山东省济南市 七年级(上)精品期末数学试卷合集
2021-2022学年山东省济南市初一数学第一学期期末试卷及解析
2021-2022学年山东省济南市初一数学第一学期期末试卷一、选择题(本大题共12小题,每小题4分,共48分。
)1.(4分)﹣2022的绝对值等于()A.2022 B.﹣2022 C.D.2.(4分)如图所示,从左面看该几何体得到的平面图形是()A.B.C.D.3.(4分)我国脱贫攻坚战取得了全面胜利,现行标准下9899万农村贫困人口全部脱贫,832个贫困县全部摘帽,完成了消除绝对贫困的艰巨任务,创造了又一个彪炳史册的人间奇迹()A.12.8×105B.1.28×106C.1.28×105D.128×1034.(4分)以下调查中,最适宜采用普查方式的是()A.检测某批次汽车的抗撞击能力B.调查全国中学生视力和用眼卫生情况C.调查黄河的水质情况D.检查我国“神舟十三号”飞船各零部件的情况5.(4分)若单项式﹣2x6y与5x2m y n是同类项,则()A.m=2,n=1 B.m=3,n=1 C.m=3,n=0 D.m=1,n=36.(4分)下列运算正确的是()A.2a+3a3=5a4B.2ab﹣2ba=0C.﹣2(x+y)=﹣2x+2y D.﹣2(x+y)=﹣2x﹣y7.(4分)如果x=2是方程x+a=﹣1的解,那么a的值是()A.﹣2 B.2 C.0 D.﹣68.(4分)当x=1时,多项式ax3+bx﹣2的值为2,则当x=﹣1时,该多项式的值是()A.﹣6 B.﹣2 C.0 D.29.(4分)如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°()A.35°B.70°C.110°D.145°10.(4分)如图,线段AB=16cm,在AB上取一点C,N是AC中点,若MN=3cm()A.6 B.8 C.10 D.1211.(4分)我国古代名著《九章算术》中有一题:“今有人共买鸡,人出九,盈十一,不足十六.问人数、鸡价各几何?”题意是:“有若干人凑钱合伙买鸡,如果每人出9文钱;如果每人出6文钱,还差16文钱.问买鸡的人数、鸡的价钱各是多少?设有x人共同买鸡()A.B.C.9x+11=6x﹣16 D.9x﹣11=6x+1612.(4分)如图所示,在这个数据运算程序中,若开始输入的x的值为5,返回进行第二次运算则输出的是4,…,则第2022次输出的结果是()A.1 B.2 C.4 D.8二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)如果+40m表示向东走40m,那么向西走30m可以表示为m.14.(4分)单项式﹣系数是.15.(4分)若代数式1﹣8x与9x﹣3的值互为相反数,则x=.16.(4分)某班数学老师在班级内组织了一堂“正方体展开图猜猜看”活动课,如图是该正方体展开图的一种,与“党”字所在面对面上的汉字是.17.(4分)如图,将一副三角板叠放在一起,使直角的顶点重合于点O,则∠BOD等于.18.(4分)如图是一组有规律的图案,它们是由边长相等的等边三角形组合而成,第1个图案有4个三角形,第3个图案有10个三角形…照此规律摆下去,摆成第2022个图案需要个三角形.三、解答题(本大题共9小题,共78分。
2021-2022学年山东省济南市历下区七年级(上)期末数学试题及答案解析
2021-2022学年山东省济南市历下区七年级(上)期末数学试卷一、选择题(本大题共12小题,共48.0分。
在每小题列出的选项中,选出符合题目的一项)1.−3的绝对值是( )A. −3B. 3C. 13D. −132.下列几何体中,是圆锥的为( )A. B. C. D.3.一元一次方程x+3=0的解是( )A. x=3B. x=−3C. x=0D. x=14.10月16日0时23分,神舟十三号载人飞船在酒泉卫星发射中心发射取得圆满成功,翟志刚、王亚平与叶光富三位航天员一同奔赴太空,神舟十三号在太空的飞行速度达到每小时28440千米,将28440用科学记数法表示为( )A. 2.844×104B. 28.44×103C. 2.844×103D. 0.2844×1055.下列调查中,最适合采用全面调查(普查)的是( )A. 对投影仪使用寿命的调查B. 对我市市民知晓“一盔一带”交通新规情况的调查C. 对我市中学生观看电影《中国医生》情况的调查D. 对我国“神舟十三号”载人飞船发射前各零部件质量情况的调查6.如图,AC⊥BC,直线EF经过点C,若∠1=34°,则∠2的大小为( )A. 56°B. 66°C. 54°D. 46°7.下列各式中,与−2x3y2是同类项的是( )A. −2x5B. 3x2y3C. −12x3y2 D. −13y58.如图,已知直线a//b,直线c被直线a、b所截,若∠1=62°,则∠2=( )A. 62°B. 28°C. 128°D. 118°9.当今,大数据、云计算、人工智能等互联网新技术正在全方位改写中国社会,习近平总书记倡导的构建网络空间命运共同体的“五点主张”,已成为国际社会的广泛共识.而5G应用将是推动互联网这个“最大变量”变成“最大增量”的新引擎,5G的出现将改变中国的经济格局,据预测,2020年到2030年中国5G直接经济产出和间接经济产出的情况如图所示,根据图提供的信息,下列推断不合理的是( )A. 2020年到2030年,5G直接经济产出和5G间接经济产出都是逐年增长B. 2023年到2024年与2028年到2029年5G间接经济产出的增长率相同C. 2027年5G间接经济产出比5G直接经济产出多3.4万亿D. 2028年5G直接经济产出为2020年5G直接经济产出的9倍10.将一个正方形与直角三角板的一个直角顶点重合放置,如图所示,∠AOD,OM平分∠AOD,则∠BOM的度数为( )∠AOC=12A. 30°B. 45°C. 60°D. 75°11.2021年以来,国务院教育督导委员会指出,要加强中小学生作业、睡眠、手机、读物、体质管理.为强健体魄,小鑫和小磊一起相约健身锻炼,两家相距2600米,小鑫以80米/分钟的速度从家出发,10分钟后,小磊以100米/分钟的速度从家出发,问小磊经过多少分钟与小鑫相遇?设小磊经过x分钟与小鑫相遇,可列方程为( )A. x+1080+x100=2600 B. 100(x+10)+80x=2600C. x+10100+x80=2600 D. 80(x+10)+100x=260012.幻方的历史悠久,传说最早出现在夏禹时代的“洛书”(如图1),把洛书用今天的数学符号翻译出来,就是一个三阶幻方(如图2),其每行、每列及每条对角线上的三个格子中的数字之和都等于15.图3也是一个三阶幻方,其每行、每列及每条对角线上的三个格子中的数字之和都等于s,则s的值为( )A. 34B. 36C. 40D. 42二、填空题(本大题共6小题,共24.0分)13.中国是最早采用正负数表示相反意义的量的国家,一艘潜水艇向下潜50m记为+50m,则向上浮30m记为______m.14.过n边形的一个顶点有9条对角线,则n=______.15.计算:30°12′=______°.16.“创出一条路,蝶变一座城”,济南市一直努力建设更高水平的全国文明城市,我校也积极开展了文明校园创建活动.为此七年级学生设计了正方体废纸回收盒,如图所示将写有“收”字的正方形添加到图中,使它们构成完整的正方体展开图,你有______种添加方式.17.已知(x−2)2+|y+1|=0,则x+y的值是______.18.设一列数a1,a2,a3,a4,…中任意三个相邻数之和都是50,已知a3=a7−3,a2021=17,则a2022=______.三、计算题(本大题共2小题,共12.0分)19.计算:(1)−16÷(−4)−8;(2)(−34+18)×24+(−1)2022.20.已知A=5x2−2xy+y2,B=2x2+xy−3y2.当x=−2,y=1时,求A−2B的值.四、解答题(本大题共7小题,共66.0分。
济南市数学七年级上学期期末数学试题题
济南市数学七年级上学期期末数学试题题 一、选择题1.根据等式的性质,下列变形正确的是( )A .若2a =3b ,则a =23b B .若a =b ,则a +1=b ﹣1 C .若a =b ,则2﹣3a =2﹣3b D .若23a b =,则2a =3b 2.已知线段AB 的长为4,点C 为AB 的中点,则线段AC 的长为( ) A .1 B .2 C .3D .4 3.如图是小明制作的一张数字卡片,在此卡片上可以用一个正方形圈出44⨯个位置的16个数(如1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25).若用这样的正方形圈出这张数字卡片上的16个数,则圈出的16个数的和不可能为下列数中的( )A .208B .480C .496D .592 4.下列调查中,适宜采用全面调查的是()A .对现代大学生零用钱使用情况的调查B .对某班学生制作校服前身高的调查C .对温州市市民去年阅读量的调查D .对某品牌灯管寿命的调查 5.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( )A .﹣4B .﹣5C .﹣6D .﹣7 6.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的数为( )4 a b c ﹣2 3 …A .4B .3C .0D .﹣27.下列方程变形正确的是( )A .方程110.20.5x x --=化成1010101025x x --= B .方程 3﹣x=2﹣5(x ﹣1),去括号,得 3﹣x=2﹣5x ﹣1C .方程 3x ﹣2=2x+1 移项得 3x ﹣2x=1+2D .方程23t=32,未知数系数化为 1,得t=1 8.方程3x +2=8的解是( )A .3B .103C .2D .12 9.解方程121123x x +--=时,去分母得( ) A .2(x +1)=3(2x ﹣1)=6 B .3(x +1)﹣2(2x ﹣1)=1C .3(x +1)﹣2(2x ﹣1)=6D .3(x +1)﹣2×2x ﹣1=6 10.如图是由下列哪个立体图形展开得到的?( )A .圆柱B .三棱锥C .三棱柱D .四棱柱11.当x=3,y=2时,代数式23x y -的值是( ) A .43 B .2C .0D .3 12.“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是( )A .两点确定一条直线B .两点之间,线段最短C .直线可以向两边延长D .两点之间线段的长度,叫做这两点之间的距离 二、填空题13.在数轴上,若A 点表示数﹣1,点B 表示数2,A 、B 两点之间的距离为 .14.一个商店把某件商品按进价提高20%作为定价,可是总卖不出去;后来按定价减价20%出售,很快卖掉,结果这次生意亏了4元.那么这件商品的进价是________元.15.定义一种对正整数n 的“C 运算”:①当n 为奇数时,结果为3n +1;②当n 为偶数时,结果为2k n (其中k 是使2k n 为奇数的正整数)并且运算重复进行,例如,n =66时,其“C 运算”如下:若n =26,则第2019次“C 运算”的结果是_____.16.化简:2xy xy +=__________.17.将一个含有30°角的直角三角板如图所示放置.其中,含30°角的顶点落在直线a 上,含90°角的顶点落在直线b 上.若//221a b ∠=∠,;,则1∠=__________°.18.如图,在数轴上点A ,B 表示的数分别是1,–2,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.19.有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”,那么驴子原来所驮货物有_____袋.20.若∠1=35°21′,则∠1的余角是__.21.在数轴上,与表示-3的点的距离为4的点所表示的数为__________________.22.已知一个角的补角是它余角的3倍,则这个角的度数为_____.23.如果,,a b c 是整数,且c a b =,那么我们规定一种记号(,)a b c =,例如239=,那么记作(3,9)=2,根据以上规定,求(−2,16)=______.24.如图,已知线段16AB cm =,点M 在AB 上:1:3AM BM =,P Q 、分别为AM AB 、的中点,则PQ 的长为____________.三、压轴题25.数轴上A 、B 两点对应的数分别是﹣4、12,线段CE 在数轴上运动,点C 在点E 的左边,且CE =8,点F 是AE 的中点.(1)如图1,当线段CE 运动到点C 、E 均在A 、B 之间时,若CF =1,则AB = ,AC = ,BE = ;(2)当线段CE运动到点A在C、E之间时,①设AF长为x,用含x的代数式表示BE=(结果需化简.....);②求BE与CF的数量关系;(3)当点C运动到数轴上表示数﹣14的位置时,动点P从点E出发,以每秒3个单位长度的速度向右运动,抵达B后,立即以原来一半速度返回,同时点Q从A出发,以每秒2个单位长度的速度向终点B运动,设它们运动的时间为t秒(t≤8),求t为何值时,P、Q 两点间的距离为1个单位长度.26.已知长方形纸片ABCD,点E在边AB上,点F、G在边CD上,连接EF、EG.将∠BEG 对折,点B落在直线EG上的点B′处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN.(1)如图1,若点F与点G重合,求∠MEN的度数;(2)如图2,若点G在点F的右侧,且∠FEG=30°,求∠MEN的度数;(3)若∠MEN=α,请直接用含α的式子表示∠FEG的大小.27.如图,已知数轴上有三点A,B,C ,若用AB 表示A,B 两点的距离,AC 表示A ,C 两点的距离,且BC = 2 AB ,点A 、点C 对应的数分别是a 、c ,且| a - 20 | + | c +10 |= 0 .(1)若点P,Q 分别从A,C 两点同时出发向右运动,速度分别为 2 个单位长度/秒、5个单位长度/ 秒,则运动了多少秒时,Q 到B 的距离与P 到B 的距离相等?(2)若点P ,Q 仍然以(1)中的速度分别从A ,C 两点同时出发向右运动,2 秒后,动点R 从A点出发向左运动,点R 的速度为1个单位长度/秒,点M 为线段PR 的中点,点N为线段RQ的中点,点R运动了x 秒时恰好满足MN +AQ = 25,请直接写出x的值.28.结合数轴与绝对值的知识解决下列问题:探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是____;结论:一般地,数轴上表示数m和数n的两点之间的距离等于∣m-n∣.直接应用:表示数a和2的两点之间的距离等于____,表示数a和-4的两点之间的距离等于____;灵活应用:(1)如果∣a+1∣=3,那么a=____;(2)若数轴上表示数a 的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____;(3)若∣a-2∣+∣a+4∣=10,则a =______;实际应用:已知数轴上有A 、B 、C 三点,分别表示-24,-10,10,两只电子蚂蚁甲、乙分别从A 、C 两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒.(1)两只电子蚂蚁分别从A 、C 两点同时相向而行,求甲、乙数轴上相遇时的点表示的数。
济南市人教版七年级上册数学期末试卷及答案
济南市人教版七年级上册数学期末试卷及答案一、选择题1.如图所示,数轴上A ,B 两点表示的数分别是2﹣1和2,则A ,B 两点之间的距离是( )A .22B .22﹣1C .22+1D .12.计算32a a ⋅的结果是( )A .5a ;B .4a ;C .6a ;D .8a . 3.用代数式表示“m 的两倍与n 平方的差”,正确的是 ( )A .22()m n -B .2(2m-n)C .22m n -D .2(2)m n -4.解方程121123x x +--=时,去分母得( ) A .2(x +1)=3(2x ﹣1)=6 B .3(x +1)﹣2(2x ﹣1)=1 C .3(x +1)﹣2(2x ﹣1)=6D .3(x +1)﹣2×2x ﹣1=65.某个数值转换器的原理如图所示:若开始输入x 的值是1,第1次输出的结果是4,第2次输出的结果是2,依次继续下去,则第2020次输出的结果是( )A .1010B .4C .2D .1 6.下列各数中,绝对值最大的是( )A .2B .﹣1C .0D .﹣37.按如图所示图形中的虚线折叠可以围成一个棱柱的是( )A .B .C .D .8.下列调查中,最适合采用全面调查(普查)的是( ) A .对广州市某校七(1)班同学的视力情况的调查 B .对广州市市民知晓“礼让行人”交通新规情况的调查 C .对广州市中学生观看电影《厉害了,我的国》情况的调查 D .对广州市中学生每周课外阅读时间情况的调查9.估算15在下列哪两个整数之间( )A.1,2 B.2,3 C.3,4 D.4,5 10.一个几何体的表面展开图如图所示,则这个几何体是( )A.四棱锥B.四棱柱C.三棱锥D.三棱柱11.下列等式的变形中,正确的有()①由5 x=3,得x= 53;②由a=b,得﹣a=﹣b;③由﹣x﹣3=0,得﹣x=3;④由m=n,得mn=1.A.1个B.2个C.3个D.4个12.如图为一无盖长方体盒子的展开图(重叠部分不计),可知该无盖长方体的容积为()A.8 B.12 C.18 D.20二、填空题13.如果实数a,b满足(a-3)2+|b+1|=0,那么a b=__________.14.如图,是一个正方体的表面展开图,则原正方体中“国”字所在的面相对的面上标的字是_____.15.在灯塔O处观测到轮船A位于北偏西54︒的方向,同时轮船B在南偏东15︒的方向,那么AOB∠的大小为______.16.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.17.如图,数轴上点A 与点B 表示的数互为相反数,且AB =4则点A 表示的数为______.18.9的算术平方根是________19.因原材料涨价,某厂决定对产品进行提价,现有三种方案:方案一,第一次提价10%,第二次提价30%;方案二,第一次提价30%,第二次提价10%;方案三,第一、二次提价均为20%.三种方案提价最多的是方案_____________.20.在数轴上,点A ,B 表示的数分别是 8-,10.点P 以每秒2个单位长度从A 出发沿数轴向右运动,同时点Q 以每秒3个单位长度从点B 出发沿数轴在B ,A 之间往返运动,设运动时间为t 秒.当点P ,Q 之间的距离为6个单位长度时,t 的值为__________. 21.在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为_____. 22.把(a ﹣b )看作一个整体,合并同类项:3()4()2()-+---a b a b a b =_____. 23.如果m ﹣n =5,那么﹣3m +3n ﹣5的值是_____. 24.材料:一般地,n 个相同因数a 相乘n a a a a⋅⋅⋅个:记为n a . 如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=);如45625=,此时4叫做以5为底的625的对数,记为5log 625(即5log 6254=),那么3log 9=_________.三、压轴题25.阅读理解:如图①,若线段AB 在数轴上,A 、B 两点表示的数分别为a 和b (b a >),则线段AB 的长(点A 到点B 的距离)可表示为AB=b a -.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm 到达P 点,再向右移动7cm 到达Q 点,用1个单位长度表示1cm .(1)请你在图②的数轴上表示出P ,Q 两点的位置;(2)若将图②中的点P 向左移动x cm ,点Q 向右移动3x cm ,则移动后点P 、点Q 表示的数分别为多少?并求此时线段PQ的长.(用含x的代数式表示);(3)若P、Q两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t(秒),当t为多少时PQ=2cm?26.数轴上A、B两点对应的数分别是﹣4、12,线段CE在数轴上运动,点C在点E的左边,且CE=8,点F是AE的中点.(1)如图1,当线段CE运动到点C、E均在A、B之间时,若CF=1,则AB=,AC =,BE=;(2)当线段CE运动到点A在C、E之间时,①设AF长为x,用含x的代数式表示BE=(结果需化简.....);②求BE与CF的数量关系;(3)当点C运动到数轴上表示数﹣14的位置时,动点P从点E出发,以每秒3个单位长度的速度向右运动,抵达B后,立即以原来一半速度返回,同时点Q从A出发,以每秒2个单位长度的速度向终点B运动,设它们运动的时间为t秒(t≤8),求t为何值时,P、Q 两点间的距离为1个单位长度.27.问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图①,连接边长为2的正三角形三条边的中点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,共有个;边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.28.如图,以长方形OBCD的顶点O为坐标原点建立平面直角坐标系,B点坐标为(0,a),C点坐标为(c,b),且a、b、C满足6a +|2b+12|+(c﹣4)2=0.(1)求B、C两点的坐标;(2)动点P从点O出发,沿O→B→C的路线以每秒2个单位长度的速度匀速运动,设点P的运动时间为t秒,DC上有一点M(4,﹣3),用含t的式子表示三角形OPM的面积;(3)当t为何值时,三角形OPM的面积是长方形OBCD面积的13?直接写出此时点P的坐标.29.已知:如图数轴上两点A、B所对应的数分别为-3、1,点P在数轴上从点A出发以每秒钟2个单位长度的速度向右运动,点Q在数轴上从点B出发以每秒钟1个单位长度的速度向左运动,设点P的运动时间为t秒.(1)若点P和点Q同时出发,求点P和点Q相遇时的位置所对应的数;(2)若点P比点Q迟1秒钟出发,问点P出发几秒后,点P和点Q刚好相距1个单位长度;(3)在(2)的条件下,当点P和点Q刚好相距1个单位长度时,数轴上是否存在一个点C,使其到点A、点P和点Q这三点的距离和最小,若存在,直接写出点C所对应的数,若不存在,试说明理由.30.数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如:如图①,若点A,B在数轴上分别对应的数为a,b(a<b),则AB的长度可以表示为AB=b-a.请你用以上知识解决问题:如图②,一个点从数轴上的原点开始,先向左移动2个单位长度到达A点,再向右移动3个单位长度到达B点,然后向右移动5个单位长度到达C点.(1)请你在图②的数轴上表示出A,B,C三点的位置.(2)若点A以每秒1个单位长度的速度向左移动,同时,点B和点C分别以每秒2个单位长度和3个单位长度的速度向右移动,设移动时间为t秒.①当t=2时,求AB和AC的长度;②试探究:在移动过程中,3AC-4AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.31.点A在数轴上对应的数为﹣3,点B对应的数为2.(1)如图1点C在数轴上对应的数为x,且x是方程2x+1=12x﹣5的解,在数轴上是否存在点P使PA+PB=12BC+AB?若存在,求出点P对应的数;若不存在,说明理由;(2)如图2,若P点是B点右侧一点,PA的中点为M,N为PB的三等分点且靠近于P点,当P在B的右侧运动时,有两个结论:①PM﹣34BN的值不变;②13PM24BN的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值32.如图,数轴上有A 、B 、C 三个点,它们表示的数分别是25-、10-、10.(1)填空:AB = ,BC = ;(2)现有动点M 、N 都从A 点出发,点M 以每秒2个单位长度的速度向右移动,当点M 移动到B 点时,点N 才从A 点出发,并以每秒3个单位长度的速度向右移动,求点N 移动多少时间,点N 追上点M ?(3)若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC -AB 的值是否随着时间的变化而改变?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据题意列出算式,计算即可得到结果. 【详解】解:∵A ,B 2﹣12, ∴A ,B 22﹣1)=1; 故选:D . 【点睛】此题考查了实数与数轴,掌握数轴上点的特点,利用数轴,数形结合求出答案.2.A解析:A 【解析】此题考查同底数幂的乘法运算,即(0)mnm na a a a +⋅=>,所以此题结果等于325a a +=,选A ;3.C解析:C 【解析】【分析】根据题意可以用代数式表示m 的2倍与n 平方的差. 【详解】用代数式表示“m 的2倍与n 平方的差”是:2m-n 2, 故选:C . 【点睛】本题考查了列代数式,解题的关键是明确题意,列出相应的代数式.4.C解析:C 【解析】 【分析】方程两边都乘以分母的最小公倍数即可. 【详解】解:方程两边同时乘以6,得:3(1)2(21)6x x +--=, 故选:C . 【点睛】本题主要考查了解一元一次方程的去分母,需要注意,不能漏乘,没有分母的也要乘以分母的最小公倍数.5.B解析:B 【解析】 【分析】根据题意和题目中的数值转换器可以写出前几次输出的结果,从而可以发现数字的变化规律,进而求得第2020次输出的结果. 【详解】 解:由题意可得, 当x =1时,第一次输出的结果是4, 第二次输出的结果是2, 第三次输出的结果是1, 第四次输出的结果是4, 第五次输出的结果是2, 第六次输出的结果是1, 第七次输出的结果是4, 第八次输出的结果是2, 第九次输出的结果是1, 第十次输出的结果是4, ……,∵2020÷3=673…1,则第2020次输出的结果是4,故选:B.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化特点,求出相应的数字.6.D解析:D【解析】试题分析:∵|2|=2,|﹣1|=1,|0|=0,|﹣3|=3,∴|﹣3|最大,故选D.考点:D.7.C解析:C【解析】【分析】利用棱柱的展开图中两底面的位置对A、D进行判断;根据侧面的个数与底面多边形的边数相同对B、C进行判断.【详解】棱柱的两个底面展开后在侧面展开图相对的两边上,所以A、D选项错误;当底面为三角形时,则棱柱有三个侧面,所以B选项错误,C选项正确.故选:C.【点睛】本题考查了棱柱的展开图:通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.8.A解析:A【解析】【分析】根据普查得到的结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断即可.【详解】A. 对广州市某校七(1)班同学的视力情况的调查,适合全面调查,符合题意;B. 对广州市市民知晓“礼让行人”交通新规情况的调查,适合抽样调查,故不符合题意;C. 对广州市中学生观看电影《厉害了,我的国》情况的调查,适合抽样调查,故不符合题意;D. 对广州市中学生每周课外阅读时间情况的调查,适合抽样调查,故不符合题意,故选A.【点睛】本题考查的是抽样调查与全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大的调查,应选用抽样调查,对于精确度要求高的调查,事关重大的调查往往先用普查的方式.9.C解析:C【解析】【分析】.【详解】∵9<15<16,∴,故选C.【点睛】本题考查了无理数的估算,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.10.A解析:A【解析】试题分析:根据四棱锥的侧面展开图得出答案.试题解析:如图所示:这个几何体是四棱锥.故选A.考点:几何体的展开图.11.B解析:B【解析】①若5x=3,则x=35,故本选项错误;②若a=b,则-a=-b,故本选项正确;③-x-3=0,则-x=3,故本选项正确;④若m=n≠0时,则nm=1,故本选项错误.故选B. 12.A解析:A【分析】根据观察、计算可得长方体的长、宽、高,根据长方体的体积公式,可得答案.【详解】解:由图可知长方体的高是1,宽是3-1=2,长是6-2=4,长方体的容积是4×2×1=8,故选:A .【点睛】本题考查了几何体的展开图.能判断出该几何体为长方体的展开图,并能根据展开图求得长方体的长、宽、高是解题关键.二、填空题13.-1;【解析】解:由题意得:a-3=0,b+1=0,解得:a=3,b=-1,∴=-1. 故答案为-1. 点睛:本题考查了非负数的性质:几个非负数的和为0,则每个非负数都为0. 解析:-1;【解析】解:由题意得:a -3=0,b +1=0,解得:a =3,b =-1,∴3(1)a b =-=-1. 故答案为-1.点睛:本题考查了非负数的性质:几个非负数的和为0,则每个非负数都为0.14.伟【解析】【分析】根据在正方体的表面展开图中 ,相对的面之间一定相隔一个正方形即可解答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“伟”与“国”是相对面,“人”与解析:伟【解析】【分析】根据在正方体的表面展开图中 ,相对的面之间一定相隔一个正方形即可解答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“伟”与“国”是相对面,“人”与“中”是相对面,“的”与“梦”是相对面.故答案为:伟.本题主要考查了正方体与展开图的面的关系,掌握相对的面之间一定相隔一个正方形是解答本题的关键.15.【解析】【分析】根据线与角的相关知识:具有公共点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的两条边,明确方位角,即可得解. 【详解】根据题意可得:∠AOB=(90解析:141【解析】【分析】根据线与角的相关知识:具有公共点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的两条边,明确方位角,即可得解.【详解】根据题意可得:∠AOB=(90-54)+90+15=141°.故答案为141°.【点睛】此题主要考查角度的计算与方位,熟练掌握,即可解题.16.【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为解析:【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为5:6,即可得出关于x的一元一次方程,解之即可得出x的值,再利用长方形的面积公式即可求出盒子底部长方形的面积.【详解】解:设小长方形卡片的长为2m,则宽为m,依题意,得:2m+2m=4,解得:m=1,∴2m=2.再设盒子底部长方形的另一边长为x,依题意,得:2(4+x﹣2):2×2(2+x﹣2)=5:6,整理,得:10x=12+6x,解得:x=3,∴盒子底部长方形的面积=4×3=12.故答案为:12.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.17.-2【解析】【分析】根据图和题意可得出答案.【详解】解:表示的数互为相反数,且,则A表示的数为:.故答案为:.【点睛】本题考查的是数轴上距离的含义,解题关键是对数轴距离的理解.解析:-2【解析】【分析】根据图和题意可得出答案.【详解】解:,A B表示的数互为相反数,AB=,且4则A表示的数为:2-.故答案为:2-.【点睛】本题考查的是数轴上距离的含义,解题关键是对数轴距离的理解.18.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】解:∵,∴的算术平方根是;故答案为:.【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】3=,;【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.19.三【解析】【分析】由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.【详解】解:设原价为x ,两次提价后方案一:;方案二:;方案三:.综上可知三种方案提价最多的是方解析:三【解析】【分析】由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.【详解】解:设原价为x ,两次提价后方案一:(110%)(130%) 1.43x x ++=;方案二:(130%)(110%) 1.43x x ++=;方案三:(120%)(120%) 1.44x x ++=.综上可知三种方案提价最多的是方案三.故填:三.【点睛】本题考查列代数式,根据题意列出代数式并化简代数式比较大小即可.20.【解析】【分析】根据题意分别表示P,Q 的数为-8+2t 和10-3t ,并分到A 前和到A 后进行分析求值.【详解】解:由题意表示P,Q 的数为-8+2t ()和10-3t (),-8+3(t-6)() 解析:125【解析】【分析】根据题意分别表示P ,Q 的数为-8+2t 和10-3t ,并分Q 到A 前和Q 到A 后进行分析求值.【详解】解:由题意表示P ,Q 的数为-8+2t (09t <≤)和10-3t (06t <≤),-8+3(t-6)(69t <≤)Q 到A 前:103826t t -+-=,求得125t =,且满足06t <≤, Q 到A 后:82836t t -++--()=6,求得12t =,但不满足69t <≤,故舍去, 综上125t =. 故填125. 【点睛】本题考查数轴上的动点问题,运用数形结合的思想将动点问题转化为代数问题进行分析求解.21.56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80解析:56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80=56故答案为:56【点睛】此题考查频率分布表,掌握运算法则是解题关键22.【解析】【分析】根据合并同类项,系数相加,字母及指数不变,可得答案.【详解】解:,故答案为:.【点睛】本题考查合并同类项,熟记合并同类项的法则是解题的关键.解析:5()-a b【解析】【分析】根据合并同类项,系数相加,字母及指数不变,可得答案.【详解】解:3()4()2()(342)()5()-+---=+--=-a b a b a b a b a b ,故答案为:5()-a b .【点睛】本题考查合并同类项,熟记合并同类项的法则是解题的关键.23.-20.【解析】【分析】把所求代数式化成的形式,再整体代入的值进行计算便可.【详解】解:,,故答案为:.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式解析:-20.【解析】【分析】把所求代数式化成3()5m n ---的形式,再整体代入m n -的值进行计算便可.【详解】解:5m n -=,335m n ∴-+-3()5m n =---355=-⨯-155=--20=-,故答案为:20-.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式化成()m n -的代数式形式.24.2【解析】根据定义可得:因为,所以,故答案为:2.解析:2【解析】根据定义可得:因为239=,所以3log 92=,故答案为:2.三、压轴题25.(1)见详解;(2)2x --,53x +,47x +;(3)当运动时间为5秒或9秒时,PQ=2cm.【解析】【分析】(1)根据数轴的特点,所以可以求出点P ,Q 的位置;(2)根据向左移动用减法,向右移动用加法,即可得到答案;(3)根据题意,可分为两种情况进行分析:①点P 在点Q 的左边时;②点P 在点Q 的右边时;分别进行列式计算,即可得到答案.【详解】解:(1)如图所示:.(2)由(1)可知,点P 为2-,点Q 为5;∴移动后的点P 为:2x --;移动后的点Q 为:53x +;∴线段PQ 的长为:53(2)47x x x +---=+;(3)根据题意可知,当PQ=2cm 时可分为两种情况:①当点P 在点Q 的左边时,有(21)72t -=-,解得:5t =;②点P 在点Q 的右边时,有(21)72t -=+,解得:9t =;综上所述,当运动时间为5秒或9秒时,PQ=2cm.【点睛】本题要是把方程和数轴结合起来,既要根据条件列出方程,又要把握数轴的特点.解题的关键是熟练掌握数轴上的动点运动问题,注意分类讨论进行解题.26.(1)16,6,2;(2)①162x -②2BE CF =;(3)t=1或3或487或527 【解析】【分析】(1)由数轴上A 、B 两点对应的数分別是-4、12,可得AB 的长;由CE =8,CF =1,可得EF 的长,由点F 是AE 的中点,可得AF 的长,用AB 的长减去2倍的EF 的长即为BE 的长;(2)设AF =FE =x ,则CF =8-x ,用含x 的式子表示出BE ,即可得出答案(3)分①当0<t ≤6时; ②当6<t ≤8时,两种情况讨论计算即可得解【详解】(1)数轴上A 、B 两点对应的数分别是-4、12,∴AB=16,∵CE=8,CF=1,∴EF=7,∵点F 是AE 的中点,∴AF=EF=7,,∴AC=AF ﹣CF=6,BE=AB ﹣AE=16﹣7×2=2,故答案为16,6,2;(2)∵点F 是AE 的中点,∴AF=EF ,设AF=EF=x,∴CF=8﹣x ,∴BE=16﹣2x=2(8﹣x ),∴BE=2CF.故答案为①162x -②2BE CF =;(3) ①当0<t ≤6时,P 对应数:-6+3t ,Q 对应数-4+2t , =4t t =2t =1PQ ﹣+2﹣(﹣6+3)﹣,解得:t=1或3;②当6<t ≤8时,P 对应数()33126t 22t ---=21 , Q 对应数-4+2t , 37=4t =t 2=12t PQ -﹣+2﹣()25﹣21,解得:48t=7或527;故答案为t=1或3或487或527.【点睛】本题考查了一元一次方程在数轴上的动点问题中的应用,根据题意正确列式,是解题的关健27.探究三:16,6;结论:n²,;应用:625,300.【解析】【分析】探究三:模仿探究一、二即可解决问题;结论:由探究一、二、三可得:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,边长为1的正三角形共有个;边长为2的正三角形共有个;应用:根据结论即可解决问题.【详解】解:探究三:如图3,连接边长为4的正三角形三条边的对应四等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,共有个;边长为2的正三角形有个.结论:连接边长为的正三角形三条边的对应等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,……,第层有个,共有个;边长为2的正三角形,共有个.应用:边长为1的正三角形有=625(个),边长为2的正三角形有(个).故答案为探究三:16,6;结论:n², ;应用:625,300.【点睛】本题考查规律型问题,解题的关键是理解题意,学会模仿例题解决问题.28.(1)B点坐标为(0,﹣6),C点坐标为(4,﹣6)(2)S△OPM=4t或S△OPM=﹣3t+21(3)当t 为2秒或133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83,﹣6)【解析】【分析】(1)根据绝对值、平方和算术平方根的非负性,求得a ,b ,c 的值,即可得到B 、C 两点的坐标;(2)分两种情况:①P 在OB 上时,直接根据三角形面积公式可得结论;②P 在BC 上时,根据面积差可得结论;(3)根据已知条件先计算三角形OPM 的面积为8,根据(2)中的结论分别代入可得对应t 的值,并计算此时点P 的坐标.【详解】(1)∵6a ++|2b +12|+(c ﹣4)2=0,∴a +6=0,2b +12=0,c ﹣4=0,∴a =﹣6,b =﹣6,c =4,∴B 点坐标为(0,﹣6),C 点坐标为(4,﹣6).(2)①当点P 在OB 上时,如图1,OP =2t ,S △OPM 12=⨯2t ×4=4t ; ②当点P 在BC 上时,如图2,由题意得:BP =2t ﹣6,CP =BC ﹣BP =4﹣(2t ﹣6)=10﹣2t ,DM =CM =3,S △OPM =S 长方形OBCD ﹣S △0BP ﹣S △PCM ﹣S △ODM =6×412-⨯6×(2t ﹣6)12-⨯3×(10﹣2t )12-⨯4×3=﹣3t +21. (3)由题意得:S △OPM 13=S 长方形OBCD 13=⨯(4×6)=8,分两种情况讨论: ①当4t =8时,t =2,此时P (0,﹣4); ②当﹣3t +21=8时,t 133=,PB =2t ﹣626188333=-=,此时P (83,﹣6). 综上所述:当t 为2秒或133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83,﹣6).【点睛】本题考查了一元一次方程的应用,主要考查了平面直角坐标系中求点的坐标,动点问题,求三角形的面积,还考查了绝对值、平方和算术平方根的非负性、解一元一次方程,分类讨论是解答本题的关键.29.(1)13-;(2)P 出发23秒或43秒;(3)见解析. 【解析】【分析】(1)由题意可知运动t 秒时P 点表示的数为-3+2t ,Q 点表示的数为1-t ,若P 、Q 相遇,则P 、Q 两点表示的数相等,由此可得关于t 的方程,解方程即可求得答案;(2)由点P 比点Q 迟1秒钟出发,则点Q 运动了(t+1)秒,分相遇前相距1个单位长度与相遇后相距1个单位长度两种情况分别求解即可得;(3)设点C 表示的数为a ,根据两点间的距离进行求解即可得.【详解】(1)由题意可知运动t 秒时P 点表示的数为-5+t ,Q 点表示的数为10-2t ;若P ,Q 两点相遇,则有-3+2t=1-t ,解得:t=43, ∴413233-+⨯=-, ∴点P 和点Q 相遇时的位置所对应的数为13-;(2)∵点P 比点Q 迟1秒钟出发,∴点Q 运动了(t+1)秒,若点P 和点Q 在相遇前相距1个单位长度,则()2t 1t 141+⨯+=-, 解得:2t 3=; 若点P 和点Q 在相遇后相距1个单位长度,则2t+1×(t+1) =4+1, 解得:4t 3=, 综合上述,当P 出发23秒或43秒时,P 和点Q 相距1个单位长度; (3)①若点P 和点Q 在相遇前相距1个单位长度,此时点P 表示的数为-3+2×23=-53,Q 点表示的数为1-(1+23)=-23, 设此时数轴上存在-个点C ,点C 表示的数为a ,由题意得 AC+PC+QC=|a+3|+|a+53|+|a+23|,。
济南市人教版七年级上学期期末数学试题题
济南市人教版七年级上学期期末数学试题题一、选择题1.以下选项中比-2小的是( ) A .0B .1C .-1.5D .-2.52.若34(0)x y y =≠,则( )A .34y 0x +=B .8-6y=0xC .3+4x y y x =+D .43x y = 3.已知线段AB 的长为4,点C 为AB 的中点,则线段AC 的长为( ) A .1 B .2 C .3 D .44.直线3l 与12,l l 相交得如图所示的5个角,其中互为对顶角的是( )A .3∠和5∠B .3∠和4∠C .1∠和5∠D .1∠和4∠5.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,…,像这样,则20条直线相交最多交点的个数是( )A .171B .190C .210D .3806.已知:有公共端点的四条射线OA ,OB ,OC ,OD ,若点()1P O ,2P ,3P ⋯,如图所示排列,根据这个规律,点2014P 落在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上7.探索规律:右边是用棋子摆成的“H”字,第一个图形用了 7 个棋子,第二个图形用了 12 个棋子,按这样的规律摆下去,摆成 第 20 个“H”字需要棋子( )A .97B .102C .107D .1128.下列式子中,是一元一次方程的是( ) A .3x+1=4x B .x+2>1 C .x 2-9=0 D .2x -3y=0 9.不等式x ﹣2>0在数轴上表示正确的是( ) A . B . C .D .10.一个几何体的表面展开图如图所示,则这个几何体是( )A .四棱锥B .四棱柱C .三棱锥D .三棱柱11.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是( )A .两点确定一条直线B .两点之间线段最短C .垂线段最短D .连接两点的线段叫做两点的距离12.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( ) A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱二、填空题13.已知x =3是方程(1)21343x m x -++=的解,则m 的值为_____. 14.将0.09493用四舍五入法取近似值精确到百分位,其结果是_____. 15.把53°24′用度表示为_____.16.一个商店把某件商品按进价提高20%作为定价,可是总卖不出去;后来按定价减价20%出售,很快卖掉,结果这次生意亏了4元.那么这件商品的进价是________元. 17.在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为_____. 18.4是_____的算术平方根.19.8点30分时刻,钟表上时针与分针所组成的角为_____度.20.如图,已知线段16AB cm =,点M 在AB 上:1:3AM BM =,P Q 、分别为AM AB 、的中点,则PQ 的长为____________.21.为了了解我市2019年10000名考生的数学中考成绩,从中抽取了200名考生成绩进行统计.在这个问题中,下列说法:①这10000名考生的数学中考成绩的全体是总体:②每个考生是个体;③从中抽取的200名考生的数学中考成绩是总体的一个样本:④样本容量是200.其中说法正确的有(填序号)______22.观察一列有规律的单项式:x ,23x ,35x ,47x ,59x ⋅⋅⋅,它的第n 个单项式是______.23.比较大小:﹣8_____﹣9(填“>”、“=”或“<“). 24.若-3x 2m+6y 3与2x 4y n 是同类项,则m+n=______.三、压轴题25.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小; (2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.26.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB =22,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)出数轴上点B 表示的数 ;点P 表示的数 (用含t 的代数式表示) (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.27.已知数轴上两点A 、B ,其中A 表示的数为-2,B 表示的数为2,若在数轴上存在一点C ,使得AC+BC=n ,则称点C 叫做点A 、B 的“n 节点”.例如图1所示:若点C 表示的数为0,有AC+BC=2+2=4,则称点C 为点A 、B 的“4节点”. 请根据上述规定回答下列问题:(1)若点C 为点A 、B 的“n 节点”,且点C 在数轴上表示的数为-4,求n 的值; (2)若点D 是数轴上点A 、B 的“5节点”,请你直接写出点D 表示的数为______; (3)若点E 在数轴上(不与A 、B 重合),满足BE=12AE ,且此时点E 为点A 、B 的“n 节点”,求n 的值.28.已知有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C ,且满足(a-1)2+|ab+3|=0,c=-2a+b .(1)分别求a ,b ,c 的值;(2)若点A 和点B 分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t 秒.i )是否存在一个常数k ,使得3BC-k•AB 的值在一定时间范围内不随运动时间t 的改变而改变?若存在,求出k 的值;若不存在,请说明理由.ii )若点C 以每秒3个单位长度的速度向右与点A ,B 同时运动,何时点C 为线段AB 的三等分点?请说明理由.29.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。
山东省济南市七年级(上)期末数学试卷(含解析)
山东省济南市七年级(上)期末数学试卷一、选择题(本大题共12个小照,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列各数中,最小的数是()A.﹣2B.0C.D.﹣π2.如图,几何体的左视图是()A.B.C.D.3.为了解游客对恭王府、北京大观园、北京动物园和景山公园四个旅游景区的满意率情况,某班实践活动小组的同学给出了以下几种调查方案:方案一:在多家旅游公司随机调查400名导游;方案二:在恭王府景区随机调查400名游客;方案三:在北京动物园景区随机调查400名游客;方案四:在上述四个景区各随机调查400名游客.在这四种调查方案中,最合理的是()A.方案一B.方案二C.方案三D.方案四4.下列选项中,表示点P在点O十点钟方向正确的是()A.B.C.D.5.下列说法中正确的是()A.0不是单项式B.6πx3的系数为6C.3x﹣6y+5不是多项式D.2ah的次数26.已知如图,则下列叙述不正确的是()A.点O不在直线AC上B.射线AB与射线BC是指同一条射线C.图中共有5条线段D.直线AB与直线CA是指同一条直线7.下列各项去括号正确的是()A.﹣3(m+n)﹣mn=﹣3m+3n﹣mnB.﹣(5x﹣3y)+4(2xy﹣y2)=﹣5x+3y+8xy﹣4y2C.ab﹣5(﹣a+3)=ab+5a﹣3D.x2﹣2(2x﹣y+2)=x2﹣4x﹣2y+48.“享受光影文化,感受城市魅力”,2018年4月15~22日第八届北京国际电影节顺利举办.如面的统计图反映了北京国际电影节参展影片的有关情况:悬疑剧情爱情喜剧科幻动作古装动画其他影片类型届第七届8.70%25.30%17.80%12.20%13.00%7.80%0 3.80%11.40%第八届21.33%19.94%18.70%15.37%10.66%7.48% 4.02% 1.39% 1.11%根据统计图提供的信息,下列推断合理的是()A.两届相比较,所占比例最稳定的是动作类影片B.两届相比较,所占比例增长最多的是剧情类影片C.第八届悬疑类影片数量比第七届的2倍还多D.在第七届中,所占比例居前三位的类型是悬疑类、剧情类和爱情类9.甲车队有汽车100辆,乙车队有汽车68辆,根据情况需要甲车队的汽车是乙车队的汽车的两倍,则需要从乙队调x辆汽车到甲队,由此可列方程为()A.100﹣x=2(68+x)B.2(100﹣x)=68+xC.100+x=2(68﹣x)D.2(100+x)=68﹣x10.如图,线段AB=20,C为AB的中点,D为CB上一点,E为DB的中点,且EB=3,则CD等于()A.10B.6C.4D.211.如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a,b(a >b),则a﹣b的值为()A.6B.8C.9D.1212.如图所示,圆的周长为4个单位长度,在圆周的4等分点处标上字母A,B,C,D,先将圆周上的字母A对应的点与数轴的数字1所对应的点重合,若将圆沿着数轴向左滚动、那么数轴上的﹣2019所对应的点与圆周上字母()所对应的点重合.A.A B.B C.C D.D二、填空题(本大题共6个小题,每小题4分,共24分.把答案填在答题卡的横线上.)13.计算:|﹣3|﹣1=.14.将代数式4a2b+3ab2﹣2b3+a3按a的升幂排列的是.15.若x+2与﹣5互为相反数,则x的值为.16.如图,是一种数值转换机的运算程序.若输入的数为5,则第100次输出的数是.17.在直线l上有四个点A、B、C、D,已知AB=24,AC=6,点D是BC的中点,则线段AD=.18.如图,甲、乙两动点分别从正方形ABCD的顶点,A,C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2019次相遇在边上(填AB,BC,CD或AD).三、解答题(本大题共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤.)19.(6分)计算:(1)8+(﹣3)2×(﹣2);(2)﹣×(﹣+).20.(6分)解方程:(1)﹣2x+4=0;(2)6﹣3(x+)=.21.(6分)(1)如图1,已知三点A,B,C,按要求画图:画直线AB;画射线AC;画线段BC.(2)如图2,用适当的语句表述点A,P与直线l的关系.22.(8分)如图,在一张边长为10的正方形的纸片上,剪去两个完全一样的小直角三角形和一个长方形,得到一个形如“囧”字的图案(阴影部分),其面积是S.设剪去的小长方形长和宽分别为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y.(1)用含有x、y的代数式表示S,并将结果化简;(2)当x=3,y=2时,求S的值.23.(8分)若“ω”是新规定的某种运算符号,设aωb=3a﹣2b,(1)计算:(x2+y)ω(x2﹣y)(2)若x=﹣2,y=2,求出(x2+y)ω(x2﹣y)的值.24.(10分)设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级,75≤x<85为B级,60≤x<75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了名学生,α=%;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为度;(4)若该校共有2000名学生,请你估计该校D级学生有多少名?25.(10分)计算:已知|x|=3,|y|=2,(1)当xy<0时,求x+y的值(2)求x﹣y的最大值26.(12分)A、B两地相距70千米,甲从A地出发,每小时行15千米,乙从B地出发,每小时行20千米.(1)若两人同时出发,相向而行,则经过几小时两人相遇?(2)若甲在前,乙在后,两人同时同向而行,则几小时后乙超过甲10千米?(3)若两人同时出发,相向而行,则几小时后两人相距10千米?27.(12分)如图,OC是∠AOB内一条射线,OD、OE别是∠AOC和∠BOC的平分线.(1)如图①,当∠AOB=80°时,则∠DOE的度数为°;(2)如图②,当射线OC在∠AOB内绕O点旋转时,∠BOE、∠EOD、∠DOA三角之间有怎样的数量关系?并说明理由;(3)当射线OC在∠AOB外如图③所示位置时,(2)中三个角:∠BOE、∠EOD、∠DOA之间数量关系的结论是否还成立?给出结论并说明理由;(4)当射线OC在∠AOB外如图④所示位置时,∠BOE、∠EOD、∠DOA之间数量关系是.参考答案与试题解析一、选择题(本大题共12个小照,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列各数中,最小的数是()A.﹣2B.0C.D.﹣π【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:|﹣|=,则|﹣|>0>﹣2>﹣π,故最小的数是:﹣π.故选:D.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.如图,几何体的左视图是()A.B.C.D.【分析】找到从几何体左面看得到的平面图形即可.【解答】解:从几何体左面看得到是矩形的组合体,且长方形靠左.故选:A.【点评】此题主要考查了三视图的相关知识;掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.3.为了解游客对恭王府、北京大观园、北京动物园和景山公园四个旅游景区的满意率情况,某班实践活动小组的同学给出了以下几种调查方案:方案一:在多家旅游公司随机调查400名导游;方案二:在恭王府景区随机调查400名游客;方案三:在北京动物园景区随机调查400名游客;方案四:在上述四个景区各随机调查400名游客.在这四种调查方案中,最合理的是()A.方案一B.方案二C.方案三D.方案四【分析】根据调查收集数据应注重代表性以及全面性,进而得出符合题意的答案.【解答】解:为了解游客对恭王府、北京大观园、北京动物园和景山公园四个旅游景区的满意率情况,应在上述四个景区各随机调查400名游客.故选:D.【点评】此题主要考查了调查收集数据的过程与方法,正确掌握数据收集代表性是解题关键.4.下列选项中,表示点P在点O十点钟方向正确的是()A.B.C.D.【分析】根据点P在点O十点钟方向,而10点与12点相隔2格,每格30°即可得.【解答】解:∵点P在点O十点钟方向,而10点与12点相隔2格,每格30°,∴表示点P在点O十点钟方向的图形为:故选:B.【点评】本题主要考查方向角,解题的关键是熟练掌握方向角的定义.5.下列说法中正确的是()A.0不是单项式B.6πx3的系数为6C.3x﹣6y+5不是多项式D.2ah的次数2【分析】根据单项式与多项式的概念即可求出答案.【解答】解:(A)0是单项式,故A错误;(B)6πx3的系数为6π,故B错误;(C)3x﹣6y+5是多项式,故C错误;故选:D.【点评】本题考查整式,解题的关键是熟练运用整式的运算法则,本题属于基础题型.6.已知如图,则下列叙述不正确的是()A.点O不在直线AC上B.射线AB与射线BC是指同一条射线C.图中共有5条线段D.直线AB与直线CA是指同一条直线【分析】根据点与直线的关系可知点O不在直线AC上,故A说法正确,不符合题意;射线表示方法是端点字母在前,故B错误,符合题意;图中有线段AB、AC、BC、OB、OC,共5条,故C说法正确,不符合题意;直线表示方法是用直线上两个点表示,没有先后顺序,故D正确,不符合题意.【解答】解:A、点O不在直线AC上,故A说法正确,不符合题意;B、射线AB与射线BC不是指同一条射线,故B错误,符合题意;C、图中有线段AB、AC、BC、OB、OC,共5条,故C说法正确,不符合题意;D、直线AB与直线CA是指同一条直线,故D正确,不符合题意.故选:B.【点评】此题主要考查了直线、射线、线段,以及点与直线的位置关系,关键是掌握三线的表示方法.7.下列各项去括号正确的是()A.﹣3(m+n)﹣mn=﹣3m+3n﹣mnB.﹣(5x﹣3y)+4(2xy﹣y2)=﹣5x+3y+8xy﹣4y2C.ab﹣5(﹣a+3)=ab+5a﹣3D.x2﹣2(2x﹣y+2)=x2﹣4x﹣2y+4【分析】根据去括号法则逐个判断即可.【解答】解:A、﹣3(m+n)﹣mn=﹣3m﹣3n﹣mn,错误,故本选项不符合题意;B、﹣(5x﹣3y)+4(2xy﹣y2)=﹣5x+3y+8xy﹣4y2,正确,故本选项符合题意;C、ab﹣5(﹣a+3)=ab+5a﹣15,错误,故本选项不符合题意;D、x2﹣2(2x﹣y+2)=x2﹣4x+2y﹣4,错误,故本选项不符合题意;故选:B.【点评】本题考查了去括号法则,能熟记去括号法则的内容是解此题的关键.8.“享受光影文化,感受城市魅力”,2018年4月15~22日第八届北京国际电影节顺利举办.如面的统计图反映了北京国际电影节参展影片的有关情况:影片类型悬疑剧情爱情喜剧科幻动作古装动画其他届第七届8.70%25.30%17.80%12.20%13.00%7.80%0 3.80%11.40%第八届21.33%19.94%18.70%15.37%10.66%7.48% 4.02% 1.39% 1.11%根据统计图提供的信息,下列推断合理的是()A.两届相比较,所占比例最稳定的是动作类影片B.两届相比较,所占比例增长最多的是剧情类影片C.第八届悬疑类影片数量比第七届的2倍还多D.在第七届中,所占比例居前三位的类型是悬疑类、剧情类和爱情类【分析】根据表格中的数据可以判断各个选项中的说法是否合理,本题得以解决.【解答】解:两届相比较,所占比例最稳定的是动作类影片,故选项A合理,两届相比较,所占比例增长最多的是悬疑类,故选项B不合理,第八届悬疑类影片所占的比例比第七届的2倍还多,故选项C不合理,在第七届中,所占比例居前三位的类型是剧情类、爱情类、科幻类,故选项D不合理,故选:A.【点评】本题考查统计表,解答本题的关键是明确题意,可以判断出各个选项中的说法是否合理.9.甲车队有汽车100辆,乙车队有汽车68辆,根据情况需要甲车队的汽车是乙车队的汽车的两倍,则需要从乙队调x辆汽车到甲队,由此可列方程为()A.100﹣x=2(68+x)B.2(100﹣x)=68+xC.100+x=2(68﹣x)D.2(100+x)=68﹣x【分析】由题意得到题中存在的等量关系为:2(乙队原来的车辆﹣调出的车辆)=甲队原来的车辆+调入的车辆,根据此等式列方程即可.【解答】解:设需要从乙队调x辆汽车到甲队,由题意得100+x=2(68﹣x),故选:C.【点评】本题考查了由实际问题抽象出一元一次方程,表示出抽调后两车队的汽车辆数是解题的关键.10.如图,线段AB=20,C为AB的中点,D为CB上一点,E为DB的中点,且EB=3,则CD等于()A.10B.6C.4D.2【分析】由线段的中点定义可得BD=6,BC=10,由线段的和差关系可求CD的长.【解答】解:∵E为DB的中点,且EB=3,∴BD=2BE=6,∵线段AB=20,C为AB的中点,∴CB=AC=10,∵CD=BC﹣BD∴CD=4故选:C.【点评】本题考查了两点间的距离,线段中点的定义,利用线段的和差关系求线段的长度是本题的关键.11.如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a,b(a >b),则a﹣b的值为()A.6B.8C.9D.12【分析】设重叠部分面积为c,(a﹣b)可理解为(a+c)﹣(b+c),即两个长方形面积的差.【解答】解:设重叠部分的面积为c,则a﹣b=(a+c)﹣(b+c)=35﹣23=12,故选:D.【点评】本题考查了整式的加减,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.12.如图所示,圆的周长为4个单位长度,在圆周的4等分点处标上字母A,B,C,D,先将圆周上的字母A对应的点与数轴的数字1所对应的点重合,若将圆沿着数轴向左滚动、那么数轴上的﹣2019所对应的点与圆周上字母()所对应的点重合.A.A B.B C.C D.D【分析】圆每转动一周,A、B、C、D循环一次,﹣2019与1之间有2020个单位长度,即转动2020÷4=505(周),据此可得.【解答】解:1﹣(﹣2019)=2020,2020÷4=505(周),所以应该与字母A所对应的点重合.故选:A.【点评】此题考查数轴,以及循环的有关知识,把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成.二、填空题(本大题共6个小题,每小题4分,共24分.把答案填在答题卡的横线上.)13.计算:|﹣3|﹣1=2.【分析】原式利用绝对值的代数意义,以及减法法则计算即可求出值.【解答】解:原式=3﹣1=2.故答案为:2【点评】此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.14.将代数式4a2b+3ab2﹣2b3+a3按a的升幂排列的是﹣2b3+3ab2+4a2b+a3.【分析】根据多项式的项的定义,可知本多项式的项为4a2b,3ab2,﹣2b2,a3,再由加法的交换律及多项式的升幂排列得出结果.【解答】解:多项式4a2b+3ab2﹣2b2+a3的各项为4a2b,3ab2,﹣2b2,a3.按字母a升幂排列为:﹣2b3+3ab2+4a2b+a3.故答案为:﹣2b3+3ab2+4a2b+a3.【点评】本题考查了多项式升幂排列的定义.把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.15.若x+2与﹣5互为相反数,则x的值为3.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意可得:x+2=5,解得:x=3,故答案为;3【点评】此题考查了解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.16.如图,是一种数值转换机的运算程序.若输入的数为5,则第100次输出的数是1.【分析】根据数值转换机中的运算程序判断即可.【解答】解:当第1次输入的数为x=5时,第一次输出5+3=8,第二次输出8×=4,第三次输出4×=2,第四次输出2×=1,第五次输出1+3=4,除去前1次,以4,2,1循环,三个一循环,则第100次输出的数为1;故答案为:1.【点评】此题考查了代数式求值,弄清题中的规律是解本题的关键.17.在直线l上有四个点A、B、C、D,已知AB=24,AC=6,点D是BC的中点,则线段AD=9或15.【分析】分类讨论:C在线段AB的反向延长向上;C在线段AB上;根据线段的和差,可得BC的长,根据线段中点的性质,可得答案.【解答】解:如图1,当C在线段AB的反向延长向上时,由线段的和差,得BC=AB+AC =24+6=30,由线段中点的性质,得CD=BC=×30=15,AD=CD﹣AC15﹣6=9;如图2,当C在线段AB上时,由线段的和差,得BC=AB﹣AC=24﹣6=18,由线段中点的性质,得CD=BC=×18=9,AD=AC+CD=6+9=15.故答案为:9或15.【点评】本题考查了两点间的距离,利用了线段的和差,线段中点的性质,分类讨论是解题关键,以防遗漏.18.如图,甲、乙两动点分别从正方形ABCD的顶点,A,C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2019次相遇在BC边上(填AB,BC,CD或AD).【分析】因为乙的速度是甲的速度的4倍,所以第1次相遇,甲走了正方形周长的×=;从第2次相遇起,每次甲走了正方形周长的,从第2次相遇起,5次一个循环,从而不难求得它们第2019次相遇位置.【解答】解:根据题意分析可得:乙的速度是甲的速度的4倍,故第1次相遇,甲走了正方形周长的×=;从第2次相遇起,每次甲走了正方形周长的,从第2次相遇起,5次一个循环.因此可得:从第2次相遇起,每次相遇的位置依次是:DC,点C,CB,BA,AD;依次循环.(2019﹣1)÷5=403…3,故它们第2019次相遇位置与第三次相同,在边BC上.故答案为BC.【点评】此题主要考查了行程问题中的相遇问题及按比例分配的运用,通过计算发现规律是解题关键.三、解答题(本大题共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤.)19.(6分)计算:(1)8+(﹣3)2×(﹣2);(2)﹣×(﹣+).【分析】(1)先计算乘方,再计算乘法,最后计算加减可得;(2)先利用乘法分配律计算,再计算乘法,最后计算加减可得.【解答】解:(1)原式=8+9×(﹣2)=8﹣18=﹣10;(2)原式=﹣×+×﹣×=﹣4+3﹣2=﹣2.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.20.(6分)解方程:(1)﹣2x+4=0;(2)6﹣3(x+)=.【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去括号,去分母,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项合并得:﹣2x=﹣4,解得:x=2;(2)去括号得:6﹣3x﹣2=,去分母得:18﹣9x﹣6=2,移项合并得:﹣9x=﹣10,解得:x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.(6分)(1)如图1,已知三点A,B,C,按要求画图:画直线AB;画射线AC;画线段BC.(2)如图2,用适当的语句表述点A,P与直线l的关系.【分析】(1)利用利用线段的定义得出即可;利用射线的定义得出即可;直线的定义得出即可;(2)根据点在直线上,点在直线外,即可解答.【解答】解:(1)如图所示:(2)点A在直线l上,点P在直线l外.【点评】此题主要考查了基本作图,熟练根据相关定义得出是解题关键.22.(8分)如图,在一张边长为10的正方形的纸片上,剪去两个完全一样的小直角三角形和一个长方形,得到一个形如“囧”字的图案(阴影部分),其面积是S.设剪去的小长方形长和宽分别为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y.(1)用含有x、y的代数式表示S,并将结果化简;(2)当x=3,y=2时,求S的值.【分析】(1)用正方形的面积减去两个三角形,一个小正方形面积,表示出S即可;(2)把x与y的值代入计算即可求出值.【解答】解:(1)根据题意得:S=100﹣xy﹣xy﹣xy=100﹣2xy;(2)当x=3,y=2时,原式=100﹣12=88.【点评】此题考查了代数式求值,以及列代数式,熟练掌握运算法则是解本题的关键.23.(8分)若“ω”是新规定的某种运算符号,设aωb=3a﹣2b,(1)计算:(x2+y)ω(x2﹣y)(2)若x=﹣2,y=2,求出(x2+y)ω(x2﹣y)的值.【分析】(1)先依据定理列出代数式,然后依据整式的运算法则进行计算即可;(2)将x=﹣2,y=2代入(1)的化简结果进行计算即可.【解答】解:(x2+y)ω(x2﹣y)=3(x2+y)﹣2(x2﹣y)=3x2+3y﹣2x2+2y=x2+5y;(2)将x=﹣2,y=2代入得:原式=(﹣2)2+5×2=2+20=14.【点评】本题主要考查的是整式的加减和求代数式的值,掌握整式的加减法则是解题的关键.24.(10分)设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级,75≤x<85为B级,60≤x<75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了50名学生,α=24%;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为72度;(4)若该校共有2000名学生,请你估计该校D级学生有多少名?【分析】(1)根据B级的人数和所占的百分比求出抽取的总人数,再用A级的人数除以总数即可求出a;(2)用抽取的总人数减去A、B、D的人数,求出C级的人数,从而补全统计图;(3)用360度乘以C级所占的百分比即可求出扇形统计图中C级对应的圆心角的度数;(4)用D级所占的百分比乘以该校的总人数,即可得出该校D级的学生数.【解答】解:(1)在这次调查中,一共抽取的学生数是:=50(人),a=×100%=24%;故答案为:50,24;(2)等级为C的人数是:50﹣12﹣24﹣4=10(人),补图如下:(3)扇形统计图中C级对应的圆心角为×360°=72°;故答案为:72;(4)根据题意得:2000×=160(人),答:该校D级学生有160人.【点评】此题考查了是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.(10分)计算:已知|x|=3,|y|=2,(1)当xy<0时,求x+y的值(2)求x﹣y的最大值【分析】(1)由题意x=±3,y=±2,由于xy<0,x=3,y=﹣2或x=﹣3,y=2,代入x+y即可求出答案.(2)由题意x=±3,y=±2,根据几种情况得出x﹣y的值,进而比较即可.【解答】解:由题意知:x=±3,y=±2,(1)∵xy<0,∴x=3,y=﹣2或x=﹣3,y=2,∴x+y=±1,(2)当x=3,y=2时,x﹣y=3﹣2=1;当x=3,y=﹣2时,x﹣y=3﹣(﹣2)=5;当x=﹣3,y=2时,x﹣y=﹣3﹣2=﹣5;当x=﹣3,y=﹣2时,x﹣y=﹣3﹣(﹣2)=﹣1,所以x﹣y的最大值是5【点评】本题考查绝对值的性质,涉及代入求值,分类讨论的思想,属于基础题型.26.(12分)A、B两地相距70千米,甲从A地出发,每小时行15千米,乙从B地出发,每小时行20千米.(1)若两人同时出发,相向而行,则经过几小时两人相遇?(2)若甲在前,乙在后,两人同时同向而行,则几小时后乙超过甲10千米?(3)若两人同时出发,相向而行,则几小时后两人相距10千米?【分析】(1)根据题意可以列出相应的一元一次方程,从而可以解答本题;(2)根据题意可以列出相应的一元一次方程,从而可以解答本题;(3)根据题意可以列出相应的一元一次方程,从而可以解答本题.【解答】解:(1)设经过x小时两人相遇,15x+20x=70,解得,x=2,答:经过2小时两人相遇;(2)设经过a小时,乙超过甲10千米,20a=15a+70+10,解得,a=16,答:经过16小时,乙超过甲10千米;(3)设b小时后两人相距10千米,|15b+20b﹣70|=10,解得,b1=,b2=,答:小时或小时后两人相距10千米.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程.27.(12分)如图,OC是∠AOB内一条射线,OD、OE别是∠AOC和∠BOC的平分线.(1)如图①,当∠AOB=80°时,则∠DOE的度数为40°;(2)如图②,当射线OC在∠AOB内绕O点旋转时,∠BOE、∠EOD、∠DOA三角之间有怎样的数量关系?并说明理由;(3)当射线OC在∠AOB外如图③所示位置时,(2)中三个角:∠BOE、∠EOD、∠DOA之间数量关系的结论是否还成立?给出结论并说明理由;(4)当射线OC在∠AOB外如图④所示位置时,∠BOE、∠EOD、∠DOA之间数量关系是∠DOE=∠BOE+∠DOA.【分析】(1)(2)根据角平分线定义得出∠DOC=∠AOC,∠EOC=∠BOC,求出∠DOE=(∠AOC+∠BOC)=AOB,即可得出答案;(3)根据角平分线定义得出∠DOC=∠AOC,∠EOC=∠BOC,求出∠DOE=(∠AOC﹣∠BOC)=AOB,即可得出答案;(4)根据角平分线定义即可求解.【解答】解:当射线OC在∠AOB的内部时,∵OD,OE分别为∠AOC,∠BOC的角平分线,∴∠DOC=∠AOC,∠EOC=∠BOC,∴∠DOE=∠DOC+∠EOC=(∠AOC+∠BOC)=AOB,(1)若∠AOB=80°,则∠DOE的度数为40°.故答案为:40;(2)∠DOE=∠DOC+∠EOC=∠AOC+∠BOC=∠BOE+∠DOA.(3)当射线OC在∠AOB的外部时(1)中的结论不成立.理由是:∵OD、OE分别是∠AOC、∠BOC的角平分线∴∠COD=∠AOC,∠EOC=∠BOC,∠DOE=∠COD﹣∠EOC,=∠AOC﹣∠BOC,=∠AOD﹣∠BOE.(4)∵OD,OE分别为∠AOC,∠BOC的角平分线,∴∠DOC=∠AOD,∠EOC=∠BOE,∴∠DOE=∠DOC+∠EOC=∠BOE+∠DOA.故∠BOE、∠EOD、∠DOA之间数量关系是∠DOE=∠BOE+∠DOA.故答案为:∠DOE=∠BOE+∠DOA.【点评】本题考查了角的有关计算和角平分线定义,能够求出∠DOE=∠AOB是解此题的关键,求解过程类似.。
山东省济南市 七年级(上)期末数学试卷
第 1 页,共 16 页
A. 10
B. 20
C. 30
D. 40
8. 下列四个生活、生产现象中,其中可用“两点之间,线段最短”来解释的现象有 ( ) ①用两个钉子就可以把木条固定在墙上 ②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线 ③从 A 地到 B 地架设电线,总是尽可能沿着直线架设 ④把弯曲的公路改直,就能缩短路程.
则商品成本价为______元. 三、计算题(本大题共 3 小题,共 20.0 分) 19. 计算:
(1)(-5)•25-(-16) (2)(-1)4-36÷(-6)+3×(-1)
3
20. (1)a•(5a-3b)-(a-2b) (2)2(x2y-xy)-3(xy-x2y)-4x2y,其中 x=-1.y=l.
B. 11 ∘ ������
C. −3 ∘ ������
D. −11 ∘ ������
5. 下列计算正确的是( )
A. 3������ + 2������2 = 5������3 B. 2������2−������2 = 1
C. −������������−������������ = 0 D. −������������2 +������������2 = 0
七年级(上)期末数学试卷
题号 得分
一
二
三
四
总分
一、选择题(本大题共 12 小题,共 48.0 分)
1. -8 的相反数是( )
A. 8
B. −8
C.
1 8
D.
1
−8
2. 德国《时代》周报网站列举了数据来评价中国改革开放 40 年的成就,在 2017 年我 国申报了 8330 项国际专利,目前在年度国际专利申请量排名中位居第五,8330 用 科学记数法表示为( )
山东省济南市槐荫区2023-2024学年七年级上学期期末数学试题
山东省济南市槐荫区2023-2024学年七年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________A .4b a -B .32b a -C .42-b aD .3b a -9.已知点C 在直线AB 上,若4cm AC =,6cm BC =,E 为线段AB 的中点,则AE 的长为( )A .5cm 或3cmB .5cm 或1cmC .5cmD .3cm10.计算机利用的是二进制数,它共有两个数码0,1,将一个十进制数转化为二进制数,只需将该数写为若干个2n 的数字之和,依次写出1或0即可.如十进制数字19可以写为二进制数字10011,因为432101916211202021212=++=⨯+⨯+⨯+⨯+⨯;37可以写为二进制数字100101,因为543211732411202021202121120=++=⨯+⨯+⨯+⨯+⨯+⨯+⨯,则十进制数字70是二进制下的( )A .7位数B .6位数C .5位数D .4位数二、填空题16.如图,在同一平面内有n 条直线,任意两条不平行,任意三条不共点,当1n =时,一条直线将一个平面分成两个部分;当2n =时,两条直线将一个平面分成四个部分;当3n =时,三条直线将一个平面分成7个部分;当4n =时,四条直线将一个平面分成11个部分.以此类推,若()1n -条直线将一个平面分成1n a -个部分,n 条直线将一个平面分成n a 个部分.试探索1n a -、n a 、n 之间的关系.三、解答题根据上面提供的信息,回答下列问题:(1)动手操作现在小明想将剪断的图2重新粘贴到图1上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒(如图3),请你帮助小明在图1中补全图形(补出来一种即可);(2)解决问题经过测量,小明发现这个纸盒的底面是一个正方形,它的边长是长方体高的5倍,根据图1中的数据,求这个纸盒的体积.24.为了丰富校园体育生活,某学校准备举行运动会,学校需要采购秩序册x份,他们的报价相同.甲厂的优惠条件是:按每份定价6元的八折收费,另收500元制版费;乙厂的优惠条件是:每份定价6元的价格不变,而500元的制版费四折优惠.问:(1)请用含x的式子表示,到甲厂采购需要支付________元,到乙厂采购需要支付________元;(2)当印制200份秩序册时,选哪个印刷厂所付费用较少,为什么?25.李师傅正在准备用篱笆修建一个长方形鸡舍栅栏,栅栏一面靠墙(墙面长度不限),三面用篱笆,篱笆总长60米,篱笆围成的长方形鸡舍的长比宽多6米,请你用所学的知识解决以下问题.(篱笆的占地面积忽略不计)(1)如图,如果长方形鸡舍的长与墙为对面,长方形鸡舍的面积是多少?(2)如果要在墙的对面留一个3米宽的门(门不使用篱笆),那么长方形鸡舍的面积又是多少?26.阅读下面材料:利用折纸可以作出角平分线.(1)如图1,若58AOB ∠=︒,则BOC ∠=______;(2)折叠长方形纸片,OC ,OD 均是折痕,折叠后,点A 落在点A ',点B 落在点B ',连接OA '.①如图2,当点B '在OA '上时,求COD ∠的大小;②如图3,当点B '在COA '∠的内部时,连接OB ',若44AOC ∠=︒,61BOD ∠=︒,求AO B ''∠的度数.。
济南市数学七年级上学期期末数学试题题
济南市数学七年级上学期期末数学试题题 一、选择题 1.4 =( )A .1B .2C .3D .42.根据等式的性质,下列变形正确的是( )A .若2a =3b ,则a =23b B .若a =b ,则a +1=b ﹣1 C .若a =b ,则2﹣3a =2﹣3b D .若23a b =,则2a =3b 3.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等...的图形是( )A .B .C .D .4.已知一个两位数,个位数字为b ,十位数字比个位数字大a ,若将十位数字和个位数字对调,得到一个新的两位数,则原两位数与新两位数之差为( )A .9a 9b -B .9b 9a -C .9aD .9a -5.探索规律:右边是用棋子摆成的“H”字,第一个图形用了 7 个棋子,第二个图形用了 12 个棋子,按这样的规律摆下去,摆成 第 20 个“H”字需要棋子( )A .97B .102C .107D .112 6.下列四个数中最小的数是( )A .﹣1B .0C .2D .﹣(﹣1) 7.如图是由下列哪个立体图形展开得到的?( )A.圆柱B.三棱锥C.三棱柱D.四棱柱8.如图,能判定直线a∥b的条件是( )A.∠2+∠4=180°B.∠3=∠4 C.∠1+∠4=90°D.∠1=∠4 9.估算15在下列哪两个整数之间( )A.1,2 B.2,3 C.3,4 D.4,5 10.下列变形中,不正确的是( )A.若x=y,则x+3=y+3 B.若-2x=-2y,则x=yC.若x ym m=,则x y=D.若x y=,则x ym m=11.已知a﹣b=﹣1,则3b﹣3a﹣(a﹣b)3的值是()A.﹣4 B.﹣2 C.4 D.212.如图,4张如图1的长为a,宽为b(a>b)长方形纸片,按图2的方式放置,阴影部分的面积为S1,空白部分的面积为S2,若S2=2S1,则a,b满足()A.a=32b B.a=2b C.a=52b D.a=3b二、填空题13.将0.09493用四舍五入法取近似值精确到百分位,其结果是_____.14.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.15.因原材料涨价,某厂决定对产品进行提价,现有三种方案:方案一,第一次提价10%,第二次提价30%;方案二,第一次提价30%,第二次提价10%;方案三,第一、二次提价均为20%.三种方案提价最多的是方案_____________.16.﹣30×(1223-+45)=_____. 17.如图,这是一种数值转换机的运算程序,若第一次输入的数为7,则第2018次输出的数是_____;若第一次输入的数为x ,使第2次输出的数也是x ,则x =_____.18.分解因式: 22xy xy +=_ ___________19.如图,若12l l //,1x ∠=︒,则2∠=______.20.如图,已知OC 是∠AOB 内部的一条射线,∠AOC =30°,OE 是∠COB 的平分线.当∠BOE =40°时,则∠AOB 的度数是_____.21.|﹣12|=_____. 22.已知一个角的补角是它余角的3倍,则这个角的度数为_____.23.若关于x 的方程2x +a ﹣4=0的解是x =﹣2,则a =____.24.如果,,a b c 是整数,且c a b =,那么我们规定一种记号(,)a b c =,例如239=,那么记作(3,9)=2,根据以上规定,求(−2,16)=______.三、解答题25.解不等式组()355232x x x +≤⎧⎨+>-⎩,并在数轴上表示解集. 26.阅读下面解题过程: 计算:13(15)3632⎛⎫-÷--⨯ ⎪⎝⎭解:原式=25(15)66⎛⎫-÷-⨯ ⎪⎝⎭(第一步) =25(15)66⎛⎫-÷-⨯ ⎪⎝⎭(第二步)=(﹣15)÷(﹣25)(第三步) =﹣35(第四步) 回答:(1)上面解题过程中有两个错误,第一处是第 步,错误的原因是 ,第二处是第 步,错误的原因是 ;(2)正确的结果是 .27.解方程:x ﹣2=23x + 28.已知,若2(1)20a b ++-=,关于x 的方程2x+c=1的解为-1.求代数式22282(4)abc a b ab a b ---的值.29.计算:()()320192413-÷--⨯-30.计算题(1)20(18)5(25)-++-+-(2)121(24)234⎛⎫-+-⨯- ⎪⎝⎭ (3)22113141(0.5)44-+÷⨯--⨯- (4)先化简,再求值:()()222543x x y x y --+-,其中1x =-,2y = 四、压轴题31.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______.(3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分.(5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.32.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB =22,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)出数轴上点B表示的数;点P表示的数(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.33.如图1,线段AB的长为a.(1)尺规作图:延长线段AB到C,使BC=2AB;延长线段BA到D,使AD=AC.(先用尺规画图,再用签字笔把笔迹涂黑.)(2)在(1)的条件下,以线段AB所在的直线画数轴,以点A为原点,若点B对应的数恰好为10,请在数轴上标出点C,D两点,并直接写出C,D两点表示的有理数,若点M 是BC的中点,点N是AD的中点,请求线段MN的长.(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点D处开始,在点C,D之间进行往返运动;乙从点N开始,在N,M之间进行往返运动,甲、乙同时开始运动,当乙从M点第一次回到点N时,甲、乙同时停止运动,若甲的运动速度为每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点对应的有理数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据算术平方根的概念可得出答案.【详解】解:根据题意可得:4=2,故答案为:B.【点睛】本题考查算术平方根的概念,解题关键在于对其概念的理解.2.C解析:C【解析】【分析】利用等式的性质对每个式子进行变形即可找出答案.【详解】解:A 、根据等式性质2,2a =3b 两边同时除以2得a =32b ,原变形错误,故此选项不符合题意;B 、根据等式性质1,等式两边都加上1,即可得到a+=b+1,原变形错误,故此选项不符合题意;C 、根据等式性质1和2,等式两边同时除以﹣3且加上2应得2﹣3a =2﹣3b ,原变形正确,故此选项符合题意;D 、根据等式性质2,等式两边同时乘以6,3a =2b ,原变形错误,故此选项不符合题意. 故选:C .【点睛】本题主要考查等式的性质.解题的关键是掌握等式的性质.运用等式性质1必须注意等式两边所加上的(或减去的)必须是同一个数或整式;运用等式性质2必须注意等式两边所乘的(或除的)数或式子不为0,才能保证所得的结果仍是等式. 3.C解析:C【解析】【分析】根据余角与补角的性质进行一一判断可得答案..【详解】解:A,根据角的和差关系可得∠α=∠β=45o ;B,根据同角的余角相等可得∠α=∠β;C,由图可得∠α不一定与∠β相等;D,根据等角的补角相等可得∠α=∠β.故选C.【点睛】本题主要考查角度的计算及余角、补角的性质,其中等角的余角相等,等角的补角相等.4.C解析:C【解析】【分析】分别表示出愿两位数和新两位数,进而得出答案.【详解】解:由题意可得,原数为:()10a b b ++;新数为:10b a b ++,故原两位数与新两位数之差为:()()10a b b 10b a b 9a ++-++=.故选C .【点睛】本题考查列代数式,正确理解题意得出代数式是解题关键.5.B解析:B【解析】【分析】观察图形,正确数出个数,再进一步得出规律即可.【详解】摆成第一个“H”字需要2×3+1=7个棋子,第二个“H”字需要棋子2×5+2=12个;第三个“H”字需要2×7+3=17个棋子;第n 个图中,有2×(2n+1)+n=5n+2(个).∴摆成 第 20 个“H”字需要棋子的个数=5×20+2=102个.故B.【点睛】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键规律为各个图形中两竖行棋子的个数均为2n+1,横行棋子的个数为n .6.A解析:A【解析】【分析】首先根据有理数大小比较的方法,把所给的四个数从大到小排列即可.【详解】解:﹣(﹣1)=1,∴﹣1<0<﹣(﹣1)<2,故选:A .【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.7.C解析:C【解析】【分析】三棱柱的侧面展开图是长方形,底面是三角形.【详解】解:由图可得,该展开图是由三棱柱得到的,故选:C.【点睛】此题主要考查了几何体展开图,熟记常见几何体的平面展开图的特征,是解决此类问题的关键.8.D解析:D【解析】【分析】根据平行线的判定方法逐一进行分析即可得.【详解】A. ∠2+∠4=180°,互为邻补角,不能判定a//b,故不符合题意;B. ∠3=∠4,互为对顶角,不能判定a//b,故不符合题意;C. ∠1+∠4=90°,不能判定a//b,故不符合题意;D. ∠1=∠4,根据同位角相等,两直线平行可以判定a//b,故符合题意,故选D.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.9.C解析:C【解析】【分析】.【详解】∵9<15<16,∴,故选C.【点睛】本题考查了无理数的估算,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.10.D解析:D【解析】【分析】等式两边同时加减一个数,同时乘除一个不为0的数,等式依然成立,根据此性质判断即可.【详解】A. x=y 两边同时加3,可得到x+3=y+3,故A 选项正确;B. -2x=-2y 两边同时除以-2,可得到x=y ,故B 选项正确;C. 等式x y m m=中,m ≠0,两边同时乘以m 得x y =,故C 选项正确; D. 当m=0时,x y =两边同除以m 无意义,则x y m m=不成立,故D 选项错误; 故选:D .【点睛】 本题考查等式的变形,熟记等式的基本性质是解题的关键.11.C解析:C【解析】【分析】由题意可知3b-3a-(a-b )3=3(b-a )-(a-b )3,因此可以将a-b=-1整体代入即可.【详解】3b-3a-(a-b )3=3(b-a )-(a-b )3=-3(a-b )-(a-b )3=3-(-1)=4;故选C .【点睛】代数式中的字母表示的数没有明确告知,而是隐含在题设中,利用“整体代入法”求代数式的值.12.B解析:B【解析】【分析】从图形可知空白部分的面积为S 2是中间边长为(a ﹣b )的正方形面积与上下两个直角边为(a +b )和b 的直角三角形的面积,再与左右两个直角边为a 和b 的直角三角形面积的总和,阴影部分的面积为S 1是大正方形面积与空白部分面积之差,再由S 2=2S 1,便可得解.【详解】由图形可知,S 2=(a-b )2+b (a+b )+ab=a 2+2b 2,S 1=(a+b )2-S 2=2ab-b 2,∵S 2=2S 1,∴a 2+2b 2=2(2ab ﹣b 2),∴a 2﹣4ab +4b 2=0,即(a ﹣2b )2=0,∴a =2b ,故选B.【点睛】本题主要考查了求阴影部分面积和因式分解,关键是正确列出阴影部分与空白部分的面积和正确进行因式分解.二、填空题13.09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和解析:09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.14.【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为解析:【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为5:6,即可得出关于x的一元一次方程,解之即可得出x的值,再利用长方形的面积公式即可求出盒子底部长方形的面积.【详解】解:设小长方形卡片的长为2m ,则宽为m ,依题意,得:2m +2m =4,解得:m =1,∴2m =2.再设盒子底部长方形的另一边长为x ,依题意,得:2(4+x ﹣2):2×2(2+x ﹣2)=5:6,整理,得:10x =12+6x ,解得:x =3,∴盒子底部长方形的面积=4×3=12.故答案为:12.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.15.三【解析】【分析】由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.【详解】解:设原价为x ,两次提价后方案一:;方案二:;方案三:.综上可知三种方案提价最多的是方解析:三【解析】【分析】由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.【详解】解:设原价为x ,两次提价后方案一:(110%)(130%) 1.43x x ++=;方案二:(130%)(110%) 1.43x x ++=;方案三:(120%)(120%) 1.44x x ++=.综上可知三种方案提价最多的是方案三.故填:三.【点睛】本题考查列代数式,根据题意列出代数式并化简代数式比较大小即可.16.﹣19.【解析】【分析】根据乘法分配律简便计算即可求解.【详解】解:﹣30×(+)=﹣30×+(﹣30)×()+(﹣30)× =﹣15+20﹣24=﹣19.故答案为:﹣19.【点睛解析:﹣19.【解析】【分析】根据乘法分配律简便计算即可求解.【详解】解:﹣30×(1223-+45)=﹣30×12+(﹣30)×(23-)+(﹣30)×45=﹣15+20﹣24=﹣19.故答案为:﹣19.【点睛】本题考查了有理数的混合运算,熟练掌握运算法则和运算顺序是正确解题的关键. 17.2; 0或3或6【解析】【分析】先计算出前6次输出结果,据此得出循环规律,从而得出答案;根据数值转换机的运算程序,求出所有x的值,使得输入的数和第2次输出的数相等即可.【详解】解析:2; 0或3或6【解析】【分析】先计算出前6次输出结果,据此得出循环规律,从而得出答案;根据数值转换机的运算程序,求出所有x的值,使得输入的数和第2次输出的数相等即可.【详解】解:∵第1次输出的结果为7+3=10,第2次输出的结果为12×10=5,第3次输出结果为5+3=8,第4次输出结果为12×8=4,第5次输出结果为12×4=2,第6次输出结果为12×2=1,第7次输出结果为1+3=4,第8次输出结果为12×4=2,……∴输出结果除去前3个数后,每3个数为一个周期循环,∵(2018﹣3)÷3=671…2,∴第2018次输出的数是2,如图,若x=14x,则x=0;若x=12x+3,则x=6;若x=12(x+3),则x=3;故答案为:2、0或3或6.【点睛】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.18.【解析】【分析】原式提取公因式xy,即可得到结果.【详解】解:原式=xy(2y+1),故答案为:xy(2y+1)【点睛】此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本解析:xy(2y1)【解析】【分析】原式提取公因式xy,即可得到结果.【详解】解:原式=xy(2y+1),故答案为:xy(2y+1)【点睛】此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本题的关键.19.(180﹣x)°.【解析】【分析】根据平行线的性质得出∠2=180°﹣∠1,代入求出即可.【详解】∵l1∥l2,∠1=x°,∴∠2=180°﹣∠1=180°﹣x°=(180﹣x)°.故解析:(180﹣x)°.【解析】【分析】根据平行线的性质得出∠2=180°﹣∠1,代入求出即可.【详解】∵l1∥l2,∠1=x°,∴∠2=180°﹣∠1=180°﹣x°=(180﹣x)°.故答案为(180﹣x)°.【点睛】本题考查了平行线的性质的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.20.110【解析】【分析】由角平分线的定义求得∠BOC=80°,则∠AOB=∠BOC+∠AOC=110°.【详解】解:∵OE是∠COB的平分线,∠BOE=40°,∴∠BOC=80°,∴∠A解析:110【解析】【分析】由角平分线的定义求得∠BOC=80°,则∠AOB=∠BOC+∠AOC=110°.【详解】解:∵OE是∠COB的平分线,∠BOE=40°,∴∠BOC=80°,∴∠AOB=∠BOC+∠AOC=80°+30°=110°,故答案为:110°.【点睛】此题主要考查角度的求解,解题的关键是熟知角平分线的性质.21.【解析】【分析】当a是负有理数时,a的绝对值是它的相反数﹣a.【详解】解:|﹣|=.故答案为:【点睛】考查了绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0解析:1 2【解析】【分析】当a是负有理数时,a的绝对值是它的相反数﹣a.【详解】解:|﹣12|=12.故答案为:1 2【点睛】考查了绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.22.45°【解析】【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α解析:45°【解析】【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°-α=3(90°-α),解得α=45°.故答案为:45°.【点睛】本题考查了余角与补角,能分别用这个角表示出它的余角与补角是解题的关键.23.8【解析】【分析】把x=﹣2代入方程2x+a﹣4=0求解即可.【详解】把x=﹣2代入方程2x+a﹣4=0,得2×(﹣2)+a﹣4=0,解得:a=8.故答案为:8.【点睛】本题考查了一解析:8【解析】【分析】把x=﹣2代入方程2x+a﹣4=0求解即可.【详解】把x =﹣2代入方程2x +a ﹣4=0,得2×(﹣2)+a ﹣4=0,解得:a =8.故答案为:8.【点睛】本题考查了一元一次方程的解,解答本题的关键是把x =﹣2代入方程2x +a ﹣4=0求解. 24.4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的解析:4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的掌握零指数幂.三、解答题25.-4<x ≤2,数轴表示见解析.【解析】【分析】先分别求出每一个不等式的解集,然后确定其公共部分,最后在数轴上表示出来即可.【详解】()355232x x x +≤⎧⎪⎨+>-⎪⎩①②, 由①得:x ≤2,由②得:x>-4,所以不等式组的解集为:-4<x ≤2,在数轴上表示如下所示:【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解集的确定方法“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题的关键.26.(1)二;在同级运算中,没有按从左到右的顺序进行;四;两数相除,同号得正,符号应该是正的;(2)1085.【解析】【分析】(1)应先算括号里的,再按从左到右的顺序计算,故可求解;(2)根据有理数的混合运算法则即可求解.【详解】解:(1)上面解题过程中有两个错误,第一处是第二步,错误的原因是在同级运算中,没有按从左到右的顺序进行,第二处是第四步,错误的原因是两数相除,同号得正,符号应该是正的;(2)13 (15)3632⎛⎫-÷--⨯⎪⎝⎭=25 (15)66⎛⎫-÷-⨯⎪⎝⎭=186 5⨯=1085.故正确的结果是1085.故答案为:二;在同级运算中,没有按从左到右的顺序进行;四;两数相除,同号得正,符号应该是正的;1085.【点睛】此题主要考查了有理数的混合运算,运算顺序和符号问题是学生最容易出现错误的地方.27.x=4【解析】【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【详解】解:去分母得:3x﹣6=x+2,移项合并得:2x=8,解得:x=4.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.28.-34.【解析】【分析】根据非负数之和为0,则每个非负数都为0,解出a ,b 的值,然后将x=-1代入方程求出c 的值,最后将代数式化简,代入数据求值.【详解】解:因为2(1)|2|0++-=a b ,(a+1)2 ≥0,|2|0-≥b所以a+1=0,b-2=0解得:a=-1,b=2因为关于x 的方程2x+c=1的解为-1所以2×(-1)+c=1 ,解得c=3因为8abc -2a 2b -(4ab 2-a 2b)=8abc-2a 2b-4ab 2+a 2b=8abc-a 2b-4ab 2把a=-1,b=2,c=3代入代数式8abc-a 2b-4ab 2中,得8×(-1)×2×3-(-1)2×2-4×(-1)×22=-48-2-(-16)=-34.【点睛】本题考查非负数的性质,一元一次方程的解,以及代数式化简求值,熟记非负数的性质求出a 、b 的值是解题的关键.29.1【解析】【分析】根据有理数的乘方、绝对值、有理数的乘除法和加减法可以解答本题.【详解】解:()()3201924132(3)1-÷--⨯-=---= 【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.30.(1)18-;(2)2;(3)194-;(4)2x y -+,1. 【解析】【分析】(1)先运用减法法则和绝对值的性质转化为加法运算,同时写成最简形式,在利用加法的法则计算即可;(2)运用乘法的分配率进行计算;(3)先计算乘方,然后化简绝对值、计算乘除,最后计算加减;(4)去括号,合并同类项,然后代入字母的值进行计算.【详解】解:(1)原式=20-18+5-25=20+5-25-18=-18;(2)原式=12-16+6=2;(3)原式=1119141444-+÷⨯--⨯ =1591616-+- =194-; (4)原式=2225433x x y x y -++-=2x y -+,当1x =-,2y =时,原式=2(1)2--+=1.【点睛】本题考查了有理数的混合运算和整式的化简求值,熟记法则和运算顺序是解决此题的关键.四、压轴题31.(1)23+(-3)3+43,73+(-5)3+(-6)3;(2)100;(3)25032;(4)9.38;(5)0;(6)24或40【解析】【分析】(1)把45分解为2、-3、4三个整数的立方和,2分解为7、-5、-6三个整数的立方和即可的答案;(2)按照新运算法则,根据有理数混合运算法则计算即可得答案;(3)根据差倒数的定义计算出前几项的值,得出规律,计算即可得答案;(4)根据精确到十分位得9.4分可知平均分在9.35到9.44之间,可求出总分的取值范围,根据裁判打分是整数即可求出8个裁判给出的总分,再计算出平均分,精确到百分位即可;(5)由1+2-3=0,连续4个自然数通过加减运算可得0,列式计算即可得答案;(6)根据题意得要使甲和乙、甲和丙的距离相等就可以得出甲在乙、丙之间,设x 分钟后甲和乙、甲和丙的距离相等,就有甲走的路程-乙走的路程-400=丙走的路程+800-甲走的路程建立方程求出其解,就可以得出结论.当乙追上丙时,甲和乙、丙的距离相等,求出乙追上丙的时间即可.综上即可的答案.【详解】(1)45=23+(-3)3+43,2=73+(-5)3+(-6)3,故答案为23+(-3)3+43,73+(-5)3+(-6)3(2)∵2a b a ab ⊗=-,∴()()532-⊗⊗-=⎡⎤⎣⎦(-5)⊗[32-3×(-2)]=(-5)⊗15=(-5)2-(-5)×15=100.(3)∵a 1=2,∴a 2=1112=--, a 3=11(1)--=12, 412112a ==-a 5=-1…… ∴从a 1开始,每3个数一循环,∵2500÷3=833……1,∴a 2500=a 1=2,∴122500a a a ++⋅⋅⋅+=833×(2-1+12)+2=25032. (4)∵10个裁判打分,去掉一个最高分,再去掉一个最低分,∴平均分为中间8个分数的平均分,∵平均分精确到十分位的为9.4,∴平均分在9.35至9.44之间,9.35×8=74.8,9.44×8=75.52,∴8个裁判所给的总分在74.8至75.52之间,∵打分都是整数,∴总分也是整数,∴总分为75,∴平均分为75÷8=9.375,∴精确到百分位是9.38.故答案为9.38(5)2019÷4=504……3,∵1+2-3=0,4-5-6+7=0,8-9-10+11=0,……∴(1+2-3)+(4-5-6+7)+……+(2016-2017-2018+2019)=0∴所得结果可能的最小非负数是0,故答案为0(6)设x分钟后甲和乙、丙的距离相等,∵乙在甲前400米,丙在乙前400米,速度分别为120米/分钟、100米/分钟、90米/分钟,∴120x-400-100x=90x+800-120x解得:x=24.∵当乙追上丙时,甲和乙、丙的距离相等,∴400÷(100-90)=40(分钟)∴24分钟或40分钟时甲和乙、丙的距离相等.故答案为24或40.【点睛】本题考查数字类的变化规律、有理数的混合运算、近似数及一元一次方程的应用,熟练掌握相关知识是解题关键.32.(1)﹣14,8﹣5t;(2)2.5或3秒时P、Q之间的距离恰好等于2;(3)点P运动11秒时追上点Q;(4)线段MN的长度不发生变化,其值为11,见解析.【解析】【分析】(1)根据已知可得B点表示的数为8﹣22;点P表示的数为8﹣5t;(2)设t秒时P、Q 之间的距离恰好等于2.分①点P、Q相遇之前和②点P、Q相遇之后两种情况求t值即可;(3)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据AC﹣BC=AB,列出方程求解即可;(3)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=22,∴点B表示的数是8﹣22=﹣14,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒,∴点P表示的数是8﹣5t.故答案为:﹣14,8﹣5t;(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=22,解得t=2.5;②点P、Q相遇之后,由题意得3t﹣2+5t=22,解得t=3.答:若点P、Q同时出发,2.5或3秒时P、Q之间的距离恰好等于2;(3)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC﹣BC=AB,∴5x﹣3x=22,解得:x=11,∴点P运动11秒时追上点Q;(4)线段MN的长度不发生变化,都等于11;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=12×22=11;②当点P运动到点B的左侧时:MN=MP﹣NP=12AP﹣12BP=12(AP﹣BP)=12AB=11,∴线段MN的长度不发生变化,其值为11.【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.33.(1)详见解析;(2)35;(3)﹣5、15、1123、﹣767.【解析】【分析】(1)根据尺规作图的方法按要求做出即可;(2)根据中点的定义及线段长度的计算求出;(3)认真分析甲、乙物体运行的轨迹来判断它们相遇的可能性,分情况建立一元一次方程来计算相遇的时间,然后计算出位置.【详解】解:(1)如图所示;(2)根据(1)所作图的条件,如果以点A为原点,若点B对应的数恰好为10,则有点C对应的数为30,点D对应的数为﹣30,MN=|20﹣(﹣15)|=35(3)设乙从M点第一次回到点N时所用时间为t,则t=223522MN⨯==35(秒)那么甲在总的时间t内所运动的长度为s=5t=5×35=175可见,在乙运动的时间内,甲在C,D之间运动的情况为175÷60=2……55,也就是说甲在C,D之间运动一个来回还多出55长度单位.①设甲乙第一次相遇时的时间为t1,有5t1=2t1+15,t1=5(秒)而﹣30+5×5=﹣5,﹣15+2×5=﹣5这时甲和乙所对应的有理数为﹣5.②设甲乙第二次相遇时的时间经过的时间t2,有5t2+2t2=25+30+5+10,t2=10(秒)此时甲的位置:﹣15×5+60+30=15,乙的位置15×2﹣15=15这时甲和乙所对应的有理数为15.③设甲乙第三次相遇时的时间经过的时间t3,有5t3﹣2t3=20,t3=203(秒)此时甲的位置:30﹣(5×203﹣15)=1123,乙的位置:20﹣(2×203﹣5)=1123这时甲和乙所对应的有理数为112 3④从时间和甲运行的轨迹来看,他们可能第四次相遇.设第四次相遇时经过的时间为t4,有5t4﹣1123﹣30﹣15+2t4=1123,t4=91621(秒)此时甲的位置:5×91621﹣45﹣1123=﹣767,乙的位置:1123﹣2×91621=﹣767这时甲和乙所对应的有理数为﹣767.四次相遇所用时间为:5+10+203+91621=3137(秒),剩余运行时间为:35﹣3137=347(秒)当时间为35秒时,乙回到N点停止,甲在剩余的时间运行距离为5×347=5257=1767.位置在﹣767+1767=10,无法再和乙相遇,故所有相遇点对应的有理数为﹣5、15、1123、﹣767.【点睛】本题考查数轴作图及线段长度计算的基础知识,重要的是两个点在数轴上做复杂运动时的运动轨迹和相遇的位置,具有比较大的难度.正确分析出可能相遇的情况并建立一元一次方程是解题的关键.。
2021-2022学年山东省济南市市中区七年级(上)期末数学试卷(解析版)
2021-2022学年山东省济南市市中区七年级第一学期期末数学试卷一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.我国古代著作《九章算术》在世界数学史上首次正式引入负数,若气温升高3℃时,气温变化记作+3℃,那么气温下降10℃时,气温变化记作()A.﹣13℃B.﹣10℃C.﹣7℃D.+7℃2.下列几何体中,其俯视图与主视图完全相同的是()A.B.C.D.3.以下调查中,最适合采用普查方式的是()A.调查某班级学生的身高情况B.调查全国中学生的视力状况C.调查山东省居民的网上购物状况D.调查一批电脑的使用寿命4.北京时间2021年10月16日9时58分,航天员翟志刚、王亚平、叶光富先后进入天和核心舱.后续,航天员乘组将按计划距离地球36000公里的空间站驻留工作6个月,将36000用科学记数法表示应为()A.0.36×105B.3.6×105C.3.6×104D.36×1045.半径为6,圆心角为60°的扇形面积为()A.2πB.6πC.12πD.36π6.下列计算正确的是()A.a2+a2=2a4B.5y﹣3y=2C.3x2y﹣2yx2=x2y D.3a+2b=5ab7.如图所示,由A到B有①、②、③三条路线,最短的路线选①的理由是()A.两点之间,线段最短B.两点之间线段的长度,叫做两点之间的距离C.两点确定一条直线D.直线外一点与直线上各点连接的所有线段中,垂线段最短8.下列方程中,解是x=2的是()A.2x﹣3=3B.x﹣3=﹣1C.x+4=2D.x+1=39.在直线l上有A,B,C三点,AB=8,BC=3,则线段AC的长度为()A.11B.5C.11或5D.以上答案都不对10.要锻造一个半径为4厘米、高为4厘米的圆柱形毛坯,则至少应截取半径为2厘米的圆钢()厘米.A.4B.8C.12D.1611.如图,电子蚂蚁P、Q在边长为1个单位长度的正方形ABCD的边上运动,电子蚂蚁P 从点A出发,以个单位长度/秒的速度绕正方形顺时针运动,电子蚂蚁Q从点A出发,以个单位长度/秒的速度绕正方形逆时针运动.它们第2022次相遇在()A.点A B.点B C.点C D.点D12.任取一个非零自然数,如果它是偶数,就把它除以2;如果它是奇数,就把它乘3再加上1.在这样一个变换下,我们就得到了一个新的自然数,如果反复使用这种变换,我们就得到一个问题:是否对于所有的非零自然数,最终都能变换到1呢?这就是数学上著名的“角谷猜想”,如果某个自然数通过上述变换能变成1,我们就把第一次变成1时所经过的变换次数称为它的路径长,例如3经过7次变换变成1,路径长为7.若输入数x,它的变换次数为y,下列说法中正确的是()A.当x=3时,y=4B.当y=6时,x可取值有3个,最小值为10C.随着x的增大,y也增大D.若y=8时,x可取值有4个,最小值为6二、填空题(本大题共有6个小题,每小题4分,共24分。
山东省济南市七年级(上)期末数学试卷(含解析)
山东省济南市七年级(上)期末数学试卷一、选择题(每小题4分,共48分)1.(4分)﹣2020的绝对值是()A.﹣2020B.2020C.﹣D.2.(4分)一个几何体由大小相同的小立方块搭成,从上面看到的几何体形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看这个几何体得到的形状图是()A.B.C.D.3.(4分)某种细胞的平均直径只有0.00007米,用科学记数法表示此数应该是()A.7.0×104B.7.0×10﹣5C.0.7×106D.0.7×10﹣44.(4分)下面调查统计中,适合采用普查方式的是()A.华为手机的市场占有率B.乘坐飞机的旅客是否携带了违禁物品C.国家宝藏”专栏电视节目的收视率D.“现代”汽车每百公里的耗油量5.(4分)下列计算正确的是()A.a•a2=a2B.a2+a4=a8C.(ab)3=ab3D.a3÷a=a26.(4分)如果式子5x﹣8的值与3x互为相反数,则x的值是()A.1B.﹣1C.4D.﹣47.(4分)如图所示是正方体的展开图,原正方体“4”的相邻面上的数字之和是()A.2B.12C.14D.158.(4分)下列现象:(1)用两个钉子就可以把木条固定在墙上.(2)从A地到B地架设电线,总是尽可能沿着线段AB架设.(3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线.(4)把弯曲的公路改直,就能缩短路程.其中能用“两点确定一条直线”来解释的现象有()A.(1)(2)B.(1)(3)C.(2)(4)D.(3)(4)9.(4分)将一副三角尺按如图所示的方式摆放(两条直角边在同一条直线上,且两锐角顶点重合),连接另外两条锐角顶点,并测得∠1=47°,则∠2的度数为()A.60°B.58°C.45°D.43°10.(4分)若x=4是关于x的一元一次方程ax+6=2b的解,则6a﹣3b+2的值是()A.﹣1B.﹣7C.7D.1111.(4分)如图,有一种电子游戏,电子屏幕上有一条直线,在直线上有A,B,C,D四点.点P沿直线l 从右向左移动,当出现点P与A,B,C,D四点中的至少两个点距离相等时,就会发出警报,则直线l上会发出警报的点P最多有()A.4个B.5个C.6个D.7个12.(4分)如图是一组按照某种规律摆放而成的图形,第1个图中有3条线段,第二个图中有8条线段,第三个图中有15条线,则第6个图中线段的条数是()A.35B.48C.63D.65二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)单项式:的系数是,次数是.14.(4分)如果单项式﹣3y2b﹣1与5y b+4是同类项,则b=.15.(4分)如图所示,C、D是线段AB上两点,若AC=3,C为线段AD中点且AB=10,则线段DB长是.16.(4分)若a4•a2m﹣1=a11,则m=.17.(4分)将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕.则∠EBD=度.18.(4分)如图所示的钟表,当时钟指向上午7:50时,时针与分针的夹角等于度.三、解答题(本大题共9个小题,共78分、解答应写出文字说明、证明过程或演算步骤)19.(16分)计算:(1)﹣14﹣8+(﹣2)3×(﹣3)(2)(+﹣)×(﹣18)(3)﹣3(2a2b﹣ab2)+2(a2+3a2b)(4)x5•x3﹣(2x4)2+x10÷x220.(5分)化简求值:4x+3(2y2﹣3x)﹣2(4x﹣3y2),其中|x﹣3|+(y+2)2=0.21.(5分)如图,已知C、D为线段AB上顺次两点,点M、N分别为AC与BD的中点,AB=15,CD=7.(1)则线段AC与DB的长度和.(2)求线段MN的长.22.(10分)解方程:(1)4x﹣3=2x+5(2)=﹣123.(8分)某校随机抽取部分学生,就“学习习惯”进行调查,将“对自己做错的题目进行整理、分析、改正”(选项为:很少、有时、常常、总是)的调查数据进行了整理,绘制成部分统计图如下:请根据图中信息,解答下列问题(1)该调查的样本容量为,a=%,b=%,“常常”对应扇形的圆心角为°(2)请你补全条形统计图;(3)若该校共有3200名学生,请你估计其中“总是”对错题进行整理、分析、改正的学生有多少名?24.(8分)学校要购入两种记录本,其中A种记录本每本3元,B种记录本每本2元,且购买A种记录本的数量比B种记录本的2倍还多20本,总花费为460元.(1)求购买B种记录本的数量;(2)某商店搞促销活动,A种记录本按8折销售,B种记录本按9折销售,则学校此次可以节省多少钱?25.(6分)如图,将三个边长都为a的正方形一个顶点重合放置.(1)若∠l=50°,∠2=15°,则∠3=度;(2)判断:∠1+∠2+∠3=度,并说明理由.26.(9分)小明练习跳绳.以1分钟跳165个为目标,并把20次1分钟跳绳的数量记录如表(超过165个的部分记为“+”,少于165个的部分记为“﹣”)与目标数量的差依(单位:个)﹣11﹣6﹣2+4+10次数45362(1)小明在这20次跳绳练习中,1分钟最多跳多少个?(2)小明在这20次跳绳练习中,1分钟跳绳个数最多的一次比最少的一次多几个?(3)小明在这20次跳绳练习中,累计跳绳多少个?27.(11分)已知直线AB和CD交于O,∠AOC的度数为x,∠BOE=90°,OF平分∠AOD.(1)当x=20°时,则∠EOC=度;∠FOD=度.(2)当x=60°时,射线OE′从OE开始以10°/秒的速度绕点O逆时针转动,同时射线OF′从OF开始以8°/秒的速度绕点O顺时针转动,当射线OE′转动一周时射线OF′也停止转动,求至少经过多少秒射线OE′与射线OF′重合?(3)在(2)的条件下,射线OE′在转动一周的过程中,当∠E′OF′=90°时,请直接写出射线OE′转动的时间.参考答案与试题解析一、遗规了(本大量共12小题,每小题4分,共很分.每小题只活1.【解答】解:根据绝对值的概念可知:|﹣2020|=2020,故选:B.2.【解答】解:从正面看所得到的图形为:B故选:B.3.【解答】解:0.00007米,用科学记数法表示此数应该是7.0×10﹣5.故选:B.4.【解答】解:A、对华为手机的市场占有率的调查范围广,适合抽样调查,故此选项不符合题意;B、对乘坐飞机的旅客是否携带了违禁物品的调查情况适合普查,故此选项符合题意;C、对国家宝藏”专栏电视节目的收视率的调查范围广,适合抽样调查,故此选项不符合题意;D、对“现代”汽车每百公里的耗油量的调查范围广适合抽样调查,故此选项不符合题意;故选:B.5.【解答】解:a•a2=a3,故选项A不合题意;a2与a4不是同类项,所以不能合并,故选项B不合题意;(ab)3=a3b3,故选项C不合题意;a3÷a=a2,正确,故选项D符合题意.故选:D.6.【解答】解:根据题意得:5x﹣8+3x=0,移项合并得:8x=8,解得:x=1,故选:A.7.【解答】解:∵正方体的展开图,原正方体“4”的相对面上的数字为2,∴原正方体“4”的相邻面上的数字分别为1,3,5,6,∴原正方体“4”的相邻面上的数字之和是15,故选:D.8.【解答】解:(1)用两个钉子就可以把木条固定在墙上,根据是两点确定一条直线;(2)从A地到B地架设电线,总是尽可能沿着线段AB架设,根据是两点之间线段最短;(3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,根据是两点确定一条直线;(4)把弯曲的公路改直,就能缩短路程,根据是两点之间线段最短.故选:B.9.【解答】解:如图所示,∠3=180°﹣60°﹣45°=75°,则∠2=180°﹣∠1﹣∠3=180°﹣47°﹣75°=58°.故选:B.10.【解答】解:将x=4代入方程得:4a+6=2b,整理得:2a﹣b=﹣3,等式两边同时乘以3,得:6a﹣3b=﹣9,则6a﹣3b+2=﹣9+2=﹣7,故选:B.11.【解答】解:由题意知,当P点经过任意一条线段中点的时候会发出警报∵图中共有线段DC、DB、DA、CB、CA、BA∴发出警报的可能最多有5个故选:B.12.【解答】解:由图可得,第1个图形中有:3条线段,第2个图形中有:3+3+2=3×2+2×1=8条线段,第3个图形中有:3+3+3+2+2+2=3×3+2×3=15条线段,第4个图形中有:3+3+3+3+2+2+2+2+2+2=3×4+2×6=24条线段,…,则第n个图形中有:[(n+1)2﹣1]条线段,∴当n=6时,[(n+1)2﹣1]=[(6+1)2﹣1]=48,故选:B.二、填空题(本大题共6小题,每小题4分,共24分)13.【解答】解:单项式:的系数是:,次数是:6.故答案为:,6.14.【解答】解:由同类项的定义可知2b﹣1=b+4,解得b=5,故答案为:5.15.【解答】解:∵AC=3,C为线段AD中点,∴CD=3,∴AD=6,∵AB=10,∴BD=4;故答案为4.16.【解答】解:∵a4•a2m﹣1=a11,∴4+(2m﹣1)=11,解得m=4.故答案为:4.17.【解答】解:根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠EBD=∠A′BE+∠DBC′=180°×=90°.故答案为:90.18.【解答】解:当时钟指向上午7:50时,时针与分针相距2+=(份),当时钟指向上午7:50时,时针与分针的夹角30°×=65°,故答案为:65.三、解答题(本大题共9个小题,共78分、解答应写出文字说明、证明过程或演算步骤)19.【解答】解:(1)﹣14﹣8+(﹣2)3×(﹣3)=﹣1﹣8+(﹣8)×(﹣3)=﹣9+24=15(2)(+﹣)×(﹣18)=×(﹣18)+×(﹣18)﹣×(﹣18)=﹣9﹣6+3=﹣12(3)﹣3(2a2b﹣ab2)+2(a2+3a2b)=﹣6a2b+3ab2+2a2+6a2b=3ab2+2a(4)x5•x3﹣(2x4)2+x10÷x2=x8﹣4x8+x8=﹣2x8.20.【解答】解:原式=4x+6y2﹣9x﹣8x+6y2=12y2﹣13x,因为|x﹣3|+(y+2)2=0,所以x=3,y=﹣2,则原式=12×4﹣39=48﹣39=9.21.【解答】解:(1)AC+BD=AB﹣CD=15=7=8,故答案为8;(2)MN=CM+CD+DN=AC+BD+CD=(AC+BD)+CD=(AB﹣CD)+CD=AB+CD=11.22.【解答】解:(1)移项合并得:2x=8,解得:x=4;(2)去分母得:20﹣5x=3x﹣9﹣15,移项合并得:﹣8x=﹣44,解得:x=5.5.23.【解答】解:(1)∵44÷22%=200(名)∴该调查的样本容量为200;a=24÷200=12%,b=72÷200=36%,“常常”对应扇形的圆心角为:360°×30%=108°.(2)200×30%=60(名).(3)∵3200×36%=1152(名)∴“总是”对错题进行整理、分析、改正的学生有1152名.故答案为:200、12、36、108.24.【解答】解:(1)设购买B种记录本x本,则购买A种记录表(2x+20)本,依题意,得:3(2x+20)+2x=460,解得:x=50,∴2x+20=120.答:购买A种记录本120本,B种记录本50本.(2)460﹣3×120×0.8﹣2×50×0.9=82(元).答:学校此次可以节省82元钱.25.【解答】解:(1)如图:∵∠1+∠4+∠2=90°,∵∠l=50°,∠2=15°,∴∠4=25°,根据同角的余角相等得:∠3=∠4=65°;(2)根据同角的余角相等得:∠3=∠4,∵∠1+∠4+∠2=90°,∴∠1+∠2+∠3=90°,故答案为:65,90.26.【解答】解:(1)跳绳最多的一次为:165+10=175(个)答:小明在这20次跳绳练习中,1分钟最多跳175个.(2)(+10)﹣(﹣11)=10+11=21(个)答:小明在这20次跳绳练习中,1分钟跳绳个数最多的一次比最少的一次多21个.(3)165×20﹣11×4﹣6×5﹣2×3+4×6+10×2=3264(个)答:小明在这20次跳绳练习中,累计跳绳3264个.27.【解答】解:(1)∵∠BOE=90°,∴∠AOE=90°,∵∠AOC=x=20°,∴∠EOC=90°﹣20°=70°,∠AOD=180°﹣20°=160°,∵OF平分∠AOD,∴∠FOD=∠AOD==80°;故答案为:70,80;(2)当x=60°,∠EOF=90°+60°=150°设当射线OE'与射线OF'重合时至少需要t秒,10t+8t=150,t=,答:当射线OE'与射线OF'重合时至少需要秒;(3)设射线OE'转动的时间为t秒,由题意得:10t+90+8t=150或10t+8t=150+90或360﹣10t=8t﹣150+90或360﹣10t+360﹣8t+90=360﹣150,t=或或或.答:射线OE'转动的时间为秒或秒或秒或秒.。
山东省济南市 七年级(上)期末数学试卷
七年级(上)期末数学试卷一、选择题(本大题共12小题,共48.0分)1.-8的相反数是()A. 8B.C.D.2.德国《时代》周报网站列举了数据来评价中国改革开放40年的成就,在2017年我国申报了8330项国际专利,目前在年度国际专利申请量排名中位居第五,8330用科学记数法表示为()A. B. C. D.3.下列平面图形不能够围成正方体的是()A. B. C. D.4.长清冬季里某一天最高气温7°C,最低气温是-4°C,这一天长清最高气温与最低气温的温差是()A. B. C. D.5.下列计算正确的是()A. B. C. D.6.下列调查中,最适宜采用普查方式的是()A. 对量子科学通信卫星上某种零部件的调查B. 对我国初中学生视力状况的调查C. 对一批节能灯管使用寿命的调查D. 对“最强大脑”节目收视率的调查7.如图,C是线段AB上的点,D是线段AC的中点,E是线段BC的中点,若DE=10,则AB的长为()A. 10B. 20C. 30D. 408.下列四个生活、生产现象中,其中可用“两点之间,线段最短”来解释的现象有()①用两个钉子就可以把木条固定在墙上②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线③从A地到B地架设电线,总是尽可能沿着直线架设④把弯曲的公路改直,就能缩短路程.A. ①②B. ①③C. ②④D. ③④9.解方程=1时,去分母正确的是()A. B.C. D.10.将两块直角三角尺的直角顶点重合为如图的位置,若∠AOC=10°,则∠BOD的度数是()A.B.C.D.11.若x=2是方程3x-a=-1的解,则a的值为()A. 5B.C. 7D.12.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A. B. C. D.二、填空题(本大题共6小题,共24.0分)13.计算1.5°=______′.14.单项式-的系数是______,次数是______.15.如图,把一个圆分成三个扇形,则圆心角∠AOB=______度.16.已知代数式3x-12与4互为相反数,那么x的值等于______.17.在同一平面内,∠AOB=60°,∠BOC=45°,则∠AOC=______.18.某件商品,按成本价提高40%后标价,又以8折优惠卖出,结果仍可获利12元,则商品成本价为______元.三、计算题(本大题共3小题,共20.0分)19.计算:(1)(-5)•25-(-16)(2)(-1)4-36÷(-6)+3×(-)20.(1)a•(5a-3b)-(a-2b)(2)2(x2y-xy)-3(xy-x2y)-4x2y,其中x=-1.y=l.21.(1)4(x-5)=6•2x(2)=-1四、解答题(本大题共6小题,共58.0分)22.如图,线段AC=6,线段BC=15,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN的长.解:∵M是AC的中点,AC=6,∴MC=______(填线段名称)=______,又因为CN:NB=1:2,BC=15,∴CN=______(填线段名称)=______.∴MN=______(填线段名称)+______(填线段名称)=8∴MN的长为8.23.如图是一些小正方块所搭几何体,请你在下面的方格中画出这个几何体的主视图和左视图.24.列方程解应用题:甲列车从A地开往B地,每小时行驶60千米,乙列车同时从B地开往A地,每小时行驶90千米.已知A,B两地相距200km.(1)经过多长时间两车相遇;(2)两车相遇的地方离A地多远?25.某市为提高学生参与体育活动的积极性,围绕“你喜欢的体育运动项目(只写一项)”这一问题,对初一新生进行随机抽样调查.下面是根据调查结果绘制成的统计图(不完整).请你根据图中提供的信息解答下列问题(1)本次抽样调查一共调查调查了多少名学生?(2)根据条形统计图中的数据,求扇形统计图中“最喜欢健身操运动”的学生数对应扇形的圆心角;(3)请将条形图补充完整;(4)若该市2018年约有初一新生21000人,请你估计全市本届学生中“最喜欢足球运动”的学生有多少人?26.已知O为直线AB上的一点,∠COE是直角,OF平分∠AOE.(1)如图1,若∠COF=34°,则∠BOE=______;(2)如图1,若∠BOE=80°,则∠COF=______;(3)若∠COF=m°,则∠BOE=______度;∠BOE与∠COF的数量关系为______.(4)当∠COE绕点O逆时针旋转到如图2的位置时,(3)中∠BOE与∠COF的数量关系是否仍然成立?请说明理由.27.如图,已知数轴上的三点A、B、C,点A表示的数为5,点B表示的数为-3,点C到点A、点B的距离相等,动点P从点A出发,以每秒2个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒.(1)点C在数轴上表示的数是______;(2)当t=______秒时,点P到达点B处:(3)用含字母t的代数式表示线段AP=______;点P在数轴上表示的数是______.(4)当P,C之间的距离为1个单位长度时,求t的值.答案和解析1.【答案】A【解析】解:根据概念可知-8+(-8的相反数)=0,所以-8的相反数是8.故选:A.根据相反数的概念,互为相反数的两个数和为0,即可得出答案.主要考查相反数概念.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.2.【答案】C【解析】解:8330=8.33×103,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:根据正方体展开图的特点可判断A、D属于“1,4,1”格式,能围成正方体,C、属于“2,2,2”的格式也能围成正方体,B、不能围成正方体.故选:B.直接利用正方体的表面展开图特点判断即可.主要考查了正方体的表面展开图.4.【答案】B【解析】解:这一天长清最高气温与最低气温的温差是7-(-4)=7+4=11(℃),故选:B.用最高气温减去最低气温列出算式,然后再依据有理数的减法法则计算即可.本题主要考查的是有理数的减法,掌握减法法则是解题的关键.5.【答案】D【解析】解:A、不是同类项不能合并,故A不符合题意;B、系数相加字母及指数不变,故B不符合题意;C、系数相加字母及指数不变,故C不符合题意;D、系数相加字母及指数不变,故D符合题意;故选:D.根据合并同类项的法则把系数相加即可.本题考查了合并同类项法则的应用,注意:合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变.6.【答案】A【解析】解:A、对量子科学通信卫星上某种零部件的调查,适合全面调查,故A选项正确;B、对我国初中学生视力状况的调查,适合抽样调查,故B选项错误;C、对一批节能灯管使用寿命的调查适于抽样调查,故C选项错误;D、对“最强大脑”节目收视率的调查,适于抽样调查,故D选项错误.故选:A.根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.【答案】B【解析】解:∵D是线段AC的中点,E是线段BC的中点,∴AD=CD=,BE=CE=,∴DE=CD+DE=AB=10,故AB=20.故选:B.根据题意,DE=CD+DE=AB,即可求出AB.本题考查了两点间的距离,利用了线段中点的性质得出CD、CE的长,又利用线段的和差得出答案.8.【答案】D【解析】解:①用两个钉子就可以把木条固定在墙上,是两点确定一条之间,故此选项错误;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线,是两点确定一条之间,故此选项错误;③从A地到B地架设电线,总是尽可能沿着直线架设,是两点之间,线段最短,故此选项正确;④把弯曲的公路改直,就能缩短路程,是两点之间,线段最短,故此选项正确;故选:D.分别利用直线的性质以及线段的性质分析得出答案.此题主要考查了直线的性质以及线段的性质,正确把握直线与线段的性质是解题关键.9.【答案】B【解析】解:去分母得:4(2x-1)-3(3x-4)=12;去括号得:8x-4-9x+12=12.故选:B.分别对所给的四个方程利用等式性质进行变形,可以找出正确答案.去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.10.【答案】A【解析】解:由图可得,∠AOC、∠BOD都是∠BOC的余角,则∠BOD=∠AOC=10°.故选:A.根据同角的余角相等即可求解.此题主要考查余角的性质:同角的余角相等.11.【答案】C【解析】解:根据题意,将x=2代入方程3x-a=-1,得:6-a=-1,解得:a=7,故选:C.根据方程解的定义,将方程的解代入方程,就可得一个关于字母a的一元一次方程,从而可求出a的值.本题考查了方程的解的定义,解决本题的关键在于:根据方程的解的定义将x=3代入,从而转化为关于a的一元一次方程.12.【答案】C【解析】解:根据题意得:第1个图:y=1+2,第2个图:y=2+4=2+22,第3个图:y=3+8=3+23,…以此类推第n个图:y=n+2n,故选:C.根据题意得:第1个图:y=1+2,第2个图:y=2+4=2+22,第3个图:y=3+8=3+23,…以此类推第n个图:y=n+2n,即可得到答案.本题考查了函数关系式和规律型:图形的变化类,正确找出规律,进行猜想归纳即可.13.【答案】90【解析】解:1.5°=90′,故答案为:90.根据1°=60′进行计算即可.此题主要考查了度分秒的换算,关键是掌握1°=60′,1分=60秒,即1′=60″.14.【答案】- 4【解析】解:根据单项式系数、次数的定义可知,单项式-的系数是-,次数是4.根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.字母y的指数是1,容易遗漏.15.【答案】72【解析】解:∠AOB=360°×20%=72°,故答案为:72.根据圆心角、弧、弦的关系定理计算.本题考查的是圆心角、弧、弦的关系,掌握周角的概念、圆心角、弧、弦的关系定理是解题的关键.16.【答案】【解析】解:根据题意知3x-12+4=0,3x=12-4,3x=8,x=,故答案为:.根据相反数的性质得出关于x的方程,解之可得.本题主要考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.17.【答案】15°或105°【解析】解:∠AOC=∠AOB-∠BOC=60°-45°=15°,∠AOC=∠AOB+∠BOC=60°+45°=105°.综上所述,∠AOC=15°或105°.故答案为:15°或105°.此题要分两种情况,一种是OC落在∠AOB内,OC落在∠AOB外,分别进行计算.此题主要考查了角的计算,注意要考虑全面,不要漏解.18.【答案】100【解析】解:设商品的成本价为x元,由题意得:(1+40%)x•80%=x+12,解得:x=125.答:这件商品的成本价为100元.故答案为:100.首先设商品的成本价为x元,由题意得等量关系:标价×打折=成本价+12元,根据等量关系列出方程即可.此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,再设出未知数,列出方程即可.19.【答案】解:(1)(-5)•25-(-16)=-125+16=-109;(2)(-1)4-36÷(-6)+3×(-)=1+6-1=6.【解析】(1)先算乘法,再算减法即可求解;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.20.【答案】解:(1)a•(5a-3b)-(a-2b)=5a2-3ab-a+2b;(2)2(x2y-xy)-3(xy-x2y)-4x2y=2x2y-2xy-3xy+3x2y-4x2y=x2y-5xy,当x=-1,y=l时,原式=(-1)2×1-5×(-1)×1=1+5=6.【解析】(1)去括号即可;(2)先去括号合并同类项将式子化为最简形式,再把x的值代入计算即可.本题考查了整式的混合运算-化简求值,掌握运算顺序与运算法则是解题的关键.21.【答案】解:(1)4x-20=12x,4x-12x=-20,-8x=-20,x=;(2)3(1-x)=2(4x-1)-6,3-3x=8x-2-6,-3x-8x=-2-6-3,-11x=-11,x=1.【解析】(1)依次去括号、移项、合并同类项、系数化为1可得;(2)依次去分母、去括号、移项、合并同类项、系数化为1可得.本题主要考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.22.【答案】AC 3 BC 5 MC NC【解析】解:∵M是AC的中点,AC=6,∴MC=AC=3,又因为CN:NB=1:2,BC=15,∴NC=BC=5.∴MN=MC+NC=8∴MN的长为8.故答案为:AC;3;BC;5;MC;NC.因为点M是AC的中点,则有MC=AM=AC,又因为CN:NB=1:2,则有CN=BC,故MN=MC+NC可求.利用中点性质转化线段之间的倍分关系是解题的关键,本题点M是AC的中点,则有MC=AM=AC,还利用了两条线段成比例求解.23.【答案】解:如图所示:【解析】由已知条件可知,主视图有3列,每列小正方数形数目分别为1,3,2,左视图有2列,每列小正方形数目分别为3,1.据此可画出图形.本题考查简单组合体的三视图的画法.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;注意看到的用实线表示,看不到的用虚线表示.注意涂色面积指组成几何体的外表面积.24.【答案】解:(1)设经过x小时两车相遇,根据题意得:(60+90)x=200,解得:x=,答:经过小时两车相遇;(2)根据题意得:60×=80(千米),答:两车相遇的地方离A地80千米.【解析】(1)设两车相遇时间为x小时,根据所行的路程和为200km,列出方程求得相遇时间即可;(2)用(1)求出的时间乘以甲列车从A地开往B地速度,即可得出两车相遇的地方离A地的距离.此题考查了一元一次方程的应用,掌握行程问题中的基本数量关系是解决问题的关键.25.【答案】解:(1)本次抽样调查的总人数为100÷20%=500(名);(2)∵跳绳的人数为500×18%=90(名),其它的人数为500×20%=100(名),∴篮球的人数为500-(60+90+100+100)=150(名),则扇形统计图中“最喜欢健身操运动”的学生数对应扇形的圆心角为360°×=72°;(3)补全条形图如下:(4)估计全市本届学生中“最喜欢足球运动”的学生有21000×=2520(名).【解析】(1)根据条形图可得健身操人数为100,根据扇形图可得健身操人数占20%,因此利用健身人数除以所占百分数可得本次抽样调查一共调查调查了多少名学生;(2)计算出跳绳人数、其它人数,用总数减去喜欢各项运动的人数可得喜欢篮球的人数,再利用360°乘以“最喜欢足球运动”的学生数所占比例即可;(3)根据以上所求结果补全图形即可;(4)利用样本估计总体的方法,用总人数21000人乘以“最喜欢足球运动”的学生在样本中所占比例即可.此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.26.【答案】68°40°2m∠BOE=2∠COF【解析】解:(1)∵∠COE是直角,∠COF=34°,∴∠EOF=90°-34°=56°,∵OF平分∠AOE.∴∠AOE=2∠EOF=112°,∴∠BOE=180°-112°=68°;故答案为:68°;(2)设∠COF=n°,∴∠EOF=90°-n°,∴∠AOE=2∠EOF=180°-2n°,∴∠BOE=180°-(180°-2n°)=2n°=80°,∴∠COF=40°,∠BOE=2∠COF.故答案为:∠BOE=2∠COF;(3)当∠COF=m°,∴∠EOF=90°-m°,∴∠AOE=2∠EOF=180°-2m°,∴∠BOE=180°-(180°-2m°)=2m°,∴∠BOE=2∠COF.故答案为:2m,∠BOE=2∠COF;(4)∠BOE与∠COF的数量关系仍然成立.理由如下:设∠COF=n°,∵∠COE是直角,∴∠EOF=90°-n°,又∵OF平分∠AOE.∴∠AOE=2∠EOF=180°-2n°,∴∠BOE=180°-(180°-2n°)=2n°,即∠BOE=2∠COF.(1)根据互余得到∠EOF=90°-34°,再由OF平分∠AOE,得到∠AOE=2∠EOF=180°-68°,然后根据邻补角的定义得到∠BOE;(2)当∠COF=n°,根据互余得到∠EOF=90°-n°,再由OF平分∠AOE,得到∠AOE=2∠EOF=180°-2n°,然后根据邻补角的定义得到∠BOE=180°-(180°-2n°)=2n°=80°,于是得到结论;(3)当∠COF=m°,根据互余得到∠EOF=90°-m°,再由OF平分∠AOE,得到∠AOE=2∠EOF=180°-2m°,然后根据邻补角的定义得到∠BOE=180°-(180°-2m°)=2m°,所以有∠BOE=2∠COF;(4)同(3),可得到∠BOE=2∠COF.本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等;也考查了角平分线的定义以及互余互补的含义.27.【答案】1 4 2t5-2t【解析】解:(1)AB=5-(-3)=8,8÷2=4,5-4=1.故答案为:1;(2)8÷2=4,故答案为:4;(3)AP=2t,所以P表示的数是5-2t,故答案为:2t,5-2t;(4)P在C右边时,5-2t-1=1,解得t=1.5;P在C左边时,1-(5-2t)=1,解得t=2.5,所以当t=1.5或2.5秒时P,C之间的距离为1个单位长度.(1)计算AB长度,根据点C到点A、点B的距离相等可确定C表示数字;(2)P运动路程是8除以速度求解;(3)根据路程等于速度乘以时间来表示AP长度,用点A表示数字减点AP长度即点P表示数字;(4)分P在C左右两边两种可能列式求解.本题借助数轴考查一元一次方程应用.确定数量关系是解答的关键.。
济南市人教版(七年级)初一上册数学期末测试题及答案
济南市人教版(七年级)初一上册数学期末测试题及答案一、选择题1.地球与月球的平均距离为384 000km,将384 000这个数用科学记数法表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×1062.如图,点A,B在数轴上,点O为原点,OA OB=.按如图所示方法用圆规在数轴上截取BC AB=,若点A表示的数是a,则点C表示的数是( )A.2a B.3a-C.3a D.2a-3.已知单项式2x3y1+2m与3x n+1y3的和是单项式,则m﹣n的值是()A.3 B.﹣3 C.1 D.﹣14.下列四个数中最小的数是()A.﹣1 B.0 C.2 D.﹣(﹣1)5.已知a=b,则下列等式不成立的是()A.a+1=b+1 B.1﹣a=1﹣b C.3a=3b D.2﹣3a=3b﹣2 6.如图,能判定直线a∥b的条件是( )A.∠2+∠4=180°B.∠3=∠4 C.∠1+∠4=90°D.∠1=∠47.如果代数式﹣3a2m b与ab是同类项,那么m的值是( )A.0 B.1 C.12D.38.有理数a、b在数轴上的位置如图所示,则下列结论中正确的是()A.a+b>0 B.ab>0 C.a﹣b<o D.a÷b>09.某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x人到甲处,则所列方程是()A.2(30+x)=24﹣x B.2(30﹣x)=24+xC.30﹣x=2(24+x)D.30+x=2(24﹣x)10.据统计,全球每年约有50万人因患重症登格热需住院治疗,其中很大一部分是儿童患者,数据“50万”用科学记数法表示为()A .45010⨯B .5510⨯C .6510⨯D .510⨯11.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+112.已知某商店有两个进价不同的计算器,都卖了100 元,其中一个盈利 60% ,另一个亏损20%,在这次买卖中,这家商店( )A .不盈不亏B .盈利 37.5 元C .亏损 25 元D .盈利 12.5 元二、填空题13.从一个n 边形的同一个顶点出发,分别连结这个顶点与其余各顶点,若把这个多边形分割为6个三角形,则n 的值是___________.14.若代数式mx 2+5y 2﹣2x 2+3的值与字母x 的取值无关,则m 的值是__.15.多项式2x 3﹣x 2y 2﹣1是_____次_____项式.16.小明妈妈想检测小明学习“列方程解应用题”的效果,给了小明37个苹果,要小明把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加2个,第三堆减少三个,第四堆减少一半后,这4堆苹果的个数相同,那么这四堆苹果中个数最多的一堆为_____个.17.有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”,那么驴子原来所驮货物有_____袋.18.将520000用科学记数法表示为_____.19.已知一个角的补角是它余角的3倍,则这个角的度数为_____.20.某校全体同学的综合素质评价的等级统计如图所示,其中评价为C 等级所在扇形的圆心角是____度.21.下列命题:①若∠1=∠2,∠2=∠3,则∠1=∠3;②若|a|=|b|,则a=b ;③内错角相等;④对顶角相等.其中真命题的是_______(填写序号)22.已知代数式235x -与233x -互为相反数,则x 的值是_______. 23.众所周知,中华诗词博大精深,集大量的情景情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首?设七言绝句有x 首,根据题意,可列方程为______.24.材料:一般地,n 个相同因数a 相乘n a a a a ⋅⋅⋅个:记为n a . 如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=);如45625=,此时4叫做以5为底的625的对数,记为5log 625(即5log 6254=),那么3log 9=_________.三、解答题25.如图,把△ABC 先向上平移3个单位长度,再向右平移2个单位长度,得到△A 1B 1C 1.(1)在图中画出△A 1B 1C 1,并写出点A 1、B 1、C 1的坐标;(2)连接A 1A 、C 1C ,则四边形A 1ACC 1的面积为______.26.如图,已知180AOB ∠=︒,射线ON .()1请画出BON ∠的平分线OC ;()2如果70AON ∠=︒,射线OA OB 、分别表示从点O 出发东、西两个方向,那么射线ON 方向,射线OC 表示 方向.()3在()1的条件下,当60AON ∠=︒时,在图中找出所有与AON ∠互补的角,这些角是_ .27.已知x a y b=⎧⎨=⎩是方程组2025x y x y -=⎧⎨+=⎩的解,则3a b -=_____. 28.某班去商场为书法比赛买奖品,书包每个定价40元,文具盒每个定价8元,商场实行两种优惠方案:①买一个书包送一个文具盒:②按总价的9折付款.若该班需购买书包10个,购买文具盒若干个(不少于10个).(1)当买文具盒40个时,分别计算两种方案应付的费用;(2)当购买文具盒多少个时,两种方案所付的费用相同;(3)如何根据购买文具盒的个数,选择哪种优惠方案的费用比较合算?29.解方程:4x+2(x﹣2)=12﹣(x+4)30.先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.四、压轴题31.已知数轴上有A、B、C三个点对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c-10)2=0;动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)求a、b、c的值;(2)若点P到A点距离是到B点距离的2倍,求点P的对应的数;(3)当点P运动到B点时,点Q从A点出发,以每秒2个单位的速度向C点运动,Q点到达C点后.再立即以同样的速度返回,运动到终点A,在点Q开始运动后第几秒时,P、Q两点之间的距离为8?请说明理由.32.如图,己知数轴上点A表示的数为8,B是数轴上一点,且AB=22.动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数____,点P表示的数____(用含t的代数式表示);(2)若动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(列一元一次方程解应用题)(3)若动点Q从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问秒时P、Q之间的距离恰好等于2(直接写出答案)(4)思考在点P的运动过程中,若M为AP的中点,N为PB的中点.线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长.33.如图,已知线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.(1)若AC=4cm,求DE的长;(2)试利用“字母代替数”的方法,说明不论AC取何值(不超过12cm),DE的长不变;(3)知识迁移:如图②,已知∠AOB=α,过点O画射线OC,使∠AOB:∠BOC=3:1若OD、OE分别平分∠AOC和∠BOC,试探究∠DOE与∠AOB的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】试题分析:384 000=3.84×105.故选C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.2.B解析:B【解析】【分析】根据题意和数轴可以用含a 的式子表示出点B 表示的数,从而得到点C 表示的数.【详解】解:由点O 为原点,OA OB =,可知A 、B 表示的数互为相反数,点A 表示的数是a ,所以B 表示的数为-a ,又因为BC AB =,所以点C 表示的数为3a -.故选B.【点睛】本题考查数轴,解答本题的关键是明确题意结合相反数,利用数形结合的思想解答.3.D解析:D【解析】【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值.【详解】 解:单项式3122m x y +与133n x y +的和是单项式,3122m x y +∴与133n x y +是同类项,则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩, 121m n ∴-=-=-故选:D .【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.4.A解析:A【解析】【分析】首先根据有理数大小比较的方法,把所给的四个数从大到小排列即可.【详解】解:﹣(﹣1)=1,∴﹣1<0<﹣(﹣1)<2,故选:A .【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.5.D解析:D【解析】【分析】根据等式的基本性质对各选项进行逐一分析即可.【详解】A 、∵a =b ,∴a+1=b+1,故本选项正确;B 、∵a =b ,∴﹣a =﹣b ,∴1﹣a =1﹣b ,故本选项正确;C、∵a=b,∴3a=3b,故本选项正确;D、∵a=b,∴﹣a=﹣b,∴﹣3a=﹣3b,∴2﹣3a=2﹣3b,故本选项错误.故选:D.【点睛】本题考查了等式的性质,掌握等式的基本性质是解答此题的关键.6.D解析:D【解析】【分析】根据平行线的判定方法逐一进行分析即可得.【详解】A. ∠2+∠4=180°,互为邻补角,不能判定a//b,故不符合题意;B. ∠3=∠4,互为对顶角,不能判定a//b,故不符合题意;C. ∠1+∠4=90°,不能判定a//b,故不符合题意;D. ∠1=∠4,根据同位角相等,两直线平行可以判定a//b,故符合题意,故选D.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.7.C解析:C【解析】【分析】根据同类项的定义得出2m=1,求出即可.【详解】解:∵单项式-3a2m b与ab是同类项,∴2m=1,∴m=12,故选C.【点睛】本题考查了同类项的定义,能熟记同类项的定义是解此题的关键,所含字母相同,并且相同字母的指数也分别相同的项,叫同类项.8.C解析:C【解析】【分析】利用数轴先判断出a、b的正负情况以及它们绝对值的大小,然后再进行比较即可.【详解】解:由a、b在数轴上的位置可知:a<0,b>0,且|a|>|b|,∴a +b <0,ab <0,a ﹣b <0,a ÷b <0.故选:C .9.D解析:D【解析】【分析】设应从乙处调x 人到甲处,根据调配完后甲处人数是乙处人数的2倍,即可得出关于x 的一元一次方程,此题得解.【详解】设应从乙处调x 人到甲处,依题意,得:30+x =2(24﹣x ).故选:D .【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解答本题的关键.10.B解析:B【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将50万用科学记数法表示为5510⨯,故B 选项是正确答案.【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数,表示时正确确定a 的值以及n 的值是解决本题的关键.11.B解析:B【解析】【分析】【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n ,右边三角形的数字规律为:2,22,…,2n ,下边三角形的数字规律为:1+2,222+,…,2n n +,∴最后一个三角形中y 与n 之间的关系式是y=2n +n.故选B .【点睛】考点:规律型:数字的变化类.12.D解析:D【解析】【分析】设盈利的计算器的进价为x ,则(160%)100x +=,亏损的计算器的进价为y ,则(120%)100y -=,用售价减去进价即可.【详解】解:设盈利的计算器的进价为x ,则(160%)100x +=,62.5x =,亏损的计算器的进价为y ,则(120%)100y -=,125y =,20062.512512.5--=元,所以这家商店盈利了12.5元..故选:D【点睛】本题考查了一元一次方程的应用,找准等量关系列出方程是解题的关键.二、填空题13.8【解析】【分析】根据从一个n 边形的某个顶点出发,可以引(n-3)条对角线,把n 边形分为(n-2)的三角形作答.【详解】设多边形有n 条边,则n−2=6,解得n=8.故答案为8.【点解析:8【解析】【分析】根据从一个n 边形的某个顶点出发,可以引(n-3)条对角线,把n 边形分为(n-2)的三角形作答.【详解】设多边形有n 条边,则n−2=6,解得n=8.故答案为8.【点睛】此题考查多边形的对角线,解题关键在于掌握计算公式.14.2【解析】解:mx2+5y2﹣2x2+3=(m﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m﹣2=0,解得m=2.故答案为2.点睛:本题主要考查合并同类解析:2【解析】解:mx2+5y2﹣2x2+3=(m﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m﹣2=0,解得m=2.故答案为2.点睛:本题主要考查合并同类项的法则.即系数相加作为系数,字母和字母的指数不变.与字母x的取值无关,即含字母x的系数为0.15.四三【解析】【分析】找到多项式中的单项式的最高次数即为多项式的最高次数,有几个单项式即为几项式.【详解】解:次数最高的项为﹣x2y2,次数为4,一共有3个项,所以多项式2解析:四三【解析】【分析】找到多项式中的单项式的最高次数即为多项式的最高次数,有几个单项式即为几项式.【详解】解:次数最高的项为﹣x2y2,次数为4,一共有3个项,所以多项式2x3﹣x2y2﹣1是四次三项式.故答案为:四,三.【点睛】此题主要考查了多项式的定义.解题的关键是理解多项式的定义,用到的知识点为:多项式的次数由组成多项式的单项式的最高次数决定;组成多项式的单项式叫做多项式的项,有几项就是几项式.16.16【解析】【分析】本题有两个等量关系;原来的四堆之和=37,变换后的四堆相等,可根据这两个等量关系来求解.设第一堆为a 个,第二堆为b 个,第三堆为c 个,第四堆有d 个,a+b+c+解析:16【解析】【分析】本题有两个等量关系;原来的四堆之和=37,变换后的四堆相等,可根据这两个等量关系来求解.【详解】设第一堆为a 个,第二堆为b 个,第三堆为c 个,第四堆有d 个,a+b+c+d=37①;2a=b+2=c-3=2d ②; 第二个方程所有字母都用a 来表示可得b=2a-2,c=2a+3,d=4a ,代入第一个方程得a=4, ∴b=6,c=11,d=16,∴这四堆苹果中个数最多的一堆为16.故答案为16.【点睛】本题需注意未知数较多时,要把未知的四个量用一个量来表示,化多元为一元. 17.5【解析】【分析】要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,我们才恰好驮的一样多)=驴解析:5【解析】【分析】要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,我们才恰好驮的一样多)=驴子原来所托货物的袋数加上1,根据这个等量关系列方程求解.【详解】解:设驴子原来驮x 袋,根据题意,得:2(x ﹣1)﹣1﹣1=x +1解得:x =5.故驴子原来所托货物的袋数是5.故答案为5.【点睛】解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,18.2×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数解析:2×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将520000用科学记数法表示为5.2×105.故答案为:5.2×105.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.19.45°【解析】【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α解析:45°【解析】【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°-α=3(90°-α),解得α=45°.故答案为:45°.【点睛】本题考查了余角与补角,能分别用这个角表示出它的余角与补角是解题的关键.【解析】【分析】用360度乘以C等级的百分比即可得.【详解】观察可知C等级所占的百分比为20%,所以C等级所在扇形的圆心角为:360°×20%=72°,故答案为:72.【点睛】解析:72【解析】【分析】用360度乘以C等级的百分比即可得.【详解】观察可知C等级所占的百分比为20%,所以C等级所在扇形的圆心角为:360°×20%=72°,故答案为:72.【点睛】本题考查了扇形统计图,熟知扇形统计图中扇形圆心角度数的求解方法是解题的关键. 21.①④【解析】【分析】根据等式的性质,绝对值的性质,平行线性质,对顶角的性质逐一进行判断即可得.【详解】①若∠1=∠2,∠2=∠3,则∠1=∠3,真命题,符合题意;②令a=1,b=-1,此解析:①④【解析】【分析】根据等式的性质,绝对值的性质,平行线性质,对顶角的性质逐一进行判断即可得.【详解】①若∠1=∠2,∠2=∠3,则∠1=∠3,真命题,符合题意;②令a=1,b=-1,此时|a|=|b|,而a≠b,故②是假命题,不符合题意;③两直线平行,内错角相等,故③是假命题,不符合题意;④对顶角相等,真命题,符合题意,故答案为:①④.本题考查了真假命题,熟练掌握等式的性质,绝对值的性质,平行线的性质,对顶角的性质是解题的关键.22.【解析】【分析】根据互为相反数的两个数之和为0,建立方程求解即可.【详解】∵与互为相反数∴解得:【点睛】本题考查了相反数的性质和解一元一次方程,熟记相反数的性质建立方程是解题的关键解析:27 8【解析】【分析】根据互为相反数的两个数之和为0,建立方程求解即可.【详解】∵235x-与233x-互为相反数∴23230 53-⎛⎫+-=⎪⎝⎭xx解得:278 x=【点睛】本题考查了相反数的性质和解一元一次方程,熟记相反数的性质建立方程是解题的关键.23.28x-20(x+13)=20【解析】【分析】利用五言绝句与七言绝句总字数之间的关系得出等式进而得出答案.【详解】设七言绝句有x首,根据题意,可列方程为: 28x-20(x+13)=20,解析:28x-20(x+13)=20【解析】【分析】利用五言绝句与七言绝句总字数之间的关系得出等式进而得出答案.设七言绝句有x 首,根据题意,可列方程为: 28x-20(x+13)=20,故答案为: 28x-20(x+13)=20.【点睛】本题主要考查一元一次方程应用,关键在于找出五言绝句与七言绝句总字数之间的关系. 24.2【解析】根据定义可得:因为,所以,故答案为:2.解析:2【解析】根据定义可得:因为239=,所以3log 92=,故答案为:2.三、解答题25.(1) 画图见解析,点A 1(0,5)、B 1(-1,2)、C 1(3,2);(2)15.【解析】【分析】(1)将△ABC 的三个顶点分别向上平移3个单位长度,然后再向右平移2个单位长度,连接各点,可以得到△A 1B 1C 1,根据网格特点,找到各点横纵坐标即可找到△A 1B 1C 1三个顶点的坐标;(2)四边形的面积可看成两个底为5,高为3的三角形的和,由三角形面积公式进行计算即可得.【详解】(1) △A 1B 1C 1如图所示,点A 1(0,5)、B 1(-1,2)、C 1(3,2);(2)四边形A 1ACC 1的面积为:11535322⨯⨯+⨯⨯=15, 故答案为:15.【点睛】本题考查了作图——平移变换,四边形的面积,熟练掌握平移的性质以及网格的结构特征是解题的关键.26.(1)详见解析;(2)北偏东20°,北偏西35°;(3),BON AOC ∠∠【解析】【分析】(1)以点O 为圆心,以任意长为半径画弧,与OB 、ON 相交于两点,再分别以这两点为圆心,以大于它们12长度为半径画弧,两弧相交于一点,然后过点O 与这点作射线OC 即为所求;(2)过点O 作OE ⊥AB ,根据垂直的定义以及角平分线的定义求出∠EON 与∠COE ,然后根据方位角的定义解答即可;(3)根据∠AON=60°,利用平角的定义可得∠BON ,利用角平分线的定义求出∠CON=60°,然后求出∠AOC=120°从而得解.【详解】解:(1)如图所示,OC 即为∠BON 的平分线;(2)过点O 作OE ⊥AB ,∵∠AON=70°,∴∠EON=90°-70°=20°,∴ON 是北偏东20°,∵OC 平分∠BON ,∴∠CON=12(180°-70°)=55°, ∴∠COE=∠CON-∠EON=55°-20°=35°,∴OC 是北偏西35°;故答案为:北偏东20°;北偏西35°.(3)∵∠AON=60°,OC 平分∠BON ,∴∠CON=12(180°-60°)=60°, ∴∠AOC=∠CON+∠AON=60°+60°=120°,∴∠AOC+∠AON=180°,又根据平角的定义得,∠BON+∠AON=180°,∴与∠AON 互补的角有∠AOC ,∠BON ;故答案为:∠AOC ,∠BON.本题考查了复杂作图,角平分线的定义,方位角,以及余角与补角,比较简单,作角平分线是基本作图,一定要熟练掌握.27.【解析】【详解】解:∵x a y b =⎧⎨=⎩是方程组2025x y x y -=⎧⎨+=⎩的解, ∴2025a b a b -=⎧⎨+=⎩①②, ①+②得,3a ﹣b =5.故答案为5.28.(1)第①种方案应付的费用为640元,第②种方案应付的费用648元;(2)当购买文具盒50个时,两种方案所付的费用相同;(3)当购买文具盒个数小于50个时,选择方案①比较合算;当购买文具盒个数等于50个时,两种方案所付的费用相同,两种方案都可以选择;当购买文具盒个数大于50个时,选择方案②比较合算.【解析】【分析】(1)根据商场实行两种优惠方案分别计算即可;(2)设购买文具盒x 个时,两种方案所付的费用相同,由题意得1040(10)8(10408)90%x x ⨯+-⨯=⨯+⨯,解方程即可得出结果;(3)由(1)、(2)可得当购买文具盒个数小于50个时,选择方案①比较合算;当购买文具盒个数等于50个时,两种方案所付的费用相同,两种方案都可以选择;当购买文具盒个数大于50个时,选择方案②比较合算.【详解】解:(1)第①种方案应付的费用为:1040(4010)8640⨯+-⨯=(元),第②种方案应付的费用为:(1040408)90%648⨯+⨯⨯=(元);答:第①种方案应付的费用为640元,第②种方案应付的费用648元;(2)设购买文具盒x 个时,两种方案所付的费用相同,由题意得:1040(10)8(10408)90%x x ⨯+-⨯=⨯+⨯,解得:50x =;答:当购买文具盒50个时,两种方案所付的费用相同;(3)由(1)、(2)可得:当购买文具盒个数小于50个时,选择方案①比较合算; 当购买文具盒个数等于50个时,两种方案所付的费用相同,两种方案都可以选择; 当购买文具盒个数大于50个时,选择方案②比较合算.【点睛】本题考查了列一元一次方程解应用题,设出未知数,列出一元一次方程是解题的关键.29.x =127【分析】方程去括号,移项合并,把x系数化为1,即可求出解.【详解】去括号得:4x+2x﹣4=12﹣x﹣4,移项合并得:7x=12,解得:x=127.【点睛】本题考查了解一元一次方程,掌握解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1是解题的关键.此外还需要注意移项要变号.30.-4.【解析】【分析】首先根据整式的加减运算法则将原式化简,再代入求值.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.【详解】解:原式=﹣a2b+3ab2﹣a2b﹣4ab2+2a2b=(﹣1﹣1+2)a2b+(3﹣4)ab2=﹣ab2,当a=1,b=﹣2时,原式=﹣1×(﹣2)2=﹣4.【点睛】考查整式的化简求值,解题关键是先化简,再代入求值.注意运算顺序及符号的处理.四、压轴题31.(1) a=-24,b=-10,c=10;(2) 点P的对应的数是-443或4;(3) 当Q点开始运动后第6、21秒时,P、Q两点之间的距离为8,理由见解析【解析】【分析】(1)根据绝对值和偶次幂具有非负性可得a+24=0,b+10=0,c-10=0,解可得a、b、c的值;(2)分两种情况讨论可求点P的对应的数;(3)分类讨论:当P点在Q点的右侧,且Q点还没追上P点时;当P在Q点左侧时,且Q点追上P点后;当Q点到达C点后,当P点在Q点左侧时;当Q点到达C点后,当P 点在Q点右侧时,根据两点间的距离是8,可得方程,根据解方程,可得答案.【详解】(1)∵|a+24|+|b+10|+(c-10)2=0,∴a+24=0,b+10=0,c-10=0,解得:a=-24,b=-10,c=10;(2)-10-(-24)=14,①点P在AB之间,AP=14×221=283,-24+283=-443,点P的对应的数是-443;②点P在AB的延长线上,AP=14×2=28,-24+28=4,点P的对应的数是4;(3)∵AB=14,BC=20,AC=34,∴t P=20÷1=20(s),即点P运动时间0≤t≤20,点Q到点C的时间t1=34÷2=17(s),点C回到终点A时间t2=68÷2=34(s),当P点在Q点的右侧,且Q点还没追上P点时,2t+8=14+t,解得t=6;当P在Q点左侧时,且Q点追上P点后,2t-8=14+t,解得t=22>17(舍去);当Q点到达C点后,当P点在Q点左侧时,14+t+8+2t-34=34,t=463<17(舍去);当Q点到达C点后,当P点在Q点右侧时,14+t-8+2t-34=34,解得t=623>20(舍去),当点P到达终点C时,点Q到达点D,点Q继续行驶(t-20)s后与点P的距离为8,此时2(t-20)+(2×20-34)=8,解得t=21;综上所述:当Q点开始运动后第6、21秒时,P、Q两点之间的距离为8.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,掌握非负数的性质,再结合数轴解决问题.32.(1)-14,8-4t(2)点P运动11秒时追上点Q(3)103或4(4)线段MN的长度不发生变化,都等于11【解析】【分析】(1)根据AB长度即可求得BO长度,根据t即可求得AP长度,即可解题;(2)点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据AC-BC=AB,列出方程求解即可;(3)分①点P、Q相遇之前,②点P、Q相遇之后,根据P、Q之间的距离恰好等于2列出方程求解即可;(4)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】 (1)∵点A 表示的数为8,B 在A 点左边,AB=22, ∴点B 表示的数是8-22=-14,∵动点P 从点A 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒,∴点P 表示的数是8-4t .故答案为-14,8-4t ; (2)设点P 运动x 秒时,在点C 处追上点Q ,则AC=5x ,BC=3x ,∵AC-BC=AB ,∴4x-2x=22,解得:x=11,∴点P 运动11秒时追上点Q ;(3) ①点P 、Q 相遇之前,4t+2+2t =22,t=103, ②点P 、Q 相遇之后,4t+2t -2=22,t=4, 故答案为103或4 (4)线段MN 的长度不发生变化,都等于11;理由如下:①当点P 在点A 、B 两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP )=12AB=12×22=11 ②当点P 运动到点B 的左侧时:MN=MP ﹣NP=12AP ﹣12BP=12(AP ﹣BP )=12AB=11 ∴线段MN 的长度不发生变化,其值为11.【点睛】 本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.33.(1)DE=6;(2) DE=2a ,理由见解析;(3)∠DOE=12∠AOB ,理由见解析 【解析】试题分析:(1)由AC=4cm ,AB=12cm ,即可推出BC=8cm ,然后根据点D 、E 分别是AC 和BC 的中点,即可推出AD=DC=2cm ,BE=EC=4cm ,即可推出DE 的长度,(2)设AC=acm,然后通过点D、E分别是AC和BC的中点,即可推出DE=12(AC+BC)=12AB=2acm,即可推出结论,(3)分两种情况,OC在∠AOB内部和外部结果都是∠DOE=12∠AOB试题解析:(1))∵AB=12cm,∴AC=4cm,∴BC=8cm,∵点D、E分别是AC和BC的中点,∴CD=2cm,CE=4cm,∴DE=6cm;(2) 设AC=acm,∵点D、E分别是AC和BC的中点,∴DE=CD+CE=12(AC+BC)=12AB=6cm,∴不论AC取何值(不超过12cm),DE的长不变;(3)①当OC在∠AOB内部时,如图所示:∵OM平分∠AOC,ON平分∠BOC,∴∠NO C=12∠BOC,∠COM=12∠COA.∵∠CON+∠COM=∠MON,∴∠MON=12(∠BOC+∠AOC)=12α;②当OC在∠AOB外部时,如图所示:∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12(∠AOB+∠BOC),∠CON=12∠BOC.。
山东省济南市七年级上学期期末数学试卷
山东省济南市七年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、填空题 (共10题;共12分)1. (1分) (2019七上·毕节期中) 比3的相反数小-2的数为________2. (1分) (2017七上·卢龙期末) 多项式2x2﹣5x+4的一次项系数是________.3. (1分)若x=﹣2是方程3(x﹣a)=7的解,则a= ________4. (1分) (2019七上·广陵月考) 若关于x的多项式4x2+kx2-2x+3中不含有x的二次项,则k=________.5. (1分) (2017七下·简阳期中) 一个角的补角是140°,则这个角的余角是________;6. (1分) (2019八下·福田期末) 若,,则的值是________.7. (1分) (2020七上·镇海期末) 若,,则 ________.8. (1分)若方程3x+2a=13和方程2x﹣4=2的解互为倒数,则a的值为________.9. (1分) (2019九上·丹东月考) 在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1 ,作第1个正方形A1B1C1C;延长C1B1交x轴于点A2 ,作第2个正方形A2B2C2C1 ,…,按这样的规律进行下去,第2019个正方形的面积是________.10. (3分)某自来水公司按如下规定收取水费:若每月用水不超过10立方米,则按每立方米1.5元收费;若每月用水超过10立方米,超过部分按每立方米2元收费。
(1)如果居民甲家去年12月用水量为8立方米,则需缴纳________ 元水费:(2)如果居民乙家去年12月缴纳了22.8元水费,则乙家去年12月的用水量为________ 立方米;(3)如果居民丙家去年12月缴纳了m元水费,则丙家去年12月的用水量为________ 立方米?二、单项选择题 (共8题;共16分)11. (2分) (2020八上·遂宁期末) 在下列实数,3.14159,,0,,,0.131131113…,,中,无理数有()个.A . 3B . 4D . 612. (2分)(2016·北京) 神舟十号飞船是我国“神州”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为()A . 2.8×B . 28×C . 2.8×D . 0.28×13. (2分)下列说法:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③互补的两个角一定有一个为钝角,另一个角为锐角;④一个角的补角比这个角的余角大90°,其中正确的有()个.A . 1B . 2C . 3D . 414. (2分)下列说法中正确的是()A . 若a⊥b,b⊥c,则a⊥cB . 在同一平面内,不相交的两条线段必平行C . 两条直线被第三条直线所截,所得的同位角相等D . 两条平行线被第三条直线所截,一对内错角的角平分线互相平行15. (2分) (2019七上·开福月考) 多项式8x2﹣3x+5与3x3﹣4mx2﹣5x+7多项式相加后,不含二次项,则m的值是()A . 2B . 4C . ﹣2D . ﹣416. (2分) (2020七上·兴安盟期末) 下列式子中是单项式的个数为()① ,② ,③ ,④ ,⑤ ,⑥ ,⑦ ,⑧ ,⑨ ,⑩A . 5个B . 6个C . 7个17. (2分)由6个相同的小正方体搭成的几何体,那么这个几何体的主视图是()A .B .C .D .18. (2分)如图是一个正方体的表面展开图,如果相对面上所标的两个数互为相反数,那么图中x的值是()A . 8B . 3C . 2D . -319. (10分) (2016七上·鄱阳期中) 计算:(1)﹣3.1× ﹣2.5× +9.1×(2)﹣12+(﹣1)2÷ ×2.20. (5分)(2018·宁晋模拟) 已知a1 , a2 , a3 ,…,a2015都是正整数,设:M=(a1+a2+a3+…+a2014)(a2+a3+…+a2015),N=(a1+a2+a3+…+a2015)(a2+a3+…+a2014),试着比较M,N的大小.21. (20分) (2016七上·高密期末) 解下列方程:(1) x﹣2=4+ x(2)﹣2=(3)[x﹣(x﹣1)]= (x﹣)(4)﹣ =1.22. (7分) (2017七上·扬州期末) 如图 1,是由一些棱长为单位 1 的相同的小正方体组合成的简单几何体.(1)请在图 2 方格纸中分别画出几何体的主视图、左视图和俯视图.(2)如果在其表面涂漆,则要涂________平方单位.(几何体放在地上,底面无法涂上漆)(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多可以再添加________个小正方体.23. (8分)(2019·南浔模拟) 2018年,在南得区美丽乡村建设中,甲、乙两个工程队分别承担村级道路硬化和道路拓宽改造工程已知道路硬化和道路拓宽改造工程的总里程数是8.6千米,其中道路硬化的里程数是道路拓宽里程数的2倍少1千米(1)求道路硬化和道路拓宽里程数分别是多少千米;(2)甲、乙两个工程队同时开始施工,甲工程队比乙工程队平均每天多施工10米。
2021-2022学年山东省济南市初一数学第一学期期末试卷及解析
2021-2022学年山东省济南市初一数学第一学期期末试卷一、选择题(本大题共12个小题,每小题4分,共48分.)1.(4分)下列各组量中,不是互为相反意义的量的是( )A .收入80元与支出30元B .上升20米与下降15米C .超过5厘米与不足3厘米D .增大2岁与减少2升 2.(4分)为全面掌握小区居民新冠疫苗接种情况,社区工作人员设计了以下几种调查方案: 方案一:调查该小区每栋居民楼的10户家庭成员的疫苗接种情况;方案二:随机调查该小区100位居民的疫苗接种情况;方案三:对本小区所有居民的疫苗接种情况逐一调查统计.在上述方案中,能较好且准确地得到该小区居民疫苗接种情况的是( )A .方案一B .方案二C .方案三D .以上都不行3.(4分)下列各组数中,与数值1-相等的是( )A .(1)--B .2020(1)-C .|1|-D .20201-4.(4分)下列各图中表示线段MN ,射线PQ 的是( )A .B .C .D .5.(4分)下列运算正确的是( )A .32ab ab ab -=B .538a a +=C .235a b ab +=D .()a b a b --=--6.(4分)“绿水青山就是金山银山”某地积极响应党中央号召,大力推进农村厕所革命,已经累计投资81.01210⨯元资金.数据81.01210⨯可表示为( )A .10.12亿B .1.012亿C .101.2亿D .1012亿7.(4分)一个不透明的布袋中装有1个白球和2个红球,它们除颜色不同以外其他都相同,从布袋中任意摸出一个球是白球的概率为( )A .13B .12C .23D .18.(4分)下列方程中,解为2x =的是( )A.26x+=x-=D.360x+=C.20x=B.209.(4分)下面的几何体中,哪一个不能由平面图形绕某直线旋转一周得到()A.B.C.D.10.(4分)如图,点C在线段AB上,10AC=,点D是BC的中点,则BD的长为()AB=,4A.2B.3C.5D.611.(4分)如图,点O在直线AB上,射线OC平分DOB∠等于()∠=︒,则AOD∠.若35COBA.110︒B.145︒C.35︒D.70︒12.(4分)将一列有理数1-,2,3-,4,5-,6⋯⋯按如图所示进行排列,则2022应排在()A.A位置B.B位置C.D位置D.E位置二、填空题(本大题共6个小题,每小题4分,共24分.)13.(4分)比4-小3的数是.14.(4分)下列几何体:①圆柱;②正方体;③棱柱;④球;在这些几何体中截面可能是圆的有.(只填写序号即可)15.(4分)某校为了举办“迎国庆”的活动,调查了本校所有学生,调查的结果被整理成如图所示的扇形统计图.如果全校学生人数是1200人,根据图中给出的信息,这所学校赞成举办演讲比赛的学生有人.16.(4分)如图,把一副三角板相等的两边重合摆放在一起,90A ∠=︒,60B ∠=︒,则AOB ∠= 度.17.(4分)从五边形的一个顶点出发,可以作 条对角线.18.(4分)若222x x -=,则232x x +-的值为 .三、解答题(本大题共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤.)19.(6分)计算:(1)(17)7-+;(2)(14)(39)---.20.(6分)312(5)232⨯-+-÷. 21.(6分)如图,C 是线段AB 外一点,按要求画图:(1)画射线CB ;(2)反向延长线段AB ;(3)连接AC ,并延长AC 至点D ,使CD AC =.22.(8分)先化简,再求值:211(428)(1)42x x x -+---,其中1x =. 23.(8分)解方程:5(8)50x +-=.24.(10分)小彬和小明每天早晨坚持跑步,小彬每秒跑6米,小明每秒跑4米.(1)如果他们站在百米跑道的两端同时相向起跑,那么几秒后两人相遇?(2)如果小彬站在百米跑道的起点处,小明站在他前面10米处,两人同时同向起跑,几秒后小彬追上小明?25.(10分)为了加强语文课外阅读,某年级积极组织学生参加课外阅读读书分享会活动,从年级推荐的四种读物A:《水浒传》、B:《骆驼祥子》、C:《昆虫记》、D:《朝花夕拾》中选择一本读物每周一与班级同学分享读书体会.读书分享会活动组随机抽取本年级的部分学生,调查他们这四本读物中最喜爱一本读物,并将调查结果绘制成如下两幅不完整的统计图,请你结合图中的信息解答下列问题:(1)求被调查的学生人数;(2)补全条形统计图;(3)已知该年级有1200名学生,估计全年级最喜爱《水浒传》的学生有多少人?26.(12分)某工人计划加工一批产品,如果每小时加工产品10个,就可以在预定时间完成任务,如果每小时多加工2个,就可以提前1小时完成任务.(1)该产品的预定加工时间为几小时?(2)若该产品销售时的标价为100元/个,按标价的八折销售时,每个仍可以盈利25元,该批产品总成本为多少元?27.(12分)已知数轴上两点A、B对应的数分别为1-、5,点P为数轴上一动点,其对应的数为X.(1)若点P到点A点B的距离相等,求点P对应的数是X=;(2)数轴上是否存在点P,使点P到点A,点B的距离之和为8?若存在,请求出X的值;若不存在,说明理由;(3)现在点A,点B分别以2个单位长度每分和1个单位长度每分的速度同时向右运动,点P以6个单位长度每分的速度从O点向左运动,当遇到A时,点P以原来的速度向右运动,并不停得往返于A与B之间,求当A遇到B重合时,P所经过的总路程.参考答案与试题解析一、选择题(本大题共12个小题,每小题4分,共48分.)1.【解答】解:收入80元与支出30元具有相反意义,故A 不符合题意,上升20米与下降15米具有相反意义,故B 不符合题意,超过5厘米与不足3厘米有相反意义,故C 不符合题意,增大2岁与减少2升没有相反意义,故D 符合题意,故选:D .2.【解答】解:因为全面掌握小区居民新冠疫苗接种情况,所以对本小区所有居民的疫苗接种情况逐一调查统计.故选:C .3.【解答】解:A .(1)1--=,不符合题意;B .2020(1)1-=,不符合题意;C .|1|1-=,不符合题意;202011D -=-,符合题意;故选:D .4.【解答】解:A 、是直线MN ,射线QP ,故此选项不符合题意;B 、是射线MN ,线段PQ ,故此选项不符合题意;C 、是线段MN ,射线PQ ,故此选项符合题意;D 、是线段MN ,射线QP ,故此选项不符合题意;故选:C .5.【解答】解:A 、原式2ab =,故A 符合题意.B 、原式8a =,故B 不符合题意.C 、2a 与3b 不是同类项,不能合并,故C 不符合题意.D 、原式a b =-+,故D 不符合题意.故选:A .6.【解答】解:数据81.01210⨯可表示为:81.01210101200000 1.012⨯==亿,故选:B .7.【解答】解:一共有3个球,其中白球有1个,因此摸出一球是白球的概率为13, 故选:A .8.【解答】解:A .当2x =时,246x =≠,故A 不符合题意;B .当2x =时,240x +=≠,故B 不符合题意;C .当2x =时,左边20x =-=,右边0=,左边=右边,即2x =是方程20x -=的解,故C 符合题意;D .当2x =时,36120x +=≠,故D 不符合题意;故选:C .9.【解答】解:A .将“半圆”绕着其直径所在的直线,旋转一周所形成的几何体是“球”,因此选项A 不符合题意;B .由于正方体的六个面都是“平面”,因此不可能是某个平面图形旋转得到的,因此选项B 符合题意; C .将“直角三角形”绕着一条直角边所在的直线,旋转一周所形成的几何体是“圆锥”,因此选项C 不符合题意;D .将“长方体”绕着一条边所在的直线,旋转一周所形成的几何体是“圆柱”,因此选项D 不符合题意; 故选:B .10.【解答】解:10AB =,4AC =,6BC AB AC ∴=-=,点D 是BC 的中点,132BD BC ∴==. 故选:B .11.【解答】解:射线OC 平分DOB ∠.2BOD BOC ∴∠=∠,35COB ∠=︒,70DOB ∴∠=︒,18070110AOD ∴∠=︒-︒=︒,故选:A .12.【解答】解:由图可知,每个凸起对应5个数字,这些数字的奇数都是负数,偶数都是正数,(20221)520215404......1-÷=÷=,2022∴应排在A 位置,故选:A .二、填空题(本大题共6个小题,每小题4分,共24分.把答案填在答题卡的横线上.)13.【解答】解:比4-小3的数是434(3)7--=-+-=-,故答案为:7-.14.【解答】解:因为:正方体,棱柱的截面只可能是多边形,不可能是圆,圆柱,球的截面可能是圆,所以上列几何体:①圆柱;②正方体;③棱柱;④球;在这些几何体中截面可能是圆的有:①④,故答案为:①④.15.【解答】解:由统计图可得,这所学校赞成举办演讲比赛的学生有:1200(140%35%)120025%300⨯--=⨯=(人),故答案为:300.16.【解答】解:先对图形标记如下:90∠=︒,BA∠=︒,60AOC∠=︒,BOC∴∠=︒-︒=︒,45906030∴∠=︒+︒=︒.453075AOB故答案为:75.17.【解答】解:五边形(3)n>从一个顶点出发可以引532-=条对角线.故答案为:2.18.【解答】解:222-=,x x2∴+-32x x2=--x x3(2)=-32=.1故答案为:1.三、解答题(本大题共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤.)19.【解答】解:(1)(17)7-+;=--(177)=-;10(2)(14)(39)---1439=-+25=.20.【解答】解:原式1086=-+-8=-.21.【解答】解:22.【解答】解:当1x=时,原式21121 22x x x=-+--+21x=--11=--2=-23.【解答】解:5(8)50x+-=54050x+-=5405x=-+535x=-7x=-.24.【解答】解:(1)设x秒后两人相遇,则小彬跑了6x米,小明跑了4x米,则方程为64100x x+=,解得10x=;答:10秒后两人相遇;(2)设y秒后小彬追上小明,根据题意得:小彬跑了6y米,小明跑了4y米,则方程为:6410y y-=,解得5y =;答:两人同时同向起跑,5秒后小彬追上小明.25.【解答】解:(1)被调查的学生人数为:1220%60÷=(人);(2)喜欢B 读物的学生数为:602412168---=(人),如图所示:(3)估计全年级最喜爱《水浒传》的学生有:24120048060⨯=(人). 26.【解答】解:(1)设这批产品需要加工x 个, 110102x x -=+, 60x =,60106÷=, 答:该产品的预定加工时间为6小时;(2)设该批产品成本为a 元/个,10080%25a ⨯=+,55a =,55603300⨯=,答:该批产品总成本为3300元.27.【解答】解:(1)点P 到点A 、点B 的距离相等, ∴点P 是线段AB 的中点,点A 、B 对应的数分别为1-、5,∴点P 对应的数是2;故答案为:2;(2)存在修改为在数轴上存在点P ,使点P 到点A 、点B 的距离之和为8.理由如下: ①当点P 在A 左边时,158x x --+-=, 解得:2x =-;②点P 在B 点右边时,5(1)8x x -+--=, 解得:6x =,即存在x的值,当2x=-或6时,满足点P到点A、点B的距离之和为8;(3)设经过x分钟点A与点B重合,根据题意得:=+,x x26解得6x=,x=,则636答:点P所经过的总路程是36个单位长度.。
山东省济南市历城区七年级(上)期末数学试卷
七年级(上)期末数学试卷题号一二三四总分得分一、选择题(本大题共12 小题,共 48.0 分)1. 2019 的相反数是()A. 12019B. - 2019C. - 12019D. 20192. 人体内一种细胞的直径约为0.00000156m 0.00000156用科学记数法表示为,数据()A. 1.56×10-5B. 1.56×10-6C. 15.6×10-7D. - 1.56×1063.如图,是由 4 个大小同样的正方体搭成的几何体,从上边看到的几何体的形状是()A. B. C.D.4.以下四个生产生活现象,能够用基本领实“两点之间,线段最短”来解说的是()A.用两个钉子就能够把木条固定在墙上B.植树时,只需定出两棵树的地点,就能确立同一行树所在的直线C.打靶的时候,眼睛要与枪上的准星、靶心在同一条直线上D. 从A地到B地架设电线,老是尽可能沿着线段AB 来架设5. 以下检查中,最合适采纳普查方式的是()A. 对某批电视机的使用寿命的检查B. 对济南市初中学生每日阅读时间的检查C. 对某中学七年级一班学生视力状况的检查D. 对市场上大米质量状况的检查6. 如图,是一个几何体的表面睁开图,则该几何体是()A.三棱柱B.四棱锥C.长方体D.正方体7. 以下运算正确的选项是()A. x2+x2=x4B. ?a2?a3=a5??C. (3x)2?=6x2D. (mn)5÷(mn)=mn48. 对于 y 的方程 3y+5=0 与 3y+3k=1 的解完好同样,则 k 的值为()A.-2B. 34C. 2D.- 43A. 88°B. 134°C. 135°D. 144°10. 某商场把一双钉鞋按标价的八折销售,仍可赢利 20% .若钉鞋的进价为 100 元,则标价为()A. 145元B. 165元C. 180元D. 150元11.已知线段 AB=2cm,延伸 BA 到 C,使 AC=6cm,假如点 O 为 AC 的中点,则线段OB 的长为()A. 1cmB. 5cmC. 1cm或5cmD. 1cm或4cm12.我们知道,四边形有 2 条对角线,五边形有 5 条对角线,那么十二边形的对角线总条数是()A. 9B. 54C. 60D. 108二、填空题(本大题共 6 小题,共 24.0 分)13. A B、C三点相对于海平面分别是-13米、-7米、-20米,那么最高的地方比最低、的地方高 ______米.14.m n+3 是同类项,则n已知 -25a2 b 和 2a6b m =______ .15.某校初一年级在上午 10: 00 睁开“阳光体育”活动.上午 10: 00 这一时刻,钟表上分针与时针所夹的角等于 ______度.16.已知长方形的面积为( 6a2b-4a2+2a),宽为 2a,则长方形的周长为 ______.17.一个小立方块的六个面分别标有数字1, -2, 3, -4, 5, -6,从三个不一样方向看到的情况以下图,则如图搁置时的底面上的数字之和等于______.18. 如图,数轴上,点 A 表示的数为 1,现点 A 做以下挪动:第 1 次点 A 向左挪动 3 个单位长度至点 A1,第 2 次从点 A1向右挪动 6 个单位长度至点 A2,第 3 次从点 A2向左挪动 9 个单位长度至点A3,,依据这类挪动方式进行下去,点A2019表示的数是 ______.三、计算题(本大题共 5 小题,共56.0 分)19.计算(1) |5-8|+24 ÷( -2)×12(2)( 54-76 )×( -87 )2- 2( 3)( 2x -3xy- 12x )(5x +xy+x)( 4)( -2a2)3+a8÷a2+3 a?a5( 5)( 2x-5)( 2x+5 ) -2x ( 2x-3)( 6)( 3x+y)2-( 3x-y)220.解方程(1) 4x-3( 5-x) =6(2) x-13-5x-26=121.在“元旦“时期,几名学生伴同家长一同到某公园游乐,下边是购置门票时,小明与他爸爸的对话(如图),试依据图中的信息,解答以下问题:(1)小明他们一共去了几名成人,几名学生?(2)请你帮助小明算一算,用哪一种方式购票更省钱?并说明原因.22.如图,已知数轴上点 A 表示的数为8, B 是数轴上位于点 A 左边一点,且AB=20 ,动点 P 从点 A 出发,以 3 个单位 /秒的速度沿着数轴负方向匀速运动,设运动时间为t 秒( t> 0).(1)写出数轴上点 B 表示的数 ______;动点 P 对应的数是 ______(用含 t 的代数式表示);( 2)动点 Q 从点 B 出发,以 1 个单位 /秒的速度匀速运动,且点P, Q 同时出发①若动点 Q 沿着数轴正方向匀速运动,多少秒时点P 与点 Q 相遇?②若动点 Q 沿着数轴负方向匀速运动,多少秒时点P 与点 Q 相距 4 个单位?23.请将“2,4,6,7,9,11,12,14,16”共9个数,填入到下边3×3 的方格中,使得每行、每列、每条对角线上的三个数之和相等,组成一个三阶幻方.(起码三种不一样的填法)四、解答题(本大题共 3 小题,共 22.0 分)24. 先化简,再求值:7a2b-2( 2a2 b-3ab2)-( 4a2b-ab2),此中 |a+2|+( b-12 )2=0.25.如图,点 O 为直线 CA 上一点,∠BOC=46 °,OD 均分∠AOB,∠EOB =90 °,求∠AOE 和∠DOE 的度数.26.为了认识市民“获得新闻的最主要门路”某市记者睁开了一次抽样检查,依据检查结果绘制了以下尚不完好的统计图.依据以上信息解答以下问题:(1)此次接受检查的市民总人数是 ______;请补全条形统计图;(2)扇形统计图中,“电视”所对应的圆心角的度数是 ______ ;(3)若该市约有 90 万人,请你预计此中将“电脑和手机上网”作为“获得新闻的最主要门路”的总人数.答案和分析1.【答案】 B【分析】解:2019 的相反数是 -2019.应选:B .直接利用相反数的定 义剖析得出答案.本题主要考察了相反数,正确掌握定 义是解题重点.2.【答案】 B【分析】解:0.00000156用科学记数法表示 为 1.56 ×10-6,应选:B .绝对值小于 1 的正数也能够利用科学 记数法表示,一般形式 为 a ×10-n,与较大数的科学 记数法不一样的是其所使用的是 负指数幂,指数由原数左边起第一个不为零的数字前面的 0 的个数所决定.本题考察用科学记数法表示 较小的数,一般形式为 a ×10-n,此中1≤|a|<10,n为由原数左 边起第一个不 为零的数字前面的 0 的个数所决定.3.【答案】 A【分析】解:从上边看到的几何体的形状 图是,应选:A .从几何体的上边看有 3 列,从左到右分别是 1,1,1 个正方形.本题考察了简单组合体的三 视图,主要培育学生的思虑能力和 对几何体三种视图的空间想象能力.4.【答案】 D【分析】解:A 、依据两点确立一条直 线,故本选项错误 ;B 、依据两点确立一条直 线,故本选项错误 ;D、依据两点之间,线段最短,故本选项正确.应选:D.依据线段的性质对各选项进行逐个剖析即可.本题考察了两点之间线段最短,熟知“两点之间,线段最短”是解答此题的关键.5.【答案】C【分析】解:A 、对某批电视机的使用寿命的检查,检查范围广合适抽样检查,故A 不切合题意;B、对济南市初中学生每日阅读时间的检查,检查范围广合适抽样检查,故B 不切合题意;C、对某中学七年级一班学生视力状况的检查,合适普查,故C 切合题意;D、对市场上大米质量状况的检查,检查范围广合适抽样检查,故 D 不切合题意;应选:C.由普查获得的检查结果比较正确,但所费人力、物力和时间许多,而抽样调查获得的检查结果比较近似.本题考察了抽样检查和全面检查的差别,选择普查仍是抽样检查要依据所要考察的对象的特色灵巧采纳,一般来说,对于拥有损坏性的检查、没法进行普查、普查的意义或价值不大,应选择抽样检查,对于精准度要求高的检查,事关重要的检查常常采纳普查.6.【答案】A【分析】解:由图得,这个几何体为三棱柱.应选:A.由睁开图得这个几何体 为棱柱,底面为三边形,则为三棱柱.考察了几何体的睁开 图,有两个底面的为柱体,有一个底面的 为锥体.7.【答案】 B【分析】解:A 、x 2+x 2=2x 2,错误;B 、a 2?a 3=a 5,正确;C 3x 2 =9x 2,错误;、( )54错误;D 、(mn )÷(mn )=(mn ), 应选:B .依据归并同 类项、同底数幂的乘法、除法和幂的乘方计算判断即可.本题考察同底数幂的乘法、除法,重点是依据归并同 类项、同底数幂的乘法、除法和幂的乘方法 则解答.8.【答案】 C【分析】解:解第一个方程得:y=-解第二个方程得: y=∴- =∴k=2应选:C .能够分别解出双方程的解,两解相等,就获得对于m 的方程,从而能够求出 m的值.本题的重点是正确解一元一次方程.理解方程的解的定 义,就是能够使方程左右两边相等的未知数的 值.9.【答案】 B【分析】解:∵∠ACB= ∠DCF=90°,∠BCD=46°∴∠ACF=∠ACB+ ∠FCD- ∠BCD=90°+90 °-46 °=134 °.从图能够看出,∠ACF 的度数正好是两直角相加减去∠BCD 的度数,从而问题可解.本题主要考察了互余两角的定义,正确掌握互余两角的定义是解题重点.10.【答案】D【分析】解:设每件的标价为 x 元,由题意得:80%x=100×(1+20%),解得:x=150.即每件的标价为 150 元.应选:D.设每件的标价为 x 元,依据八折销售可赢利 20%,可得出方程:80%x=100×(1+20%),解出即可.本题考察了一元一次方程的应用,属于基础题,重点是认真审题,得出等量关系,利用方程思想解答,难度一般.11.【答案】A【分析】解:∵AB=2cm ,AC=6cm ,∵O 是 AC 的中点,∴AO= AC=×6=3cm,∴BO=AO-AB=3-2=1cm .应选:A.依据 O 是 AC 的中点求出 AO 的长,依据 BO=AO-AB 即可得出结论.本题考察的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的重点.12.【答案】B【分析】解:十二边形的对角线总条数 ==54(条).故十二边形的对角线总条数是 54.应选:B.角线,依据以上关系直接计算即可.本题考察了多边形对角线的定义及计算公式,熟记多边形的边数与对角线的关系式是解决此类问题的重点.13.【答案】13【分析】解:由题意知:最高的地方是 -7 米,最低的地方是 -20 米,∴最高的地方比最低的地方高-7-(-20)=13 米.故答案为:13 米.依据题意先确立最高的地方是 -7 米,最低的地方是 -20 米,而后再利用有理数的减法计算即可.本题考察了有理数的减法,解决此题的关确立键是确立三点中的最高点和最低点,而后再利用有理数的减法法则:减去一个数等于加上这个数的相反数解题.14.【答案】19【分析】解:由题意可知:2m=6,n+3=1,∴m=3,n=-2,-2∴原式=3 =,故答案为:.依据同类项的定义即可求出答案.本题考察同类项,解题的重点是娴熟运用同类项的定义,本题属于基础题型.15.【答案】60【分析】解:上午10 点整,时针指向 10,分钟指向 12,钟表 12 个数字,每相邻两个数字之间的夹角为 30°,∴上午 10:00 这一时刻钟面上分针与时针所夹的角为 30°×2=60 °.依据钟表 12 个数字,每相邻两个数字之 间的夹角为 30°计算.本题考察钟面角的知 识,掌握钟表 12 个数字,每相邻两个数字之 间的夹角为30°是解 题的重点.16.【答案】 6ab+2【分析】解:依据题意得:(6a 2b-4a 2+2a )÷2a=3ab-2a+1,则长方形的周 长为 2(2a+3ab-2a+1)=2(3ab+1)=6ab+2,故答案为:6ab+2利用整式的除法法 则求出长,从而求出周 长即可.本题考察了整式的除法,娴熟掌握运算法 则是解本题的重点.17.【答案】 -9【分析】解:∵由图可知,与 1 相邻的面上的数是 3、-4、5、-6,∴1 的相对面是 -2,∵与-6 相邻的面上的数是 1、3、5、-2,∴-6 的相对面是 -4,∴5 与 3 是相对面.则如图搁置时三个底面上的数字是 -6,1,-4,∴-6+1-4=-9.故答案为:-9.依据与 1 相邻的面上的数是 3、-4、5、-6 判断出 1 的相对面是 -2,与-6 相邻的面上的数是 1、3、5、-2,判断出-6 的相对面是 -4,而后判断出 5、3 是相对面.本题考察了正方体相 对两个面上的文字,依据相 邻的面确立出 对面上的数字是解题的重点.18.【答案】 -3031【分析】解:第n 次挪动 3n 个单位,第2019 次左移 2019×3 个单位,每左移右移各一次后,点 A 右移 3 个单位,因此 A 2019表示的数是 3×(2018÷2)-2019 ×3+1=-3031.故答案为:-3031.奇数次移动是左移,偶数次挪动是右移,第 n次挪动 3n 个单位.每左移右移各一次后,点 A 右移 3 个单位,故第 2018 次右移后,点 A 向右挪动 3×(2018÷2)个单位,第 2019 次左移 2019×3 个单位,故点 A 2019表示的数是 3×(2018÷2)-2019 ×3+1.本题考察数轴上点的移动规律,确立每次挪动方向和距离的规律,以及相邻两次挪动的后的实质距离和方向是解答次题的重点.19.【答案】解:(1)原式=3-6=-3;(2)原式 =-54 ×87+76 ×87 =-107 +43=-221 ;(3)原式 =2x2-3xy-12 x-5x2-xy-x=-3 x2-4xy-32 x;(4)原式 =-8a6+a6+3a6=-4a6;(5)原式 =4x2-25-4x2+6x=6x-25;2 2 2 2( 6)原式 =9x +6xy+y -9x +6xy-y =12xy.【分析】(1)原式先计算绝对值及乘除运算,再计算加减运算即可求出值;(2)原式利用乘法分派律计算即可求出值;(3)原式去括号归并即可获得结果;(4)原式利用幂的乘方与积的乘方,同底数幂的乘除法则计算,归并即可获得结果;(5)原式利用平方差公式,以及单项式乘以多项式法例计算,去括号归并即可获得结果;(6)原式利用完好平方公式化简,去括号归并即可获得结果.本题考察了整式的混淆运算,以及整式的加减,熟练掌握运算法则是解本题的重点.20.【答案】解:(1)去括号得:4x-15+3x=6,移项归并得:7x=21,解得: x=3;(2)去分母得: 2x-2-5x+2=6 ,移项归并得: -3x=6,解得: x=-2 .【分析】(1)方程去括号,移项归并,把 x 系数化为 1,即可求出解;(2)方程去分母,去括号,移项归并,把 x 系数化为 1,即可求出解.本题考察认识一元一次方程,熟练掌握运算法则是解本题的重点.21.【答案】解:(1)设小明他们一共去了x 个成人,则去了(12-x)个学生,依据题意得: 40x+40×0.5 ( 12-x)=400,解得: x=8,∴12-x=4.答:小明他们一共去了 8 个成人, 4 个学生.( 2) 40×0.6 ×16=384 (元),384 元< 400 元.答:购置16 张集体票省钱.【分析】(1)设小明他们一共去了 x 个成人,则去了(12-x)个学生,依据总价=单价×数量联合成人票及学生票的价钱,即可得出对于x 的一元一次方程,解之即可得出结论;(2)先求出购置 16 张集体票的价钱,与 400 比较后即可得出结论.本题考察了一元一次方程的应用,解题的重点是:(1)依据总价=单价×数目结合成人票及学生票的价钱,列出对于 x 的一元一次方程;(2)求出购置 16 张集体票的价钱.22.【答案】-128-3t【分析】解:(1)∵点 A 表示的数是 8,且 AB=20 ,点B 在点 A 的左侧,∴点 B 表示的数为 8-20=-12,动点 P 表示的数是 8-3t,(2)① 由题意得:t+3t=20,解得:t=5,答:5 秒时点 P 与点 Q 相遇;②第一种状况:点 P 追上点 Q 前,t+20=3t+4,解得:t=8;第二种状况:点 P 追上点 Q 后,t+20+4=3t,解得:t=12,答:经过 8 秒或 12 秒时点 P 与点 Q 相距 4 个单位.(1)依据两点间的距离公式求解可得;(2)① 依据点 P 运动行程 +点 Q 运动行程 =AB 的长度列方程求解可得;②分点 P 追上点 Q 前和点 P 追上点 Q 后两种状况,分别列出对于 t 的方程求解可得.本题主要考察一元一次方程和数轴,解题的重点是娴熟掌握数轴上两点间的距离公式和追及问题中包含的相等关系.23.【答案】解:以下图.【分析】由题意得出横或列的和为 27,据此求解可得.本题主要考察有理数的加法,解题的重点是依据幻方的特色及有理数的加法得出横或列的和为 27.24.【答案】解:由题意得,a+2=0,b-12 =0,解得, a=-2 ,b=12 ,2222 2原式 =7a b-4a b+6ab -4a b+ab当 a=-2 , b=12 时,2 2原式 =-( -2)×12+7×( -2)×( 12 ) =-112 .依据非负数的性质分别求出 a、b,依据整式的加减混淆运算法则把原式化简,代入计算即可.本题考察的是整式的化简求值,掌握非负数的性质、整式的加减混淆运算法则是解题的重点.25.【答案】解:∵点O为直线CA上一点,∠BOC=46°∴∠AOB=180 °-46 °=134 °,∵∠EOB=90 °,∴∠AOE=134 °-90 °=44 °,∵OD 均分∠AOB,∴∠AOD=12∠AOB=67 °,∴∠DOE=∠AOD -∠AOE=67 °-44 °=23 °.【分析】依据平角的定义获得∠AOB=180° -∠BOC=134°,则∠AOE= ∠AOB- ∠BOE=134°-90 °=44 °,再依据角均分线的定义获得∠AOD= ∠AOB=67°,而后利用∠DOE=∠AOD- ∠AOE 进行计算即可.本题考察的是角均分线定义:从一个角的极点出发,把这个角分红相等的两个角的射线叫做这个角的均分线.同时考察了余角和补角,角的和差.26.【答案】100054°【分析】解:(1)此次接受检查的市民总人数是 260÷26%=1000(人),则“报纸”的人数为 1000×10%=100(人),补全图形以下:(2)扇形统计图中,“电视”所对应的圆心角的度数是360°×15%=54°,故答案为:54°.3 计“电脑” 为“获取新闻” 总人数为()估此中将和手机上网作的最主要门路的90×=59.4(万人),电脑和手机上网”作为获闻的最主要门路”的总人数为59.4万人.答:将““ 取新电脑上网的人数除以电脑上网所占的百分比,可得样本容量,用总人数(1)用乘以“报纸”对应的百分比求得其人数,据此补全图形;(2)依据电视所占的百分比乘以圆周角,可得答案;样本估计总体,可得答案.(3)依据本题考查的是条形统计图和扇形统计图的综读统计图,从不一样的合运用,懂统计图中获得必需的信息是解决问题的关键统计图能清楚地表示出每.条形个项统计图直接反应部分占总体的百分比大小.也考查了用目的数据;扇形样本预计整体.。
山东省济南市历下区2023-2024学年七年级上学期期末数学试题(含解析)
A ...D .3.2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.C919储存约186000升燃油,数据186000用科学记数法表示为( )..D 表示南偏西方向,则的度数是50.18610⨯51.8610⨯41.8610⨯318610⨯50︒AOB ∠140︒A.B.A.两直线平行,内错角相等C.两直线平行,同旁内角互补8.我国古代数学著作《九章算术》中有这样一个问题:今有凫起南海,七日至北海.雁起根据统计图提供的信息,下列推断合理的是( )A .若8:00出发,驾车是最快的出行方式B .地铁出行所用时长受出发时刻影响较小C .若选择公交出行且需要30分钟以内到达,则7:30之前出发均可D .同一时刻出发,不同出行方式所用时长的差最长可达30分钟10.如图,取一根长度为1的木棍,第一次操作,将它三等分,去掉中间一段,剩下两段;第二次操作,将剩下的两段各自三等分,各去掉中间一段,剩下更短的四段…将这样的操作重复下去,那么在第四次操作后,剩下的若干木棍长度之和为( )A .B .C .第Ⅱ卷(非选择题共110分)二、填空题(本大题共6个小题,每小题4分,共24分.4271681824315.单项式与的差仍是单项式,则16.如图,一块长4厘米、宽1纸板②与一块正方形纸板③以及另两块长方形纸板正方形的面积是 平方厘米.三、解答题(本大题共17.计算:(1);(2).234n x y 434m x y -()4193-+÷-()14118236⎛⎫-+⨯- ⎪⎝⎭21.如图,点是直线上一点,22.2023年央视兔年春晚的《满庭芳中国传统美学,以中国音、色惊艳观众.某数学兴趣小组想要了解本校学生对四个中国色(桃红、群青、湘叶、凝脂)的喜爱情况,他们随机抽取了部分学生完成调查问卷(如图①),并根据调查结果绘制了两种不完整的统计图(如图(1)本次调查共抽取了______名学生;(2)根据信息将条形统计图补充完整;(3)在扇形统计图中,部分对应的扇形圆心角的度数为______度;(4)若该校共有1200名学生,根据抽样调查的结果,该校最喜欢桃红的学生大约有多少名?23.本学期学校开展以“感悟泉城美”为主题的研学活动,组织200名学生参观趵突泉和千佛山,每名学生只能到其中一个景点参加活动.学校共支付票款3600元,票价信息如下:地点学生票价O AB AOC ∠D(1)求该圆锥侧面展开图的面积;(2)是圆锥的一条母线,过圆锥底面圆心PA旋转一周所得曲面将圆锥分成两部分的体积比.【分析】本题考查了面动成体的过程.通过丰富的空间想象力类比选项中各花瓶的外表即可得出答案.【详解】解:将所给图形绕直线旋转一周后的几何体与A 选项的花瓶外表最为相似,故选:A .3.B【分析】本题考查了把绝对值大于1的数用科学记数法表示,关键是确定 n 与a 的值.科学记数法的表示形式为的形式,其中,为整数,它等于原数的整数数位与1的差.根据科学记数法的表示形式表示此数据即可.【详解】解:,故选:B .4.C【分析】先求出的余角,然后再加上与的和进行计算即可解答.【详解】解:由题意得:∵,∴,∴的度数是.故选:C .【点睛】本题考查方向角,余角,角的和差计算.根据题目的已知条件并结合图形分析是解题的关键.5.D【分析】本题考查了全面调查即普查:指对总体中每个个体都进行的调查,一般适用于总体中个体数量不太多的情况;对总体中的每个个体都进行的调查称为全面调查,对于总体中个体数量比较大、具有破坏性或不可能也没必要时,不适宜采用全面调查,把握这一特点是解题的关键.根据各个选项逐项分析即可.【详解】解:A 、个体数量庞大,不适宜普查;B 、没必要进行普查;C 、具有破坏性的调查不适宜普查;D 、保证“神舟十七号”飞船正常发射并运转,适宜普查;故选:D .10n a ⨯1||10a ≤<n 5186000 1.8610=⨯50︒90︒30︒905040︒-︒=︒409030160AOB ∠=︒+︒+︒=︒AOB ∠160︒故答案为:60.6-15.【分析】本题考查了同类项的概念,求代数式的值类项的概念可求得m与n的值,即可求得代数式的值.(3)解:,故答案为:36;(4)解:(名)即该校最喜欢桃红的学生大约有360名.23.(1)参观趵突泉和千佛山的学生各有(2)节省票款600元53603650⨯︒=︒151********⨯=∴,∵,∴,∴,∴180AEM NME ∠+∠=︒AB CD MN CD ∥180CFM NMF ∠+∠=︒AEM NME NMF CFM ∠+∠+∠+∠∵,∴,∴,∴AB CD ∥PH CD ∥EPH AEP ∠=∠FPH ∠=∠EPF EPH FPH ∠=∠+∠=∠在中,由勾股定理得∵∴;由勾股定理得∵Rt POA △1122PAO S OA OP PA OM =⨯=⨯ 125OP OA OM PA ⨯==2AM OA OM =-11S PM OM OP MF =⨯=⨯。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级(上)期末数学试卷题号一二三四总分得分一、选择题(本大题共12小题,共48.0分)1.-8的相反数是( )A. 8B.C.D.−818−1 82.德国《时代》周报网站列举了数据来评价中国改革开放40年的成就,在2017年我国申报了8330项国际专利,目前在年度国际专利申请量排名中位居第五,8330用科学记数法表示为( )A. B. C. D.0.833×10483.3×1038.33×1038.33×1043.下列平面图形不能够围成正方体的是( )A. B. C. D.4.长清冬季里某一天最高气温7°C,最低气温是-4°C,这一天长清最高气温与最低气温的温差是( )A. B. C. D.3∘C11∘C−3∘C−11∘C5.下列计算正确的是( )A. B. C. D.3x+2x2=5x32a2−a2=1−ab−ab=0−xy2+xy2=06.下列调查中,最适宜采用普查方式的是( )A. 对量子科学通信卫星上某种零部件的调查B. 对我国初中学生视力状况的调查C. 对一批节能灯管使用寿命的调查D. 对“最强大脑”节目收视率的调查7.如图,C是线段AB上的点,D是线段AC的中点,E是线段BC的中点,若DE=10,则AB的长为( )A. 10B. 20C. 30D. 408.下列四个生活、生产现象中,其中可用“两点之间,线段最短”来解释的现象有( )①用两个钉子就可以把木条固定在墙上②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线③从A 地到B 地架设电线,总是尽可能沿着直线架设④把弯曲的公路改直,就能缩短路程.A. B. C. D. ①②①③②④③④9.解方程=1时,去分母正确的是( )2x−13−3x−44A. B. 4(2x−1)−9x−12=18x−4−3(3x−4)=12C. D. 4(2x−1)−9x +12=18x−4+3(3x−4)=1210.将两块直角三角尺的直角顶点重合为如图的位置,若∠AOC =10°,则∠BOD 的度数是( )A. 10∘B. 20∘C. 70∘D. 80∘11.若x =2是方程3x -a =-1的解,则a 的值为( )A. 5B.C. 7D. −5−712.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( )A. B. C. D. y =2n +1y =2n +1+n y =2n +n y =2n +n +1二、填空题(本大题共6小题,共24.0分)13.计算1.5°=______′.14.单项式-的系数是______,次数是______.2x 3y 315.如图,把一个圆分成三个扇形,则圆心角∠AOB =______度.16.已知代数式3x -12与4互为相反数,那么x 的值等于______.17.在同一平面内,∠AOB =60°,∠BOC =45°,则∠AOC =______.18.某件商品,按成本价提高40%后标价,又以8折优惠卖出,结果仍可获利12元,则商品成本价为______元.三、计算题(本大题共3小题,共20.0分)19.计算:(1)(-5)•25-(-16)(2)(-1)4-36÷(-6)+3×(-)1320.(1)a •(5a -3b )-(a -2b )(2)2(x 2y -xy )-3(xy -x 2y )-4x 2y ,其中x =-1.y =l .21.(1)4(x -5)=6•2x(2)=-11−x 24x−13四、解答题(本大题共6小题,共58.0分)22.如图,线段AC =6,线段BC =15,点M 是AC 的中点,在CB 上取一点N ,使得CN :NB =1:2,求MN 的长.解:∵M 是AC 的中点,AC =6,∴MC =______(填线段名称)=______,12又因为CN :NB =1:2,BC =15,∴CN =______(填线段名称)=______.13∴MN =______(填线段名称)+______(填线段名称)=8∴MN 的长为8.23.如图是一些小正方块所搭几何体,请你在下面的方格中画出这个几何体的主视图和左视图.24.列方程解应用题:甲列车从A 地开往B 地,每小时行驶60千米,乙列车同时从B 地开往A 地,每小时行驶90千米.已知A ,B 两地相距200km .(1)经过多长时间两车相遇;(2)两车相遇的地方离A 地多远?25.某市为提高学生参与体育活动的积极性,围绕“你喜欢的体育运动项目(只写一项)”这一问题,对初一新生进行随机抽样调查.下面是根据调查结果绘制成的统计图(不完整).请你根据图中提供的信息解答下列问题(1)本次抽样调查一共调查调查了多少名学生?(2)根据条形统计图中的数据,求扇形统计图中“最喜欢健身操运动”的学生数对应扇形的圆心角;(3)请将条形图补充完整;(4)若该市2018年约有初一新生21000人,请你估计全市本届学生中“最喜欢足球运动”的学生有多少人?26.已知O为直线AB上的一点,∠COE是直角,OF平分∠AOE.(1)如图1,若∠COF=34°,则∠BOE=______;(2)如图1,若∠BOE=80°,则∠COF=______;(3)若∠COF=m°,则∠BOE=______度;∠BOE与∠COF的数量关系为______.(4)当∠COE绕点O逆时针旋转到如图2的位置时,(3)中∠BOE与∠COF的数量关系是否仍然成立?请说明理由.27.如图,已知数轴上的三点A、B、C,点A表示的数为5,点B表示的数为-3,点C到点A、点B的距离相等,动点P从点A出发,以每秒2个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒.(1)点C在数轴上表示的数是______;(2)当t=______秒时,点P到达点B处:(3)用含字母t的代数式表示线段AP=______;点P在数轴上表示的数是______.(4)当P,C之间的距离为1个单位长度时,求t的值.答案和解析1.【答案】A【解析】解:根据概念可知-8+(-8的相反数)=0,所以-8的相反数是8.故选:A.根据相反数的概念,互为相反数的两个数和为0,即可得出答案.主要考查相反数概念.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.2.【答案】C【解析】解:8330=8.33×103,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:根据正方体展开图的特点可判断A、D属于“1,4,1”格式,能围成正方体,C、属于“2,2,2”的格式也能围成正方体,B、不能围成正方体.故选:B.直接利用正方体的表面展开图特点判断即可.主要考查了正方体的表面展开图.4.【答案】B【解析】解:这一天长清最高气温与最低气温的温差是7-(-4)=7+4=11(℃),故选:B.用最高气温减去最低气温列出算式,然后再依据有理数的减法法则计算即可.本题主要考查的是有理数的减法,掌握减法法则是解题的关键.5.【答案】D【解析】解:A、不是同类项不能合并,故A不符合题意;B、系数相加字母及指数不变,故B不符合题意;C、系数相加字母及指数不变,故C不符合题意;D、系数相加字母及指数不变,故D符合题意;故选:D.根据合并同类项的法则把系数相加即可.本题考查了合并同类项法则的应用,注意:合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变.6.【答案】A【解析】解:A、对量子科学通信卫星上某种零部件的调查,适合全面调查,故A选项正确;B、对我国初中学生视力状况的调查,适合抽样调查,故B选项错误;C、对一批节能灯管使用寿命的调查适于抽样调查,故C选项错误;D、对“最强大脑”节目收视率的调查,适于抽样调查,故D选项错误.故选:A.根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.【答案】B【解析】解:∵D是线段AC的中点,E是线段BC的中点,∴AD=CD=,BE=CE=,∴DE=CD+DE=AB=10,故AB=20.故选:B.根据题意,DE=CD+DE=AB,即可求出AB.本题考查了两点间的距离,利用了线段中点的性质得出CD、CE的长,又利用线段的和差得出答案.8.【答案】D【解析】解:①用两个钉子就可以把木条固定在墙上,是两点确定一条之间,故此选项错误;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线,是两点确定一条之间,故此选项错误;③从A地到B地架设电线,总是尽可能沿着直线架设,是两点之间,线段最短,故此选项正确;④把弯曲的公路改直,就能缩短路程,是两点之间,线段最短,故此选项正确;故选:D.分别利用直线的性质以及线段的性质分析得出答案.此题主要考查了直线的性质以及线段的性质,正确把握直线与线段的性质是解题关键.9.【答案】B【解析】解:去分母得:4(2x-1)-3(3x-4)=12;去括号得:8x-4-9x+12=12.故选:B.分别对所给的四个方程利用等式性质进行变形,可以找出正确答案.去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.10.【答案】A【解析】解:由图可得,∠AOC、∠BOD都是∠BOC的余角,则∠BOD=∠AOC=10°.故选:A.根据同角的余角相等即可求解.此题主要考查余角的性质:同角的余角相等.11.【答案】C【解析】解:根据题意,将x=2代入方程3x-a=-1,得:6-a=-1,解得:a=7,故选:C.根据方程解的定义,将方程的解代入方程,就可得一个关于字母a的一元一次方程,从而可求出a的值.本题考查了方程的解的定义,解决本题的关键在于:根据方程的解的定义将x=3代入,从而转化为关于a的一元一次方程.12.【答案】C【解析】解:根据题意得:第1个图:y=1+2,第2个图:y=2+4=2+22,第3个图:y=3+8=3+23,…以此类推第n个图:y=n+2n,故选:C.根据题意得:第1个图:y=1+2,第2个图:y=2+4=2+22,第3个图:y=3+8=3+23,…以此类推第n 个图:y=n+2n ,即可得到答案.本题考查了函数关系式和规律型:图形的变化类,正确找出规律,进行猜想归纳即可.13.【答案】90【解析】解:1.5°=90′,故答案为:90.根据1°=60′进行计算即可.此题主要考查了度分秒的换算,关键是掌握1°=60′,1分=60秒,即1′=60″.14.【答案】- 423【解析】解:根据单项式系数、次数的定义可知,单项式-的系数是-,次数是4.根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.字母y 的指数是1,容易遗漏.15.【答案】72【解析】解:∠AOB=360°×20%=72°,故答案为:72.根据圆心角、弧、弦的关系定理计算.本题考查的是圆心角、弧、弦的关系,掌握周角的概念、圆心角、弧、弦的关系定理是解题的关键.16.【答案】83【解析】解:根据题意知3x-12+4=0,3x=12-4,3x=8,x=,故答案为:.根据相反数的性质得出关于x 的方程,解之可得.本题主要考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a 形式转化.17.【答案】15°或105°【解析】解:∠AOC=∠AOB-∠BOC=60°-45°=15°,∠AOC=∠AOB+∠BOC=60°+45°=105°.综上所述,∠AOC=15°或105°.故答案为:15°或105°.此题要分两种情况,一种是OC 落在∠AOB 内,OC 落在∠AOB 外,分别进行计算.此题主要考查了角的计算,注意要考虑全面,不要漏解.18.【答案】100【解析】解:设商品的成本价为x 元,由题意得:(1+40%)x•80%=x+12,解得:x=125.答:这件商品的成本价为100元.故答案为:100.首先设商品的成本价为x 元,由题意得等量关系:标价×打折=成本价+12元,根据等量关系列出方程即可.此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,再设出未知数,列出方程即可.19.【答案】解:(1)(-5)•25-(-16)=-125+16=-109;(2)(-1)4-36÷(-6)+3×(-)13=1+6-1=6.【解析】(1)先算乘法,再算减法即可求解;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.20.【答案】解:(1)a •(5a -3b )-(a -2b )=5a 2-3ab -a +2b ;(2)2(x 2y -xy )-3(xy -x 2y )-4x 2y=2x 2y -2xy -3xy +3x 2y -4x 2y=x 2y -5xy ,当x =-1,y =l 时,原式=(-1)2×1-5×(-1)×1=1+5=6.【解析】(1)去括号即可;(2)先去括号合并同类项将式子化为最简形式,再把x 的值代入计算即可.本题考查了整式的混合运算-化简求值,掌握运算顺序与运算法则是解题的关键.21.【答案】解:(1)4x -20=12x ,4x -12x =-20,-8x =-20,x =;54(2)3(1-x )=2(4x -1)-6,3-3x =8x -2-6,-3x -8x =-2-6-3,-11x =-11,x =1.【解析】(1)依次去括号、移项、合并同类项、系数化为1可得;(2)依次去分母、去括号、移项、合并同类项、系数化为1可得.本题主要考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a 形式转化.22.【答案】AC 3 BC 5 MC NC【解析】解:∵M 是AC 的中点,AC=6,∴MC=AC=3,又因为CN :NB=1:2,BC=15,∴NC=BC=5.∴MN=MC+NC=8∴MN 的长为8.故答案为:AC ;3;BC ;5;MC ;NC .因为点M 是AC 的中点,则有MC=AM=AC ,又因为CN :NB=1:2,则有CN=BC ,故MN=MC+NC 可求.利用中点性质转化线段之间的倍分关系是解题的关键,本题点M 是AC 的中点,则有MC=AM=AC ,还利用了两条线段成比例求解.23.【答案】解:如图所示:【解析】由已知条件可知,主视图有3列,每列小正方数形数目分别为1,3,2,左视图有2列,每列小正方形数目分别为3,1.据此可画出图形.本题考查简单组合体的三视图的画法.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;注意看到的用实线表示,看不到的用虚线表示.注意涂色面积指组成几何体的外表面积.24.【答案】解:(1)设经过x 小时两车相遇,根据题意得:(60+90)x =200,解得:x =,43答:经过小时两车相遇;43(2)根据题意得:60×=80(千米),43答:两车相遇的地方离A 地80千米.【解析】(1)设两车相遇时间为x 小时,根据所行的路程和为200km ,列出方程求得相遇时间即可;(2)用(1)求出的时间乘以甲列车从A 地开往B 地速度,即可得出两车相遇的此题考查了一元一次方程的应用,掌握行程问题中的基本数量关系是解决问题的关键.25.【答案】解:(1)本次抽样调查的总人数为100÷20%=500(名);(2)∵跳绳的人数为500×18%=90(名),其它的人数为500×20%=100(名),∴篮球的人数为500-(60+90+100+100)=150(名),则扇形统计图中“最喜欢健身操运动”的学生数对应扇形的圆心角为360°×=72°;100500(3)补全条形图如下:(4)估计全市本届学生中“最喜欢足球运动”的学生有21000×=2520(名).60500【解析】(1)根据条形图可得健身操人数为100,根据扇形图可得健身操人数占20%,因此利用健身人数除以所占百分数可得本次抽样调查一共调查调查了多少名学生;(2)计算出跳绳人数、其它人数,用总数减去喜欢各项运动的人数可得喜欢篮球的人数,再利用360°乘以“最喜欢足球运动”的学生数所占比例即可; (3)根据以上所求结果补全图形即可;(4)利用样本估计总体的方法,用总人数21000人乘以“最喜欢足球运动”的学生在样本中所占比例即可.此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.26.【答案】68° 40° 2m ∠BOE =2∠COF【解析】解:(1)∵∠COE 是直角,∠COF=34°,∴∠EOF=90°-34°=56°,∵OF 平分∠AOE .∴∠AOE=2∠EOF=112°,∴∠BOE=180°-112°=68°;(2)设∠COF=n°,∴∠EOF=90°-n°,∴∠AOE=2∠EOF=180°-2n°,∴∠BOE=180°-(180°-2n°)=2n°=80°,∴∠COF=40°,∠BOE=2∠COF.故答案为:∠BOE=2∠COF;(3)当∠COF=m°,∴∠EOF=90°-m°,∴∠AOE=2∠EOF=180°-2m°,∴∠BOE=180°-(180°-2m°)=2m°,∴∠BOE=2∠COF.故答案为:2m,∠BOE=2∠COF;(4)∠BOE与∠COF的数量关系仍然成立.理由如下:设∠COF=n°,∵∠COE是直角,∴∠EOF=90°-n°,又∵OF平分∠AOE.∴∠AOE=2∠EOF=180°-2n°,∴∠BOE=180°-(180°-2n°)=2n°,即∠BOE=2∠COF.(1)根据互余得到∠EOF=90°-34°,再由OF平分∠AOE,得到∠AOE=2∠EOF=180°-68°,然后根据邻补角的定义得到∠BOE;(2)当∠COF=n°,根据互余得到∠EOF=90°-n°,再由OF平分∠AOE,得到∠AOE=2∠EOF=180°-2n°,然后根据邻补角的定义得到∠BOE=180°-(180°-2n°)=2n°=80°,于是得到结论;(3)当∠COF=m°,根据互余得到∠EOF=90°-m°,再由OF平分∠AOE,得到∠AOE=2∠EOF=180°-2m°,然后根据邻补角的定义得到∠BOE=180°-(180°-2m°)=2m°,所以有∠BOE=2∠COF;(4)同(3),可得到∠BOE=2∠COF.本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等;也考查了角平分线的定义以及互余互补的含义.27.【答案】1 4 2t 5-2t【解析】解:(1)AB=5-(-3)=8,8÷2=4,5-4=1.故答案为:1;(2)8÷2=4,(3)AP=2t,所以P表示的数是5-2t,故答案为:2t,5-2t;(4)P在C右边时,5-2t-1=1,解得t=1.5;P在C左边时,1-(5-2t)=1,解得t=2.5,所以当t=1.5或2.5秒时P,C之间的距离为1个单位长度.(1)计算AB长度,根据点C到点A、点B的距离相等可确定C表示数字;(2)P运动路程是8除以速度求解;(3)根据路程等于速度乘以时间来表示AP长度,用点A表示数字减点AP长度即点P表示数字;(4)分P在C左右两边两种可能列式求解.本题借助数轴考查一元一次方程应用.确定数量关系是解答的关键.七年级(上)期末数学试卷题号一二三四总分得分一、选择题(本大题共12小题,共48.0分)1.2019的相反数是( )A. 12019B. −2019C. −12019D. 20192.人体内一种细胞的直径约为0.00000156m,数据0.00000156用科学记数法表示为( )A. 1.56×10−5B. 1.56×10−6C. 15.6×10−7D. −1.56×1063.如图,是由4个大小相同的正方体搭成的几何体,从上面看到的几何体的形状是( )A. B. C.D.4.下列四个生产生活现象,可以用基本事实“两点之间,线段最短”来解释的是( )A. 用两个钉子就可以把木条固定在墙上B. 植树时,只要定出两棵树的位置,就能确定同一行树所在的直线C. 打靶的时候,眼睛要与枪上的准星、靶心在同一条直线上D. 从A地到B地架设电线,总是尽可能沿着线段AB来架设5.下列调查中,最适合采用普查方式的是( )A. 对某批电视机的使用寿命的调查B. 对济南市初中学生每天阅读时间的调查C. 对某中学七年级一班学生视力情况的调查D. 对市场上大米质量情况的调查6.如图,是一个几何体的表面展开图,则该几何体是( )A. 三棱柱B. 四棱锥C. 长方体D. 正方体7.下列运算正确的是( )A. x2+x2=x4B. a2⋅a3=a5C. (3x)2 =6x2D. (mn)5÷(mn)=mn48.关于y的方程3y+5=0与3y+3k=1的解完全相同,则k的值为( )A. −2B. 34C. 2D. −439.如图所示,将一副三角板的直角顶点重合摆放在桌面上,若∠BCD=46°,则∠ACFA. 88∘B. 134∘C. 135∘D. 144∘10.某商场把一双钉鞋按标价的八折出售,仍可获利20%.若钉鞋的进价为100元,则标价为( )A. 145元B. 165元C. 180元D. 150元11.已知线段AB=2cm,延长BA到C,使AC=6cm,如果点O为AC的中点,则线段OB的长为( )A. 1cmB. 5cmC. 1cm或5cmD. 1cm或4cm12.我们知道,四边形有2条对角线,五边形有5条对角线,那么十二边形的对角线总条数是( )A. 9B. 54C. 60D. 108二、填空题(本大题共6小题,共24.0分)13.A、B、C三点相对于海平面分别是-13米、-7米、-20米,那么最高的地方比最低的地方高______米.14.已知-25a2m b和2a6b n+3是同类项,则m n=______.15.某校初一年级在上午10:00开展“阳光体育”活动.上午10:00这一时刻,钟表上分针与时针所夹的角等于______度.16.已知长方形的面积为(6a2b-4a2+2a),宽为2a,则长方形的周长为______.17.一个小立方块的六个面分别标有数字1,-2,3,-4,5,-6,从三个不同方向看到的情形如图所示,则如图放置时的底面上的数字之和等于______.18.如图,数轴上,点A表示的数为1,现点A做如下移动:第1次点A向左移动3个单位长度至点A1,第2次从点A1向右移动6个单位长度至点A2,第3次从点A2向左移动9个单位长度至点A3,…,按照这种移动方式进行下去,点A2019表示的数是______.三、计算题(本大题共5小题,共56.0分)19.计算(1)|5-8|+24÷(-2)×12(2)(54−76)×(-87)(3)(2x2-3xy-12x)-(5x2+xy+x)(4)(-2a2)3+a8÷a2+3a•a5(5)(2x-5)(2x+5)-2x(2x-3)(6)(3x+y)2-(3x-y)220.解方程(1)4x-3(5-x)=6(2)x−13−5x−26=121.在“元旦“期间,几名学生随同家长一起到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)小明他们一共去了几名成人,几名学生?(2)请你帮助小明算一算,用哪种方式购票更省钱?并说明理由.22.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,动点P从点A出发,以3个单位/秒的速度沿着数轴负方向匀速运动,设运动时间为t秒(t>0).(1)写出数轴上点B表示的数______;动点P对应的数是______(用含t的代数式表示);(2)动点Q从点B出发,以1个单位/秒的速度匀速运动,且点P,Q同时出发①若动点Q沿着数轴正方向匀速运动,多少秒时点P与点Q相遇?②若动点Q沿着数轴负方向匀速运动,多少秒时点P与点Q相距4个单位?23.请将“2,4,6,7,9,11,12,14,16”共9个数,填入到下面3×3的方格中,使得每行、每列、每条对角线上的三个数之和相等,构成一个三阶幻方.(至少三种不同的填法)四、解答题(本大题共3小题,共22.0分)24.先化简,再求值:7a2b-2(2a2b-3ab2)-(4a2b-ab2),其中|a+2|+(b-12)2=0.25.如图,点O为直线CA上一点,∠BOC=46°,OD平分∠AOB,∠EOB=90°,求∠AOE和∠DOE的度数.26.为了了解市民“获取新闻的最主要途径”某市记者开展了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图.根据以上信息解答下列问题:(1)这次接受调查的市民总人数是______;请补全条形统计图;(2)扇形统计图中,“电视”所对应的圆心角的度数是______;(3)若该市约有90万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.答案和解析1.【答案】B【解析】解:2019的相反数是-2019.故选:B.直接利用相反数的定义分析得出答案.此题主要考查了相反数,正确把握定义是解题关键.2.【答案】B【解析】解:0.00000156用科学记数法表示为1.56×10-6,故选:B.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【答案】A【解析】解:从上面看到的几何体的形状图是,故选:A.从几何体的上面看有3列,从左到右分别是1,1,1个正方形.本题考查了简单组合体的三视图,主要培养学生的思考能力和对几何体三种视图的空间想象能力.4.【答案】D【解析】解:A、根据两点确定一条直线,故本选项错误;B、根据两点确定一条直线,故本选项错误;C、根据两点确定一条直线,故本选项错误;D、根据两点之间,线段最短,故本选项正确.故选:D.根据线段的性质对各选项进行逐一分析即可.本题考查了两点之间线段最短,熟知“两点之间,线段最短”是解答此题的关键.5.【答案】C【解析】解:A、对某批电视机的使用寿命的调查,调查范围广适合抽样调查,故A不符合题意;B、对济南市初中学生每天阅读时间的调查,调查范围广适合抽样调查,故B 不符合题意;C、对某中学七年级一班学生视力情况的调查,适合普查,故C符合题意;D、对市场上大米质量情况的调查,调查范围广适合抽样调查,故D不符合题意;故选:C.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.【答案】A【解析】解:由图得,这个几何体为三棱柱.故选:A.由展开图得这个几何体为棱柱,底面为三边形,则为三棱柱.考查了几何体的展开图,有两个底面的为柱体,有一个底面的为锥体.7.【答案】B【解析】解:A、x2+x2=2x2,错误;B、a2•a3=a5 ,正确;C、(3x)2 =9x2,错误;D、(mn)5÷(mn)=(mn)4,错误;故选:B.根据合并同类项、同底数幂的乘法、除法和幂的乘方计算判断即可.此题考查同底数幂的乘法、除法,关键是根据合并同类项、同底数幂的乘法、除法和幂的乘方法则解答.8.【答案】C【解析】解:解第一个方程得:y=-解第二个方程得:y=∴-=∴k=2故选:C.可以分别解出两方程的解,两解相等,就得到关于m的方程,从而可以求出m的值.本题的关键是正确解一元一次方程.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.9.【答案】B【解析】解:∵∠ACB=∠DCF=90°,∠BCD=46°∴∠ACF=∠ACB+∠FCD-∠BCD=90°+90°-46°=134°.故选:B.从图可以看出,∠ACF的度数正好是两直角相加减去∠BCD的度数,从而问题可解.此题主要考查了互余两角的定义,正确掌握互余两角的定义是解题关键.10.【答案】D【解析】解:设每件的标价为x元,由题意得:80%x=100×(1+20%),解得:x=150.即每件的标价为150元.故选:D.设每件的标价为x元,根据八折出售可获利20%,可得出方程:80%x=100×(1+20%),解出即可.此题考查了一元一次方程的应用,属于基础题,关键是仔细审题,得出等量关系,利用方程思想解答,难度一般.11.【答案】A【解析】解:∵AB=2cm,AC=6cm,∵O是AC的中点,∴AO=AC=×6=3cm,∴BO=AO-AB=3-2=1cm.故选:A.根据O是AC的中点求出AO的长,根据BO=AO-AB即可得出结论.本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.12.【答案】B【解析】解:十二边形的对角线总条数==54(条).故十二边形的对角线总条数是54.故选:B.由于n边形从一个顶点出发可画(n-3)条对角线,所以n边形共有条对角线,根据以上关系直接计算即可.本题考查了多边形对角线的定义及计算公式,熟记多边形的边数与对角线的关系式是解决此类问题的关键.13.【答案】13【解析】解:由题意知:最高的地方是-7米,最低的地方是-20米,∴最高的地方比最低的地方高-7-(-20)=13米.故答案为:13米.根据题意先确定最高的地方是-7米,最低的地方是-20米,然后再利用有理数的减法计算即可.本题考查了有理数的减法,解决此题的关确定键是确定三点中的最高点和最低点,然后再利用有理数的减法法则:减去一个数等于加上这个数的相反数解题.14.【答案】19【解析】解:由题意可知:2m=6,n+3=1,∴m=3,n=-2,。