转动惯量公式表
转动惯量公式表
常见几何体]转动惯量公式表对于细杆
当回转轴过杆的中点并垂直于杆时;J=m(L^2)/12
其中m是杆的质量,L是杆的长度。
当回转轴过杆的端点并垂直于杆时:J=m(L^2)/3
其中m是杆的质量,L是杆的长度。
对于圆柱体
当回转轴是圆柱体轴线时;J=m(r^2)/2
其中m是圆柱体的质量,r是圆柱体的半径。
对于细圆环
当回转轴通过中心与环面垂直时,J=mR^2;
当回转轴通过边缘与环面垂直时,J=2mR^2;
R为其半径
对于薄圆盘
当回转轴通过中心与盘面垂直时,J=﹙1/2﹚mR^2;
当回转轴通过边缘与盘面垂直时,J=﹙3/2﹚mR^2;
R为其半径
对于空心圆柱
当回转轴为对称轴时,J=﹙1/2﹚m[(R1)^2+(R2)^2];
R1和R2分别为其内外半径。
对于球壳
当回转轴为中心轴时,J=﹙2/3﹚mR^2;
当回转轴为球壳的切线时,J=﹙5/3﹚mR^2;
R为球壳半径。
对于实心球体
当回转轴为球体的中心轴时,J=﹙2/5﹚mR^2;
当回转轴为球体的切线时,J=﹙7/5﹚mR^2;
R为球体半径
对于立方体
当回为其中心轴时,J=﹙1/6﹚mL^2;
当回转轴为其棱边时,J=﹙2/3﹚mL^2;
当回转轴为其体对角线时,J=(3/16)mL^2;
L为立方体边长。
只知道转动惯量的计算方式而不能使用是没有意义的。下面给出一些(绕定轴转动时)的刚体动力学公式。
角加速度与合外力矩的关系:
角加速度与合外力矩
式中M为合外,β为。可以看出这个式子与牛顿第二定律是对应的。
角动量:
角动量
刚体的定轴转动动能:
转动动能
注意这只是刚体绕定轴的转动动能,其总动能应该再加上质心动能。
转动惯量公式表
常见几何体]转动惯量公式表
对于细杆
当回转轴过杆得中点并垂直于杆时;J=m(L^2)/12 其中m就是杆得质量,L就是杆得长度。
当回转轴过杆得端点并垂直于杆时:J=m(L^2)/3 其中m就是杆得质量,L就是杆得长度。
对于圆柱体
当回转轴就是圆柱体轴线时;J=m(r^2)/2
其中m就是圆柱体得质量,r就是圆柱体得半径。
对于细圆环
当回转轴通过中心与环面垂直时,J=mR^2;
当回转轴通过边缘与环面垂直时,J=2mR^2;
R为其半径
对于薄圆盘
当回转轴通过中心与盘面垂直时,J=﹙1/2﹚mR^2;
当回转轴通过边缘与盘面垂直时,J=﹙3/2﹚mR^2;
R为其半径
对于空心圆柱
当回转轴为对称轴时,J=﹙1/2﹚m[(R1)^2+(R2)^2];
R1与R2分别为其内外半径。
对于球壳
当回转轴为中心轴时,J=﹙2/3﹚mR^2;
当回转轴为球壳得切线时,J=﹙5/3﹚mR^2;
R为球壳半径。
对于实心球体
当回转轴为球体得中心轴时,J=﹙2/5﹚mR^2;
当回转轴为球体得切线时,J=﹙7/5﹚mR^2;
R为球体半径
对于立方体
当回转轴为其中心轴时,J=﹙1/6﹚mL^2;
当回转轴为其棱边时,J=﹙2/3﹚mL^2;
当回转轴为其体对角线时,J=(3/16)mL^2;
L为立方体边长。
只知道转动惯量得计算方式而不能使用就是没有意义得。下面给出一些(绕定轴转动时)得刚体动力学公式。
角加速度与合外力矩得关系:
角加速度与合外力矩
式中M为合外力矩,β为角加速度。可以瞧出这个式子与牛顿第二定律就是对应得。
角动量:
角动量
刚体得定轴转动动能:
转动惯量公式表
常见几何体 ] 转动惯量公式表
对于细杆
当回转轴过杆的中点并垂直于杆时;J=m(L^2)/12其中 m 是杆的质量, L 是杆的长度。
当回转轴过杆的端点并垂直于杆时:J=m(L^2)/3其中 m 是杆的质量, L 是杆的长度。
对于圆柱体
当回转轴是圆柱体轴线时;J=m(r^2)/2
其中 m 是圆柱体的质量,r 是圆柱体的半径。
对于细圆环
当回转轴通过中心与环面垂直时,当回转轴通过边缘与环面垂直时,J=mR^2 ;J=2mR^2 ;
R 为其半径
对于薄圆盘
当回转轴通过中心与盘面垂直时,当回转轴通过边缘与盘面垂直时,J= ﹙1/2 ﹚ mR^2 ;J= ﹙3/2 ﹚ mR^2 ;
R 为其半径
对于空心圆柱
当回转轴为对称轴时,J= ﹙ 1/2 ﹚ m[ (R1 )^2+ ( R2 ) ^2] ;
R1 和 R2 分别为其内外半径。
对于球壳
当回转轴为中心轴时,J= ﹙ 2/3 ﹚ mR^2;
当回转轴为球壳的切线时,J= ﹙ 5/3 ﹚ mR^2 ;
R 为球壳半径。
对于实心球体
当回转轴为球体的中心轴时,J= ﹙ 2/5 ﹚mR^2;
当回转轴为球体的切线时,J= ﹙ 7/5 ﹚ mR^2 ;
R 为球体半径
对于立方体
当回转轴为其中心轴时,J= ﹙ 1/6 ﹚ mL^2 ;
当回转轴为其棱边时,J= ﹙ 2/3 ﹚ mL^2 ;
当回转轴为其体对角线时,J= ( 3/16 )mL^2 ;
L 为立方体边长。
只知道转动惯量的计算方式而不能使用是没有意义的。下面给出一些(绕定轴转动时)的刚体动力学公式。
角加速度与合外力矩的关系:
转动惯量公式表
常见几何体]转动惯量公式表
关于细杆
当回转轴过杆的中点并垂直于杆时;J=m(L^2)/12 其中m是杆的质量,L是杆的长度。
当回转轴过杆的端点并垂直于杆时:J=m(L^2)/3 其中m是杆的质量,L是杆的长度。
关于圆柱体
当回转轴是圆柱体轴线时;J=m(r^2)/2
其中m是圆柱体的质量,r是圆柱体的半径。
关于细圆环
当回转轴通过中心与环面垂直时,J=mR^2;
当回转轴通过边缘与环面垂直时,J=2mR^2;
R为其半径
关于薄圆盘
当回转轴通过中心与盘面垂直时,J=﹙1/2﹚mR^2;
当回转轴通过边缘与盘面垂直时,J=﹙3/2﹚mR^2;
R为其半径
关于空心圆柱
当回转轴为对称轴时,J=﹙1/2﹚m[(R1)^2+(R2)^2];
R1和R2别离为其内外半径。
关于球壳
当回转轴为中心轴时,J=﹙2/3﹚mR^2;
当回转轴为球壳的切线时,J=﹙5/3﹚mR^2;
R为球壳半径。
关于实心球体
当回转轴为球体的中心轴时,J=﹙2/5﹚mR^2;
当回转轴为球体的切线时,J=﹙7/5﹚mR^2;
R为球体半径
关于立方体
当回为其中心轴时,J=﹙1/6﹚mL^2;
当回转轴为其棱边时,J=﹙2/3﹚mL^2;
当回转轴为其体对角线时,J=(3/16)mL^2;
L为立方体边长。
只明白转动惯量的计算方式而不能利用是没成心义的。下面给出一些(绕定轴转动时)的刚体动力学公式。
角加速度与合外力矩的关系:
角加速度与合外力矩
式中M为合外,β为。能够看出那个式子与牛顿第二定律是对应的。
角动量:
角动量
刚体的定轴转动动能:
转动动能
注意这只是刚体绕定轴的转动动能,其总动能应该再加上质心动能。
转动惯量公式表
常见几何体]转动惯量公式表
对于细杆
当回转轴过杆的中点并垂直于杆时;J=m(L^2)/12 其中m是杆的质量,L是杆的长度。
当回转轴过杆的端点并垂直于杆时:J=m(L^2)/3 其中m是杆的质量,L是杆的长度。
对于圆柱体
当回转轴是圆柱体轴线时;J=m(r^2)/2
其中m是圆柱体的质量,r是圆柱体的半径。
对于细圆环
当回转轴通过中心与环面垂直时,J=mR^2;
当回转轴通过边缘与环面垂直时,J=2mR^2;
R为其半径
对于薄圆盘
当回转轴通过中心与盘面垂直时,J=﹙1/2﹚mR^2;
当回转轴通过边缘与盘面垂直时,J=﹙3/2﹚mR^2;
R为其半径
对于空心圆柱
当回转轴为对称轴时,J=﹙1/2﹚m[(R1)^2+(R2)^2];
R1和R2分别为其内外半径。
对于球壳
当回转轴为中心轴时,J=﹙2/3﹚mR^2;
当回转轴为球壳的切线时,J=﹙5/3﹚mR^2;
R为球壳半径。
对于实心球体
当回转轴为球体的中心轴时,J=﹙2/5﹚mR^2;
当回转轴为球体的切线时,J=﹙7/5﹚mR^2;
R为球体半径
对于立方体
当回转轴为其中心轴时,J=﹙1/6﹚mL^2;
当回转轴为其棱边时,J=﹙2/3﹚mL^2;
当回转轴为其体对角线时,J=(3/16)mL^2;
L为立方体边长。
只知道转动惯量的计算方式而不能使用是没有意义的。下面给出一些(绕定轴转动时)的刚体动力学公式。
角加速度与合外力矩的关系:
角加速度与合外力矩
式中M为合外力矩,β为角加速度。可以看出这个式子与牛顿第二定律是对应的。
角动量:
角动量
刚体的定轴转动动能:
转动动能
转动惯量公式表
常见几何体]转动惯量公式
表
对于细杆
当回转轴过杆的中点并垂直于杆时; J=m(L9)/12
其中m 是杆的质量,L 是杆的长度。
当回转轴过杆的端点并垂直于杆时: J=m(L9)/3
其中m 是杆的质量,L 是杆的长度。
对于圆柱体
当回转轴是圆柱体轴线时; J=m(r A 2)/2
其中m 是圆柱体的质量,r 是圆柱体的半径。
对于细圆环
当回转轴为球壳的切线时, R 为球壳半径。
对于实心球体
当回转轴为球体的中心轴时, 当回转轴为球体的切线时, R 为球体半径
对于立方体
当回为其中心轴时, J= ( 1/6 ) mLA2 ; 当回转轴通过中心与环面垂直时, 当回转轴通过边缘与环面垂直时, R
为其半径
对于薄圆盘
当回转轴通过中心与盘面垂直时, 当回转轴通过边缘与盘面垂直时, R 为其半径
对于空心圆柱
当回转轴为对称轴时, J=( 1/2 R1和R2分别为其内外半径。
对于球壳
当回转轴为中心轴时, J=( 2/3 J=mRA2 ;
J=2mRA2 ;
J= ( 1/2 ) mRA2 ;
J= ( 3/2 ) mRA2 ;
)m[ (R1 ) A2+ ( R2) A2]
;
)mRA2 ;
J= ( 5/3 ) mRA2 ;
J= ( 2/5 ) mRA2 ;
J= ( 7/5 ) mRA2 ;
当回转轴为其棱边时,J= ( 2/3 ) mLA2 ;
当回转轴为其体对角线时,J= ( 3/16 ) mLA2 ;
L为立方体边长。
只知道转动惯量的计算方式而不能使用是没有意义的。下面给出一些(绕定轴转动时)的刚体动力学公式。
角加速度与合外力矩的关系:
转动惯量公式表
转动惯量公式表 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】
常见几何体]转动惯量公式表对于细杆
当回转轴过杆的中点并垂直于杆时;J=m(L^2)/12
其中m是杆的质量,L是杆的长度。
当回转轴过杆的端点并垂直于杆时:J=m(L^2)/3
其中m是杆的质量,L是杆的长度。
对于圆柱体
当回转轴是圆柱体轴线时;J=m(r^2)/2
其中m是圆柱体的质量,r是圆柱体的半径。
对于细圆环
当回转轴通过中心与环面垂直时,J=mR^2;
当回转轴通过边缘与环面垂直时,J=2mR^2;
R为其半径
对于薄圆盘
当回转轴通过中心与盘面垂直时,J=﹙1/2﹚mR^2;
当回转轴通过边缘与盘面垂直时,J=﹙3/2﹚mR^2;
R为其半径
对于空心圆柱
当回转轴为对称轴时,J=﹙1/2﹚m[(R1)^2+(R2)^2];
R1和R2分别为其内外半径。
对于球壳
当回转轴为中心轴时,J=﹙2/3﹚mR^2;
当回转轴为球壳的切线时,J=﹙5/3﹚mR^2;
R为球壳半径。
对于实心球体
当回转轴为球体的中心轴时,J=﹙2/5﹚mR^2;
当回转轴为球体的切线时,J=﹙7/5﹚mR^2;
R为球体半径
对于立方体
当回为其中心轴时,J=﹙1/6﹚mL^2;
当回转轴为其棱边时,J=﹙2/3﹚mL^2;
当回转轴为其体对角线时,J=(3/16)mL^2;
L为立方体边长。
只知道转动惯量的计算方式而不能使用是没有意义的。下面给出一些(绕定轴转动时)的刚体动力学公式。
角加速度与合外力矩的关系:
角加速度与合外力矩
式中M为合外,β为。可以看出这个式子与牛顿第二定律是对应的。
转动惯量公式表
常见几何体]转动惯量公式表
对于细杆
当回转轴过杆的中点并垂直于杆时;J=m(L^2)/12 其中m是杆的质量,L是杆的长度。
当回转轴过杆的端点并垂直于杆时:J=m(L^2)/3 其中m是杆的质量,L是杆的长度。
对于圆柱体
当回转轴是圆柱体轴线时;J=m(r^2)/2
其中m是圆柱体的质量,r是圆柱体的半径。
对于细圆环
当回转轴通过中心与环面垂直时,J=mR^2;
当回转轴通过边缘与环面垂直时,J=2mR^2;
R为其半径
对于薄圆盘
当回转轴通过中心与盘面垂直时,J=﹙1/2﹚mR^2;
当回转轴通过边缘与盘面垂直时,J=﹙3/2﹚mR^2;
R为其半径
对于空心圆柱
当回转轴为对称轴时,J=﹙1/2﹚m[(R1)^2+(R2)^2];
R1和R2分别为其内外半径。
对于球壳
当回转轴为中心轴时,J=﹙2/3﹚mR^2;
当回转轴为球壳的切线时,J=﹙5/3﹚mR^2;
R为球壳半径。
对于实心球体
当回转轴为球体的中心轴时,J=﹙2/5﹚mR^2;
当回转轴为球体的切线时,J=﹙7/5﹚mR^2;
R为球体半径
对于立方体
当回转轴为其中心轴时,J=﹙1/6﹚mL^2;
当回转轴为其棱边时,J=﹙2/3﹚mL^2;
当回转轴为其体对角线时,J=(3/16)mL^2;
L为立方体边长。
只知道转动惯量的计算方式而不能使用是没有意义的。下面给出一些(绕定轴转动时)的刚体动力学公式。
角加速度与合外力矩的关系:
角加速度与合外力矩
式中M为合外力矩,β为角加速度。可以看出这个式子与牛顿第二定律是对应的。
角动量:
角动量
刚体的定轴转动动能:
转动动能
转动惯量公式表
[常见几何体]转动惯量公式表
转动惯量(Moment of Inertia)是刚体绕轴转动时惯性(回转物体保持其匀速圆周运动或静止的特性)的量度,用字母I或J表示。在经典力学中,转动惯量(又称质量惯性矩,简称惯距)通常以I或J表示,SI单位为kg·m²。对于一个质点,I=mr²,其中 m 是其质量,r是质点和转轴的垂直距离。转动惯量在旋转动力学中的角色相当于线性动力学中的质量,可形式地理解为一个物体对于旋转运动的惯性,用于建立角动量、角速度、力矩和角加速度等数个量之间的关系。
转动惯量:I= r2dm其中r为转动半径,m为刚体质量(微积分公式)
力矩:M=Jβ,其中M是扭转力矩,J是转动惯量,β是角加速度
对于细杆
当回转轴过杆的中点(质心)并垂直于杆时
;
其中m是杆的质量,L是杆的长度。
当回转轴过杆的端点并垂直于杆时
;
其中m是杆的质量,L是杆的长度。
对于圆柱体
当回转轴是圆柱体轴线时
;
其中m是圆柱体的质量,r是圆柱体的半径。
对于细圆环
当回转轴通过环心且与环面垂直时,
;
当回转轴通过环边缘且与环面垂直时,
;
沿环的某一直径,;
R为其半径。
对于薄圆盘
当回转轴通过中心与盘面垂直时,
;
当回转轴通过边缘与盘面垂直时,
;
R为其半径。
对于空心圆柱
当回转轴为对称轴时,
。
(注意这里是加号不是减号,容易记错。可以代入
的极端情况进行验证,此时圆柱退化为柱面。)
R1和R2分别为其内外半径。
对于球壳
当回转轴为中心轴时,
;
当回转轴为球壳的切线时,
;
R为球壳半径。
对于实心球体
当回转轴为球体的中心轴时,
;
当回转轴为球体的切线时,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常见几何体]转动惯量公式表
对于细杆
当回转轴过杆的中点并垂直于杆时;J=m(L^2)/12 其中m是杆的质量,L是杆的长度。
当回转轴过杆的端点并垂直于杆时:J=m(L^2)/3 其中m是杆的质量,L是杆的长度。
对于圆柱体
当回转轴是圆柱体轴线时;J=m(r^2)/2
其中m是圆柱体的质量,r是圆柱体的半径。
对于细圆环
当回转轴通过中心与环面垂直时,J=mR^2;
当回转轴通过边缘与环面垂直时,J=2mR^2;
R为其半径
对于薄圆盘
当回转轴通过中心与盘面垂直时,J=﹙1/2﹚mR^2;
当回转轴通过边缘与盘面垂直时,J=﹙3/2﹚mR^2;
R为其半径
对于空心圆柱
当回转轴为对称轴时,J=﹙1/2﹚m[(R1)^2+(R2)^2];
R1和R2分别为其内外半径。
对于球壳
当回转轴为中心轴时,J=﹙2/3﹚mR^2;
当回转轴为球壳的切线时,J=﹙5/3﹚mR^2;
R为球壳半径。
对于实心球体
当回转轴为球体的中心轴时,J=﹙2/5﹚mR^2;
当回转轴为球体的切线时,J=﹙7/5﹚mR^2;
R为球体半径
对于立方体
当回转轴为其中心轴时,J=﹙1/6﹚mL^2;
当回转轴为其棱边时,J=﹙2/3﹚mL^2;
当回转轴为其体对角线时,J=(3/16)mL^2;
L为立方体边长。
只知道转动惯量的计算方式而不能使用是没有意义的。下面给出一些(绕定轴转动时)的刚体动力学公式。
角加速度与合外力矩的关系:
角加速度与合外力矩
式中M为合外力矩,β为角加速度。可以看出这个式子与牛顿第二定律是对应的。
角动量:
角动量
刚体的定轴转动动能:
转动动能
注意这只是刚体绕定轴的转动动能,其总动能应该再加上质心动能。
只用E=(1/2)mv^2不好分析转动刚体的问题,是因为其中不包含刚体的任何转动信息,里面的速度v 只代表刚体的质心运动情况。由这一公式,可以从能量的角度分析刚体动力学的问题。
转动惯量(Moment of Inertia)是刚体绕轴转动时惯性(回转物体保持其匀速圆周运动或静止的特性)的量度,用字母I或J表示。其量值取决于物体的形状、质量分布及转轴的位置。转动惯量只决定于刚体的形状、质量分布和转轴的位置,而同刚体绕轴的转动状态(如角速度的大小)无关。形状规则的匀质刚体,其转动惯量可直接用公式计算得到。而对于不规则刚体或非均质刚体的转动惯量,一般通过实验的方法来进行测定,因而实验方法就显得十分重要。转动惯量的表达式为I=∑ mi*ri^2,若刚体的质量是连续分布的,则转动惯量的计算公式可写成I=∫r^2dm=∫r^2ρdV(式中mi表示刚体的某个质元的质量,ri表示该质元到转轴的垂直距离,ρ表示该处的密度,求和号(或积分号)遍及整个刚体。)转动惯量的量纲为L^2M,在SI单位制中,它的单位是kg·m^2。
平行轴定理
平行轴定理:设刚体质量为m,绕通过质心转轴的转动惯量为Ic,将此轴朝任何方向平行移动一个距离d,则绕新轴的转动惯量I为:
I=Ic+md^2
这个定理称为平行轴定理。
一个物体以角速度ω绕固定轴z轴的转动同样可以视为以同样的角速度绕平行于z轴且通过质心的固定轴的转动。也就是说,绕z轴的转动等同于绕过质心的平行轴的转动与质心的转动的叠加
垂直轴定理
垂直轴定理:一个平面刚体薄板对于垂直它的平面的轴的转动惯量,等于绕平面内与垂直轴相交的任意两正交轴的转动惯量之和。
垂直轴定理
表达式: Iz=Ix+Iy
式中Ix,Iy,Iz分别代表刚体对x,y,z三轴的转动惯量.
对于非平面薄板状的刚体,亦有如下垂直轴定理成立[2]:
垂直轴定理
利用垂直轴定理可对一些刚体对一特定轴的转动惯量进行较简便的计算.
刚体对一轴的转动惯量,可折算成质量等于刚体质量的单个质点对该轴所形成的转动惯量。由此折算所得的质点到转轴的距离,称为刚体绕该轴的回转半径κ,其公式为I=Mκ^2,式中M为刚体质量;I为转动惯量。