Preparation and characterization of Ce1-xFexO2 complex oxides and its catalytic activity for met
天大生物化工-导师张裕卿

姓名张裕卿 性别 男 出生年月职称 副教授专业方向 生物化工 通信地址:天津大学化工学院化学工程系,300072办公电话:************电话手机:136****7041EMAIL :*******************.cn教育背景:1982,9-1986,7 在天津大学应用化学系应用化学专业读本科,获工学学士学位。
1993,9-1996,3 在天津大学应用化学系应用化学专业读硕士,获工学硕士学位。
1997,9-2000,8 在天津大学化工学院化学工程专业读博士,获工学博士学位。
2000,8-2002,10 在天津大学化工学院生物化工专业做博士后研究工作。
2007,9 受中国教育部CSC 资助在澳大利亚昆士兰大学工学院AIBN 做高级访问学者研究。
工作背景:1996,3-今 在天津大学化工学院任教师。
2006-今 在澳大利亚昆士兰大学和新南威尔士大学任合作Research Fellow 。
1生物医药及医药中间体, 天然药物有效成分分离纯化和新型药物制剂2生物催化工程主要研究方向: 3生物质可再生能源的转化及应用1中国石油天然气股份有限公司科技风险创新基金(油科函字 [2006]25号,060511-6-3)2天津市应用基础研究计划(№ .07JCYBJC00700 )3国家863计划新材料领域资助项目(863-715-004-220)主要项目: 4国家自然科学基金资助项目 (29971022)1.课程名称《天然产物及药物分离材料》(研究生)2.课程名称《化工流体流动与传热》《化工传质与分离》《化工原理》(本科生)教授课程: 3.课程名称《化学工程设计》(本科生)1 澳大利亚昆士兰大学工学院的Research Fellow of AIBN2中国生态学会委员3中国电子学会电镀技术专业学会委员 4 《广东化工》期刊编委5《中国科教创新导刊》杂志社编委参加学术团体: 6中国化工网专家技术频道技术咨询专家1、2004年度国家科学技术发明二等奖,《新型离子筛的研制及其应用》(2004-F-213-2-03-05)2 、863成果二等奖科研成果:3、本课题组的工作主要是着眼于学科的国际科技前沿和国际科技合作研究。
毕业论文英语摘要翻译技巧

例1:(茂名学院,茂名 广东 525000) (Maoming College, Maoming , Guangdong 525000,China)
例2:(茂名学院化学与生命科学学院,茂名 广东 525000) (College of Chemistry and Life Science, Maoming University, Maoming 525000,
语言结构:
语态一般为被动语态 时态:一般目的、方法和结果用过去时或过去完成时,结论 用 一般现在时。
另外,正确的翻译还包括标点符号 其中:中文中顿号“、”,英文时改为“,”;
中文句号“。”,英文时改为“.”
常用的句型及词语
在英语论文中,常使用一些较为固定句型和表达方式,从而形 成一些独特的表达习惯。 1.表示研究目的、过程、结果等的常用句型 purpose of this study (investigation,report,etc.) is to….
与实词的要求一样。
二 、 作 者 姓 名 及 工 作 单 位 (signature and department)
按照国家科技期刊翻译标准,本部分的翻译需用统一格 式。
作者:姓,全部大写;名,首字母大写,其余小写,双 名在中间加连字符,不缩写。
例:毛泽东为 MAO Ze-dong ;张仲景为 ZHANG Zhongjing
(四)关键词(key words) 关键词指那些出现在论文标题以及摘要、正文
中,能够表现论文主题内容特征、具有实质意义 的语言词汇。
关键词可以是名词、动词、形容词或词组。 一般3~8个词为宜。多个关键词之间用“,”或
“;”分隔,以便于计算机自动切分。
加工调和技术助力油品升级

欧V标准柴油发往香港后,航空煤油又相继出口美国和加拿 大,目前多家订单正在洽谈中,金陵石化油品被国际市场看 好,公司也在为大批量生产高端油品做积极准备。金陵石化 是国内华东地区主要石油加工企业,2013年实际原油加工量 预计1650万吨以上。鉴于我国原油供应紧张的实际,公司近 80%的原油需要从国外进口,油源产地分散,每年加工的原 油品种高达30多个,原油性质千差万别。“以往,每加工一 批原油就要对加工系统工艺参数进行调整,既不利于操作也 增加了生产成本,产品质量也不稳定。现在这种状况将得到 改善。”邢献杰历数往事时,仍是一脸无奈。
Ab s tract: AThe ce ramic p articles o f b arium titan ate w as s yn the size d b y trad itio n al s ol-g e l meth o d ,effects o f d iffere nt temp eratu re on the mo rp ho lo g y a nd the a bs o rbing p ro p ertie s is s tu d ie d in th is p ap e r, electro les s p latin g o f n ickel-co b alt o n the su rface o f th e o b tain ed p owe r was p erformed us ing pallad ium-free activatio n ,th e b ariu m titan iu m comp o sites is o b taine d. Th e mo rp h o lo g y a nd p article s ize were ch aracterize d b y TEM an d SEM,th e crystal p h as e of the s amp le was an alyzed by XRD an d th e micro wave ab so rb in g p rop erties were stu d ied b y vecto r n etwo rk an alyzer. Th e resu lts s ho ws th at th e crystal p h ase o f th e s amp le was ap pro ximate ly s in g le sq u are sh ap e, u nifo rm s ize, a nd the re is a small reu n io n ;th e ab s orp tio n p e ak o f b arium titana te p owd ers is 3 .7 d B-3.8d B wh en th e ca lcinatio n temp eratu re is 85 0℃.Bu t it is also fou n d that the ab so rb ing pro p erties o f comp o sites increas ed g rad u ally with th e ra tio of nicke l an d co b alt re du cin g .Wh en th e ratio o f n ickel-cob alt is 1:4 , th e ba rium titanate (850 ℃) co mp osites h as th e b est p erformance, th e ab so rp tio n cap acity is 6.5-6.8d B.
化学课程英文名称

Common Equipment of Petrochemical Industry
手性药物化学
Symmetrical Pharmaceutical Chemistry
腐蚀电化学测试方法与应用
Measurement Method and Application of Corrosion Electrochemistry
腐蚀电化学原理与应用
Principle and Application of Corrosion Electrochemistry
腐蚀失效分析
Analysis of Corrosion Destroy
量子化学软件及其应用
Software of Quantum Chemistry & its Application
绿色化学
Green Chemistry
膜分离技术
Membrane Separation Technegues
纳米材料的胶体化学制备方法
Colloid Chemical Methods for Preparing Nano-materials
近代无机物研究方法
Modern Research Methods for Inorganic Compounds
精细化学品研究
Study of Fine Chemicals
聚合物加工基础
The basic process of polymers
理论有机化学
theoretical Organic Chemistry
化工系统与优化
Chemical System and Optimization
化工装置模拟与优化
Analogue and Optimization of Chemical Devices
天津大学 化学工艺导师 姜浩锡

天津大学化工学院硕士生导师——姜浩锡职称:副研究员职务:副研究员导师类型:硕士生导师(硕导)专业:化学工艺联系电话: +86(0)22-27406119传真: +86(0)22-27406119通讯地址:电子信箱:hxjiang@主要教育经历1998-2003,天津大学化工学院工业催化专业,获工学博士学位。
1992-1995,天津大学化工学院有机化工专业,获工学硕士学位。
1983-1987,天津大学化工学院工业催化专业,获工学学士学位。
主要研究方向:应用催化,超临界流体技术目前承担的主要科研项目应用催化:乙醇一步法制备乙酸乙酯工业催化剂开发合作开发回收烯烃制取化工产品技术集成项目催化剂开发分项超临界流体技术:国家自然科学基金:具有纳米晶结构的MnOx-CeO2 中空纳米球催化剂合成调控机制研究天津市自然科学基金:纳米晶Cu-Ce-Zr复合氧化物催化剂的SAS制备研究代表性论著及专利论文论著:1. 超临界抗溶剂法纳米Al2O3-ZrO2颗粒的制备与表征,无机材料学报2010, l. 25(10):1065-10702. 超临界抗溶剂法制备纳米氧化铝颗粒,催化学报,2007, 28(10):890-8943. Two Kinds of Active Sites on Cu Cr Catalysts for the Dehydrogenation of Ethanol to Ethyl Acetate, The 4th International conference on green and sustainablechemistry &2nd Asia Oceanian conference on green sustainable chemistry,20094. Preparation and characterization of nano-crystalline Cex-Zr1-x-O2 catalyst by SAS, 9th International Symposium on Supercritical Fluids, 20085. Design and preparation of nano-particles by SAS, China-France Workshop on the Application of Supercritical Fluids Technology, 2008授权专利:1. 一种烷烃氧化催化剂及其制备方法, CN11911582. 用于生产顺丁烯二酸酐的钒-磷-锆混合氧化物催化剂的制备方法, CN1067189。
三氯化六氨合钴实验现象解释

三氯化六氨合钴实验现象解释三氯化六氨合钴,常用的化学试剂之一,是一种暗红色结晶物质,也称作氰化钴(III)盐。
在化学实验中,它常用于检测铁离子或铜离子的存在,并可用于气体检测,催化剂制备等。
其化学式为 [Co(NH3)6]Cl3,分子量为267.5。
实验现象:将三氯化六氨合钴溶于水中时,溶液呈现出红色,当加入氨水后,溶液颜色由红转为深蓝色,放置一段时间后,深蓝色溶液会逐渐变为浅蓝色,最终慢慢变为粉色。
解释:三氯化六氨合钴的红色溶液是由于配合物[Co(NH3)6]3+的颜色引起的。
在配合物中,铵离子作为配体,与铵离子形成包围金属离子的八面体结构,从而形成了三氯化六氨合钴的复合物。
这个配合物呈现红色,属于吸收绿色光的背景,从而使红色光被反射和传播。
当加入氨水后,会发生反应,生成[Co(NH3)6]2+ 配合物。
这个配合物由氨分子包围六个铵离子和一个钴离子,会使得该化合物的分子体积更大,这样就会使它吸收与[Co(NH3)6]3+ 配合物不同的波长的光,由红色变成更深的蓝色。
此外,三氯化六氨合钴的盐酸根离子(HCl)也会从溶液中分离,且生成的氯化钴离子会使溶液的酸度降低,从而使[Co(NH3)6]2+ 的酸-碱指数发生变化,使其吸收不同的波长。
慢慢深蓝色的配合物溶液会在空气中发生氧化反应,发生了一系列氧化还原反应,氨分子逐渐分解,生成一些氮气和氢气气泡,在溶液中释放出了氢离子,这些氢离子能作为邻近氨分子的酸基而影响其配位性质。
氧气会在配合物溶液中催化反应,使得氢氧化钴离子生成,由于其水溶性不佳,逐渐从溶液中析出,溶液变浅蓝色。
随后,氢氧化钴离子不断发生水解反应,最终形成了一种粉色的物质,这是水合铵离子的染色。
参考文献:1. Swati Anand, Jainendra Jain. A simple method for the preparation of Co(NH3)63+ and its use as chiral selector[J]. Journal ofChromatography A, 2002, 958(1-2):289-295.2. Sun D, Duan Y, Li X, et al. Preparation and Characterization of Co(NH3)63+@TiO2Hybrids with Enhanced Photocatalytic Activity[J]. ChemistrySelect, 2017, 2(18): 5106-5111.3. Roger L. DeKock, David E. Drown. A Study of the Resonance AbsorptionSpectrum of Tris(ethylenediamine)cobalt(III) Ion[J]. Journal of the American Chemical Society, 1955, 77(1): 246-251.。
二甲基十六烷基烯丙基氯化铵_丙烯酰胺共聚物反相乳液的合成及表征

4007二甲基十六烷基烯丙基氯化铵/丙烯酰胺共聚物反相乳液的合成及表征李朝艳 于跃芹 王玉鹏 许 军 武玉民(青岛科技大学化工学院,青岛 266042)摘 要:以Span-80、OP-10为乳化剂,K 2S 2O 8、Na 2S 2O 4、W-044为引发剂,以120#汽油为分散介质,用反相乳液聚合法制备出二甲基十六烷基烯丙基氯化铵/丙烯酰胺共聚物,并且用粒度分布仪进行了表征。
结果表明:随引发剂及乳化剂用量增加,共聚物相对分子质量下降;乳胶粒子大小受引发剂、乳化剂、交联剂的用量及放置时间等条件的不同而变化。
关键词:丙烯酰胺 二甲基十六烷基烯丙基氯化铵 反相乳液聚合 作者简介:李朝艳,25,在读硕士研究生;主要从事清洁化工工艺方面的研究。
武玉民,39,教授,主要从事精细化工和清洁化工工艺的研究。
乳液聚合是生产高聚物的重要方法之一,发展至今已有80多年的历史[1]。
反相乳液聚合为水溶性单体提供了一个具有高聚合速率和高分子量产物的聚合方法。
在现代工业和民用等方面起着越来越重要的作用[2]。
丙烯酰胺均聚物及其共聚物是一类用途广泛的水溶性高分子材料,在水处理、造纸和三次采油等诸多领域发挥着重要作用[3,4]。
其中丙烯酰胺与阳离子单体的共聚物具有正电荷密度高、水溶性好、相对分子量易于控制、高效无毒等优点,在石油开采、造纸、水处理、医药、纺织及食品工业等方面正受到越来越多的重视。
本文研究了二甲基十六烷基烯丙基氯化铵/丙烯酰胺共聚物反相乳液的制备工艺,以及引发剂和乳化剂等条件对聚合物分子量及乳胶粒子分布的影响。
1 实验部分111 实验原料及仪器丙烯酰胺(AM),工业品,质量分数98%,日本Dia-Nitrix 公司;二甲基十六烷基烯丙基氯化铵(C 16DMAAC),室内自制;N,N-亚甲基双丙烯酰胺(MB A),化学纯,天津市化学试剂研究所;氮气,纯度99199%,青岛合利工业气体中心;过硫酸钾(K 2S 2O 8),分析纯,中国上海埃彼化学试剂公司;连二亚硫酸钠(Na 2S 2O 4),分析纯,亨达精细化学品有限公司;W-044,日本Wako 公司;OP-10,化学纯,天津天河化学试剂公司;Span-80,化学纯,天津博迪化学有限公司;120#汽油。
氨基酸功能化碳量子点的制备与表征英文

氨基酸功能化碳量子点的制备与表征英文Preparation and characterization of amino acid-functionalized carbon quantum dotsAbstract:Carbon quantum dots (CQDs) have arisen as a promising type of nanomaterials with outstanding optical, electrical, and chemical properties. The functionalization of CQDs with various functional moieties presents a vast potential for tailoring their functional properties for various applications. Herein, we developed a facile method to prepare amino acid-functionalized carbon quantum dots (AA-CQDs) via a one-step microwave-assisted hydrothermal method. The as-prepared AA-CQDs were characterized by a series of spectroscopic and microscopic techniques, and were found to exhibit excellent optical properties, good watersolubility, and low cytotoxicity. The AA-CQDs may have potential applications in bio-imaging, bio-sensing, and drug delivery.Introduction:Carbon quantum dots (CQDs) have attracted great attention in various research areas, such as bio-imaging, bio-sensing, drug delivery, solar cells, and energy conversion. CQDs have unique properties, such as high photoluminescence quantum yield, excellent biocompatibility, low toxicity, and excellent light-harvesting properties. The functionalization of CQDs with various functional moieties presents a vast potential for tailoring their functional properties for various applications.Amino acids are important building blocks of proteins, and are essential for many biological processes. Amino acid-functionalized carbon quantum dots (AA-CQDs) have gained much attention due to their potential in bio-imaging, bio-sensing, and drug delivery. The amino acid moieties on the carbon dots could provide a surface charge, which makes them more resistant to nonspecific binding and degradation in biological environments.In this work, we developed a facile method to prepare AA-CQDs via a one-step microwave-assisted hydrothermal method, and characterized their physical and chemical properties by a series of spectroscopic and microscopic techniques.Experimental Section:Materials:L-phenylalanine (99.5%), L-tryptophan (99.5%), L-cysteine (99.5%), and sodium bicarbonate (99.5%) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Methanol was purchased from Thermo Fisher Scientific (Waltham, MA, USA). Water was deionized by a Millipore Milli-Q purification system (Milford, MA, USA).Synthesis of AA-CQDs:In a typical synthesis, 500 mg of L-phenylalanine, L-tryptophan, or L-cysteine was dissolved in 20 mL of deionized water by stirring for 15 min. The pH of the solution was adjusted to 9.0 by dropwise addition of 1 M sodium bicarbonate. The mixture was treated by microwave-assisted hydrothermal method at 200 °C for 5 min. Aftercooling down to room temperature, the solution was centrifuged at 10,000 rpm for 10 min to remove the unreacted amino acids and other insoluble impurities.Characterization:The as-synthesized AA-CQDs were characterized using a series of spectroscopic and microscopic techniques. UV-Vis absorption spectra and Photoluminescence (PL) spectra were recorded on a Shimadzu UV-1800 spectrophotometer and a PerkinElmer LS 55 luminescence spectrometer, respectively. The size and morphology of the AA-CQDs were characterized using transmission electron microscopy (TEM) (FEI Tecnai G2 F20, USA). Zeta potential measurements were carried out on a Zetasizer Nano-ZS (Malvern Instruments, UK).Results and discussion:In this work, we developed a facile method to prepare AA-CQDs via a one-step microwave-assisted hydrothermal method. Amino acids such as L-phenylalanine, L-tryptophan, and L-cysteine were used as functional moieties to functionalize theCQDs. The as-prepared AA-CQDs exhibited excellent optical properties, good water solubility, and low cytotoxicity.Figure 1 shows the UV-Vis absorption spectra and PL spectra of AA-CQDs synthesized withdifferent amino acids. The AA-CQDs exhibited characteristic absorption peaks around 280 nm due to the π-π* transition of amino acids, and a broad PL band with an emission wavelength around 450 nm. The emission intensity of AA-CQDs prepared with L-cysteine was higher than those prepared with L-phenylalanine or L-tryptophan. This may be attributed to the thiol group (-SH) of L-cysteine, which may enhance the fluorescence intensity of the AA-CQDs.The TEM images of AA-CQDs prepared with L-cysteine are shown in Figure 2. The AA-CQDs appeared as monodisperse and spherical nanoparticles with an average size of around 3-4 nm. The AA-CQDs exhibited a highly fluorescent property, which may be attributed to their size-dependent quantum confinement effect.The zeta potentials of AA-CQDs prepared with different amino acids are shown in Figure 3. The AA-CQDs exhibited negative zeta potentials due to the presence of carboxyl groups on the surfaces of CQDs and amino acids. The zeta potentials of AA-CQDs prepared with L-phenylalanine and L-tryptophan were around -9.7 mV and -13.6 mV, respectively, while the zeta potential of AA-CQDs prepared withL-cysteine was around -23.1 mV. The higher zeta potential of AA-CQDs prepared with L-cysteine may be attributed to the thiol group (-SH) of L-cysteine, which may provide a stronger negative charge on the surface of the AA-CQDs.Conclusion:In summary, we developed a facile method to prepare AA-CQDs via a one-step microwave-assisted hydrothermal method, and characterized their physical and chemical properties. The AA-CQDs exhibited excellent optical properties, good water solubility, and low cytotoxicity. The AA-CQDs may have potential applications in bio-imaging, bio-sensing, and drug delivery. Further studies areneeded to evaluate the biocompatibility, pharmacokinetics, and in vivo toxicity of the AA-CQDs.。
中英文催化剂的制备与表征(catalysis and physical properties)

Introduction to this subject
➢ Preparation, characterization and application of a catalyst is crucial to innovate a novel catalyst.是发明一个新催化剂的关键。
➢ Catalyst is usually not the same with other chemicals, especially pure chemicals.催化剂一般与其他化学品一样,特别是纯化学品。
Definition of Catalyst
➢ Ostwald (德国)的观点 催化剂是一种能够改变化学反应的速度,而它本身又不 参与最终产物的 物质。 (流行)
➢ IUPAC定义: 催化剂能够加速反应速率而不改变反应的标准Gibbs自 有焓变化。
➢ 国内新近定义 催化时加速反应速度、控制反应方向或产物构成,而不 影响化学平衡的一类作用。起这种作用的物质称为催化 剂,它不在主反应的化 学计量式中反映出来,即在反应 中不被消耗。
Ideal surface is not perfect
理想的表面是不完美的
扭结
阶梯空位
阶梯位
台阶吸附的原子 台阶空位
球的堆积模型表示不完美表面
Heterogeneous Catalyst
* Metals (Transition metals, IB metals);金属
Fe Co Ni Ru Rh Cu Ag Au Pd Os Ir Pt
Mechanism for heterogeneous Catalysis
Heterogeneous Catalysis
➢ Heterogeneous mechanism is difficult to investigated in the laboratory. Disappearance of reactants and appearance of products are easily followed, but important features such as the rates and energetic of adsorption, structure of active sites, the nature of active intermediates, require separate experimentation using a constantly changing arsenal of techniques. 非均相机理的实验室研究非常困难。反应物的消耗和产物的生成比 较容易追踪,但许多重要的因素比如速度和吸附能,活性位结构、 活性中间体特点等需要通过大量的单因素实验来得出。
论文英文写作

论著(original articles)
综述(review)
会议摘要(meeting abstract) 评述类论文(comments) 读者来信(letters) 假说和观点类论文(hypothesis) 病例报道(case report)
SCI论文写作原则
试比较一下题名: a) Study of the solubility of polymers (聚合物的溶解性研 究) b) Study on the thermodynamic problem of polychlorotrifluoroethylene dissolution (聚氯三氟乙烯 的溶解热力学问题)
③ 陈述句式题名
由完整的句子组成,往往具有判断式的语意,即:使用一般 现在时在题名中提出结论,正文中却探讨性地论证。
④ 疑问句式题名
多用于评论性论文,使用探讨性的疑问句型显得比较生动, 激发读者兴趣。
例:
Dynamic capabilities: what are they? (动态能力:它们是 什么?)
SCI论文写作技巧
• 用词
熟悉、具体、简单、短句式
• 时态
过去时 现在时或现在完成时
• 词性
代词: is, this, these, those, that, which 冠词:a, an, the 动词:词性变化-ing, ed, en, d, t
• 标点
句号. 逗号, 括号(插入/附加) 所有格’ 连字符省略号…… 冒号:引号
Isolation of antigens from monkeys using complementfixation techniques (猴子使用补体固定技术分离的抗原) • 介词问题 ① “of”,“ for” 和 “in” 的使用 of——所有关系, for——目的、用途 例如: A design method of sliding mode robust controller with feed forward compensator is presented (提出了一种具有前馈补 偿的滑模鲁棒控制器设计方法)
化工专业英语(期末练习题)

PRACTICE一,英译汉Hydrolyze —水解 Alkane —烷烃 Evaporation —蒸发 Aluminum —Al Oxidation —氧化反应 Methylamine —甲胺 Halogen —卤素 carbon dioxide 混合物 binary compounds 二元化合物 Cyclohexane —环己烷 monophase 单相的 polyethylene 聚乙烯 stainless steel 不锈钢 aminobenzene 苯胺 1. The Ideal-Gas Equation of State 理想气体状态方程 2. The First Law of Thermodynamics 热力学第一定律 3. Reaction Rates 反应速率 4. Activation Energy 活化能 5. Separatory Funnel 分液漏斗 6. Homogeneous Catalysis 均相催化7. Conjugate Acid-Base Pairs 共轭酸碱对 8. The Common-Ion Effects 同离子效应9. The Solubility-Product Constant 溶度积常数 二,命名 1. 甲烷 methane2. 2-甲基-3-乙基辛烷 3-ethyl- 2-methyloctane3. 2-乙基-1,3-丁二烯 2- ethyl -1, 3-butadiene4. 环己烷 Cyclohexane5. 对二甲苯 paraxylene6. 乙酸甲酯 Methyl acetate7. 醋酸 Acetic acid8. 丙酮Acetone C H 3C H C H 2C H 2 C H 2C H C H 3C H 2C H 3C H3三,翻译命名2-methylbutane 2-甲基丁烷3-ethyl-2-methylheptane 3-乙基-2-甲基庚烷 4-ethyl-2-methylhexane 2-甲基-4-乙基己烷4-ethyl-2,2-dimethylhexane2,2-二甲基-4-乙基己烷5,5-bis(l,2-dimethylpropyl)nonane 5,5-二(1,2-二甲基丙基)壬烷2-hexyl-l,3-butadiene 2-己基-1,3-丁二烯 Benzyl 苄基(苯甲基) Phenyl 苯基 ethyl chloride 氯化乙基 2-fluoropropanemethanol 甲醇 ethanol 乙醇 1,2-ethanedioltrimethylamine 三甲胺 phenylmethanal ethanoyl chloride 四,翻译短句1. Acetylene (乙炔) is hydrocarbon especially high in heat value.乙炔烃特别是高热值2. It is common knowledge that bodies are lighter in water than they are in air.大家都知道,水中的物体比在空中更轻。
关于磷酸铁锂的英文文献(含中文翻译)

Preparation and characterization of carbon-coated LiFePO 4cathode materials for lithium-ion batteries with resorcinol –formaldehyde polymer as carbon precursorYachao Lan,Xiaodong Wang ⁎,Jingwei Zhang,Jiwei Zhang,Zhishen Wu,Zhijun Zhang ⁎Key Laboratory for Special Functional Materials,Henan University,Kaifeng 475004,Chinaa b s t r a c ta r t i c l e i n f o Article history:Received 8February 2011Received in revised form 26May 2011Accepted 3June 2011Available online 12June 2011Keywords:Lithium iron phosphateResorcinol –formaldehyde polymer Lithium-ion batteryLiFePO 4/C composites were synthesized by two methods using home-made amorphous nano-FePO 4as the iron precursor and soluble starch,sucrose,citric acid,and resorcinol –formaldehyde (RF)polymer as four carbon precursors,respectively.The crystalline structures,morphologies,compositions,electrochemical performances of the prepared powders were investigated with XRD,TEM,Raman,and cyclic voltammogram method.The results showed that employing soluble starch and sucrose as the carbon precursors resulted in a de ficient carbon coating on the surface of LiFePO 4particle,but employing citric acid and RF polymer as the carbon precursors realized a uniform carbon coating on the surface of LiFePO 4particle,and the corresponding thicknesses of the uniform carbon films are 2.5nm and 4.5nm,respectively.When RF polymer was used as the carbon precursor,the material showed the highest initial discharge capacity (138.4mAh g −1at 0.2C at room temperature)and the best rate performance among the four materials.©2011Elsevier B.V.All rights reserved.1.IntroductionLiFePO 4is an attractive cathode material for lithium-ion batteries because of its high theoretical capacity of 170mAh g −1,environ-mental benign,and high thermal stability.However,its poor electric conductivity of less than 10−13S cm −1limits its battery performance [1],such as the dramatic decrease in power at a high current density,which is the main drawback to commercial use.To overcome the low electric conductivity of LiFePO 4,many effective approaches have been introduced,including metal substitution [2–5],metal powder com-pounding [6],and conductive carbon coating [7–15].Among them,the preparation of LiFePO 4/carbon composite (LiFePO 4/C)is one of the attractive ways to improve the electric conductivity of the final product by forming a good conduction path.Furthermore,carbon can be also used as a reductant,which can reduce Fe 3+ions to Fe 2+ions.It should be noted that many studies involving the synthesis of nano-sized LiFePO 4employ Fe 2+salts as precursors [3,16–20],such as FeC 2O 4·2H 2O and (CH 3COO)2Fe,which are expensive.Therefore,it is necessary to use cheap materials and a convenient method.Here,we report the synthesis,characterization and electrochemical test of LiFePO 4/C composites prepared by two methods using home-made amorphous nano-FePO 4as the iron precursor and various organics as carbon precursors.The two methods using FePO 4as starting material are cheap and environmentally benign for the production of LiFePO 4material.Particularly,we present a novel method to synthesize a uniformcarbon film coated LiFePO 4cathode materials.This method involved an in situ reaction of resorcinol and formaldehyde on the surface of amorphous FePO 4.At room temperature,electrochemical tests showed that this material exhibited an initial discharge capacity of 138.4mAh g −1at 0.2C and a good cycling property at 0.5and 1.0C rate,respectively.2.Experimental2.1.Preparation of amorphous nano-FePO 4Amorphous nano-FePO 4was prepared by spontaneous precipita-tion from aqueous solutions.An equimolar solution of H 3PO 4was added to a solution of Fe(NO 3)3·9H 2O at 60°C under stirring and given amounts of PEG-400as surfactant.Then ammonia water (NH 3·H 2O)was slowly added to the mixed solution under vigorous stirring and a milk-white precipitate formed immediately.The pH of the solution was kept at 2.0.The precipitate was filtered and washed several times with distilled water.After drying in vacuum oven at 120°C for 12h,yellowish-white amorphous FePO 4was obtained.2.2.Preparation of LiFePO 4/CTwo methods were used to prepare the LiFePO 4/C composites in this study.2.2.1.Method oneA rheological phase method [21]was employed to synthesize LiFePO 4/C composite.Stoichiometric amount of amorphous FePO 4,LiOH·H 2O were used as the starting materials.The carbon precursorsPowder Technology 212(2011)327–331⁎Corresponding authors.Tel./fax:+863783881358.E-mail address:donguser@ (X.Wang).0032-5910/$–see front matter ©2011Elsevier B.V.All rights reserved.doi:10.1016/j.powtec.2011.06.005Contents lists available at ScienceDirectPowder Technologyj o u r n a l h o me p a g e :w w w.e l sev i e r.c o m /l oc a t e /pow t e care soluble starch(50.0g/1mol LiOH·H2O),sucrose(35.0g/1mol LiOH·H2O),citric acid monohydrate(21.0g/1mol LiOH·H2O),respec-tively.These carbon precursors were respectively solved in an appropri-ate amount of distilled water under stirring and heating.Then the amorphous FePO4and LiOH·H2O were added under vigorous stirring. Subsequently,the mixtures were respectively dried in an oven at120°C for6h,heated at350°C for1h in argonflow,treated at750°C for12h in argonflow,and ground.Finally,the LiFePO4/C composites were obtained and were denoted as sample A,sample B and sample C,respectively. 2.2.2.Method twoIn a typical synthesis,0.10g of CTAB was solved in30ml of distilled water solution under continuous stirring.Subsequently,1.52g FePO4·3H2O,0.055g resorcinol(R)and0.10ml formaldehyde(F)were successively added.When the temperature of water bath was up to85°C,LiOH·H2O was added.The mixture was kept stirred up in the dark for2h,dried in an oven at120°C for6h,heated at 350°C for1h in argonflow,treated at750°C for12h in argonflow, andfinally ground to obtain the LiFePO4/C composites(denoted as sample D).These four samples and their corresponding parameters are listed in Table1.The carbon contents of the samples were calculated by the loss on ignition of the four LiFePO4/C composites in air.2.3.CharacterizationThermogravimetric(TG)and differential thermal analysis(DTA) analyses were conducted with an EXSTAR6000thermal analysis system at a heating rate of10°C min−1.The powder X-ray diffraction (XRD,X'Pert Pro MPD,Philips)using Cu Ka radiation was employed to identify the crystalline phase of the prepared materials.Raman spectrum was recorded on a Renishaw RM-1000Microscopic Raman spectrometer with457.5nm excitation requiring a10mW power at room temperature.Low-magnification and high-magnification TEM images were taken on a JEM-2010transmission electron microscope (using an accelerating voltage of200kV).Electrodes were fabricated from a mixture of prepared carbon-coated LiFePO4powders(80wt.%),carbon black(12wt.%),and polyvinylidenefluoride in N-methylpyrrolidinon(8wt.%).The slurry was spread onto Al foil and dried in vacuum at120°C for12h.The carbon-coated LiFePO4loading was2mg cm−2in the experimental cells.The cells were assembled in an argon-atmosphere-filled glove box.The electrolyte was1M LiPF6in a mixture of ethylene carbonate (EC)and dimethyl carbonate(DMC)(1:1volume).The cells were galvanostatically charged and discharged at a voltage range of2.5–4.2V with LAND battery testing system at room temperature.Cyclic voltammograms were run on an IM6impedance and electrochemicalmeasurement system(Zahner,Germany)at a scan rate of0.1mV s−1 between2.5and4.0V.3.Results and discussionThe TEM images of the amorphous nano-FePO4were shown in Fig.1.The morphology of the as-prepared FePO4is an irregular particle with an average diameter of30nm.Most of the particles connected to each other because of their high surface energy which results from their small sizes.Fig.2a shows the TG/DTA curves of the FePO4·3H2O powder with a heating rate of10°C/min from room temperature to850°C in air.On the DTA curve near150°C,there is a very strong endothermic peak, associating with the sharp weight loss on the TG curve,which is related to the quick dehydration of FePO4·3H2O.During150–550°C, 26.3%weight loss on the TG curve indicates the slow elimination of residual H2O in FePO4·3H2O,exactly corresponding to the loss of crystalline water of FePO4·3H2O.And one exothermic peak is displayed at a higher temperature of590°C,which is not accompa-nied by appreciable weight loss in the TG curve,indicating the transformation of the amorphous FePO4to hexagonal FePO4crystal. The XRD patterns of FePO4·3H2O before and after calcination have been investigated in Fig.2b.As illustrated in pattern A,it can be seen that there is no evidence of diffraction peaks before calcination, indicating the synthesized FePO4·3H2O is just amorphous.While for the calcinated FePO4·3H2O at600°C for6h in air,it exhibits strong and narrow peaks revealing a well-crystallized material in pattern B. All of the diffraction peaks of the prepared FePO4are indexed to a single-phase hexagonal structure with a P3121space group and without any impurities,which is in good agreement with the standard card(JCPDS card no:72–2124).Table1Carbon precursors and residual carbon content of samples A,B,C and D.Samples A B C DCarbon precursor Starch Sucrose Citric acid RF polymer Final carbon content(wt.%) 5.48.5 4.35.1Fig.1.TEM images of the prepared amorphous nano-FePO4.n et al./Powder Technology212(2011)327–331The XRD diffraction patterns of LiFePO 4/C powders prepared with different carbon precursors were shown in Fig.3.All peaks can be indexed as a single phase with an ordered olivine structure indexed to the orthorhombic space group,Pnmb (JCPDS card no.83–2092).The obtained lattice parameters are sample A:a=10.2956Å,b=6.0367Å,and c =4.7001Å,sample B:a =10.1992Å,b =6.0483Å,andc=4.6971Å,sample C:a=10.2472Å,b=6.0208Å,and c=4.6882Åand sample D:a=10.3372Å,b=5.9993Å,and c=4.6932Å,respec-tively.There is no evidence of diffraction peaks for carbon,though some amorphous masses and films attached to the LiFePO 4particles were observed from TEM images (see Fig.4).This indicates the carbon contents are very low.Morphologies of these LiFePO 4/C composites were shown in Fig.4.It is obvious that the samples show different carbon distribution on LiFePO 4particle surface.From Fig.4a,c,e and g,we observed that the samples were composed of agglomerated particles whose sizes range from 50to 300nm.From Fig.4b and d,there is not enough carbon coating to spread throughout the substrate particles.In contrast to sample A and sample B,there are uniform carbon thin films on the grain surfaces of sample C and sample D,and the thickness of the carbon films are about 2.5nm (Fig.4f)and 4.5nm (Fig.4h),respectively.The reason may lie in that different carbon precursors have different adsorbabilities on the surface of FePO 4·3H 2O particles,resulting in different carbon distribution on the surface of LiFePO 4particle after the post treatment.Soluble starch and sucrose possess plentiful hydroxyl groups,by which soluble starch and sucrose molecules could probably weakly adsorb on the surface of FePO 4·3-H 2O particles in the hydrogen bonding.In the post treatment process,part of soluble starch and sucrose molecules desorbed from the surface of FePO 4·3H 2O particles,resulting in the de ficient carbon coating.But citric acid possesses carboxyl groups,which may be partially esteri fied by hydroxyl groups on the FePO 4·3H 2O particles,forming a tight connection.This results in more complete carbon coating after the post treatment.For sample D,we suppose that,in the present synthetic system,the surfactant CTAB may con fine the resorcinol –formaldehyde (RF)polymer molecules and FePO 4·3H 2O particles in plenty of tiny spaces,so the RF polymer molecules were tightly attached to FePO 4·3H 2O particles.After the post treatment,the RF polymer was transformed into the carbon film which tightly stuck on the surface of LiFePO 4particle.In addition,from the HRTEM image of sample D (shown in Fig.4h),the d-spacing of 0.294nm corresponds to the (211)plane of LiFePO 4.As an important aid investigating the structure of the carbon,the Raman measurement was adopted,and the results were shown in Fig.5.Every Raman spectrum consists of a small band at 940cm −1,which corresponds to the symmetric PO 4stretching vibration in LiFePO 4.The intense broad bands at 1350and 1590cm −1can be attributed to the characteristic Raman spectra of carbon.The bands at 1590cm −1mainly correspond to graphitized structured carbon of G band,while that at 1350cm −1corresponds to disordered structured carbon of D band [22,23].The graphitized carbon contains sp 2hybrid bonding,which is positively correlated with the electronic conduc-tivity of carbon,and the disordered carbon mainly corresponds to sp 3hybrid bonding.As shown in Fig.5,the integrated intensity ratios of sp 2/sp 3of the LiFePO 4/C composites synthesized with different carbon precursors are 0.865(curve A),0.857(curve B),0.856(curve C)and 0.860(curve D),respectively.So the similar sp 2/sp 3ratios of the four samples give us few clues to explain the difference in their electrochemical performances.Fig.6shows the cycling performance curves of all the samples at different rates.As shown in Fig.6,the initial discharge capacities of sample A,sample B,sample C and sample D at room temperature at 0.2C rate are 110.4,118.8,137.7and 138.4mAh g −1,respectively.The capacity of sample D gradually increases in the initial cycles.This may be due to the incomplete dispersion of the electrolyte into the electrode material at the beginning.Moreover,the capacity of sample D is highest among the four samples at 0.5C and 1.0C,indicating that method two is better than method one.The lower capacities of sample A and sample B must be due to the incomplete carbon coating on the LiFePO 4particles.The higher capacity of sample D than that of sample C may be attributed to the thicker carbon film of sample D keeping the crystal structure of LiFePO 4morestable.Fig.2.(a)TG/DTA curves of the FePO 4·3H 2O.(b)XRD patterns of the FePO 4samples before (A)and after (B)calcination inair.Fig. 3.XRD patterns of LiFePO 4/C composites synthesized with different carbon precursors.329n et al./Powder Technology 212(2011)327–331In order to further understand the electrochemical properties of the four samples,the cyclic voltammogram (CV)curves were performed at a scan rate of 0.1mV s −1at room temperature (as shown in Fig.7).Each of the CV curves consists of an oxidation peak and a reduction peak,corresponding to the charge reaction and discharge reaction of the Fe 2+/Fe 3+redox couple.In the CV pro files of the LiFePO 4cathode material,the smaller voltage difference between the charge and discharge plateaus and the higher peak current means better electrode reaction kinetics,and consequently better rate performance.Sample A and sample B electrodes have broad peaks in CV curves.In contrast,sample C and sample D electrodes demonstrate sharp redox peaks,which indicate an improvement in the kinetics of the lithium intercalation/de-intercalation at the electrode/electrolyte interface.The voltage difference of sample D is smaller than that of sample C,so sample D demonstrates a better rate performance.4.ConclusionsLiFePO 4/C composites were synthesized by two methods using home-made amorphous nano-FePO 4as the iron precursor and various organics as carbon precursors.It was found that employing soluble starch and sucrose as the carbon precursors resulted in a de ficient carbon coating on the surface of LiFePO 4particle,but employing citric acid and RF polymer as the carbon precursors realized a uniform carbon coating on the surface of LiFePO 4particle.Particularly,when RF polymer was used as the carbon precursor,the carbon film is thicker,and the material showed the highest initial discharge capacity (138.4mAh g −1at 0.2C at room temperature)and the best rate performance among the four materials.The intensities of redox peak and the voltage differences in the CV curves of the four samples are consistent with their rateperformance.Fig.4.TEM images of synthesized LiFePO 4/C composite synthesized with different carbon precursors.(a)and (b)sample A,(c)and (d)sample B,(e)and (f)sample C,(g)and (h)sampleD.Fig. 5.Raman shift of LiFePO 4/C composites synthesized with different carbonprecursors.Fig.6.The cycling performance curves of the samples with different carbon precursors at various discharge rates.n et al./Powder Technology 212(2011)327–331References[1] A.K.Padhi,K.S.Nanjundaswamy,J.B.Goodenough,Phospho-olivines as positive-electrode materials for rechargeable lithium batteries,J.Electrochem.Soc.144(1997)1188–1194.[2]T.Nakamura,Y.Miwa,M.Tabuchi,Y.Yamada,Structural and surfacemodi fications of LiFePO 4olivine particles and their electrochemical properties,J.Electrochem.Soc.153(2006)A1108–A1114.[3]S.-Y.Chung,J.T.Bloking,Y.-M.Chiang,Electronically conductive phospho-olivinesas lithium storage electrodes,Nat.Mater.1(2002)123–128.[4]P.S.Herle,B.Ellis,N.Coombs,L.F.Nazar,Nano-network electronic conduction iniron and nickel olivine phosphates,Nat.Mater.3(2004)147–152.[5]G.X.Wang,S.Bewlay,S.A.Needham,H.K.Liu,R.S.Liu,V.A.Drozd,J.-F.Lee,J.M.Chend,Synthesis and characterization of LiFePO 4and LiTi 0.01Fe 0.99PO 4cathode materials,J.Electrochem.Soc.153(2006)A25–A31.[6] F.Croce,A.D'Epifanio,J.Hasson,A.Duptula,T.Olczac,B.Scrosati,A novel conceptfor the synthesis of an improved LiFePO 4lithium battery cathode,Electrochem.Solid-State Lett.5(2002)A47–A50.[7]H.Huang,S.C.Yin,L.F.Nazar,Approaching theoretical capacity of LiFePO 4at roomtemperature at high rates,Electrochem.Solid-State Lett.4(2001)A170–A172.[8]M.Herstedt,M.Stjerndahl,A.Nyten,T.Gustafsson,H.Rensmo,H.Siegbahn,N.Ravert,M.Armand,J.O.Thomas,K.Edstroem,Surface chemistry of carbon-treated LiFePO 4particles for Li-ion battery cathodes studied by PES,Electrochem.Solid-State Lett.6(2003)A202–A206.[9]M.M.Doeff,Y.Hu,F.McLarnon,R.Kostecki,Effect of surface carbon structure onthe electrochemical performance of LiFePO 4,Electrochem.Solid-State Lett.6(2003)A207–A209.[10]Y.Hu,M.M.Doeff,R.Kostecki,R.Finones,Electrochemical performance of sol –gelsynthesized LiFePO 4in lithium batteries,J.Electrochem.Soc.151(2004)A1279–A1285.[11]X.Z.Liao,Z.Ma,L.Wang,X.Zhang,Y.Jiang,Y.He,A novel synthesis route forLiFePO 4/C cathode materials for lithium-ion batteries,Electrochem.Solid-State Lett.7(2004)A522–A525.[12] C.H.Mi,X.B.Zhao,G.S.Cao,J.P.Tu,In situ synthesis and properties of carbon-coated LiFePO 4as Li-ion battery cathodes,J.Electrochem.Soc.152(2005)A483–A487.[13]R.Dominko,M.Bele,M.Gaberscek,M.Remskar,D.Hanzel,S.Pejovnik,J.Jamnik,Impact of the carbon coating thickness on the electrochemical performance of LiFePO 4/C composites,J.Electrochem.Soc.152(2005)A607-A607.[14]K.Zaghib,J.Shim,A.Guer fi,P.Charest,K.A.Striebel,Effect of carbon source asadditives in LiFePO 4as positive electrode for lithium-ion batteries,Electrochem.Solid-State Lett.8(2005)A207–A210.[15]K.S.Park,J.T.Son,H.T.Chung,S.J.Kim,C.H.Lee,K.T.Kang,H.G.Kim,Surfacemodi fication by silver coating for improving electrochemical properties of LiFePO 4,Solid State Commun.129(2004)311–314.[16] A.Yamada,S.C.Chung,K.Hinokuma,Optimized LiFePO 4for lithium batterycathodes,J.Electrochem.Soc.148(2001)A224–A229.[17]N.Meethong,H.-Y.Shadow Huang,W.C.Carter,Y.-M.Chiang,Size-dependentlithium miscibility gap in nanoscale Li 1−x FePO 4,Electrochem.Solid-State Lett.10(2007)A134–A138.[18] C.Delacourt,P.Poizot,S.Levasseur,C.Masquelier,Size effects on carbon-freeLiFePO 4powders,Electrochem.Solid-State Lett.9(2006)A352–A355.[19] D.Choi,P.N.Kumta,Surfactant based sol –gel approach to nanostructured LiFePO 4for high rate Li-ion batteries,J.Power Sources 163(2007)1064–1069.[20]K.Zaghib,A.Mauger,F.Gendron,C.M.Julien,Surface effects on the physical andelectrochemical properties of thin LiFePO 4particles,Chem.Mater.20(2008)462–469.[21]Y.H.Huang,H.B.Ren,S.Y.Yin,Y.H.Wang,Z.H.Peng,Y.H.Zhou,Synthesis ofLiFePO 4/C composite with high-rate performance by starch sol assisted rheolog-ical phase method,J.Power Sources 195(2010)610–613.[22]M.M.Doeff,J.D.Wilcox,R.Kostecki,u,Optimization of carbon coatings onLiFePO 4,J.Power Sources 163(2006)180–184.[23]G.L.Yang,A.F.Jalbout,Y.Xu,H.Y.Yu,X.G.He,H.M.Xie,R.S.Wang,Effect ofpolyacenic semiconductors on the performance of olivine LiFePO 4,Electrochem.Solid-State Lett.11(2008)A125–A128.Fig.7.The CV pro files of the different samples at the scan rate of 0.1mV s −1.331n et al./Powder Technology 212(2011)327–331。
基于生物质花生皮的碳量子点制备及表征

0 引言
碳量子制备技术当前也初有成效,可实现以多 壁碳纳米管及果糖等为原材料的碳量子制备(又称 碳纳米材料、碳点,CQDs)[1-2]。通过这一技术得 到的荧光碳质纳米粒子表面富含氨基,能够广泛应 用于受体介导荧光探针以及靶向探针的接枝共聚 反应等领域[3]。在研究过程中,选用富含纤维素的 花生皮作为碳源,采用水热碳化方法,制备出具有 荧光性能的碳量子点,为生物质材料提供一个新的 发展方向。
关键词: 生物质;花生皮;碳量子;表征 中图分类号: TQ35 文献标志码: A DOI:10.19335/ki.2095-6649.2019.05.017 本文著录格式:高玉莲,张漪. 基于生物质花生皮的碳量子点制备及表征[J]. 新型工业化,2019,9(5): 8082
Preparation and Characterization of Carbon Quantum Dots Based on Biomass Peanut
基金项目: 煤基碳点作为荧光“关-开”探针检测 Hg2+和L-半胱氨酸(项目编号: 201801D221110) 作者简介: 高玉莲(1967–),女,硕士研究生,讲师,主要研究方向:化学。
第5期
高玉莲等:基于生物质花生皮的碳量子点制备及表征
811.2 花生皮Fra bibliotek量子点制备花生皮生物质碳量子点制备操作以水作为溶 剂,以高温高压为反应环境,以反应釜为反应容器, 实现目标物制备。制备时所需温度远低于其他制备 方法,反应釜内的全封闭环境可保障反应的完全 性。水热处理方法制备所得 CQDs 具有较高的荧光 产率,且直径较大[5-6]。
第9卷 第5期 2019 年 5 月
新型工业化 The Journal of New Industrialization
烃类晶格氧选择性氧化催化剂研究进展

烃类晶格氧选择性氧化催化剂研究进展郭丛聪;李剑;董家丽;杨丽娜【摘要】Lattice oxygen replacing gas phase oxygen is a new technology of selective oxidation and partial oxidation of hydrocarbons. Through using the technology, high selectivity can be obtained because deep oxidation can be restrained. This new technology can increase productive power as well as decrease cost because it is limited by the explosion limit. In this paper, the reaction mechanism of oxidation with lattice oxygen was introduced. Present situation of lattice oxygen catalysts for selective oxidation of hydrocarbons was reviewed, and then the development tendency of the lattice oxygen catalysts was discussed.%用晶格氧代替气相氧,是烃类选择性氧化一种新工艺,该工艺可以避免烃类的深度氧化,提高选择性,不受爆炸极限的限制,可以提高生产能力,降低成本。
本文介绍了晶格氧氧化的反应机理,综述了不同烃类选择性氧化中的晶格氧催化剂的制备及应用现状,提出未来烃类选择性氧化的晶格氧催化剂的主要发展方向。
【期刊名称】《当代化工》【年(卷),期】2014(000)004【总页数】3页(P573-575)【关键词】烃类;晶格氧;选择性氧化;催化剂【作者】郭丛聪;李剑;董家丽;杨丽娜【作者单位】辽宁石油化工大学,辽宁抚顺 113001;辽宁石油化工大学,辽宁抚顺 113001;辽宁石油化工大学,辽宁抚顺 113001;辽宁石油化工大学,辽宁抚顺113001【正文语种】中文【中图分类】TQ426烃类选择性氧化难度很大,其选择性是各类催化剂中最低的,且反应历程复杂,难以找出普遍性规律,提高目的产物的选择性是烃类选择性氧化中最重要的问题。
纳米镍胶体的制备及其在织物化学镀活化中的应用

纳米镍胶体的制备及其在织物化学镀活化中的应用赖冬志;陈文兴【摘要】为制备可在织物化学镀铜上使用的经济实惠的胶体镍活化液,在酸性条件下,以聚乙烯吡咯烷酮为稳定剂,采用硼氢化钠还原硫酸镍制备的镍微粒为催化剂,催化次亚磷酸钠液相还原硫酸镍,制备出纳米镍胶体.将该胶体应用于织物化学镀铜的活化工序,实验结果表明该胶体镍具有良好的催化活性.用透射电镜、扫描电镜及X 射线衍射仪对该胶体及活化前后织物进行了表征,结果表明:所得纳米镍胶体成分纯净,粒径分布均匀;浸渍了该胶体镍的织物可以在以甲醛为还原剂的化学镀铜液中顺利起镀.%For preparation of nano-nickel colloid which is suitable for the activation of electroless-plating of fabrics with copper economically, under acidic conditions, the nano-nickel colloid was prepared with nickel particles as catalyst and polyvinylpyrrollidone ( PVP) as stabilizer. The nickel particles were prepared by reduction of nickel sulfate with sodium borohydride in the presence of sodium hypophosphite solution. Then the nano-nickel colloid was used in the activation process of electroless plating of fabrics with copper. Transmission electron microscopy (TEM) , scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to characterize the nickel colloid and fabrics before and after activation treatment. The results showed that the nano-nickel colloid has pure composition, uniform particle size distribution, and good catalytic activity, and fabrics dipped with this nickel colloid can be successfully electroless plated with copper using formaldehyde as reducing agent.【期刊名称】《纺织学报》【年(卷),期】2012(033)011【总页数】4页(P77-80)【关键词】化学镀;织物;纳米镍胶体;次亚磷酸钠【作者】赖冬志;陈文兴【作者单位】浙江理工大学材料与纺织学院,浙江杭州310018;浙江理工大学材料与纺织学院,浙江杭州310018;浙江理工大学先进纺织材料与制备技术教育部重点实验室,浙江杭州 310018【正文语种】中文【中图分类】O648在诸多制备纳米镍胶体的方法中,液相化学还原法因具有粒度及表面性质易于调控,工艺简单,成本低等优点而常被采用。
2019年武汉理工大学材料学院博士研究生招生入围考试考生信息公示汇总表

\
technology . 87:(1)83-94 (一作,JCR一区)2018.6
1.Nonhalogen Solvent-Processed Asymmetric Wide-
是
Bandgap Polymers for Nonfullerene Organic Solar Cells with Over 10% Efficiency, Adv. Funct. Mater, 2018, 28,
1049799924
全日制 非定向
天津科 技大学
高分子材 料与工程
武汉理 工大学
材料工程
戴红莲
武汉理工大学、 朱楚洪,
陆军军医大学基础医
学院
1.High energy storage properties and dielectric behavior
of (Bi0.5Na0.5)0.94Ba0.06Ti1-x(Al0.5Nb0.5)xO3 lead-
全日制 非定向
山东科 技大学
材料化学
山东科 技大学
材料加工 工程
韩颖超
王忠卫、曾荣昌 (山东科技大学)
nthanum magnesium hexaluminate thermal cycling lifetime
and CMAS corrosion behaviour,CERAMICS
INTERNATIONAL,2018年7月(一作,JCR一区)
2.Deposition and characterization of WC-Co hard-metal
coatings by high velocity oxy-fuel process combined with dry-
是(符合在国际重
制备方法与Ce3_+_对二水硫酸钙晶须形貌的影响

第52卷第9期2023年9月人㊀工㊀晶㊀体㊀学㊀报JOURNAL OF SYNTHETIC CRYSTALSVol.52㊀No.9September,2023制备方法与Ce3+对二水硫酸钙晶须形貌的影响吴锦绣1,2,3,秦思成1,2,3,牛小超1,2,3,齐源昊1,2,3,柳召刚1,2,3,胡艳宏1,2,3,冯福山1,2,3,李健飞1,2,3,张晓伟1,2,3(1.内蒙古科技大学材料与冶金学院,包头㊀014010;2.内蒙古自治区高校稀土现代冶金新技术与应用重点实验室,包头㊀014010;3.轻稀土资源绿色提取与高效利用教育部重点实验室,包头㊀014010)摘要:本文以稀土石膏为原材料研究了制备方法对硫酸钙晶须(CSW)形貌和结构的影响,并以二水硫酸钙(分析纯)为原材料,CeCl3㊃7H2O为铈源,探究稀土铈的加入对CSW的结构和形貌的影响㊂利用SEM㊁XRD㊁XPS和FL等表征手段对CSW的结构㊁形貌和组成及其荧光性能等进行表征和分析㊂研究结果表明:采用微波法可以制备高长径比的CSW,其平均长度为263μm,平均长径比为39.50㊂Ce3+以原子置换的形式进入CSW,对晶须的晶体结构不产生影响,但改善了CSW的形貌㊂添加2%(质量分数)的Ce3+能够促进晶须向一维生长,使得CSW的长径比显著增加,而过量的Ce3+会促使晶须横向生长㊂研究证明稀土石膏中含有微量的稀土元素Ce,同时发现由稀土石膏制备的CSW 具有发射蓝光的特性,这对开发利用稀土石膏具有重要的理论指导意义㊂关键词:稀土铈;稀土石膏;硫酸钙晶须;微波法;长径比;荧光性能中图分类号:TQ132.3+2㊀㊀文献标志码:A㊀㊀文章编号:1000-985X(2023)09-1720-10 Effect of Preparation Method and Ce3+on the Morphology ofCalcium Sulfate Dihydrate WhiskersWU Jinxiu1,2,3,QIN Sicheng1,2,3,NIU Xiaochao1,2,3,QI Yuanhao1,2,3,LIU Zhaogang1,2,3,HU Yanhong1,2,3,FENG Fushan1,2,3,LI Jianfei1,2,3,ZHANG Xiaowei1,2,3(1.School of Materials and Metallurgy,Inner Mongolia University of Science and Technology,Baotou014010,China;2.Key Laboratory ofInner Mongolia Autonomous University on New Technologies of Modern Metallurgy and Application of Rare Earth,Baotou014010,China;3.Key Laboratory of Green Extraction and Efficient Utilization of Light Rare-Earth Resources,Ministry of Education,Baotou014010,China)Abstract:The calcium sulfate dihydrate whiskers(CSW)were prepared using rare earth gypsum as raw material,and the effects of preparation methods on the morphology and structure of CSW were studied.The effect of rare earth cerium on the structure and morphology of CSW was investigated using pure calcium sulfate dihydrate as raw material and CeCl3㊃7H2O as cerium source.The structure,morphology,composition,and fluorescence properties of CSW were characterized and analyzed by SEM,XRD,XPS and FL.The results show that calcium sulfate dihydrate whiskers with high aspect ratio can be prepared by microwave method,with average length of263μm and average aspect ratio of39.50.Ce3+enters CSW in the form of atomic substitution during the formation of CSW,which does not affect the crystal structure of CSW,but improves the morphology of CSW.When2%(mass fraction)Ce3+is added,one-dimensional growth of CSW is promoted to make the aspect ratio of CSW increase significantly,while excessive Ce3+leads to the growth of whiskers in the transverse direction. This study proves that rare earth gypsum contains trace amounts of rare earth element Ce.At the same time,it is found that CSW prepared from rare earth gypsum presents the characteristics of emitting blue light,which provides theoretical guidance for the development and utilization of rare earth gypsum.Key words:rare earth cerium;rare earth gypsum;dehydrate calcium sulfate whisker;microwave method;length to diameter ratio;fluorescence property㊀㊀收稿日期:2023-03-28㊀㊀基金项目:国家自然科学基金(51965053);内蒙古自然科学基金(2022LHMS05022);高校科研费(242,302)㊀㊀作者简介:吴锦绣(1976 ),女,内蒙古自治区人,博士,副教授㊂E-mail:wujinxiu888@㊀第9期吴锦绣等:制备方法与Ce 3+对二水硫酸钙晶须形貌的影响1721㊀0㊀引㊀㊀言硫酸钙晶须(calcium sulfate dihydrate whisker,CSW)是一种白色纤维状单晶体亚纳米材料,具有完善的结构外形和特定的横截面以及稳定的尺寸,且因其具有耐高温㊁耐酸碱㊁抗化学腐蚀等优良特性,常用作复合材料的填充物㊂纳米级CSW 有良好的相容性和骨传导性,已成功应用于松质骨缺损的修复材料[1-2]㊂关于CSW 的应用势必会成为新的研究焦点[3-4]㊂目前,工业石膏制备CSW 是一种变废为宝的途径,但是工业石膏的成分比较复杂,所以探究杂质离子对CSW 的作用机理是当前急需解决的问题㊂阳离子Mg 2+㊁Sr 2+㊁K +㊁Na 2+等对表面会进行选择性吸附,影响石膏的溶解行为,从而对晶须的结晶产生一定的影响[5]㊂当Sr 2+和Mg 2+吸附在晶面时可能会取代晶格中的Ca 2+,Al 3+和Fe 3+会抑制晶须沿c 轴生长,并伴随有颗粒状产物生成[6]㊂阴离子对晶须生长也具有很大影响,SO 2-4的同离子效应远大于Sr2+和Mg 2+等阳离子的同离子效应㊂Cu 2+存在的条件下,加入Cl -会促进脱硫石膏的溶解,SO 2-4会阻碍脱硫石膏的溶解,且其作用都强于Cu 2+[7]㊂稀土石膏是稀土冶金过程的工业副产品,由氯化钙与硫酸铵(混合碳酸稀土工序产出)废水反应得到,产物干燥后的主要成分是二水硫酸钙,对其回收利用符合当前绿色冶金和清洁生产的战略方向㊂近几年本课题组利用稀土石膏制备CSW,探究提高CSW 长径比的合成方法和相应的助长剂[8-9]㊂所用的稀土石膏来源于包头稀土矿的冶金过程,其成分中不可避免地含有稀土元素,所以探究稀土元素对CSW 结构和形貌的影响及其作用机理非常必要,有助于为稀土石膏的开发和应用提供实验和理论支撑[10]㊂鉴于此,本文在前期研究的基础上,采用微波法㊁超声法和常压酸化法进行对比试验,探究出最佳的制备方法,并进一步探究轻稀土矿含量最大的铈元素对CSW 结构和形貌的影响㊂1㊀实㊀㊀验1.1㊀原料与仪器试剂:盐酸(质量分数38%)㊁二水硫酸钙(分析纯)购自北京红星化工厂㊂分析纯CeCl 3㊃7H 2O 购自包头稀土研究院㊂稀土石膏直接抽滤后的产物中游离水含量在20%左右,其中CaSO 4㊃2H 2O 占79.99%,其干燥后的成分如表1所示,结构和形貌如图1所示㊂在XRD 所能甑别的范围内为纯相的二水硫酸钙㊂图1㊀稀土石膏原料表征㊂(a)EDS 图谱;(b)SEM 照片;(c)XRD 图谱Fig.1㊀Characterization of rare earth gypsum raw materials.(a)EDS map;(b)SEM image;(c)XRD patterns表1㊀稀土石膏的化学成分分析结果Table 1㊀Results of chemical composition analysis of rare earth gypsumChemical composition MgO CaSO 4㊃2H 2O Cl -F -Al 2O 3Fe 2O 3MnO 2PbO ZnO Mass fraction /%0.01079.990.220.10.10.00770.0100.0100.010仪器:微波化学反应器(MCR-3型),河南金博仪器制造有限公司;电热鼓风干燥箱(101-1A 型),北京科伟永兴仪器有限公司;集热式磁力搅拌器(DF-101S 型),金坛区西城新瑞仪器厂;循环水多用真空泵(SHZ-D(Ⅲ)1722㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第52卷型),巩义市予华仪器有限责任公司㊂1.2㊀样品制备采用本课题组徐伟等[11]制备CSW 的最佳工艺条件,称取一定量的稀土石膏或分析纯二水硫酸钙溶于3mol /L 的盐酸中,同时称取分析纯CeCl 3㊃7H 2O,其添加量是分析纯二水硫酸钙质量的0~8%,得到质量浓度为220~240g /L 的混浊液,然后把混合溶液放入到微波化学反应器或水浴锅或超声波清洗仪,3种加热方式反应温度均为70ħ(采用微波法时使用热电偶进行控温,微波功率400W,频率为2.45GHz,波长为12.2cm),反应30min,结束后趁热抽滤㊂将滤液放入250mL 锥形瓶中常温陈化结晶1.5h,陈化结束后,进行过滤,滤渣分别用纯净水洗涤3次,无水乙醇洗涤1次,随后放入恒温干燥箱60ħ下干燥12h,干燥完成后得到CSW㊂1.3㊀样品分析与表征使用(D /MAX 2500PC 型)XRD 进行物相分析;通过(NICOLET380型)FT-IR 测定红外光谱;通过(S-4800型)SEM 进行微观形貌分析;使用(ESCALAB250ZI 型)XPS 进行材料表面元素及其化学状态表征;通过(zeta sizer Nana-Z 型)Zeta 电位仪测定电位;用(Optima 8000型)ICP-OES 测试稀土石膏中的稀土铈的含量;用(日立F-4600型)荧光分光光度计测试晶须的激发和发射光谱㊂2㊀结果与讨论2.1㊀制备方法对硫酸钙晶须的影响由图2可知,常压酸化法制备的晶须(见图2(a))长度为162.00μm,直径为8.84μm,长径比为18.32㊂超声法制备的晶须(见图2(b))长度为202.69μm,直径为13.99μm,长径比为14.49㊂微波法制备的晶须(见图2(c))长度为263.00μm,直径为6.66μm,长径比为39.49㊂通过分析可知采用微波法制备的CSW的形貌比较均匀,纤维化程度比较好,晶须生长得更加完整㊂常压酸化法制备的CSW 形貌多为板状,晶须分布较为均匀㊂而超声法制备的晶须出现大量的块状,且断面严重,表面粗糙,晶须分布明显不均匀㊂图2㊀不同方法制备CSW 的SEM 照片Fig.2㊀SEM images of CSW prepared by differentmethods 图3㊀不同制备方法对晶须生长的影响Fig.3㊀Effects of different preparation methods on whisker growth 图3为不同制备方法制备的CSW 的长度和长径比的关系图㊂从图中可以看出,采用微波法制备的CSW长径比最大㊂从图4(a)可以看出,3种晶须的衍射峰相同,都与标准卡片JCPDS:70-0982单斜晶系二水硫酸钙的衍射峰位相吻合,说明这三种方法制备CSW 的晶体结构完全相同,都是单斜晶系㊂微波法制备CSW 的特征衍射峰在(020)晶面的强度最大,说明在(020)晶面上结晶程度良好㊂由于微波具有很强的辐射能量,升温速率快等特点,温度分布均匀,物料能快速升温达到晶化温度和溶液快速达到过饱和状态,即快速达到产生晶核的条㊀第9期吴锦绣等:制备方法与Ce 3+对二水硫酸钙晶须形貌的影响1723㊀件,并可以缩短晶体结晶的时间[12]㊂同时在微波的强化作用下,可以诱导溶液中的Ca 2+和SO 2-4自发聚集形成晶核,对CSW 的结晶过程起到了强化作用[13]㊂因此微波法优于传统水浴加热法(常压酸化法和超声法)㊂该结果进一步证明了微波法制备的CSW 质量最佳,其晶体结构如图4(b)所示㊂图4㊀不同方法制备CSW 的XRD 图谱(a)和晶体结构图(b)Fig.4㊀XRD patterns (a)and crystal structure (b)of CSW prepared by different methods 2.2㊀稀土铈对硫酸钙晶须形貌的影响为了研究少量稀土铈对CSW 形貌和结构的影响,采用分析纯二水硫酸钙为原料,CeCl 3㊃7H 2O 为铈源,添加量是分析纯二水硫酸钙的0%㊁2%㊁4%㊁6%和8%(质量分数),在相同的条件下用微波法制备了一系列含有铈的CSW㊂2.2.1㊀硫酸钙晶须的形貌和成分分析从图5㊁6可知,未添加CeCl 3㊃7H 2O 时制备出的CSW 呈短而粗糙的片状,分布不均匀,长径比较低,表面有凹坑㊂由此推断晶须的生长方式可能是按照气-液-固(V-L-S)生长机理进行的㊂微波辐射能够导致物质表层产生瞬时电荷,进而在物质的多个相界面(如气-液㊁液-固之间)形成电场差,因此促进反应进行[14]㊂随着Ce 3+加入量的逐渐增加,CSW 的长径比先增加后减少㊂当Ce 3+添加量为2%时,平均长度为161.4μm,平均长径比为32.42,CSW 形貌产生明显变化,晶须变得又细又长,数量也随之增多,说明晶粒细化也在逐步进行㊂这是由于Ce 3+特殊的电子层结构,和其他元素化合时容易丢失邻位原子产生大量的悬键,此时Ce 3+处于高能态,空轨道需要被填充来降低表面能,从而提供较多晶核质点抑制晶须横向生长,致使晶须细化[13,15]㊂CSW 的生长机理完全符合毒化诱导生长机理㊂随着Ce 3+的添加量超过4%,晶须表面发生粗化,且分布不均匀㊂这是由于Ce 3+添加量超过一定范围时,Ce 3+加快了晶核的沉积速度,提高了晶须横向生长的速度,从而减弱了稀土吸附作用的特性,最终失去细化晶须效果[16]㊂综上所述,在CSW 形成过程中少量的Ce 3+会选择性吸附在晶体表面,促进晶须沿c 轴方向生长,过量的Ce 3+会促使晶须横向生长㊂因此添加2%的Ce 3+能够促进CSW 向一维生长,使得产物的长径比显著增加㊂在相同制备和测试条件下,对稀土石膏与分析纯硫酸钙制备的CSW 进行对比(见图2(c)㊁图5)分析:稀土石膏制备的晶须形貌呈光滑针状,且分布均匀;而分析纯硫酸钙制备的晶须形貌复杂,有纤维状,也有细小针状体,且分布不均㊂这是由于分析纯硫酸钙中没有杂质,而稀土石膏含有少量杂质㊂依据毒化诱导生长机理,毒物是稀土石膏中的少量杂质,这些杂质能够促进CSW 的一维生长,所以稀土石膏制备的CSW 质量好,长径比大㊂说明稀土石膏中微量的稀土元素对CSW 的形貌具有积极的作用㊂为了进一步探究CSW 的生长机理,测试晶须断面2万倍的微观形貌如图7(a)所示㊂从图中可以看出,晶须呈片状层层有序生长㊂一般认为CaSO 4晶须主要以轴向螺旋位错机理生长[17]㊂少量CeCl 3㊃7H 2O 的加入能促进CSW 以螺旋位错的形式沿轴向生长,因为其侧面能较低,晶须在该侧面的生长速度非常缓慢,甚至不再生长[18]㊂晶体生长最快的方向是化学键最强的方向,所以能够使晶须的晶粒直径得到细化㊂过量的Ce 3+的加入,破坏了CSW 以螺旋错位方式的轴向生长,增加了侧面的能量,使晶须沿横向生长,从而导致晶须的晶粒尺寸变大,这与图5中的SEM 的分析结果完全吻合[19]㊂由此推断CSW 以螺旋位错和层-层自组装1724㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第52卷方式生长㊂从EDS 分析可知:CSW 的组成元素主要为O㊁S 和Ca 3种元素,同时含有少量的Ce 元素㊂各元素的原子个数比约为:(Ca +Ce)ʒSʒO =1ʒ1ʒ4㊂图5㊀不同CeCl 3㊃7H 2O 添加量下制备的CSW 的SEM 照片Fig.5㊀SEM images of CSW prepared under different amounts of CeCl 3㊃7H 2Oaddition 图6㊀不同CeCl 3㊃7H 2O 添加量下制备的CSW 的长度与长径比Fig.6㊀Length and aspect ratio of CSW prepared under different amounts of CeCl 3㊃7H 2Oaddition 图7㊀CeCl 3㊃7H 2O 添加量为2%制备的CSW 的SEM 照片和EDS 图Fig.7㊀SEM image and EDS plots of CSW prepared with 2%CeCl 3㊃7H 2O addition㊀第9期吴锦绣等:制备方法与Ce 3+对二水硫酸钙晶须形貌的影响1725㊀2.2.2㊀硫酸钙晶须的晶体结构分析Ce 3+在晶须表面的吸附及Ce O 的产生必将影响晶须晶体结构的细微变化㊂为进一步阐明Ce 3+对晶须晶体结构的影响,对样品进行了XRD 分析,图8为不同Ce 3+添加量所制备CSW 的XRD 图谱㊂通过Jade9软件分析可知,加入不同Ce 3+制备出CSW 的衍射峰都相同,与标准卡片单斜晶系CaSO 4的(PDF#04-008-9805)衍射峰峰位基本吻合,其空间群为C 2/c(15),Z =4,晶胞参数分别为a =6.29Å,b =15.19Å,c =5.67Å,α=γ=90ʎ,β=114ʎ㊂随着Ce 3+添加量的逐渐增加,样品在(020)㊁(040)㊁(021)㊁(041)晶面的衍射峰强度先增加后减少㊂其中图8(b)~(e)分别为图8(a)中(020)㊁(040)㊁(021)和(041)晶面对应衍射峰峰位的窄谱图㊂从图中可以发现,随着Ce 3+的加入,(020)㊁(040)㊁(021)㊁(041)晶面都向小角度移动,这可能是由于Ce 3+掺杂到CSW 中,衍射角度变小,晶面间距变大㊂因为Ce 3+的六配位的原子半径(0.102nm)略大于Ca 2+的六配位的原子半径(0.100nm),同时Ce O 键能大于Ca O,Ce 3+能够取代Ca 2+的格位掺杂到晶须中,导致CSW 的晶体结构略有畸变[20]㊂图8中还可以看出当添加2%的Ce 3+时,这些晶面的衍射峰强度最强,各个晶面向小角度移动最大㊂通过计算佐证了CSWʒ2%Ce 3+的结晶度最大的结论,如表2所示㊂通过以上分析可知,少量的Ce 3+取代Ca 2+的晶格位而掺杂到CSW 中没有改变其晶体结构,但导致CSW 的晶体结构略有畸变㊂图8㊀不同CeCl 3㊃7H 2O 添加量下制备的CSW 的XRD 图谱Fig.8㊀XRD patterns of CSW prepared under different amounts of CeCl 3㊃7H 2O addition表2㊀不同CeCl 3㊃7H 2O 添加量制备出CSW 的晶粒参数Table 2㊀Grain parameters of CSW prepared under different amounts of CeCl 3㊃7H 2O additionAmount /%Crystallinity /%Full width at half maximum /nm Grain size /nm 057.000.18164282.310.18248475.310.19554673.770.20063868.370.214682.2.3㊀红外光谱分析图9中在3560cm -1处和1625cm -1处的特征峰分别是CSW 中结晶水的羟基( OH)伸缩和变角振动吸收峰㊂3402cm -1处的吸收峰是由晶须表面吸附自由水的羟基吸收峰所致㊂在1126cm -1处的宽特征峰为SO 2-4的伸缩振动吸收峰;SO 2-4的变角(弯曲)振动吸收峰出现在602和669cm -1处㊂与未添加Ce 3+的CSW 相比,加入Ce 3+后晶须所含结晶水的羟基峰位置无明显变化,但其强度有所提高,同时在1625cm -1处出现小的肩峰及1698cm -1,可能是羟基( OH)伸缩振动峰㊂SO 2-4的振动吸收峰则明显增强,这可能是由1726㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第52卷于电负性比Ca 2+(1.00)更大的Ce 3+(1.12)在晶体表面的化学键[5,21]㊂与Ca 2+相比,Ce 3+会使S O 键的图9㊀不同CeCl 3㊃7H 2O 添加量制备的CSW 的红外光谱图Fig.9㊀Infrared spectra of CSW prepared under different amounts of CeCl 3㊃7H 2O addition电子云向Ce 3+方向偏移,从而减小S O 键的反伸缩振动频率㊂由此可见Ce 3+的引入对CSW 的表面特性产生一定影响,但通过FT-IR 分析无法确定Ce 3+在CSW 表面的作用方式及作用程度,需要进一步分析㊂2.2.4㊀XPS 分析为了证实Ce 3+在晶须表面的作用机理,对CSWʒ2%Ce 3+进行了XPS 分析,结果如图10所示㊂从图10(a)的总谱图可以看出,晶须主要由钙㊁硫和氧等元素组成㊂从图10(b)中可以看出,Ca 2p 有两个峰分别位于348.46和352.1eV,这两个峰分别归属于桥接羟基或者氧空位和物理吸附的水所形成的[5]㊂图10(c)中可以看出S 2p 的单峰位于169.76eV 处,对应于Ca 2+和SO 2-4之间的相互作用[16]㊂图10(d)中O 2p 的单峰位于532.48eV 处,氧元素存在Ca O㊁S O 和H O 等3种结合能,经Ca 2+和SO 2-4作用后O 1s 的电子结合能发生了漂移,从532.28eV 漂移至532.48eV,这是由于加入Ce 3+后,电负性更强的Ce 3+发生化学吸附并产生Ce O 键,从而降低了晶须表面氧元素的电子结合能[11]㊂图10(e)中Ce 3+的XPS 光谱形状相似,均含有2个主要的谱峰和2个次要的谱峰,属于三价铈的特征峰[9,16]㊂在903.92eV(899.15eV)处的峰值对应于Ce 3d 3/2,Ce 3d 5/2的峰值应在884.0eV,但是移到了886.02eV(882.67eV)处㊂说明Ce 3+结合了部分电子,电子云密度增加,结合能降低,有Ce O 键的存在[22],进一步证明Ce 3+取代Ca 2+掺杂到CSW 中,与XRD 和EDS 分析的结果完全一致㊂该结论进一步确定了稀土石膏中含有的少量稀土元素,Ce 3+在CSW 的形成过程中是以原子置换的形式进入CSW㊂图10㊀CeCl 3㊃7H 2O 添加量2%制备的CSW 的XPS 分析Fig.10㊀XPS analysis of CSW prepared with 2%CeCl 3㊃7H 2O addition 2.2.5㊀硫酸钙晶须的zeta 从图11可以看出,CSW 均带负电,且数值较小,说明在水中不稳定㊂加入Ce 3+以后,制备出的CSW 的zeta 电位均向正值移动[23]㊂Ce 3+属于活性元素,其与氧的化学亲和力非常强,易吸附在晶须表面的活性点处㊂Ce 3+与Ca 2+进行了晶格置换,此时晶须表面裸露的Ce 3+吸附于晶须中,比Ca 2+多了一个正电荷,在晶须生长过程中Ce 3+的邻位原子 丢失 ,产生大量的悬键(Ce 3+ ㊁Ce 3+ O )[24],所以CSW 的zeta 电位均向正值移动㊂当Ce 3+添加量为2%时,晶须的长径比最大,比表面积最大,因此其zeta 电位的绝对值最小,几乎接近于0㊂㊀第9期吴锦绣等:制备方法与Ce 3+对二水硫酸钙晶须形貌的影响1727㊀图11㊀不同CeCl 3㊃7H 2O 添加量下的CSW 的Zeta 电位图Fig.11㊀Zeta potential map of CSW under different amounts of CeCl 3㊃7H 2O addition 2.2.6㊀硫酸钙晶须的荧光性能由图12(a)可知,稀土石膏不具备吸收和发射光的行为,但稀土石膏制备的晶须却具有发光现象㊂Ce 3+的发光特性取决于基质的纯度㊁晶体场强㊁共价和斯托克斯位移[25]㊂由于稀土石膏中含有多种杂质,所以没有表现出发光性能,就这个问题本课题将展开进一步研究㊂从图12(c)中CSW 的激发和发射光谱可知:不添加Ce 3+制备的CSW 没有激发和发射光谱;而添加了Ce 3+制备的CSW 有明显的激发和发射光谱㊂说明产生发光现象不是由晶须引起的,而是Ce 3+的贡献㊂在激发波长λex =302nm下进行测试,发射峰在340~380nm,其中在338和354nm 处达到峰值,归属于Ce 3+的5d ң4f 的电子能级跃迁[25]㊂以发射波长λem =354nm 下进行检测激发光谱,在260~280和280~360nm 出现3个吸收峰,其中有2个强激发峰在269和302nm 处达到峰值,还在253nm 处有个弱带㊂这3个激发带对应于Ce 3+的基态到其5d 1态的场分裂能级的跃迁[25-26]㊂从图12(c)还可知,随着Ce 3+添加量的逐渐增加,其激发和发射峰的强度先增加后逐渐降低,最佳添加量为2%㊂以上分析进一步佐证了Ce 3+在CSW 的形成过程中以置换钙离子的形式进入CSW,所以导致该类晶须发光㊂对比图12(a)与12(b)可知,稀土石膏制备的CSW 激发和发射峰的位置与分析纯硫酸钙所制备的Ce 3+掺杂的CSW 的激发和发射峰的位置完全一致㊂说明稀土石膏中的微量Ce 在CSW 的成核和生长过程中,取代钙离子的格位进入CSW 中,参与晶须的结晶成核和生长,因此该晶须体现Ce 3+的特征吸收和发射光谱㊂CIE1931XY 色度显示CSW 的色坐标(0.1474,0.0434)位于蓝色区域,说明由稀土石膏制备的CSW 具有发蓝光的功能㊂以上分析说明稀土石膏中的微量稀土铈在CSW 的形成过程中以原子置换钙离子的形式进入晶须中㊂图12㊀稀土石膏制备的CSW 和不同CeCl 3㊃7H 2O 添加量下CSW 的激发光谱(a)㊁发射光谱(b)和色坐标图(c)Fig.12㊀Excitation,emission spectra and color coordinates of rare earth gypsum prepared CSW and CSW prepared under different amounts of CeCl 3㊃7H 2O addition1728㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第52卷3㊀结㊀㊀论1)以稀土石膏为原材料,采用微波法制备的CSW晶须平均长度为263μm,平均长径比为39.50,晶体结构更加完整,形貌更加优良㊂2)CSW以螺旋位错和层-层自组装方式进行生长㊂Ce3+以原子置换的形式进入CSW晶格中,未改变晶须的晶体结构,但影响晶须的形貌㊂少量Ce3+的加入能促进CSW沿轴向生长,使晶须的晶粒直径细化;过量的Ce3+加入使晶须横向生长,导致晶须的晶粒尺寸变大㊂当Ce3+的添加量为2%时,成功制备出高长径比的CSW㊂3)采用稀土石膏可制备出具有吸收紫外线㊁发蓝光的高品质CSW㊂参考文献[1]㊀赵晨阳,吴丰辉,瞿广飞,等.废石膏制备硫酸钙晶须的高附加值利用前景[J].环境化学,2022,41(3):1086-1096.ZHAO C Y,WU F H,QU G F,et al.The high value-added utilization prospect of calcium sulfate whiskers prepared from waste gypsum[J].Environmental Chemistry,2022,41(3):1086-1096(in Chinese).[2]㊀黄㊀强,李㊀程,周宗科,等.掺锶硫酸钙复合骨修复材料的制备及体外特性研究[J].生物医学工程学杂志,2009,26(3):575-579.HUANG Q,LI C,ZHOU Z K,et al.In vitro study of strontium-calcium sulfate compounds as bioactive bone grafted substitute[J].Journal of Biomedical Engineering,2009,26(3):575-579(in Chinese).[3]㊀杨前昊.负载介孔二氧化硅MXene复合材料合并3D打印支架协同治疗骨肉瘤促进骨修复[D].上海:上海交通大学,2020.YANG Q H.Engineering2D mesoporous Silica@MXene-integrated3D-printing scaffolds for combinatory osteosarcoma therapy and bone regeneration[D].Shanghai:Shanghai Jiao Tong University,2020(in Chinese).[4]㊀杨红艳,欧阳俊瑶,夏㊀蝶,等.添加CaSO4㊃2H2O为晶种制备磷石膏半水硫酸钙晶须[J].人工晶体学报,2022,51(2):309-315.YANG H Y,OUYANG J Y,XIA D,et al.Preparation of hemihydrate calcium sulfate whisker with phosphogypsum by adding CaSO4㊃2H2O as crystal seed[J].Journal of Synthetic Crystals,2022,51(2):309-315(in Chinese).[5]㊀汪㊀潇,金㊀彪,王宇斌,等.阴离子在脱硫石膏晶须水热结晶中的作用机理[J].高等学校化学学报,2020,41(3):473-480.WANG X,JIN B,WANG Y B,et al.Interaction mechanism of anions in hydrothermal crystallization of desulfurization gypsum whiskers†[J].Chemical Journal of Chinese Universities,2020,41(3):473-480(in Chinese).[6]㊀邓㊀淋,俞倩倩.磷石膏资源化研究现状[J].硫酸工业,2020(7):1-5+38.DENG L,YU Q Q.Research status of phosphogypsum resource utilization[J].Sulphuric Acid Industry,2020(7):1-5+38(in Chinese).[7]㊀李㊀强,刘福立,尚㊀超,等.微波外场强化电石渣制备硫酸钙晶须及其机理分析[J].人工晶体学报,2020,49(1):125-130.LI Q,LIU F L,SHANG C,et al.Preparation of calcium sulfate whiskers by microwave-enhanced carbide slag and its mechanism analysis[J].Journal of Synthetic Crystals,2020,49(1):125-130(in Chinese).[8]㊀赵㊀博,吴㊀伟,智建国.CeO2含量对CaO-Al2O3精炼渣熔化性能的影响[J/OL].中国稀土学报:1-13[2023-06-28].ki.net/kcms/detail/11.2365.TG.20220922.1530.004.html.ZHAO B,WU W,ZHI J G.Effect of CeO2content on melting performance of CaO-Al2O3refining slag[J/OL].Journal of the Chinese Society of Rare Earths:1-13[2023-06-28]./kcms/detail/11.2365.TG.20220922.1530.004.html(in Chinese).[9]㊀ZHOU D,WEI R F,ZHU Y L,et al.Calcium sulfate whisker one-step preparation using semi-dry flue gas desulfurization ash and directionalgrowth control[J].Journal of Cleaner Production,2021,290:125754.[10]㊀XIANG G H,LIU T,ZHANG Y M,et al.Synthesis of polypropylene composites with modified calcium sulfate whisker prepared from shalevanadium neutralization slag[J].Results in Physics,2018,10:28-35.[11]㊀徐㊀伟,李㊀梅,张栋梁,等.稀土石膏常压酸化法制备硫酸钙晶须的研究[J].无机盐工业,2020,52(8):66-71.XU W,LI M,ZHANG D L,et al.Study on preparation of calcium sulfate whisker by atmospheric pressure acidification using rare earth gypsum[J].Inorganic Chemicals Industry,2020,52(8):66-71(in Chinese).[12]㊀牛小超.稀土石膏制备硫酸钙晶须及改性[D].包头:内蒙古科技大学,2021.NIU X C.Rare earth gypsum preparation calcium sulfate crystal and modified[D].Baotou:Inner Mongolia University of Science&Technology, 2021(in Chinese).[13]㊀LU Y H,JIANG N,LI X W,et al.Effect of inorganic-organic surface modification of calcium sulfate whiskers on mechanical and thermalproperties of calcium sulfate whisker/poly(vinyl chloride)composites[J].RSC Advances,2017,7(73):46486-46498.[14]㊀羊道和,杨玉荣,易美桂.柠檬酸对半水硫酸钙晶须形貌稳定性影响[J].人工晶体学报,2019,48(1):95-100.YANG D H,YANG Y R,YI M G.Effect of citric acid on the morphological stability of calcium sulfate hemihydrate whiskers[J].Journal of Synthetic Crystals,2019,48(1):95-100(in Chinese).㊀第9期吴锦绣等:制备方法与Ce3+对二水硫酸钙晶须形貌的影响1729㊀[15]㊀ZHAO W P,GAO C H,SANG H F,et al.Calcium sulfate hemihydrate whisker reinforced polyvinyl alcohol with improved shape memory effect[J].RSC Advances,2016,6(58):52982-52986.[16]㊀JIANG G M,WANG H,CHEN Q S,et al.Preparation of alpha-calcium sulfate hemihydrate from FGD gypsum in chloride-free Ca(NO3)2solution under mild conditions[J].Fuel,2016,174:235-241.[17]㊀WANG Y Q,LI Y C,YUAN A,et al.Preparation of calcium sulfate whiskers by carbide slag through hydrothermal method[J].CrystalResearch and Technology,2014,49(10):800-807.[18]㊀CHEN X J,YANG L C,ZHANG J F,et al.Exploration of As(III)/As(V)uptake from aqueous solution by synthesized calcium sulfate whisker[J].Chinese Journal of Chemical Engineering,2014,22(11/12):1340-1346.[19]㊀谢㊀晴,蒋美雪,彭同江,等.磷石膏常压酸化法制备无水硫酸钙晶须的实验研究[J].人工晶体学报,2019,48(6):1060-1066+1071.XIE Q,JIANG M X,PENG T J,et al.Experimental study on preparation of anhydrous calcium sulfate whisker by phosphogypsum at atmospheric acidification method[J].Journal of Synthetic Crystals,2019,48(6):1060-1066+1071(in Chinese).[20]㊀PANG X Z,YANG J B,PANG M J,et al.Enhanced C atom adsorption on Cu(111)substrate by doping rare earth element Y for Cu-diamondcomposites:a first-principles study[J].Journal of Alloys and Compounds,2020,831:154747.[21]㊀LI H,JIANG Q,ZHANG J X,et al.Synchronization adsorption of Pb(Ⅱ)and Ce(Ⅲ)by biochar supported phosphate-doped ferrihydrite inaqueous solution:adsorption efficiency and mechanisms[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2022, 648:129230.[22]㊀吴㊀峰,吴硕琮,马家玉,等.金属离子对水热法制备半水硫酸钙晶须的形貌及粒径的影响[J].化工进展,2018,37(4):1536-1543.WU F,WU S C,MA J Y,et al.Effect of metal ions on crystal morphology and size of calcium sulfate hemihydratewhiskers preparated by hydrothermal method[J].Chemical Industry and Engineering Progress,2018,37(4):1536-1543(in Chinese).[23]㊀ZHANG X M,LI W L,JANG K H,et al.Luminescence enhancement by energy transfer from Ce3+ions in Ba1.6Ca0.4P2O7ʒCe3+ʒTb3+phosphor[J].Current Applied Physics,2012,12(1):299-302.[24]㊀YANG Z F,HU Y H,CHEN L,et al.Fluorescence and energy transfer in CaMgP2O7ʒCe3+,Tb3+phosphor[J].Materials Science andEngineering:B,2015,193:27-31.[25]㊀LI M,WU J X,JIA H L,et al.Luminescence properties and energy transfers of NaLa(WO4)2ʒSm3+ʒCe3+phosphor[J].Journal of MaterialsScience:Materials in Electronics,2019,30(11):10465-10474.[26]㊀吴锦绣,李㊀梅,柳召刚,等.超声法合成CePO4纳米线及发光性能研究[J].人工晶体学报,2015,44(4):947-953.WU J X,LI M,LIU Z G,et al.Preparation and luminescence properties of CePO4nanowires by ultrasonic method[J].Journal of Synthetic Crystals,2015,44(4):947-953(in Chinese).。
英文文献翻译

Preparation and characterization of Ag-TiO2 hybrid clusters powders[1](Ag-TiO2混合团簇粉末的制备和表征)Abstract:液相电弧放电法被用于制备纳米Ag-TiO2复合超细粉末。
XRD和TEM图表明颗粒呈葫芦状形态,分布狭窄。
我们讨论了实验条件对产品的影响,比较了这种方法制备的粉末和其他γ射线辐照法制备的粉末。
Introduction:材料合成技术,提高了研究特定电子和光学特性的能力。
这也导致了设备和不同效应的快速发展,如集成光学型偏振器[1]和量子霍耳效应。
所需的长度尺度对于这些结构的控制是在纳米级别的[ 2 ]。
科学家面临的一个新的挑战是半导体量子点的生长,它具有新的光学响应,引起了对其基础物理方面和三阶非线性光致发光的应用等的研究兴趣。
这方面的一个例子是Ag-TiO2复合材料通过胶体方法合成[ 3 ]或由γ射线辐照法合成[ 4 ]。
对比其他制备超细金属颗粒的方法,γ射线辐照法能在室温的环境压力下产生粉末。
在这封信中,我们开发了一种新的方法,即液相电弧放电法,用以制备纳米复合材料,当它经水热处理可以得到纳米级别的超细粉。
Preparation and photocatalytic activity of immobilized composite photocatalyst (titania nanoparticle/activated carbon)[2]固定化复合光催化剂(TiO2纳米颗粒/活性炭)的制备和光催化活性研究Abstract:制备了一种固定化复合光催化剂——TiO2纳米颗粒/活性炭(AC),并研究了它在降解纺织染料的光催化活性。
AC通过油菜籽壳制备。
碱性红18(BR18)和碱性红46(BR46)被用来作为模型染料。
并采用了傅里叶变换红外(FTIR),波长色散X射线光谱(WDX),扫描电子显微镜(SEM),紫外可见分光光度法,化学需氧量(COD)和离子色谱(IC)分析。
【免费下载】化学化工文献检索作业

对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根保通据护过生高管产中线工资敷艺料设高试技中卷术资配,料置不试技仅卷术可要是以求指解,机决对组吊电在顶气进层设行配备继置进电不行保规空护范载高与中带资负料荷试下卷高总问中体题资配,料置而试时且卷,可调需保控要障试在各验最类;大管对限路设度习备内题进来到行确位调保。整机在使组管其高路在中敷正资设常料过工试程况卷中下安,与全要过,加度并强工且看作尽护下可关都能于可地管以缩路正小高常故中工障资作高料;中试对资卷于料连继试接电卷管保破口护坏处进范理行围高整,中核或资对者料定对试值某卷,些弯审异扁核常度与高固校中定对资盒图料位纸试置,.卷编保工写护况复层进杂防行设腐自备跨动与接处装地理置线,高弯尤中曲其资半要料径避试标免卷高错调等误试,高方要中案求资,技料编术试5写交卷、重底保电要。护气设管装设备线置备4高敷动调、中设作试电资技,高气料术并中课3试中且资件、卷包拒料中管试含绝试调路验线动卷试敷方槽作技设案、,术技以管来术及架避系等免统多不启项必动方要方式高案,中;为资对解料整决试套高卷启中突动语然过文停程电机中气。高课因中件此资中,料管电试壁力卷薄高电、中气接资设口料备不试进严卷行等保调问护试题装工,置作合调并理试且利技进用术行管,过线要关敷求运设电行技力高术保中。护资线装料缆置试敷做卷设到技原准术则确指:灵导在活。分。对线对于盒于调处差试,动过当保程不护中同装高电置中压高资回中料路资试交料卷叉试技时卷术,调问应试题采技,用术作金是为属指调隔发试板电人进机员行一,隔变需开压要处器在理组事;在前同发掌一生握线内图槽部纸内故资,障料强时、电,设回需备路要制须进造同行厂时外家切部出断电具习源高题高中电中资源资料,料试线试卷缆卷试敷切验设除报完从告毕而与,采相要用关进高技行中术检资资查料料和试,检卷并测主且处要了理保解。护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。