ⅱ)求二面角A 1-DE -B 平面角的余弦值.10.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,4π=∠ABC ,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(Ⅰ)证明:直线MN ∥平面OCD ;(Ⅱ)求异面直线AB 与MD 所成角的大小.11.如图,已知直二面角α -PQ -β ,A ∈PQ ,B ∈α ,C ∈β ,CA =CB ,∠BAP =45°,直线CA 和平面α 所成的角为30°.(Ⅰ)证明:BC ⊥PQ ;(Ⅱ)求二面角B -AC -P 平面角的余弦值.习题7一、选择题:1.关于空间两条直线a 、b 和平面α ,下列命题正确的是( )(A)若a ∥b ,b ⊂α ,则a ∥α (B)若a ∥α ,b ⊂α ,则a ∥b(C)若a ∥α ,b ∥α ,则a ∥b (D)若a ⊥α ,b ⊥α ,则a ∥b2.正四棱锥的侧棱长为23,底面边长为2,则该棱锥的体积为( )(A)8 (B)38 (C)6 (D)23.已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则直线AB 1与侧面ACC 1A 1所成角的正弦值等于( ) (A)46 (B)410 (C)22 (D)23 4.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何 体的体积是( )(A)3cm 34000 (B)3cm 38000 (C)2000cm 3 (D)4000cm 35.若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为60° 的菱形,则该棱柱的体积等于( ) (A)2 (B)22 (C)23 (D)24二、填空题:6.已知正方体的内切球的体积是π34,则这个正方体的体积是______.7.若正四棱柱ABCD -A 1B 1C 1D 1的底面边长为1,AB 1与底面ABCD 成60°角,则直线AB 1和BC 1所成角的余弦值是______.8.若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是______.9.连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB 、CD 的长度分别等于3472、,每条弦的两端都在球面上运动,则两弦中点之间距离的最大值为______.10.已知AABC 是等腰直角三角形,AB =AC =a ,AD 是斜边BC 上的高,以AD 为折痕使∠BDC 成直角.在折起后形成的三棱锥A -BCD 中,有如下三个结论:①直线AD ⊥平面BCD ;②侧面ABC 是等边三角形;③三棱锥A -BCD 的体积是.2423a 其中正确结论的序号是____________.(写出全部正确结论的序号)三、解答题:11.如图,正三棱柱ABC -A 1B 1C 1中,D 是BC 的中点,AB =AA 1.(Ⅰ)求证:AD ⊥B 1D ;(Ⅱ)求证:A 1C ∥平面A 1BD ;(Ⅲ)求二面角B -AB 1-D 平面角的余弦值.12.如图,三棱锥P -ABC 中,P A ⊥AB ,P A ⊥AC ,AB ⊥AC ,P A =AC =2,AB =1,M 为PC 的中点.(Ⅰ)求证:平面PCB ⊥平面MAB ;(Ⅱ)求三棱锥P -ABC 的表面积.13.如图,在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,AB =BC =AA 1=2,M 、N 分别是A 1C 1、BC 1的中点.(Ⅰ)求证:BC 1⊥平面A 1B 1C ;(Ⅱ)求证:MN ∥平面A 1ABB 1;(Ⅲ)求三棱锥M -BC 1B 1的体积.14.在四棱锥S -ABCD 中,底面ABCD 为矩形,SD ⊥底面ABCD ,2=AD ,DC =SD=2.点M 在侧棱SC 上,∠ABM =60°.(Ⅰ)证明:M 是侧棱SC 的中点;(Ⅱ)求二面角S -AM -B 的平面角的余弦值.。
初中知识点归纳——立体几何篇
初中知识点归纳——立体几何篇立体几何是初中数学的重要内容之一,它主要研究空间中的各种几何体的性质和相互关系。
掌握立体几何的基本概念和性质,对于解题和解决实际问题非常有帮助。
本文将对初中立体几何的知识点进行归纳和总结,帮助读者更好地理解和运用这些知识。
一、立体几何的基本概念1. 点、线、面和体:点是没有长宽高的,用大写字母表示;线是由无数个连续点组成的,用两个点的大写字母表示;面是由无数个连续线组成的,用大写字母表示;体是由无数个连续面组成的,用大写字母表示。
2. 多面体和非多面体:多面体是由多个平面围成的立体,如正方体、长方体等;非多面体则不是由平面围成的,如圆柱体、圆锥体等。
二、立体图形的计算1. 面积的计算:不同立体图形的面积计算公式不同。
常见的计算公式有:- 正方体的表面积 = 6 × (边长)²- 长方体的表面积 = 2 × (长 ×宽 + 长 ×高 + 宽 ×高)- 圆柱体的侧面积= 2 × π × 半径 ×高- 球的表面积= 4 × π × 半径²2. 体积的计算:不同立体图形的体积计算公式也不同。
常见的计算公式有:- 正方体的体积 = 边长³- 长方体的体积 = 长 ×宽 ×高- 圆柱体的体积= π × 半径² ×高- 球的体积= (4/3) × π × 半径³三、常见的立体几何体1. 正方体:所有的边相等且平行于坐标轴,有六个面,每个面上有四个顶点。
2. 长方体:所有的边相等或相等且平行于坐标轴,有六个面,每个面上有四个顶点。
3. 三棱柱:两个底面是相等的全等三角形,有三个长方形的面,每个面上有两个顶点。
4. 圆柱体:两个底面是相等的圆形,有一个长方形的面,每个面上有两个顶点。
高中数学立体几何知识点
高中数学立体几何知识点(大全)一、【空间几何体结构】1.空间结合体:如果我们只考虑物体占用空间部分的形状和大小,而不考虑其它因素,那么由这些物体抽象出来的空间图形,就叫做空间几何体。
2.棱柱的结构特征:有两个面互相平行,其余各面都是四边形,每相邻两个四边形的公共边互相平行,由这些面围成的图形叫做棱柱。
棱柱(1):棱柱中,两个相互平行的面,叫做棱柱的底面,简称底。
底面是几边形就叫做几棱柱。
(2):棱柱中除底面的各个面。
(3):相邻侧面的公共边叫做棱柱的侧棱。
(4):侧面与底面的公共顶点叫做棱柱的顶点棱柱的表示:用表示底面的各顶点的字母表示。
如:六棱柱表示为ABCDEF-A’B’C’D’E’F’3.棱锥的结构特征:有一个面是多边形,其余各面都是三角形,并且这些三角形有一个公共定点,由这些面所围成的多面体叫做棱锥。
棱锥4.圆柱的结构特征:以矩形的一边所在直线为旋转轴,其余边旋转形成的面所围成的旋转体叫做圆柱。
圆柱(1):旋转轴叫做圆柱的轴。
(2):垂直于轴的边旋转而成的圆面叫做圆柱的底面。
(3):平行于轴的边旋转而成的曲面叫做圆柱的侧面。
(4):无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。
圆柱用表示它的轴的字母表示,如:圆柱O’O(注:棱柱与圆柱统称为柱体)5.圆锥的结构特征:以直角三角形的一条直角边所在直线为旋转轴, 两余边旋转形成的面所围成的旋转体叫做圆锥。
圆锥(1):作为旋转轴的直角边叫做圆锥的轴。
(2):另外一条直角边旋转形成的圆面叫做圆锥的底面。
(3):直角三角形斜边旋转形成的曲面叫做圆锥的侧面。
(4):作为旋转轴的直角边与斜边的交点。
(5):无论旋转到什么位置,直角三角形的斜边叫做圆锥的母线。
圆锥可以用它的轴来表示。
如:圆锥SO(注:棱锥与圆锥统称为锥体)二、【棱台和圆台的结构特征】1.棱台的结构特征:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分是棱台。
棱台(1):原棱锥的底面和截面分别叫做棱台的下底面和上底面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构,能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二测画法画出它们的直观图。
2. 了解球、柱体、锥体、台体的表面积计算公式和体积计算公式。
3. 了解可以作为推理依据的公理和定理,理解空间直线、平面位置关系的定义,能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题。
4. 以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行和垂直的判定定理与有关性质。
5. 掌握空间向量的线性运算及其坐标表示,能运用空间向量判断线面的平行与垂直关系,求异面直线所成角、线面所成角、二面角。
从近两年的高考试题来看:立体几何是必考题,小题、大题都有,小题通常是点线面的位置
关系判断,三视图的判断,空间角的计算,面积与体积的计算,大题一般是线线、线面或面面平行与垂直的证明,求空间角,或计算几何体表面积与体积,难度中等。
1、规范本节所讲题目的解答过程,掌握各知识点的灵活运用。
2、完成“博恩”试卷。