17级期中数学试题

合集下载

河北省唐山市滦州市2022-2023学年七年级下学期期中考试数学试题(含答案)

河北省唐山市滦州市2022-2023学年七年级下学期期中考试数学试题(含答案)

滦州市2022—2023学年度第二学期期中考试七年级数学试卷注意事项:1.本试卷共4页,总分100分。

2.选择题答案用2B 铅笔涂在答题纸上。

3.非选择题须用0.5毫米黑色中性笔书写在答题纸上。

一、选择题:(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列方程是二元一次方程的是( )A .B.C .D .2.我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示为( )A .千克B .千克C .千克D .千克3.如图,,,则点C 到AB 的距离是线段( )的长度A .CDB .ADC .BD D .BC4.下列计算正确的是( )A .B .C .D .5.若是关于x 、y 的二元一次方程的解,则a 的值为( )A .-5B .-1C .9D .116.下列命题中,是真命题的是( )A .相等的角是对顶角B .在同一平面内,不相交的两条线段平行C .一个角的余角比它的补角小90°D .过一点有且只有一条直线与已知直线平行7.如图,是由经过平移后得到的,且B ,E ,C ,F 在同一直线上,则平移的距离是()A .线段BC 的长度B .线段BE 的长度C .线段EC 的长度D .线段EF 的长度8.如图,已知垂足为O ,EF 经过点O ,如果,则等于( )23x y z +=45y x +=2102x y +=()182y x =+46.7510⨯667.510⨯76.7510⨯56.7510⨯AC BC ⊥CD AB ⊥842x x x ÷=()22346x y x y -=+()236x x -=-3412x x x ⋅=12x y =⎧⎨=⎩51ax y -=DEF △ABC △AB CD ⊥130∠=︒2∠A .30°B .45°C .60°D .90°9.计算:()A .7000B .4900C .700D .7010.如图,下列能判定的条件有()个.(1);(2);(3);(4).A .1B .2C .3D .411.解方程组时,下列步骤正确的是( )A .代入法消去a ,由①得B .代入法消去b ,由①得C .加减法消去a ,①-②得D .加减法消去b ,①+②得12.已知,,,则m ,n ,p 的大小关系是( )A .B .C .D .13.小红家离学校1500米,其中有一段为上坡路,另一段为下坡路.她去学校共用了18分钟,假设小红上坡路的平均速度是2千米/时,下坡路的平均速度是3千米/时,若设小红上坡用了x 分钟,下坡用了y 分钟,根据题意可列方程组为( )A .B .C .D .14.如果多项式与的乘积展开式中不含x 的一次项,且常数项为6,则的值为( )A .-12B .-6C .6D .1815.如图(1),在三角形ABC 中,,BC 边绕点C按逆时针方向旋转一周回到原来的位置。

四川省成都市龙泉驿区2023-2024学年上学期七年级期中数学试卷(含解析)

四川省成都市龙泉驿区2023-2024学年上学期七年级期中数学试卷(含解析)

2023-2024学年四川省成都市龙泉驿区七年级(上)期中数学试卷一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(4分)如果某商场盈利5万记作+5万元,那么亏损4万元,应记作( )A.+4万元B.﹣4万元C.+1万元D.﹣1万元2.(4分)﹣2的相反数是( )A.﹣2B.﹣C.2D.3.(4分)我国神舟十三号载人飞船和航天员乘组于2022年4月16日返回地球,结束了183天的在轨飞行时间.从2003年神舟五号载人飞船上天以来,我国已有13位航天员出征太空,绕地球飞行共约2.32亿公里.将数据2.32亿用科学记数法表示为( )A.0.232×109B.2.32×108C.2.32×106D.23.2×1084.(4分)多项式3x2﹣2x+5的各项分别是( )A.3x2,﹣2x,5B.x2,x,5C.3x2,2x,5D.3,2,55.(4分)若数轴上点A表示的数是﹣1,则与点A相距2个单位长度的点表示的数是( )A.±3B.﹣3 或1C.±1D.1或36.(4分)若﹣2a m+5b2与a4b2n的和仍为单项式,则m﹣n的值为( )A.0B.2C.﹣1D.﹣27.(4分)下列各组数中,相等的一组是( )A.﹣|﹣2|与﹣(﹣2)B.﹣33与(﹣3)3C.与D.﹣54与(﹣5)48.(4分)根据流程图中的程序,若输入x的值为﹣1,则输出y的值为( )A.4B.7C.8D.187二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.(4分)比较大小:﹣ ﹣(选填“>”、“=”或“<”).10.(4分)单项式的系数为 ,次数为 .11.(4分)已知a,b互为相反数,且c,d互为倒数,m是最大的负整数,则3a﹣2023cd+3b+m的值为 .12.(4分)下表是国外城市与北京的时差(带正号的数表示同一时刻比北京时间早的时数)城市纽约巴黎东京多伦多时差(时)﹣13﹣7+1﹣12如果现在东京时间是16:00,那么纽约时间是 .(以上均为24小时制)13.(4分)当x=3时,ax3﹣bx+3的值是﹣1,则9a﹣b﹣1的值是 .三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.(4分)计算:(1)﹣17+24+(﹣16)﹣(﹣9);(2);(3);(4)(﹣1)2025﹣(﹣18)×﹣4÷(﹣2)2.15.(4分)化简:(1)﹣x2+3y+2x2﹣5y+1;(2)3x2﹣xy﹣2(x2﹣xy).16.(6分)先化简,再求值:,其中x=2,y=﹣.17.(6分)如图是2023年八月份的日历:(1)若将“H”形框上下左右移动,可框住另外七个数,若设“H”形框中的7个数中最中间一个数是x,请用含x的代数式由小到大依次表示出“H”形框中的其余6个数;(2)请问“H”形框能否框到七个数,使这七个数之和等于161?若能,请由小到大依次写出这七个数;若不能,请说明理由.18.(12分)2023年11月中国人民解放军空军八一飞行表演队应邀赴阿联酋参加于11月13日到17日举行的第十八届迪拜航空展,此次迪拜展是空军八一飞行表演队继2017年11月之后第二次亮相阿联酋,是空军八一飞行表演队换装歼﹣10C 后首次飞赴中东国家,针对此次航展空军八一飞行表演队编排了3套表演方案,共20多个表演动作.表演过程中一架歼﹣10C 表演机A 起飞后的高度变化如下表所示:高度变化上升4.2千米下降2.3千米上升1.5千米下降0.9千米上升1.1千米记作+4.2km﹣2.3km+1.5km﹣0.9km+1.1km(1)当表演机A 完成上述五个表演动作后,表演机A 的高度是多少千米;(2)如果表演机A 每上升或下降1千米需消耗1.7升燃油,那么表演机A 在这5个动作表演过程中,一共消耗了多少升燃油;(3)若另一架表演机B 在做花式飞行表演时,起飞后前四次的高度变化为:上升3.8千米,下降2.5千米,上升4.3千米,再下降1.9千米.若要使表演机B 在完成第5个动作后与表演机A 完成5个动作后的高度相同,表演机B 的第5个动作是上升还是下降,上升或下降多少千米?一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19.(4分)当|2x +y |+5取最小值时,代数式x +y ﹣10的值为  .20.(4分)在数轴上,如果点A 表示的数为﹣3,点B 表示的数为1,一个小球从点A 出发,沿着数轴先向左移动7个单位长度,再向右移动4个单位长度,此时小球到达点C 处,则点A 到点C 的距离与点B 到点C之间的距离之和为  .21.(4分)如图所示,在长方形ABCD 中,AD =3AB ,在它内部有三个小正方形,正方形AEFG 的边长为m ,正方形GBIH 的边长为n ,则阴影部分的周长为 (用含m ,n 的代数式表示).22.(4分)已知有理数a,b,c在数轴上的位置如图所示,满足|a|<|b|<|c|,则|2a+c﹣b|﹣|a﹣c+b|+= .23.(4分)观察下列数表规律,第n列第二排的数为 (用含n的代数式表示).第1列第2列第3列第4列第5列……第n列第一排2﹣46﹣810…………第二排207421…………第三排2481632…………二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.(10分)【基本事实】我们知道整数和分数统称为有理数,为什么不是整数和小数统称为有理数呢?所有的分数都可以化成小数的形式,是不是所有的小数都可以化成分数形式呢?我们可以举例说明:有限小数0.2化成分数的形式是 ;无限循环小数又该如何化呢?我们以无限循环小数0.7为例进行说明:设=x,由=0.7777…可知,10x=7.7777…,所以10x=7+x,解方程,得x=,于是得,故化成分数的形式是 ,所有有限小数和无限循环小数 (填“是”或“不是”)有理数;而无限不循环小数是不可以化成分数的,所以π (填“是”或“不是”)有理数,那么无限不循环小数能通过数轴上的一个点来表示吗?我们将以π为例通过下列活动来探索:【数学活动】如图,直径为1的圆从原点出发沿数轴正方向滚动一周,圆上一点由原点O到达点O',则OO′= .【知识推理】判断:(填“正确”或“错误”)(1)任何一个有理数都可以用数轴上唯一的一个点来表示. (2)数轴上的点都表示有理数. (3)整数和小数统称为有理数. 25.(16分)(1)已知A=2x2﹣x+y﹣4xy,B=x2﹣2x﹣y﹣xy+3,若(x+y﹣2)2+|xy+1|=0,求3A﹣2(A+B)的值.(2)已知c<0<a,ab<0,|c|>|a|>|b|,化简:|b|﹣2|c﹣a|﹣|a+b|+|b﹣c|.26.(20分)【问题背景】我们知道|x|的几何意义是:在数轴上数x对应的点到原点O的距离,这个结论可以推广为:|x1﹣x2|表示在数轴上数x1,x2对应点之间的距离.在数轴上,点A,B的位置如图1所示,AB=|1﹣(﹣2)|=3.【问题解决】(1)|2﹣(﹣3)|的几何意义是 .(2)如果点C为数轴上一点,它所表示的数为x,点D在数轴上表示的数为﹣2,那么CD = (用含x的代数式表示).【关联运用】(1)运用一:代数式|x+1|+|x+4|的最小值为 .(2)运用二:代数式|x﹣2|﹣|x+14|的最大值为 .(3)运用三:已知|x﹣1|+|x+3|=10,则x的值为 .(4)运用四:如图2所示,点E,F,G是数轴上的三点,E点表示数是﹣5,F点表示数是﹣2,G点表示数是6,点E,F,G开始在数轴上运动,若点E以每秒2个单位长度的速度向左运动,同时,点F和点G分别以每秒3个单位长度和1个单位长度的速度向右运动,假设t秒后,若点E与点F之间的距离表示为EF,点E与点G之间的距离表示为EG,点F与点G之间的距离表示为FG.4秒后,若mFG﹣3EF的值是一个定值,试确定m的值.2023-2024学年四川省成都市龙泉驿区七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(4分)如果某商场盈利5万记作+5万元,那么亏损4万元,应记作( )A.+4万元B.﹣4万元C.+1万元D.﹣1万元【解答】解:如果某商场盈利5万记作+5万元,那么亏损4万元,应记作﹣4万元.故选:B.2.(4分)﹣2的相反数是( )A.﹣2B.﹣C.2D.【解答】解:﹣2的相反数是2,故选:C.3.(4分)我国神舟十三号载人飞船和航天员乘组于2022年4月16日返回地球,结束了183天的在轨飞行时间.从2003年神舟五号载人飞船上天以来,我国已有13位航天员出征太空,绕地球飞行共约2.32亿公里.将数据2.32亿用科学记数法表示为( )A.0.232×109B.2.32×108C.2.32×106D.23.2×108【解答】解:2.32亿=2.32×108.故选:B.4.(4分)多项式3x2﹣2x+5的各项分别是( )A.3x2,﹣2x,5B.x2,x,5C.3x2,2x,5D.3,2,5【解答】解:多项式3x2﹣2x+5的各项分别是3x2,﹣2x,5,故选:A.5.(4分)若数轴上点A表示的数是﹣1,则与点A相距2个单位长度的点表示的数是( )A.±3B.﹣3 或1C.±1D.1或3【解答】解:∵数轴上点A表示的数为﹣1,∴与点A相距2个单位长度的点表示的数是:﹣1﹣2=﹣3或﹣1+2=1,综上所述,表示的数是﹣3或1.故选:B.6.(4分)若﹣2a m+5b2与a4b2n的和仍为单项式,则m﹣n的值为( )A.0B.2C.﹣1D.﹣2【解答】解:根据题意可得,m+5=4,2n=2,解得:m=﹣1,n=1,则m﹣n=﹣1﹣1=﹣2.故选:D.7.(4分)下列各组数中,相等的一组是( )A.﹣|﹣2|与﹣(﹣2)B.﹣33与(﹣3)3C.与D.﹣54与(﹣5)4【解答】解:A、∵﹣|﹣2|=﹣2,﹣(﹣2)=2,∴﹣|﹣2|≠﹣(﹣2),故此选项不符合题意;B、∵﹣33=﹣27,(﹣3)3=﹣27,∴﹣33=(﹣3)3,故此选项符合题意;C、∵,,∴,故此选项不符合题意;D、∵﹣54=﹣625,(﹣5)4=625,∴﹣54≠(﹣5)4,故此选项不符合题意;故选:B.8.(4分)根据流程图中的程序,若输入x的值为﹣1,则输出y的值为( )A.4B.7C.8D.187【解答】解:根据题意得:y=(﹣1)2×3﹣5=﹣2<0,y=(﹣2)2×3﹣5=7>0,符合题意,故选:B.二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.(4分)比较大小:﹣ < ﹣(选填“>”、“=”或“<”).【解答】解:∵|﹣|=>|﹣|=.∴﹣<﹣.故答案为:<.10.(4分)单项式的系数为 ﹣ ,次数为 5 .【解答】解:单项式的系数为﹣、次数为5,故答案为:﹣,5.11.(4分)已知a,b互为相反数,且c,d互为倒数,m是最大的负整数,则3a﹣2023cd+3b+m的值为 ﹣2024 .【解答】解:∵a,b互为相反数,∴a+b=0,∵c,d互为倒数,∴cd=1.∵m是最大的负整数,∴m=﹣1.∴3a﹣2023cd+3b+m=3(a+b)﹣2023cd+m=0﹣2023﹣1=﹣2024.故答案为:﹣2024.12.(4分)下表是国外城市与北京的时差(带正号的数表示同一时刻比北京时间早的时数)城市纽约巴黎东京多伦多时差(时)﹣13﹣7+1﹣12如果现在东京时间是16:00,那么纽约时间是 2:00 .(以上均为24小时制)【解答】解:∵由表格可得,东京时间比纽约时间快的时数为:1﹣(﹣13)=14,∴当东京时间是16:00时,纽约时间为:16﹣14=2(时),即如果现在东京时间是16:00,那么纽约时间是2:00,故答案为:2:00.13.(4分)当x=3时,ax3﹣bx+3的值是﹣1,则9a﹣b﹣1的值是 .【解答】解:把x=3代入ax3﹣bx+3=﹣1,得:27a﹣3b+3=﹣1,∴9a﹣b=,∴9a﹣b﹣1=﹣1=.故答案为:.三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.(4分)计算:(1)﹣17+24+(﹣16)﹣(﹣9);(2);(3);(4)(﹣1)2025﹣(﹣18)×﹣4÷(﹣2)2.【解答】解:(1)﹣17+24+(﹣16)﹣(﹣9)=﹣17+24+(﹣16)+9=0;(2)=(﹣25)×××=﹣;(3)=(﹣)×(﹣48)+×(﹣48)﹣×(﹣48)=84+(﹣8)+30=106;(4)(﹣1)2025﹣(﹣18)×﹣4÷(﹣2)2=(﹣1)+18×﹣4÷4=(﹣1)+10﹣1=8.15.(4分)化简:(1)﹣x2+3y+2x2﹣5y+1;(2)3x2﹣xy﹣2(x2﹣xy).【解答】解:(1)原式=x2﹣2y+1;(2)原式=3x2﹣xy﹣x2+2xy=2x2+xy.16.(6分)先化简,再求值:,其中x=2,y=﹣.【解答】解:原式=xy2﹣(3x2y﹣xy2﹣2xy)+2x2y﹣2xy﹣xy2=xy2﹣3x2y+xy2+2xy+2x2y﹣2xy﹣xy2=xy2﹣xy2+xy2﹣3x2y+2x2y+2xy﹣2xy=xy2﹣x2y,当x=2,y=时,原式=×2×﹣4×(﹣)=+2=.17.(6分)如图是2023年八月份的日历:(1)若将“H”形框上下左右移动,可框住另外七个数,若设“H”形框中的7个数中最中间一个数是x,请用含x的代数式由小到大依次表示出“H”形框中的其余6个数;(2)请问“H”形框能否框到七个数,使这七个数之和等于161?若能,请由小到大依次写出这七个数;若不能,请说明理由.【解答】解:(1)根据题意可得:“H”形框中的其余6个数分别为:x﹣8、x﹣6、x﹣1,、x+1、x+6、x+8;(2)能;理由:根据(1)中所得的7个数分别为:x﹣8、x﹣6、x﹣1、x、x+1、x+6、x+8,则x﹣8+x﹣6+x﹣1+x+x+1+x+6+x+8=161,解得:x=23,7个数分别为:15、17、22、23、24、29、3118.(12分)2023年11月中国人民解放军空军八一飞行表演队应邀赴阿联酋参加于11月13日到17日举行的第十八届迪拜航空展,此次迪拜展是空军八一飞行表演队继2017年11月之后第二次亮相阿联酋,是空军八一飞行表演队换装歼﹣10C后首次飞赴中东国家,针对此次航展空军八一飞行表演队编排了3套表演方案,共20多个表演动作.表演过程中一架歼﹣10C表演机A起飞后的高度变化如下表所示:上升4.2千米下降2.3千米上升1.5千米下降0.9千米上升1.1千米高度变化记作+4.2km﹣2.3km+1.5km﹣0.9km+1.1km (1)当表演机A完成上述五个表演动作后,表演机A的高度是多少千米;(2)如果表演机A每上升或下降1千米需消耗1.7升燃油,那么表演机A在这5个动作表演过程中,一共消耗了多少升燃油;(3)若另一架表演机B在做花式飞行表演时,起飞后前四次的高度变化为:上升3.8千米,下降2.5千米,上升4.3千米,再下降1.9千米.若要使表演机B在完成第5个动作后与表演机A完成5个动作后的高度相同,表演机B的第5个动作是上升还是下降,上升或下降多少千米?【解答】解:(1)4.2﹣2.3+1.5﹣0.9+1.1=3.6(千米),即表演机A的高度是3.6千米;(2)(4.2+2.3+1.5+0.9+1.1)×1.7=10×1.7=17(升),即表演机A在这5个动作表演过程中,一共消耗了17升燃油;(3)3.6﹣(3.8﹣2.5+4.3﹣1.9)=3.6﹣3.7=﹣0.1(千米),即表演机B的第5个动作是下降,下降0.1千米.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19.(4分)当|2x+y|+5取最小值时,代数式x+y﹣10的值为 ﹣10 .【解答】解:∵|2x+y|+5取最小值,|2x+y|≥0,∴当2x+y=0时,符合题意,∴x+y﹣10=(2x+y)﹣10=0﹣10=﹣10.故答案为:﹣10.20.(4分)在数轴上,如果点A表示的数为﹣3,点B表示的数为1,一个小球从点A出发,沿着数轴先向左移动7个单位长度,再向右移动4个单位长度,此时小球到达点C处,则点A到点C的距离与点B到点C之间的距离之和为 10 .【解答】解:由题意得,点C表示的数是﹣3﹣7+4=﹣6,因为点A表示的数为﹣3,点B表示的数为1,所以点A到点C的距离为﹣3﹣(﹣6)=﹣3+6=3,点B到点C的距离为1﹣(﹣6)=1+6=7,所以点A到点C的距离与点B到点C之间的距离之和为3+7=10,故答案为:10.21.(4分)如图所示,在长方形ABCD中,AD=3AB,在它内部有三个小正方形,正方形AEFG的边长为m,正方形GBIH的边长为n,则阴影部分的周长为 8m+6n (用含m,n的代数式表示).【解答】解:根据观察可知,图中阴影部分的周长与长为CI、宽为AB的矩形周长相同,在长方形ABCD中,AD=BC,AD=3AB,∵正方形AEFG的边长为m,正方形GBIH的边长为n,∴AB=m+n,BC=3(m+n),∵CI=BC﹣BI,∴CI=3(m+n)﹣n=3m+2n,∴阴影部分的周长为:2(AB+CI)=2(m+n+3m+2n)=8m+6n,故答案为:8m+6n.22.(4分)已知有理数a,b,c在数轴上的位置如图所示,满足|a|<|b|<|c|,则|2a+c﹣b|﹣|a﹣c+b|+= 3a﹣2 .【解答】解:由图可知,2a>0,c﹣b>0,a﹣c+b<0,ab<0,ac>0,∴|2a+c﹣b|﹣|a﹣c+b|+﹣=2a+c﹣b+(a﹣c+b)﹣1﹣1=2a+c﹣b+a﹣c+b﹣1﹣1=3a﹣2,故答案为:3a﹣2.23.(4分)观察下列数表规律,第n列第二排的数为 (用含n的代数式表示).第1列第2列第3列第4列第5列……第n列第一排2﹣46﹣810…………第二排207421…………第三排2481632…………【解答】解:∵第一排第n列的数为:(﹣1)n+12n,第三排第n列的数为:2n,∴第n列第二排的数为:,二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.(10分)【基本事实】我们知道整数和分数统称为有理数,为什么不是整数和小数统称为有理数呢?所有的分数都可以化成小数的形式,是不是所有的小数都可以化成分数形式呢?我们可以举例说明:有限小数0.2化成分数的形式是 ;无限循环小数又该如何化呢?我们以无限循环小数0.7为例进行说明:设=x,由=0.7777…可知,10x=7.7777…,所以10x =7+x,解方程,得x=,于是得,故化成分数的形式是 ,所有有限小数和无限循环小数 是 (填“是”或“不是”)有理数;而无限不循环小数是不可以化成分数的,所以π 不是 (填“是”或“不是”)有理数,那么无限不循环小数能通过数轴上的一个点来表示吗?我们将以π为例通过下列活动来探索:【数学活动】如图,直径为1的圆从原点出发沿数轴正方向滚动一周,圆上一点由原点O到达点O',则OO′= π .【知识推理】判断:(填“正确”或“错误”)(1)任何一个有理数都可以用数轴上唯一的一个点来表示. 正确 (2)数轴上的点都表示有理数. 错误 (3)整数和小数统称为有理数. 错误 【解答】解:【基本事实】0.2==;设=x,由=0.37373737…可知,100x=37.373737…,所以100x=37+x,解方程,得x=,于是得故=;所有有限小数和无限循环小数是有理数;无限不循环小数是不可以化成分数的,所以π不是有理数;【数学活动】因为圆的周长为π×1=π,所以OO′=π,故答案为:π;【知识推理】(1)任何一个有理数都可以用数轴上唯一的一个点来表示.正确;(2)数轴上的点都表示有理数.错误;(3)整数和小数统称为有理数.错误.故答案为:正确;错误;错误.25.(16分)(1)已知A=2x2﹣x+y﹣4xy,B=x2﹣2x﹣y﹣xy+3,若(x+y﹣2)2+|xy+1|=0,求3A﹣2(A+B)的值.(2)已知c<0<a,ab<0,|c|>|a|>|b|,化简:|b|﹣2|c﹣a|﹣|a+b|+|b﹣c|.【解答】解:(1)∵(x+y﹣2)2+|xy+1|=0,∴x+y﹣2=0,xy+1=0,∴x+y=2,xy=﹣1,∵A=2x2﹣x+y﹣4xy,B=x2﹣2x﹣y﹣xy+3,∴3A﹣2(A+B)=3A﹣2A﹣2B=A﹣2B=2x2﹣x+y﹣4xy﹣2(x2﹣2x﹣y﹣xy+3)=2x2﹣x+y﹣4xy﹣2x2+4x+2y+2xy﹣6=3x+3y﹣2xy﹣6=3(x+y)﹣2xy﹣6=3×2﹣2×(﹣1)﹣6=6+2﹣6=2;(2)∵c<0<a,ab<0,|c|>|a|>|b|,∴b<0,c﹣a<0,a+b>0,b﹣c>0,∴|b|﹣2|c﹣a|﹣|a+b|+|b﹣c|=﹣b﹣2(a﹣c)﹣(a+b)+b﹣c=﹣b﹣2a+2c﹣a﹣b+b﹣c=﹣b﹣3a+c.26.(20分)【问题背景】我们知道|x|的几何意义是:在数轴上数x对应的点到原点O的距离,这个结论可以推广为:|x1﹣x2|表示在数轴上数x1,x2对应点之间的距离.在数轴上,点A,B的位置如图1所示,AB=|1﹣(﹣2)|=3.【问题解决】(1)|2﹣(﹣3)|的几何意义是 点2与点﹣3之间的距离 .(2)如果点C为数轴上一点,它所表示的数为x,点D在数轴上表示的数为﹣2,那么CD = (用含x的代数式表示).【关联运用】(1)运用一:代数式|x+1|+|x+4|的最小值为 3 .(2)运用二:代数式|x﹣2|﹣|x+14|的最大值为 16 .(3)运用三:已知|x﹣1|+|x+3|=10,则x的值为 4或﹣6 .(4)运用四:如图2所示,点E,F,G是数轴上的三点,E点表示数是﹣5,F点表示数是﹣2,G点表示数是6,点E,F,G开始在数轴上运动,若点E以每秒2个单位长度的速度向左运动,同时,点F和点G分别以每秒3个单位长度和1个单位长度的速度向右运动,假设t秒后,若点E与点F之间的距离表示为EF,点E与点G之间的距离表示为EG,点F与点G之间的距离表示为FG.4秒后,若mFG﹣3EF的值是一个定值,试确定m的值.【解答】解:【问题解决】(1)|2﹣(﹣3)|的几何意义是点2与点﹣3之间的距离,故答案为:点2与点﹣3之间的距离;(2)C表示的数为x,点D在数轴上表示的数为﹣2,则x与﹣2之间的距离CD=,故答案为:;【关联运用】(1)运用一:代数式|x+1|+|x+4|表示点x与﹣1的距离与点x与点﹣4距离的和,当x<﹣4时,|x+1|+|x+4|=﹣x﹣1﹣x﹣4=﹣2x﹣5>3,当﹣4≤x≤﹣1时,|x+1|+|x+4|=﹣x﹣1+4+x=3,当x>﹣1时,|x+1|+|x+4|=x+1+4+x=5+2x>3,综上所述:当﹣4≤x≤﹣1时,|x+1|+|x+4|取最小值为3,故答案为:3;(2)运用二:|x﹣2|﹣|x+14|表示点x与2的距离与点x与点﹣14距离的差,当x≤﹣14时,|x﹣2|﹣|x+14|=2﹣x+x+14=16;当﹣14<x<2时,|x﹣2|﹣|x+14|=2﹣x﹣(x+14)=﹣12﹣2x此时﹣16<﹣12﹣2x<16;当x≥2时,|x﹣2|﹣|x+14|=x﹣2﹣(x+14)=﹣16;综上所述:当x≤﹣14时,代数式|x﹣2|﹣|x+14|取最大值为16;故答案为:16;(3)运用三:由(1)知当﹣3≤x≤1时|x﹣1|+|x+3|取最小值4,∴|x﹣1|+|x+3|=10时,x<﹣3或x>1,故当x<﹣3时不,则1﹣x﹣x﹣3=10,解得:x=﹣6,当x>1时,x﹣1+x+3=10,解得:x=4,故答案为:4或﹣6;(4)运用四:∵E点表示数是﹣5,F点表示数是﹣2,G点表示数是6,∴根据题意可得:t s时,E点表示数是﹣5﹣2t,F点表示数是﹣2+3t,G点表示数是6+t,由已知可知F点始终在E点右侧,故EF=﹣2+3t﹣(﹣5﹣2t)=3+5t而FG==,当mFG﹣3EF的值是一个定值时则m﹣3(3+5t)为定值,当8﹣2t≥0时,即t≤4时m﹣3(3+5t)=m(8﹣2t)﹣9﹣15t=8m﹣9﹣(2m+15)t,∴2m+15=0,解得m=﹣7.5,此时定值为8m﹣9=﹣69;当8﹣2t<0时,即t>4时m﹣3(3+5t)=﹣8m+2mt﹣9﹣15t=﹣8m﹣9+(2m﹣15)t,∴2m﹣15=0,解得:m=7.5,此时定值为﹣8m﹣9=﹣69;综上所述:mFG﹣3EF的值是一个定值时,m的值为±7.5.。

2019七年级数学上学期期中试题

2019七年级数学上学期期中试题

2019七年级数学上学期期中试题有很多的同学会觉得数学很难,所以大家要多多学习一下数学哦,下面小编就给大家整理一下七年级数学,希望大家来阅读哦有关七年级数学上期中试题一、选择题(每题3分,共10小题)1.-(-2)等于( )A.-2B.2C.D.22.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数,如果收入100元记作+100元,那么-80元表示( )A.支出20元B.收入20元C.支出80元D.收入80元3.已知a、b在数轴上的位置如图所示,那么下面结论正确的是( )A.a-b<0B.a+b>0C.ab<0D.>04.若数轴上表示-2和3的两点分别是点A和B,则点A和点B之间的距离是( )A.-5B.-1C.1D.55.计算(-)÷(-7)的结果为( )A.1B.-1C.D.-6.一次数学达标检测的成绩以80分为标准成绩,“奋斗”小组4名学生的成绩与标准成绩的差如下: -7分、-6分、+9分、+2分,他们的平均成绩为( )A.78分B.82分C.80.5分D.79.5分7.设a是最小的自然数,b是最大的负整数,c是绝对值最小的有理数,a, b, c三个数的和为( )A.-1B.0C.1D.不存在8.下列说法:①若|a|=a,则a=0;②若a,b互为相反数,且ab≠0,则=-1;③若a2=b2,则a=b;④若a<0, b<0,则|ab-a|=ab-a.其中正确的个数有( )A.1个B.2个C.3个D.4个9.等边△ABC在数轴上的位置如图所示,点A、C对应的数分别为0和-1,若△ABC绕顶点沿顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为1,则连续翻转2012次后,点B( )A.不对应任何数B.对应的数是2010C.对应的数是2011D.对应的数是201210.已知a,b,c为非零的实数,则+++的可能值的个数为( )A.4B.5C.6D.7二、填空题(每题3分,共6小题)11.某地某天的最高气温是6℃,最低气温是-4℃,则该地当天的温差为℃.12.若a-3=0,则a的相反数是 .13.点A表示数轴上的一个点,将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A表示的数是 .14.若|x|+3=|x-3|,则x的取值范围是 .15.规定图形表示运算a-b+c,图形表示运算x+z-γ-w.则 += (直接写出答案) .16.已知a,b,c,d分别是一个四位数的千位,百位,十位,个位上的数字,且低位上的数字不小于高位上的数字,当|a-b|+|b-c|+|c-d|+|d-a|取得最大值时,这个四位数的最小值是 .三、解答题(共8小题)17.(12分)计算题(1)(-78) +(+5)+(+78) (2)(+23)+(-17)+(+6)+(-22)(3)[45-(-+)×36]÷5 (4)99×(-36)18.(6分)把下列各数填入它所属的集合内:5.2,0,,,+(-4),-2,-(-3),0.2555,-0.0300003(1)分数集合:{ }(2)非负整数集合: { }(3)有理数集合: { }19.(8分)在数轴上表示下列各数: 0,-1.6,,-6,+5,,并用“<”号连接.20.(8分)十一黄金周期间,花果山7天中每天旅游人数的变化情况如下表(正数表示比9月30日多的人数,负数表示比9月30日少的人数):日期 1日 2日 3日 4日 5日 6日 7日人数变化/万人 +0.5 +0.7 +0.8 -0.4 -0.6 +0.2 -0.1(1)请判断7天内游客人数量最多和最少的各是哪一天?它们相差多少万人?(2)如果9月30日旅游人数为2万人,平均每人消费300元,请问风景区在此7天内总收入为多少万元?21.(8分)如图,数轴上的三点A、B、C分别表示有理数a、b、C.(1)填空: a-b 0,a+c 0,b-c 0.(用<或>或=号填空)(2)化简: |a-b|-|a+c|+|b-c|22.(8分)已知|x|=3,|y|=7.(1)若x23.(10分)同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离,(1) |5-(-2)|= .(2)同理|x+5|+|x-2|表示数轴上有理数x所对应的点到-5和2所对应的两点距离之和,请你求出所有符合条件的整数x,使得|x+5|+|x-2|=7.(3)由以上探索猜想对于任何有理数x,|x+6|+|x-3|是否有最小值?如果有,写出最小值;如果没有,说明理由.24.(12分)已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长AB=2 (单位长度),慢车长CD=4 (单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O为原点,取向右方向为正方向画数轴,此时快车头A在数轴上表示的数是a,慢车头C 在数轴上表示的数是b.若快车AB以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD以2个单位长度/秒的速度向左匀速继续行驶,且|a+8|与(b-16)2互为相反数.(1)求此时刻快车头A与慢车头C之间相距多少单位长度?(2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头AC 相距8个单位长度?(3)此时在快车AB上有一位爱动脑筋的七年级学生乘客P,他发现行驶中有一段时间t秒钟,他的位置P到两列火车头A、C的距离和加上到两列火车尾B、D的距离和是一个不变的值(即PA+PC+PB+PD为定值).你认为学生P发现的这结论是否正确?若正确,求出这个时间及定值;若不正确,请说明理由.七年级数学上期中考试试卷阅读一、选择题(本题共10个小题,每小题3分,共30分)1.下列计算正确的是( )A.=6B.-=-16C.-8-8=0D.-5-2=-32.室内温度是15℃,室外温度是-3℃,要计算“室外温度比室内温度低多少度?”可以列的计算式为( )A.15+(-3)B.15-(-3)C.-3+15D.-3-153.若a+3=0,则a的相反数是( )A.3B.C.-D.-34.下列说法中正确的是( )A.整数只包括正整数和负整数B.0既是正数也是负数C.没有最小的有理数D.-1是最大的负有理数5在代数式,,0,-5,x-y,中,单项式有( )A.2个B.3个C.4个D.5个6.一个多项式与-2x+1的和是3x-2,则这个多项式为( )A.-5x+3B.-+x-1C.-+5x-3D.-5x-137.枝江市2015年公共财政收入约为31.68亿元,对这个近似数而言,下列说法正确的是( )A.精确到亿位B.精确到百分位C.精确到百万位D.精确到千万位8.如图,A、B两点在数轴上表示的数分别是a,b,下列式子成立的是( )A.ab>0B.a+b<0C.(b-1)(a+1)>0D.(b-1)(a-1)>09.将正整数依次按如表规律排成4列,根据表中的排列规律,数2018应在( )第1列第2列第3列第4列第1行 1 2 3第2行 6 5 4第3行 7 8 9第4行 12 11 10A.第673行第1列;B.第672行第3列;C.第672行第2列;D.第673行第2列10.已知a,b,c为有理数,且a+b+c=0,a≥-b>lcl,则a,b,c三个数的符号是( )A.a>0,b<0,c<0B.a>0,b<0,c>0C.a<0,b>0,c≥0D.a>0,b<0,c≤0第二部分非选择题(共120分)二、填空题(每小题3分,共18分)11比较大小- 。

人教版七年级上册数学《期中测试题》附答案解析

人教版七年级上册数学《期中测试题》附答案解析

人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题.(本大题有16个小题,共42分.1~10小题各3分;11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在12,0,1,-2,-112这五个有理数中,最小有理数是( ) A. -112B. 0C. 1D. -22.下列关于单项式 235xy -的说法中,正确的是( ) A. 系数是25-,次数是2 B. 系数是35,次数是2 C. 系数是一3,次数是3 D. 系数是35,次数是33.已知a =|2﹣b|,b 的倒数等于23-,则a 的值为( ) A. 0.5B. 1.5C. 2.5D. 3.54.已知非零有理数a ,b 满足a a =,b b =-,a b >,用数轴上的点来表示a ,b ,正确的是( ) A. B.C.D.5.截止到2019年9月3日,电影《哪吒之魔童降世》的累计票房达到了47.24亿.47.24亿用科学计数法表示为( ) A. 847.2410⨯ B. 94.72410⨯C. 84.72410⨯D. 8472.410⨯6.若单项式m 42a b +与2n1a b 2的和是单项式,则n m 的值是( ) A. 3B. 6C. 8D. 47.下列各式计算正确的是( ) A. 72545--⨯=- B. 543345÷⨯= C. ()331331---=D. ()125502⎛⎫⨯--÷-= ⎪⎝⎭8.已知3a b -=,2c d +=.则()()()23a d b c b d ---++的值为( ) A. 7B. 5C. 1D.9.某公交车上原有10个人.经过三个站点时乘客上下车情况如下(上车为正,下车为负):()2,3+-,()8,5+-,()1,6+-,则此时车上的人数还有( )人A. 5B. 6C. 7D. 810.为有理数,下列说法中正确的是( )A. 213a ⎛⎫+ ⎪⎝⎭正数 B. 213a -+是负数 C. 213a ⎛⎫-- ⎪⎝⎭是负数 D. 213a +是正数 11.己知多项式A=222x 2y z +-,B=2224x 3y 2z -++ 且A+B+C=O ,则C 为( )A. 2225x y z --B. 2223x 5y z -- C. 2223x y 3z -- D. 2223x 5y z -+ 12.小明经销一种服装,进货价为每件a 元.经测算先将进货价提高200%进行标价,元旦前夕又按标价的4折销售,这件服装的实际价格( ) A. 比进货价便宜了0.52a 元 B. 比进货价高了0.2a 元 C. 比进货价高了08a 元 D. 与进货价相同13.已知x ,y 满足21202x y ⎛⎫-++= ⎪⎝⎭,则()()222233143x y xy x y xy +----化简后的结果为( )A.B. 12-C.12D. 114.下列说法:①符号相反的数互为相反数,②两个四次多项式的和一定是四次多项式:③若abc >0,则a b c abc++的值为3或-1,④如果a 大于b ,那么a 的倒数小于b 的倒数.其中正确的个数有( )A. 4个B. 3个C. 2个D. 1个15.某校师生到外地进行社会实践活动.若学校租用45座的客车x 辆,则余下20人无座位;若租用60座的客车则可少租用2辆,但只有一辆还没坐满,则乘坐最后一辆60座客车的人数是(). A. 200-60xB. 160-15xC. 200-15xD. 140-15x16.一根1m 长的绳子,第一次剪去绳子的23,第二次剪去剩下绳子的23,如此剪下去,第10次剪完后剩下绳子的长度是( ) A. (13)9m B. (23)9m C. (13)10m D. (23)10m 二、填空题.(本大题有3个小题,共11分.17小题3分;18~19小题各有2个空,每空2分.把答案写在题中横线上)17.将8.20382用四舍五入法精确到0.01为______.18.规定符号“”的意义是()()22,a b a b a b a b a b a b ⎧->=⎪=⎨+<⎪⎩或比如231318=-=,2232311=+=.求下列各式的值. (1)()41-=______; (2)()()32--=______.19.图1是一组有规律的图案,第①个图集中有4个三角形,第②个图案中有7个三角形,第③个图案中有10个三角形,……依此规律,第⑦个图案中有______个三角形,第n 个图案中有______个三角形.三、解答题.(本大题共7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.计算下列各小题. (1)()2213602210--÷⨯+-; (2)()()222123455⎛⎫-+⨯---÷- ⎪⎝⎭. 21.嘉淇准备完成题目:化简:22(68)(652)x x x x ++-++,发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x 2+6x +8)–(6x +5x 2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案结果是常数.”通过计算说明原题中“”是几?22.已知a,b,c在款轴上的位置如图2所示,(1)请用“<”或“>”填空:abc______0,c+a______0,c-b______0,;---+-.(2)化简a c a b b c23.已知一个三角形的第一条边长为2a+5b,第二条边比第一条边长3a-2b,第三条边比第二条边短3a.(1)则第二边的边长为,第三边的边长为;(2)用含a,b的式子表示这个三角形的周长,并将整式化简.24.如图3,小明有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列问题.(1)从中抽取2张卡片,使这2张卡片上数字的乘积最大,最大值是多少?写出最大值的运算式;(2)从中抽取2张卡片,使这2张卡片上数字相除的商最小,最小值是多少?写出最小值的运算式;(3)从中抽取除0以外的4张卡片,将这4个数字进行加、减、乘、除、乘方混合运算,每个数字只能用一次,使结果为24.写出两种运算式子.25.20筐白菜,以每筐15千克为标准,超过或不足的千克数分别用正、负数来表示.记录如下:与标准质量的−3.5−2−1.50 1 2.5差值(单位:千克)筐数 2 4 2 1 3 8(1)20筐白菜中,最重的一筐比最轻的一筐重___千克.(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价1.8元,则出售这20筐白菜可卖多少元?26.如图4,点A,B,C在数轴上表示的数分别是1, , ,点E到点B,C的距离相等,点P从点A出发,向左运动,速度是每秒0.3个单位长度.设运动的时间是t秒.(1)点E表示数是________;(2)在t=3,t=4这两个时刻,使点P更接近原点O的时间是哪一个?(3)若点P分别t=8,t=p两个不同的时刻,到点E的距离相等,求p的值;(4)设点M在数轴上表示的数是m,点N在数轴上表示的数是n,式子________的值可以体现点M和点N之间的距离,这个式子的值越小,两个点的距离越近.答案与解析一、选择题.(本大题有16个小题,共42分.1~10小题各3分;11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在12,0,1,-2,-112这五个有理数中,最小的有理数是( )A. -112B. 0C. 1D. -2【答案】D【解析】【分析】根据有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.依此即可求解.【详解】-2<-112<0<12<1,所以最小的有理数是-2.故选D.【点睛】本题考查了有理数大小比较,关键是熟练掌握有理数大小比较的方法.2.下列关于单项式235xy-的说法中,正确的是()A. 系数是25-,次数是2 B. 系数是35,次数是2C. 系数是一3,次数是3D. 系数是35,次数是3【答案】D【解析】【分析】根据单项式系数和次数的定义判断即可.【详解】235xy-的系数是35,次数是3.故选D.【点睛】本题考查单项式系数与次数的定义,关键在于牢记定义即可判断.3.已知a =|2﹣b|,b 的倒数等于23-,则a 的值为( ) A. 0.5 B. 1.5C. 2.5D. 3.5【答案】D 【解析】 【分析】直接利用倒数的定义结合绝对值的性质得出答案. 【详解】解:∵b 的倒数等于-23, ∴b =﹣32, ∵a =|2﹣b|, ∴a =|2+32|=72=3.5. 故选D .【点睛】此题主要考查了倒数和绝对值,正确得出b 的值是解题关键.4.已知非零有理数a ,b 满足a a =,b b =-,a b >,用数轴上的点来表示a ,b ,正确的是( ) A. B.C.D.【答案】C 【解析】 【分析】根据绝对值的性质可得a≤0,b≥0,再根据|a|>|b|可得a 距离原点比b 距离原点远,进而可得答案. 【详解】∵|a |=a ,|b |=-b , ∴a 0,b 0, ∵|a |>|b |,∴表示数a 的点到原点的距离比b 到原点的距离大, 故选:C.【点睛】本题考查了绝对值的应用及数轴的有关知识,熟练掌握利用数轴上的位置判断正负是解题的关键. 5.截止到2019年9月3日,电影《哪吒之魔童降世》的累计票房达到了47.24亿.47.24亿用科学计数法表示为( )A. 847.2410⨯B. 94.72410⨯C. 84.72410⨯D. 8472.410⨯【答案】B 【解析】 【分析】根据科学记数法的表示方法即可得出答案. 【详解】解:47.24亿=94.72410⨯, 故答案为:B .【点睛】本题考查了科学记数法的表示方法,解题的关键是熟知科学记数法的表示方法. 6.若单项式m 42a b +与2n1a b 2的和是单项式,则n m 的值是( ) A. 3 B. 6C. 8D. 4【答案】D 【解析】 【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,可得a 的指数要相等,b 的指数也要相等,即可得到m ,n 的值,代入计算可得. 【详解】解:单项式m 42a b +与2n1a b 2的和是单项式, 单项式m 42a b +与2n1a b 2是同类项, 则m 42+=,n 2=, 解得m 2=-,n 2=,n 2m (2)4∴=-=,故选D .【点睛】本题考查了同类项定义,关键是把握两点:一是所含字母相同,二是相同字母的指数也相同,两者缺一不可.7.下列各式计算正确的是( ) A. 72545--⨯=- B. 543345÷⨯= C. ()331331---=D. ()125502⎛⎫⨯--÷-= ⎪⎝⎭【分析】根据有理数的混合运算的运算法则一一判断即可.【详解】A. 72571017--⨯=--=-,故本选项错误; B. 54444833455525÷⨯=⨯⨯=,故本选项错误; C. ()331312726---=-+=,故本选项错误; D. ()125502⎛⎫⨯--÷-= ⎪⎝⎭,故本选项正确. 故选D.【点睛】本题考查了有理数的混合运算,解题的关键是明确有理数混合运算的计算方法. 8.已知3a b -=,2c d +=.则()()()23a d b c b d ---++的值为( ) A. 7 B. 5C. 1D.【答案】A 【解析】 【分析】原式去括号整理后,将已知等式代入计算即可求出值. 【详解】3a b -=,2c d += 原式=223a d b c b d --+++ =22a b c d -++ =2()a b c d -++ =3+22 =7 故选A.【点睛】本题考查了代数式求值,将原式整理为与-a b 和+c d 有关的式子是解题的关键. 9.某公交车上原有10个人.经过三个站点时乘客上下车情况如下(上车为正,下车为负):()2,3+-,()8,5+-,()1,6+-,则此时车上的人数还有( )人A. 5B. 6C. 7D. 8【分析】根据有理数的加法,原有人数,上车为正,下车为负,即可得答案. 【详解】10+2+(-3)+8+(-5)+1-6=7 故选C.【点睛】本题考查了正数和负数,有理数的加法运算是解题的关键. 10.为有理数,下列说法中正确的是( )A. 213a ⎛⎫+ ⎪⎝⎭是正数 B. 213a -+是负数 C. 213a ⎛⎫-- ⎪⎝⎭是负数 D. 213a +是正数 【答案】D 【解析】 【分析】正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.02=0. 【详解】A 、(a+13)2是非负数,错误; B 、-a 2+13不一定是负数,可能是0,也可能是正数,错误; C 、-(a-13)2是非正数,错误;D 、a 2+13是正数,正确;故选D .【点睛】此题考查非负数的性质,关键要注意全面考虑a 的取值.11.己知多项式A=222x 2y z +-,B=2224x 3y 2z -++ 且A+B+C=O ,则C ( )A. 2225x y z -- B. 2223x 5y z -- C. 2223x y 3z -- D. 2223x 5y z -+ 【答案】B 【解析】由于A+B+C=0,则C=-A-B,代入A 和B 的多项式即可求得C .解:由于多项式A=x 2+2y 2-z 2,B=-4x 2+3y 2+2z 2且A+B+C=0,则C=-A-B=-(x 2+2y 2-z 2)-(-4x 2+3y 2+2z 2)=-x 2-2y 2+z 2+4x 2-3y 2-2z 2=3x 2-5y 2-z 2.故答案选B .12.小明经销一种服装,进货价为每件a 元.经测算先将进货价提高200%进行标价,元旦前夕又按标价的4折销售,这件服装的实际价格( )A. 比进货价便宜了0.52a 元B. 比进货价高了0.2a 元C. 比进货价高了0.8a 元D. 与进货价相同【答案】B【解析】【分析】直接利用标价以及打折之间的关系得出服装的实际价格,再和进货价相减即可.【详解】由题意得,这件服装的实际价格是:(1200%)40%a +⨯=1.2a又因为进货价为a这件服装的实际价格比进货价高了0.2a 元故选B.【点睛】本题考查了列代数式,根据题意得出关系式是解题的关键.13.已知x ,y 满足21202x y ⎛⎫-++= ⎪⎝⎭,则()()222233143x y xy x y xy +----化简后的结果为() A. B. 12- C. 12 D. 1【答案】B【解析】【分析】根据非负性即可解得x ,y 的值,根据整式的混合运算法则化简,代入即可. 【详解】21202x y ⎛⎫-++= ⎪⎝⎭且20-≥x ,2102y ⎛⎫+≥ ⎪⎝⎭.20x -=,102y += 12,2x y ==-. ()()222233143x y xy x y xy +----=2222333343x y xy x y xy +-+--=2xy - =2122⎛⎫-⨯- ⎪⎝⎭=12- 故选B.【点睛】本题考查了绝对值的非负性及整式的化简求值,熟练掌握运算法则是解题的关键.14.下列说法:①符号相反的数互为相反数,②两个四次多项式的和一定是四次多项式:③若abc >0,则abca b c ++ 的值为3或-1,④如果a 大于b ,那么a 的倒数小于b 的倒数.其中正确的个数有( )A. 4个B. 3个C. 2个D. 1个 【答案】D【解析】【分析】利用相反数,绝对值,以及倒数的性质判断即可.【详解】①只有符号相反的数互为相反数,不符合题意;②两个四次多项式的和不一定是四次多项式,不符合题意;③若abc>0,则abca b c ++的值为3或一1,符合题意;④如果a 大于b ,那么a 的倒数不一定小于b 的倒数,不符合题意,故选D .【点睛】此题考查了整式的加减,相反数,绝对值,以及倒数,熟练掌握各自的性质是解本题的关键. 15.某校师生到外地进行社会实践活动.若学校租用45座的客车x 辆,则余下20人无座位;若租用60座的客车则可少租用2辆,但只有一辆还没坐满,则乘坐最后一辆60座客车的人数是().A. 200-60xB. 160-15xC. 200-15xD. 140-15x【答案】C【解析】【分析】 先由“学校租用45座的客车x 辆,则余下20人无座位”表示出师生的总人数,再根据“租用60座的客车则可少租用2辆,但只有一辆还没坐满”这个条件求出最后一辆60座客车的人数.【详解】∵学校租用45座的客车x 辆,则余下20人无座位,∴师生总人数为:4520x +,又∵租用60座的客车则可少租用2辆,但只有一辆还没坐满,∴最后一辆60座客车的人数为:()452060320015x x x +--=-.所以答案为C 选项.【点睛】本题主要考查根据实际情况列出代数式,仔细读题,读懂题中各个量之间的联系是解题关键. 16.一根1m 长的绳子,第一次剪去绳子的23,第二次剪去剩下绳子的23,如此剪下去,第10次剪完后剩下绳子的长度是( ) A. (13)9m B. (23)9m C. (13)10m D. (23)10m 【答案】C【解析】【分析】根据有理数的乘方的定义解答即可. 【详解】∵第一次剪去绳子的23,还剩13; 第二次剪去剩下绳子的23,还剩13-23×13=13×(1-23)=(13)2, …… ∴第十次剪去剩下绳子的23后,剩下绳子的长度为(13)10, 故选C .【点睛】本题考查了有理数的乘方,理解乘方的意义是解题的关键. 二、填空题.(本大题有3个小题,共11分.17小题3分;18~19小题各有2个空,每空2分.把答案写在题中横线上)17.将8.20382用四舍五入法精确到0.01为______.【答案】8.20【解析】【分析】把千分位上的数字3进行四舍五入即可.【详解】8.203828.20故答案为8.20.【点睛】本题考查了近似数和有效数字,熟练掌握四舍五入是解题的关键.18.规定符号“”的意义是()()22,a b a b a b a b a b a b ⎧->=⎪=⎨+<⎪⎩或比如231318=-=,2232311=+=.求下列各式的值.(1)()41-=______;(2)()()32--=______. 【答案】 (1). 17 (2). 1【解析】【分析】(1)根据()()22,a b a b a b a b a b a b ⎧->=⎪=⎨+<⎪⎩或即可求得所求式子的值; (2)根据()()22,a b a b a b a b a b a b ⎧->=⎪=⎨+<⎪⎩或即可求得所求式子的值. 【详解】(1)()41-=24(1)17--=. (2)()()32--=23(2)1-+-=.故答案为:17,1.【点睛】本题考查了新定义下的实数运算,根据所给式子分情况代入是解题的关键.19.图1是一组有规律的图案,第①个图集中有4个三角形,第②个图案中有7个三角形,第③个图案中有10个三角形,……依此规律,第⑦个图案中有______个三角形,第n 个图案中有______个三角形.【答案】 (1). 22 (2). (3n +1)【解析】【分析】由题意可知:第(1)个图案有3+1=4个三角形,第(2)个图案有3×2+1=7个三角形,第(3)个图案有3×3+1=10个三角形,…依此规律,第n 个图案有(3n+1)个三角形.【详解】∵第(1)个图案有3+1=4个三角形,第(2)个图案有3×2+1=7个三角形, 第(3)个图案有3×3+1=10个三角形, …∴第n 个图案有(3n +1)个三角形.当n =7时,3n +1=3×7+1=22,故答案为:22,(3n +1).【点睛】本题考查了图形的规律,根据数据找到规律是解题的关键.三、解答题.(本大题共7个小题,共67分.解答应写出文字说明、证明过程或演算步骤) 20.计算下列各小题.(1)()2213602210--÷⨯+-; (2)()()222123455⎛⎫-+⨯---÷- ⎪⎝⎭. 【答案】(1)192;(2)169. 【解析】【分析】 (1)先计算乘方,再算乘除,最后计算加减.(2)先计算乘方,再算乘除,最后计算加减.【详解】(1)()2213602210--÷⨯+-; 119602410=-⨯⨯+ 3922=-+ 192=(2)()()222123455⎛⎫-+⨯---÷- ⎪⎝⎭ 4316525=-+⨯+⨯448125=-++169=【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解题的关键.21.嘉淇准备完成题目:化简:22(68)(652)x x x x ++-++,发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x 2+6x +8)–(6x +5x 2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案结果是常数.”通过计算说明原题中“”是几?【答案】(1)–2x 2+6;(2)5.【解析】【分析】(1)原式去括号、合并同类项即可得;(2)设“”是a,将a 看做常数,去括号、合并同类项后根据结果为常数知二次项系数为0,据此得出a 的值.【详解】(1)(3x 2+6x+8)﹣(6x+5x 2+2)=3x 2+6x+8﹣6x ﹣5x 2﹣2=﹣2x 2+6;(2)设“”是a,则原式=(ax 2+6x+8)﹣(6x+5x 2+2)=ax 2+6x+8﹣6x ﹣5x 2﹣2=(a ﹣5)x 2+6,∵标准答案的结果是常数,∴a ﹣5=0,解得:a=5.【点睛】本题主要考查整式的加减,解题的关键是掌握去括号、合并同类项法则.22.已知a ,b ,c 在款轴上的位置如图2所示,(1)请用“<”或“>”填空:abc______0,c +a______0,c -b______0,;(2)化简a c a b b c ---+-.【答案】(1) >,<,<;(2) 2b−2c.【解析】【分析】先根据a、b、c三点在数轴上的位置判断出abc的符号及其绝对值的大小,再比较大小和化简即可.【详解】(1) ∵c<b<0<a,∴abc>0,c+a<0,c−b<0(2) ∵c<b<0<aa-c>0,a-b>0,b-c>0|a−c|−|a−b|+|b−c|=a−c−a+b+b−c=2b−2c.故答案为:>,<,<;2b−2c.【点睛】本题考查了绝对值的化简,根据数轴判断式子的符号是解题的关键.23.已知一个三角形的第一条边长为2a+5b,第二条边比第一条边长3a-2b,第三条边比第二条边短3a.(1)则第二边的边长为,第三边的边长为;(2)用含a,b的式子表示这个三角形的周长,并将整式化简.【答案】(1)5a+3b;2a+3b;(2)9a+11b.【解析】【分析】(1)根据题意表示出第二边与第三边即可;(2)三边之和表示出周长,化简即可;【详解】(1)则第二边的边长为5a+3b,第三边的边长为2a+3b;故答案为5a+3b;2a+3b;(2)周长为:2a+5b+5a+3b+2a+3b=9a+11b.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.24.如图3,小明有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列问题.(1)从中抽取2张卡片,使这2张卡片上数字的乘积最大,最大值是多少?写出最大值的运算式;(2)从中抽取2张卡片,使这2张卡片上数字相除的商最小,最小值是多少?写出最小值的运算式;(3)从中抽取除0以外的4张卡片,将这4个数字进行加、减、乘、除、乘方混合运算,每个数字只能用一次,使结果为24.写出两种运算式子.【答案】(1)最大是20,运算式是(-5) (-4);(2)最小是-2.5,运算式是(-5) 2;(3)()()456224-⨯-+-=,()()425624----⨯=⎡⎤⎣⎦(答案不唯一)【解析】【分析】(1)根据题意和给出的五张卡片可以解答本题;(2)根据题意和给出的五张卡片可以解答本题;(3)根据题意可以写出相应的算式,本题答案不唯一.【详解】(1)由题意得,抽取2张卡片,乘积最大是20,运算式是(-5) (-4)(2)由题意得,抽取2张卡片,卡片上数字相除的商最小是-2.5,运算式是(-5) 2(3)由题意得,()()456224-⨯-+-=()()425624----⨯=⎡⎤⎣⎦【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解题的关键.25.20筐白菜,以每筐15千克为标准,超过或不足的千克数分别用正、负数来表示.记录如下: 与标准质量的差值(单位:千克)−3.5 −2 −1.5 0 1 2.5筐数2 4 2 13 8(1)20筐白菜中,最重的一筐比最轻的一筐重___千克.(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价1.8元,则出售这20筐白菜可卖多少元?【答案】(1)6;(2)与标准重量比较,20筐白菜总计超过5千克;(3)出售这20筐白菜可卖549元.【解析】【分析】(1)求出最重的一筐的重量和最轻的一筐的重量,相减即可得出答案;(2)将20筐白菜的重量相加即可得出答案;(3)将总重量乘以价格即可得出答案.详解】解:(1)根据题意可得最重的一筐重:15+2.5=17.5(千克)最轻的一筐重:15-3.5=11.5(千克)∴最重的一筐比最轻的一筐重:17.5-11.5=6(千克);(2)2×(-3.5)+4×(-2)+2×(-1.5)+1×0+3×1+8×2.5=5答:与标准重量比较,20筐白菜总计超过5千克;(3)1.8×(15×20+5)=549(元)答:出售这20筐白菜可卖549元.【点睛】本题主要考查了正负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性.26.如图4,点A,B,C在数轴上表示的数分别是1, , ,点E到点B,C的距离相等,点P从点A出发,向左运动,速度是每秒0.3个单位长度.设运动的时间是t秒.(1)点E表示的数是________;(2)在t=3,t=4这两个时刻,使点P更接近原点O的时间是哪一个?(3)若点P分别t=8,t=p两个不同的时刻,到点E的距离相等,求p的值;(4)设点M在数轴上表示的数是m,点N在数轴上表示的数是n,式子________的值可以体现点M和点N之间的距离,这个式子的值越小,两个点的距离越近.【答案】(1) −32;(2) t=3;(3)283;(4) |m−n|.【解析】分析】(1)根据实数在数轴上的排列特点和绝对值的意义,先根据E点到原点的距离是确定该数的绝对值是32,在根据该点在原点的左侧还是右侧判断其符号.(2)分别求出两个时间点上点P 的位置,即可判断;(3)根据t=8时,求出点P到E点的距离,确定t=p时P点的位置,即可求n的值;(4)根据数轴上两点间的距离公式即可.【详解】(1)根据实数在数轴上的排列特点和绝对值的意义,E点到远点的距离是32,符号是“−”,故答案是:−3 2 .(2)当t=3,t=4时0.3t的值分别是0.9、1.2.根据出发点A的位置,可以确定当t=3时,点P的位置位于原点O的右侧距离原点O0.1个单位长度,而当t=4时,点P的位置位于原点O的左侧距离原点O0.2个单位长度,故答案是t=3(3)当t=8时,0.8t=2.4.,结合图形可以确定此时点P的位置位于点E的左侧距离点E0.1个单位长度.所以,数轴上到点E的距离相同的点应该是−1.6.此时点P到点A距离是2.6个单位长度,所以p=2.6÷0.3=2 83.故答案是2 83.(4)根据数轴上两点间的距离公式点M和N的距离等于|m−n|,故答案是|m−n|.【点睛】本题考查了数轴与两点间的距离的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分情况进行讨论.。

初一上册数学期中试题及答案【四篇】

初一上册数学期中试题及答案【四篇】

初一上册数学期中试题及答案【四篇】【篇一】初一上册数学期中试题及答案一、精心选一选(每题3分,共计24分)1.在2、0、﹣3、﹣2四个数中,最小的是()A.2B.0C.﹣3D.﹣2【考点】有理数大小比较.【分析】在数轴上表示出各数,利用数轴的特点即可得出结论. 【解答】解:如图所示,,由图可知,最小的数是﹣3.故选C.【点评】本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.2.下列式子,符合代数式书写格式的是()A.a÷3B.2xC.a×3D.【考点】代数式.【分析】利用代数式书写格式判定即可【解答】解:A、a÷3应写为,B、2a应写为a,C、a×3应写为3a,D、正确,故选:D.【点评】本题主要考查了代数式,解题的关键是熟记代数式书写格式.3.在﹣,3.1415,0,﹣0.333…,﹣,﹣0.,2.010010001…中,无理数有()A.1个B.2个C.3个D.4个【考点】无理数.【分析】无理数是指无限不循环小数,根据定义逐个判断即可.【解答】解:无理数有﹣,2.010010001…,共2个,故选B.【点评】本题考查了对无理数定义的应用,能理解无理数的定义是解此题的关键,注意:无理数包括三方面的数:①含π的,②开方开不尽的根式,③一些有规律的数.4.若|m﹣3|+(n+2)2=0,则m+2n的值为()A.﹣1B.1C.4D.7【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】先根据非负数的性质求出m、n的值,再代入代数式进行计算即可.【解答】解:∵|m﹣3|+(n+2)2=0,∴m﹣3=0,n+2=0,解得m=3,n=﹣2,∴m+2n=3﹣4=﹣1.故选A.【点评】本题考查的是非负数的性质,熟知几个非负数的和为0时,其中每一项必为0是解答此题的关键.5.下列计算的结果正确的是()A.a+a=2a2B.a5﹣a2=a3C.3a+b=3abD.a2﹣3a2=﹣2a2【考点】合并同类项.【专题】常规题型.【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,判断各选项即可.【解答】解:A、a+a=2a,故本选项错误;B、a5与a2不是同类项,无法合并,故本选项错误;C、3a与b不是同类项,无法合并,故本选项错误;D、a2﹣3a2=﹣2a2,本选项正确.故选D.【点评】本题考查合并同类项的知识,要求掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数.6.用代数式表示“m的3倍与n的差的平方”,正确的是()A.(3m﹣n)2B.3(m﹣n)2C.3m﹣n2D.(m﹣3n)2【考点】列代数式.【分析】认真读题,表示出m的3倍为3m,与n的差,再减去n为3m﹣n,最后是平方,于是答案可得.【解答】解:∵m的3倍与n的差为3m﹣n,∴m的3倍与n的差的平方为(3m﹣n)2.故选A.【点评】本题考查了列代数式的知识;认真读题,充分理解题意是列代数式的关键,本题应注意的是理解差的平方与平方差的区别,做题时注意体会.7.下列各对数中,数值相等的是()A.(2)3和(﹣3)2B.﹣32和(﹣3)2C.﹣33和(﹣3)3D.﹣3×23和(﹣3×2)3【考点】有理数的乘方.【分析】分别利用有理数的乘方运算法则化简各数,进而判断得出答案.【解答】解:A、∵(﹣3)2=9,23=8,∴(﹣3)2和23,不相等,故此选项错误;B、∵﹣32=﹣9,(﹣3)2=9,∴﹣23和(﹣2)3,不相等,故此选项错误;C、∵﹣33=﹣27,(﹣33)=﹣27,∴﹣33和(﹣3)3,相等,故此选项正确;D、∵﹣3×23=﹣24,(﹣3×2)3=,﹣216,∴﹣3×23和(﹣3×2)3不相等,故此选项错误.故选:C.【点评】此题主要考查了有理数的乘方运算,正确掌握运算法则是解题关键.8.等边△ABC在数轴上的位置如图所示,点A、C对应的数分别为0和﹣1.若△ABC绕顶点沿顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为1,则连续翻转2015次后,点B()A.不对应任何数B.对应的数是2013C.对应的数是2014D.对应的数是2015【考点】数轴.【专题】规律型.【分析】结合数轴根据翻折的次数,发现对应的数字依次是:1,1,2.5;4,4,5.5;7,7,8.5…即第1次和第二次对应的都是1,第四次和第五次对应的都是4,第7次和第8次对应的都是7.根据这一规律:因为2015=671×3+2=2013+2,所以翻转2015次后,点B所对应的数2014.【解答】解:因为2015=671×3+2=2013+2,所以翻转2015次后,点B所对应的数是2014.故选:C.【点评】考查了数轴,本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.注意翻折的时候,点B对应的数字的规律:只要是3n+1和3n+2次翻折的对应的数字是3n+1.二、细心填一填(每空2分,共计30分)9.﹣5的相反数是5,的倒数为﹣.【考点】倒数;相反数.【分析】根据相反数及倒数的定义,即可得出答案.【解答】解:﹣5的相反数是5,﹣的倒数是﹣.故答案为:5,﹣.【点评】本题考查了倒数及相反数的知识,熟练倒数及相反数的定义是关键.10.火星和地球的距离约为34000000千米,这个数用科学记数法可表示为3.4×107千米.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|1时,n是正数;当原数的绝对值﹣(填“>”、“﹣.故答案为:=,>.【点评】本题考查的是有理数的大小比较,熟知负数比较大小的法则是解答此题的关键.12.单项﹣的系数是﹣,次数是4次;多项式xy2﹣xy+24是三次三项式.【考点】多项式;单项式.【分析】根据单项式的系数及次数的定义,多项式的次数及项数的概念解答.【解答】解:单项﹣的系数是﹣,次数是4次,多项式xy2﹣xy+24是三次三项式.【点评】根据单项式的单项式的系数是单项式前面的数字因数,次数是单项式所有字母指数的和;多项式是由单项式组成的,常数项也是一项,多项式的次数是“多项式中次数的项的次数”.13.若﹣7xyn+1与3xmy4是同类项,则m+n=4.【考点】同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【解答】解:根据题意,得:m=1,n+1=4,解得:n=3,则m+n=1+3=4.故答案是:4.【点评】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.14.一个多项式加上﹣3+x﹣2x2得到x2﹣1,这个多项式是3x2﹣x+2. 【考点】整式的加减.【分析】本题涉及整式的加减运算、合并同类项两个考点,解答时根据整式的加减运算法则求得结果即可.【解答】解:设这个整式为M,则M=x2﹣1﹣(﹣3+x﹣2x2),=x2﹣1+3﹣x+2x2,=(1+2)x2﹣x+(﹣1+3),=3x2﹣x+2.【点评】解决此类题目的关键是熟练掌握同类项的概念和整式的加减运算.整式的加减实际上就是合并同类项,这是各地中考的常考点,最后结果要化简.15.按照如图所示的操作步骤,若输入x的值为﹣3,则输出的值为22.【考点】有理数的混合运算.【专题】图表型.【分析】根据程序框图列出代数式,把x=﹣3代入计算即可求出值. 【解答】解:根据题意得:3x2﹣5=3×(﹣3)2﹣5=27﹣5=22,故答案为:22【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16.一只蚂蚁从数轴上一点A出发,沿着同一方向在数轴上爬了7个单位长度到了B点,若B点表示的数为﹣3,则点A所表示的数是4或﹣10.【考点】数轴.【分析】“从数轴上A点出发爬了7个单位长度”,这个方向是不确定的,可以是向左爬,也可以是向右爬.【解答】解:分两种情况:从数轴上A点出发向左爬了7个单位长度,则A点表示的数是4;从数轴上A点出发向右爬了7个单位长度,则A点表示的数是﹣10,【点评】考查了数轴,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,在学习中要注意培养数形结合的数学思想以及分类的思想.17.若3a2﹣a﹣2=0,则5+2a﹣6a2=1.【考点】代数式求值.【专题】整体思想.【分析】先观察3a2﹣a﹣2=0,找出与代数式5+2a﹣6a2之间的内在联系后,代入求值.【解答】解;∵3a2﹣a﹣2=0,∴3a2﹣a=2,∴5+2a﹣6a2=5﹣2(3a2﹣a)=5﹣2×2=1.故答案为:1.【点评】主要考查了代数式求值问题.代数式中的字母表示的数没有明确告知,而是隐含在题设中,把所求的代数式变形整理出题设中的形式,利用“整体代入法”求代数式的值.18.已知f(x)=1+,其中f(a)表示当x=a时代数式的值,如f(1)=1+,f(2)=1+,f(a)=1+,则f(1)&#8226;f(2)&#8226;f(3)…&#8226;f(100)=101.【考点】代数式求值.【专题】新定义.【分析】把数值代入,计算后交错约分得出答案即可.【解答】解:∵f(1)=1+=2,f(2)=1+=,…f(a)=1+=,∴f(1)&#8226;f(2)&#8226;f(3)…&#8226;f(100)=2×××…××=101.故答案为:101.【点评】此题考查代数式求值,理解题意,计算出每一个式子的数值,代入求得答案即可.三、认真答一答(共计46分)19.画一条数轴,然后在数轴上表示下列各数:﹣(﹣3),﹣|﹣2|,1,并用“【篇二】初一上册数学期中试题及答案一、选择题(每题3分,共30分)1-的相反数是().A.-2016B.2016C.D.-2.甲乙两地的海拔高度分别为300米,-50米,那么甲地比乙地高出().A.350米B.50米C.300米D.200米3.下面计算正确的是()A.5x2-x2=5B.4a2+3a2=7a2C.5+y=5yD.-0.25mn+mn=04.学校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家北边100米,李明同学从家里出发,向北走了50米,接着又向北走了-70米,此时李明的位置()A.在家B.在书店C.在学校D.不在上述地方5.下列去括号正确的是()A.-(3x+7)=-3x+7B.-(6x-3)=-2x+3C.(3m-5n)=m+nD.-(m-2a)=-m+2a6.下列方程中,是一元一次方程的为()A.5x-y=3B.C.D.7.已知代数式x+2y+1的值是5,则代数式2x+4y+1的值是()A.1B.5C.9D.不能确定8.已知有理数,所对应的点在数轴上如图所示,化简得()A.a+bB.b-aC.a-bD.-a-b9.列说法错误的是().A.若,则x=y;B.若x2=y2,则-4x2=-4y2;C.若-x=6,则x=-;D.若6=-x,则x=-6.10.某区中学生足球赛共赛8轮(即每队均参赛8场),胜一场得3分,平一场得1分,输一场得0分,在这次足球联赛中,猛虎足球队踢平的场数是所负场数的2倍,共得17分,则该队胜了()场.A.6B.5C.4D.3二、填空题(每题3分,共24分)11.地球绕太阳每小时转动经过的路程约为110000千米,用科学记数法记为米12.若,,且,则的值可能是:.13.当时,代数式的值为2015.则当时,代数式的值为。

人教版2022--2023学年度第一学期七年级数学上册期中测试卷及答案

人教版2022--2023学年度第一学期七年级数学上册期中测试卷及答案
A. B. C. D.
8.下列判断正确的是( )
A.两个数相加,和一定大于其中一个加数B.两数相减,差一定小于被减数
C.两数相乘,积一定大于其中一个因数D.|a|一定是非负数
9.如图,是由一些棱长为1cm的小正方体构成的立体图形的三种视图,那么这个立体图形的体积是()
A. B.14 C.5 D.7
10.一根 长 绳子,第一次剪去绳子的 ,第二次剪去剩下绳子的 ,如此剪下去,第100次剪完后剩下绳子的长度是()
【详解】解:如图所示:
【点睛】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.
例:三个有理数 , , 满足 ,求 的值.
解:由题意得, , , 三个有理数都为正数或其中一个为正数,另两个为负数.
①当 , , 都是正数,即 , , 时,
则: ,
②当 , , 有一个为正数,另两个为负数时,设 , , ,
则: .
综上, 的值为3或-1.
请根据上面的解题思路解答下面的问题:
(1)已知 , ,且 ,求 的值;
则 .
故答案为:55.
【点睛】本题考查了代数式求值,读懂题目运算程序是解题的关键.
15.30
【解析】
【分析】将代数式化为:2(x2+3x)+8,由于代数式x2+3x-5的值等于6,那么x2+3x=11,将其代入代数式并求出代数式的值.
【详解】解:由题意得:
x2+3x-5=6,
即:x2+3x=11,

扬州市梅岭中学2017-2018学年七年级上学期期中考试数学试题(含答案)

扬州市梅岭中学2017-2018学年七年级上学期期中考试数学试题(含答案)

扬州市梅岭中学 2017--2018学年第一学期期中考试试卷初一年级 数学学科 时间:120 分钟;一、细心选一选!(每题3分,共24分)1.下列是无理数的是 ( ) A .0.666… B .227C .2πD .2.62626662 2.用代数式表示“m 的3倍与n 的差的平方”,正确的是 ( )A .()23m n -; B .()23m n - ; C .23m n - ; D .()23m n -3.下面的计算正确的是 ( )A .6a -5a =1B .a + 2a 2=3a 3C .-(a -b ) =-a + bD .2(a + b ) =2a + b 4.若方程x|a| - 2-7=0是一个一元一次方程,则a 等于 ( )A. -3B. 3C. ±3 D . 0 5.已知:x ﹣2y=﹣3,则代数式(2y ﹣x )2﹣2x+4y ﹣1的值为( ) A .2 B .14 C .﹣4 D .06.给出下列判断:①单项式5×103x 2的系数是5;②x -2xy + y 是二次三项式;③多项式-3a 2b +7a 2b2-2ab +1的次数是9;④几个有理数相乘,当负因数有奇数个时,积为负.其中判断正确的是( ) A .1个 B .2个 C .3个 D .4个 7.有理数a ,b ,c 在数轴上的位置如图所示,则a c ++c b --b a += ( ) 第7题 A .-2b B .0 C .2c D .2c -2b 8.如图:已知正方形的边长为4,甲、乙两动点分别从正方形ABCD 的顶点 A 、C 同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的3倍,则它们第2017次相遇在边 ( )上. A. AB B. BC C. CD D. DA 二、耐心填一填:(每空3分,共30分)9. 钓鱼岛是钓鱼岛列岛的主岛,是中国固有领土,位于中国东海,面积4384000 m 2,这个数据用科学记数法可表示为 m 2.10.比较大小:﹣4 ﹣3(填“>”或“<”或“=”)11.已知4x 2m y m+n 与3x 6 y 2是同类项,则m -n = . 12.如图,将一刻度尺放在数轴上(数轴的单位长度 是1cm ),刻度尺上“0cm ”和“8cm ”分别对应数轴上 的-3和x ,那么x 的值为 .13.绝对值小于4.5的所有负整数的和为 . 14.若|m|=3,|m|=5且m -n>0,则m+n=_________15.若关于x 的方程042=+-k x 的解是3=x ,那么k 的值是 .16.如下图所示是计算机程序计算,若开始输入1x =-,则最后输出的结果是 . 17.如图,圆的周长为4个单位长,数轴每个数字之间的距离为1个单位,在圆的4等分点处分别标上0、1、2、3,先让圆周上表示数字0的点与数轴上表示-1的点重合,再将数轴按逆时针方向环绕在该圆上(如圆周上表示数字3的点与数轴上表示-2的点重合…),则数轴上表示-2017的点与圆周上表示数字 的点重合.第16题 第17题18.有依次排列的3个数:2,9,7,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:2,7,9,-2,7,这称为第1次操作;做第2次同样的操作后也可产生一个新数串:2,5,7,2,9,-11,-2,9,7,继续依次操作下去,问:从数串2,9,7开始操作第101次以后所产生的那个新数串的所有数之和是 . 三、耐心做一做(共96分)19.计算与化简:(每题4分,共12分)(1)-10-(-16)+(-24); (2) 5÷(-35)×53(3)4×(-725)+(-2)2×5-4÷(-512);20.解方程:(每题4分,共8分)(1)3x -4(x+1) =1 (2)23-x -312+x =1第12题21.(本题6分)将﹣4,﹣(﹣3.5),﹣1,|﹣2|这些数在数轴上表示出来,并用“<”将它们连接起来.22.(本题8分)先化简,再求值:已知m、n互为倒数,求:-2(mn-3m2)-m2+5 (mn-m2)的值.23. (本题8分)国庆期间,特技飞行队进行特技表演,其中一架飞机起飞后的高度变化如下表:(1) 此时这架飞机比起飞点高了多少千米?(2) 如果飞机每上升或下降1千米需消耗2升燃油,那么这架飞机在这4个动作表演过程中,一共消耗了多少升燃油?24.(本题8分)有这样一道题:“计算(2x4﹣4x3y﹣2x2y2)﹣(x4﹣2x2y2+y3)+(﹣x4+4x3y﹣y3)的值,其中x=,y=﹣1.甲同学把“x=”错抄成“x=﹣”,但他计算的结果也是正确的,你能说明这是为什么吗?25.(本题10分)a※b是新规定的这样一种运算法则:a※b=a2+2ab,例如3※(﹣2)=32+2×3×(﹣2)=﹣3(1)试求(﹣2)※3的值(2)若1※x=3,求x的值(3)若(﹣2)※x=﹣2+x,求x的值.26.(本题12分)(1)在下列横线上用含有a,b的代数式表示相应图形的面积.①②③④(2)请在图④画出..并通过拼图,你发现前三个图形的面积与第四个图形面积之间有什么关系?..拼图请用数学式子表达:.(3)利用(2)的结论计算10.232+20.46×9.77+9.772的值.27、(本题10分)寻找公式,求代数式的值:从2开始,连续的偶数相加,它们的和的情况如下表:(1)当n个从2开始的连续偶数相加时,它们的和S与n之间有什么样的关系,用公式表示出来;(2)并按此规律....计算:(a)2+4+6+…+400的值;(b)162+164+166+…+300的值.28.(本题14分)如图,数轴上有三个点A、B、C,表示的数分别是﹣4、﹣2、3,请回答:(1)若使C、B两点的距离与A、B两点的距离相等,则需将点C向左移动个单位;(2)若移动A、B、C三点中的两个点,使三个点表示的数相同,移动方法有种,其中移动所走的距离和最小的是个单位;(3)若在原点处有一只小青蛙,一步跳1个单位长.小青蛙第1次先向左跳1步,第2次再向右跳3步,然后第3次再向左跳5步,第4次再向右跳7步,…,按此规律继续跳下去,那么跳第100次时,应跳步,落脚点表示的数是;(4)若有两只小青蛙A、B,它们在数轴上的点表示的数分别为整数x、y,且|x﹣2|+|y+3|=2,求两只小青蛙A、B之间的距离.初一数学期中考试参考答案与试题解析说明:如果考生的解法与本解答不同,参照本评分标准的精神酌情给分.一、选择题(本大题共有8小题,每小题3分,共24分)题号 1 2 3 4 5 6 7 8选项 C A C C B A B D二、填空题(本大题共有10小题,每小题3分,共30分)9.4.384×106 10.< 11.4 12.5 13.-1014.-2或-815.10 16.-9 17.0 18.523三、解答题(本大题共有10小题,共96分.解答时应写出文字说明、证明过程或演算步骤)19. 解:(1)原式=﹣10+16﹣24=﹣18;(2)原式=﹣5××=﹣.(3)原式=020.解:(1)去括号得:3x﹣4x﹣4=1,移项合并得:﹣x=5,解得:x=﹣5;(2)去分母得:3x﹣9﹣4x﹣2=6,移项合并得:﹣x=17,解得:x=﹣17.21.解:如图所示,,故﹣4<﹣1<|﹣2|<﹣(﹣3.5).22.解:∵m、n互为倒数,即mn=1,∴原式=﹣2mn+6m2﹣m2+5mn﹣5m2=3mn=323.解:(1)4.4﹣3.2+1.1﹣1.5=0.8(千米),答:这架飞机比起飞点高了0.8千米;(2)|4.4|+|﹣3.2|+|+1.1|+|﹣1.5|=10.2(千米)10.2×2=20.4升.答:一共消耗了20.4升燃油.【点评】此题考查了有理数的加减混合运算,正数和负数,弄清题意是解本题的关键.24.解:原式=2x4﹣4x3y﹣2x2y2﹣x4+2x2y2﹣y3﹣x4+4x3y﹣y3=﹣2y3,当x=或x=﹣时,原式的值一样【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.25.解:(1)(﹣2)※3=(﹣2)2+2×(﹣2)×3=4﹣12=﹣8;(2)∵1※x=3,∴12+2x=3,∴2x=3﹣1,∴x=1;(3)﹣2※x=﹣2+x,(﹣2)2+2×(﹣2)x=﹣2+x,4﹣4x=﹣2+x,﹣4x﹣4=﹣2﹣4,﹣5x=﹣6,x=.【点评】此题考查学生对代数式求值的掌握情况.26.解:(1)a2、2ab、b2、(a+b)2;(2)a2+2ab+b2=(a+b)2;(3)10.232+20.46×9.77+9.772=(10.23+9.77)2=400.故答案为:a2、2ab、b2、(a+b)2.(2)a2+2ab+b2=(a+b)2;【点评】本题主要考查了完全平方公式及其应用,难易程度适中,注意掌握几种特殊几何图形的面积表达式.27.解:(1)∵1个最小的连续偶数相加时,S=1×(1+1),2个最小的连续偶数相加时,S=2×(2+1),3个最小的连续偶数相加时,S=3×(3+1),…∴n个最小的连续偶数相加时,S=n(n+1);(2)(a)2+4+6+…+400=200×(200+1)=40200;(b)162+164+166+ (400)=(2+4+6+…+300)﹣(2+4+6+…+160),=150×151﹣80×81,=22650﹣6480,=16170.28.解:(1)3或7;(2)有3种方法:①移动B、C,把点B向左移动2个单位长度,把C向左移动7个单位长度,移动距离之和为:2+7=9;②移动A、C,把点A向右移动2个单位长度,把C向左移动5个单位长度,移动距离之和为:2+5=7;③移动B、A,把点A向右移动7个单位长度,把B向左右移动5个单位长度,移动距离之和为:7+5=12.所以移动所走的距离和最小的是7个单位,故答案为:3,7;(3)答案为199,100;∵第1次跳1步,第2次跳3步,第3次跳5步,第4次跳7步,…∴第n次跳(2n﹣1)步,当n=100时,2×100﹣1=200﹣1=199,此时,所表示的数是:﹣1+3﹣5+7﹣…﹣197+199,=(﹣1+3)+(﹣5+7)+…+(﹣197+199),=2×=100,(4)根据题意, |x﹣2|与|x+3|都是整数.分三种情况进行分类讨论○1|x﹣2|=0,|y+3|=2,所以|x﹣y|=3或7○2|x﹣2|=1,|y+3|=1.所以|x﹣y|=3或5或7○3|x﹣2|=2,|y+3|=0.所以|x﹣y|=3或7故两青蛙之间的距离是3或5或7。

下学期初中七年级数学期中试题

下学期初中七年级数学期中试题

下学期初中七年级数学期中试题兴趣是推动学生学习的动力,学生如果能在学习数学中产生兴趣,就会形成较强的求知欲,就能积极主动地学习,今天小编就给大家看看七年级数学,一起来学习吧初中七年级数学下册期中试题一、选择题,下列各题中只有一个选项是正确的,请将正确答案的番号选填在答卷相应题号内。

(本大题共12个小题,每题3分,共36分)1.在数,π,,0.3333…, 中,其中无理数有A.1个B.2个C.3个D.4个2.下面四个图形中,∠1与∠2是对顶角的图形的个数是A.0B.1C.2D.33. 的算术平方根是A.±4B.4C.±2D.24.下列各组数中互为相反数的是A.-2 与B.-2 与C.-2 与D.2与5.下列说法正确的是A.无限小数都是无理数B.带根号的数都是无理数C.无理数是无限不循环小数D.实数包括正实数、负实数6.方程用含x的代数式表示y为A. B. C. D.7.如图所示下列条件中,不能判定AB//DF的是A.∠A+∠2=180°B.∠A=∠3C.∠1=∠4D.∠1=∠A8.若点M(3,-2)与点N(x、y)在同一条平行于x轴的直线上,且MN=1,则N点的坐标为A.(4,-2)B.(3,-1)C.(3,-1)或(3,-3)D.(4,-2)或(2,-2)9.已知一个两位数,它的十位上的数字x比个位上的数字y大1,若颠倒个位数字与十位数字的位置,得到的新数比原数小9,求这个两位数所列的方程组正确的是A. B.C. D.10.如图,已知AB//CD//EF,BC//AD,AC平分∠BAD,那么图中与∠AGE相等的角有A.5个B.4个C.3个D.2个11.如图把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=60°,则∠AED′=A.50°B.55°C.60°D.65°12.如图,在直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3,已知A(1,5) 、A1(2,5) 、A2(4,5) 、A3(8,5) 、B(2,0) 、B1(4,0) 、B2(8,0) 、B3(16,0):若按此规律,将△OAB进行n次变换,得到△OAnBn。

广东省中山市2023-2024学年七年级上学期期中数学试题(含答案解析)

广东省中山市2023-2024学年七年级上学期期中数学试题(含答案解析)

广东省中山市2023-2024学年七年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________A .0a b +>B .a b ->7.已知|a |=5,|b |=3,且ab <0,则A .2或8B .1或﹣88.下列各式进行的变形中,不正确的是(A .若32a b =,则322a b +=+C .若32a b =,则352a b -=-二、填空题16.如图,是由同样大小的星星按照一定规律摆放的,第有8个星星,第3个图形有13个星星,……,第三、解答题(1)如果设十字架正中心的数为x ,用含(2)十字框中五个数的和能等于180(3)十字框中五个数的和能等于202024.已知3A x ax =+,32B bx =-参考答案:∴()14 3.5022-<-<<<--.19.2210a -,8【分析】本题考查了整式的化简求值,掌握去括号法则合并同类项法则是解决本题的关键.括号合并同类项后,再代入求值;【详解】原式2210421248a a a a =-+-+-11775x x x x x x +-+++-++=,∴十字框中五个数的和是5x .(2)十字框中五个数的和不能等于180.∵当5180x =时,解得36x =,36751÷= ,36在数阵中位于第6排的第1个数,其前面无数字,∴十字框中五个数的和不能等于180.(3)十字框中五个数的和能等于2020.∵当52020x =时,解得404x =,4047575÷= ,404在数阵中位于第58排的第5个数,∴十字框中五个数的和能等于2020,这五个数是404,403,405,397,411.24.(1)2,1a b =-=(2)19-【分析】(1)首先化简2A B -,然后根据题意列方程求解即可;(2)首先将2x =代入2A B -得到8(22)2(24)20b a -++=,然后将2x =-代入2A B -,最后整体代入求解即可.【详解】(1)解:2A B-332()(241)x ax bx x =+---3322241x ax bx x =+-++3(22)(24)1b x a x =-+++,∵多项式2A B -的值与x 的取值无关,∴220,240b a -=+=,∴2,1a b =-=;(2)解:把2x =代入3(22)(24)1b x a x -+++得:8(22)2(24)121b a -+++=,∴8(22)2(24)20b a -++=,把2x =-代入3(22)(24)1b x a x -+++得:。

七年级上册数学期中考试试卷含答案

七年级上册数学期中考试试卷含答案

七年级上册数学期中考试试题一、单选题1.一天早晨的气温是-3°C,中午上升到15°C,则这天中午比早晨的气温上升了()A .15℃B .18°C C .-3℃D .-18°C2.下列各个运算中,结果为负数的是()A .2-B .()2--C .2(2)-D .22-3.下列说法正确的是()A .一个数的绝对值一定比0大B .最小的正整数是1C .绝对值等于它本身的数一定是正数D .一个数的相反数一定比它本身小4.下列各式12mn -,8,1a ,226x x ++,25x y-,1y ,a -中,整式有()A .4个B .5个C .6个D .7个5.对于多项式2235x x -+,下列说法错误的是()A .它是二次三项式B .最高次项的系数是2C .它的常数项是5D .它的项分别是22x ,3x ,56.若-2a 2b m+2与﹣a n -1b 4的和是单项式,则m ﹣n 的值为()A .0B .-1C .1D .-27.已知一个多项式与239x x +的和等于2541x x +-,则这个多项式是()A .28131x x +-B .2251x x -++C .2851x x -+D .2251x x --8.若|2|2a a -=,则下列结论正确的是()A .0a >B .0a <C .0a ≥D .0a ≤9.a,b,c 在数轴上的对应点的位置如图所示,化简|b-c|+|a+b|-|a|的结果是()A .cB .c-2bC .2a+cD .-c10.下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x 的值为()A .135B .170C .209D .252二、填空题11.﹣13的相反数是_____.12.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法可表示为_____.13.(用“>”,“<”或“=”填空):13-________25-.14.绝对值大于1.1而小于3.9的所有整数有________.15.已知233m m --的值为2,那么代数式2202126m m -+的值是________.16.数轴上有一动点A ,从原点出发沿着数轴移动,第一次点A 向左移动1个单位长度到达点1A ,第二次将点A 向右移动2个单位长度到达点2A ,第三次将点A 向左移动3个单位长度到达点3A ,按照这种移动规律移动下去,第n 次移动到点n A ,当2022n =时,点A 与原点的距离是________个单位.三、解答题17.计算:(1)()()()()10125+-++---;(2)()()3432⎛⎫+⨯+÷- ⎪⎝⎭;(3)()25124382⎛⎫-⨯-+ ⎪⎝⎭;(4)()()()24083218÷-+-⨯-+;(5)()()()20213116822⎛⎫-+-⨯--÷- ⎪⎝⎭;(6)()()222104132⎡⎤-+---⨯⎣⎦.18.化简:(1)232322343a a a a a --++;(2)2211218522a a a a ⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭.19.先化简,后求值:()()32323224a ab b a ab b -+---+,其中1a =-,17b =.20.已知多项式2512A x my =+-与多项式21B nx y =++(m 、n 为常数),如果23A B +中不含x 和y ,求mn 的值.21.某同学绘制了如图所示的火箭模型截面图,图的下面是梯形,中间是长方形,上面是三角形.(1)用含有a 、b 的代数式表示该截面的面积S ;(2)当 2.8a cm =, 2.2b cm =时,求这个截面的面积.22.某登山队5名队员以大本营为基地,向海拔距离大本营500米的顶峰发起登顶冲击,假设向上走为正,向下走为负,行程记录如下(单位:米)+120,-30,-45,+205,-30,+25,-20,-5,+30,+105,-25,+90.(1)他们有没有登上顶峰?如果没有登上顶峰,他们距离顶峰多少米?(2)登山时,5名队员在进行中全程均使用了氧气,每人每100米消耗氧气0.5升,求共使用了多少升氧气?23.观察下面三行数:2-,4,8-,16,32-,64,…;①0,6,6-,18,30-,66,…;②1-,2,4-,8,16-,32,…;③(1)第一行的第8个数是________,第二行的第8个数是________,第三行的第n 个数是________;(2)在第三行中,某三个连续数的和为96,求这三个数.24.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是________,表示3-和2两点之间的距离是________.(2)一般地,数轴上表示数m 和数n 的两点之间的距离等于m n -.如果表示数a 和1-的两点之间的距离是3,那么=a ________.(3)若数轴上表示数a 的点位于4-与2之间,则42a a ++-的值为________;(4)利用数轴找出所有符合条件的整数点x ,使得|x +2|+|x -5|=7,这些点表示的数的和是.(5)当=a ________时,314a a a ++-+-的值最小,最小值是________.25.如图,若点A 在数轴上对应的数为a ,点B 在数轴上对应的数为b ,且a ,b 满足2|1|(2)0a b -++=.(1)求线段AB 的长.(2)点C 在数轴上对应的数是c ,且c 是方程1232x x -=的解,在数轴上是否存在点P ,使得PA +PB =PC ?若存在,求出点P 对应的数;若不存在,请说明理由.(3)在(1)、(2)的条件下,点A 、B 、C 开始在数轴上运动,若点B 以每秒1个单位长度的速度向左运动,同时点A 和点C 分别以每秒4个单位长度和9个单位长度的速度向右运动,t 秒钟后,若点A 和点C 之间的距离表示为AC ,点A 和点B 之间的距离表示为AB ,那么AB -AC 的值是否随着时间的变化而变化?若变化,请说明理由;若不变,请求出AB -AC 的值.参考答案1.B【解析】【分析】利用有理数的减法运算,即可.【详解】--=,故选B.15(3)18【点睛】本题主要考查有理数的减法运算的实际运用,对题意的准确理解,列出算式,是解题的关键. 2.D【解析】【分析】先把各项分别化简,再根据负数的定义,即可解答.【详解】A、|-2|=2,不是负数;B、-(-2)=2,不是负数;C、(-2)2=4,不是负数;D、-22=-4,是负数.故选D.【点睛】本题考查了正数和负数,解决本题的关键是先进行化简.3.B【解析】【分析】根据绝对值的定义即可判断A和C,根据正整数的定义即可判断B,根据相反数的定义即可判断D.【详解】解:∵0的绝对值是0,∴A选项不合题意,∵由正整数的定义知最小的正整数是1,∴B选项符合题意,∵0的绝对值是0,但0不是正数,∴C选项不合题意,∵负数的相反数是正数,而正数大于负数,∴D选项不合题意,故选B.【点睛】本题主要考查了绝对值的定义,相反数的定义,整数的定义,解题的关键在于能够熟知定义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;如果两个数只有符号不同,数字相同,那么这两个数就叫做相反数,0的相反数是0.4.B【解析】【分析】根据整式的定义,结合题意即可得出答案.单项式和多项式都统称为整式.【详解】解:1a和1y的分母含有字母,是分式,不是整式;整式有12mn-,8,226x x++,25x y-,a-,共有5个,故选:B.【点睛】本题考查了整式的判断,理解整式的定义是解题的关键.5.D【解析】【分析】根据多项式的项以及单项式的次数、系数的定义即可作出判断.【详解】多项式2x2−3x+5是二次三项式,它的项分别是2x2,-3x,5;最高次项的系数是2,它的常数项是5,故A、B、C、正确,只有D 错误.故选D.【点睛】此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.6.B【解析】【分析】两个单项式的和是单项式,说明这两个单项式是同类项,根据同类项的定义可知n-1=2,m+2=4,从而求出m 、n ,继而求出m-n 的值.【详解】解:由题意可知:n-1=2,m+2=4,解得:n=3,m=2,∴m-n=2-3=-1.故选B.【点睛】本题考查了同类项的定义.7.D【解析】【分析】由和减去一个加数等于另一个加数,列出关系式,去括号合并即可得到结果.【详解】解:根据题意列得:2541x x +--(239x x +)=2251x x --,故选D .【点睛】此题考查了整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.8.C【解析】根据非正数的绝对值是它的相反数即可求解.【详解】∵|-2a|=2a,∴-2a≤0,解得a≥0.故选:C.【点睛】此题考查绝对值,解题关键在于掌握如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a 的绝对值是它的相反数-a;③当a是零时,a的绝对值是零.9.B【解析】【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】根据题意得:a<b<0<c,∴b-c<0,a+b<0,则原式=c-b-a-b+a=c-2b.故选B.【点睛】此题考查整式的加减,熟练掌握运算法则是解本题的关键.10.C【解析】【分析】观察数字的变化设表格中左上角的数字为a,则左下角的数字为a+1,右上角的数字为2a+2,右下角的数字为(a+1)(2a+2)+a,进而可得结论.【详解】解:∵a+(a+2)=20,∵b=a+1,∴b=a+1=9+1=10,∴x=20b+a=20×10+9=200+9=209故选C.【点睛】本题考查了规律型:数字的变化类,解决本题的关键是观察数字的变化寻找规律,总结规律,运用规律.11.1 3【解析】【详解】解:根据相反数的定义可知1-3的相反数是13.故答案为:1 3.12.6.75×104【解析】【详解】解:67500=6.75×104.故答案为:6.75×104.13.>【解析】【分析】根据两个负数绝对值大的反而小进行比较即可.【详解】解:1153315-==,2265515-==,∵56 1515<,∴1235->-.故答案为:>.【点睛】本题考查了有理数大小比较,要熟练掌握并正确运用有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数比较大小,绝对值大的其值反而小.14.2±,3±【解析】【分析】根据绝对值意义以及有理数的大小比较即可求得答案.【详解】解:绝对值大于1.1而小于3.9的所有整数有2±,3±.故答案为:2±,3±.【点睛】本题考查了绝对值的意义,有理数的大小比较,理解绝对值的意义是解题的关键.15.2011【解析】【分析】将所求代数式适当变形,利用整体代入的思想方法解答即可得出结论.【详解】解:∵233m m --的值为2,∴2332m m --=,∴235m m -=.∴()222021262021232021252021102011m m m m -+=--=-⨯=-=.故答案为:2011.【点睛】此题考查了代数式求值,解题的关键是掌握整体代入的求解方法.16.1011【解析】【分析】由点的运动方式,可得到规律运动次数是奇数时,A 点在数轴上表示的数为1-,2-,3-,…运动次数是偶数时,A 点在数轴上表示的数为1,2,3,…,由于2022n =是偶数,则可求解.【详解】解:第一次A 点在数轴上表示的数为1-,第二次A 在数轴上表示的数为1,第三次A 在数轴上表示的数为到2-,第四次A 在数轴上表示的数为2,第五次A 在数轴上表示的数为3-,第六次A 在数轴上表示的数为3,⋯由此发现,运动次数是奇数时,A 点在数轴上表示的数为1-,2-,3-,⋯运动次数是偶数时,A 点在数轴上表示的数为1,2,3,⋯当2022n =时,A 点在数轴上表示的数为1011,∴点A 与原点的距离是1011个单位,故答案为:1011.【点睛】本题考查数字的变化规律;能够理解题意,并能由点运动后在数轴上表示的数总结出规律是解题的关键.17.(1)12;(2)-8;(3)-13;(4)1;(5)3;(6)-68【解析】【分析】(1)先把减法转化为加法,然后根据有理数加法的计算方法计算即可;(2)根据有理数的乘除法计算即可;(3)根据乘法分配律计算即可;(4)(5)先算乘方、再算乘除法、最后算加减法即可;(6)先算乘方和括号内的式子,然后算括号外的加法即可.【详解】解:(1)()()()()()()101251012512+-++---=+-+-+=;(2)()()324343823⎛⎫+⨯+÷-=-⨯⨯=- ⎪⎝⎭;(3)()25124382⎛⎫-⨯-+ ⎪⎝⎭()()()251242424382=-⨯--⨯-⨯()()161512=-++-13=-;(4)()()()()()()()2408321853418512181÷-+-⨯-+=-+-⨯+=-+-+=;(5)()()()()()()2021311682138813132⎛⎫-+-⨯--÷-=-+-÷-=-++= ⎪⎝⎭;(6)()()222104132⎡⎤-+---⨯⎣⎦()10016192=-+--⨯⎡⎤⎣⎦()1001682=-+--⨯⎡⎤⎣⎦()1001616=-++10032=-+68=-.【点睛】本题考查了有理数的混合运算,正确的计算是解题的关键.18.(1)2a -;(2)2734a a +-【解析】【分析】(1)根据合并同类项法则求解即可求出答案.(2)先去括号,然后合并同类项即可求出答案.【详解】解:(1)232322343a a a a a --++222332433a a a a a =-++-2a =-.(2)2211218522a a a a ⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭2235285522a a a a =-+-+-2235258522a a a a =++---2734a a =+-【点睛】本题考查整式的加减,熟练运用整式的加减运算法则是解题的关键.19.3257a b -,157-【解析】【分析】去括号,合并同类项,再把1a =-,17b =,代入化简后的多项式计算.【详解】解:()()32323224a ab b a ab b -+---+323232228a ab b a ab b ++=-+-3257a b =-,当1a =-,17b =,原式()2311517577⎛⎫=⨯--⨯=- ⎪⎝⎭.【点睛】本题考查了整式的加减—化简求值,熟练掌握整式的加减—化简求值的步骤:先化简,再把给定字母的值代入计算,得出整式的值,合并同类项是解题关键.20.5【解析】【分析】先根据整式的加减计算法则求出()()2231032321A B n x m y +=+++-,然后;令含x 和含y的项的系数为0,即可得到m 、n 的值,然后代值计算即可【详解】解:∵2512A x my =+-,21B nx y =++,∴()()2223251231A B x my nx y +=+-+++2210224333x my nx y =+-+++()()21032321n x m y =+++-,∵23A B +中不含x 和y ,∴1030 230nm+=⎧⎨+=⎩,∴32103 mn⎧=-⎪⎪⎨⎪=-⎪⎩,∴310523mn⎛⎫=-⨯-=⎪⎝⎭.【点睛】本题主要考查了整式的加减计算,代数式求值,解题的关键在于熟知如果一个多项式中不含某个字母,则含有这个字母的项的系数为0.21.(1)S=2a2+2ab;(2)28cm2.【解析】【分析】(1)根据题意和图形中的数据可以用代数式表示出截面的面积S;(2)将a、b的值代入(1)中的代数式即可解答本题.【详解】解:(1)由题意可得,该截面的面积S=12ab+a•2a+12(a+2a)•b=12ab+2a2+12ab+ab=2a2+2ab,即该截面的面积S是2a2+2ab;(2)当a=2.8cm,b=2.2cm时,S=2×2.82+2×2.8×2.2=15.68+12.32=28cm2,答:这个截面的面积是28cm2.【点睛】本题考查代数式求值、列代数式,解答本题的关键是明确题意,列出相应的代数式,求出代数式的值,利用数形结合的思想解答.22.(1)他们没有登上顶峰,他们距离顶峰80米;(2)18.25【解析】【分析】(1)将行程的数据相加,与500比较,进而判断是否登上顶峰,再计算距离顶峰多少米;(2)将行程的数据的绝对值相加,根据每人每100米消耗氧气0.5升,计算即可【详解】(1)12030452053025205301052590--+-+--++-+420=(米).50042080-=(米),答:他们没有登上顶峰,他们距离顶峰80米.(2)12030452053025205301052590730+++++++++++=(米),每人每100米消耗氧气0.5升,∴73051000.518.25⨯÷⨯=(升),答:他们共消耗18.25升氧气.【点睛】本题考查了有理数加减法的应用,有理数的混合运算,理解题意正确的计算是解题的关键.23.(1)256,258,()22n-÷;(2)32,64-,128【解析】【分析】(1)观察每一行数的规律即可写出每一行的第n 个数;(2)根据(1)中得到的规律得第三行的第n 个数为()12n --,根据条件建立方程,就可解决问题.【详解】解:(1)观察三行数的规律可知:第1行第1个数为:()122-=-,第1行第2个数为:()224-=,第1行第3个数为:()328-=-,第1行第4个数为:()4216-=,∴第1行数的第n 个数为:()2n-;第2行数的第1个数为:()122220-+=-+=,第2行数的第2个数为:()222426-+=+=,第2行数的第3个数为:()322826-+=-+=-,第2行数的第4个数为:()42216218-+=+=,∴第2行数的第n 个数为:()22n -+;第3行数的第1个数为:()122221-÷=-÷=-,第3行数的第2个数为:()222422-÷=÷=,第3行数的第3个数为:()322824-÷=-÷=-,第3行数的第4个数为:()4221628-÷=÷=,∴第3行数的第n 个数为:()22n -÷.∴第一行的第8个数是()82256-=,第二行的第8个数是()8222562258-+=+=,第三行的第n 个数是()22n -÷,故答案为:256,258,()22n-÷;(2)第三行的第n 个数为()22n -÷,若第三行的第n 个数、第()1n +个数、第()1n -个数的和为96,则有()()()1122222296n n n -+-÷+-÷+-÷=,∴()()()11222192n n n -+-+-+-=,∴()()()()()()111222222192n n n ----+-⨯-+-⨯-⨯-=∴()()12124192n --⨯-+=,∴()162642n --==,∴16n -=,∴7n =,∴()712232--÷=,()72264-÷=-,()7122128+-÷=,∴这三个数为32,64-,128.【点睛】本题主要考查了含乘方的有理数混合计算,数字类的规律问题,解题的关键在于能够根据题意准确得到规律.24.(1)3,5;(2)2或-4;(3)6;(4)12;(5)1;7【解析】【分析】(1)根据数轴上两点之间的距离等于两点所表示数的绝对值进行解答即可;(2)根据数轴上两点之间的距离等于两点所表示数的绝对值得到13a +=,解得即可;(3)先根据表示数a 的点位于5-与2之间可知52a -<<,再根据绝对值的性质把原式去掉绝对值符号求出a 的值即可;(4)根据线段上的点到线段两端点的距离的和最小,可得答案.(5)根据分类讨论的数学思想可以解答本题.【详解】解:(1)由数轴上两点之间的距离公式可知:数轴上表示4和1的两点之间的距离是413-=;表示3-和2两点之间的距离是325--=;故答案为:3,5;(2)若表示数a 和1-的两点之间的距离是3,则13a +=,解得2a =或4a =-,故答案为:2或4-;(3)∵42a -<<,∴42426a a a a ++-=++-=;故答案为:6;(4)当5x >时,7252523x x x x x ++-=++=->-,当25x -≤≤时,25257x x x x ++-=++-=,当2x <-时,2525237x x x x x ++-=--+-=-+>,∴使得257x x ++-=的所有整数为:2-,1-,0,1,2,3,4,5,∵()2101234512-+-++++++=,故答案为:12;(5)当4a >时,3143143210a a a a a a a ++-+-=++-+-=->,当14a <≤时,3143146a a a a a a a ++-+-=++-+-=+,则7610a <+≤,当31a -<≤时,3143148a a a a a a a ++-+-=++-+-=-,则7181a ≤-<,当3x ≤-时,3143143211a a a a a a a ++-+-=--+-+-=-+≥,由上可得,当1a =时,314a a a ++-+-的值最小,最小值是7,故答案为:1,7.【点睛】本题考查数轴、绝对值等知识点,明确题意,利用数轴的特点和分类讨论的数学思想解答是解答本题的关键.25.(1)3;(2)存在,3-或1-;(3)2,理由见解析【解析】【分析】(1)根据非负数的性质可确定,a b 的值,进而求得AB 的长度;(2)先解方程求得x 的值,再根据PA PB PC +=,求得点P 对应的数;(3)根据,,A B C 的运动情况,即可确定,AB AC 的变化情况,进而确定AB BC -的值.【详解】(1) 2|1|(2)0a b -++=,10,20a b ∴-=+=,解得1,2a b ==-,∴线段AB 的长为:1(2)3--=;(2)解1232x x -=,解得2x =,C ∴点对应的数是2,如图,设P 对应的数为y , PA PB PC +=,由图可知P 在A 的右侧时不存在,①当P 在B 点的左侧时,122y y y ---=-,解得3y =-,②当P 点在A ,B 之间时,32y =-,解得1y =-,∴存在点P 使得PA PB PC +=,P 对应的数是3-或1-;(3)AB AC -的值不随着时间t 的变化而变化,理由如下:t 秒钟后,A 点的位置为:14t +,B 点的位置为2t --,C点的位置为29t+,=+---=+,14(2)53AB t t t=+-+=+,AC t t t29(14)51-=+-+=,AB AC t t53(51)2∴AB AC-的值不随着时间t的变化而变化,值为2.。

人教版七年级上学期期中考试数学试题(含答案)

人教版七年级上学期期中考试数学试题(含答案)

人教版七年级上学期期中数学试卷及答案一、选择题(每小题3分,共36分)1.﹣2022的绝对值是()A.B.﹣2022C.2022D.﹣2.检测排球,其中质量超过标准的克数记为正数,不足的克数记为负数,在其下方标注了检测结果,其中质量最接近标准的是()A.﹣0.3B.+0.4C.﹣0.1D.﹣0.63.如图,表示互为相反数的两个点是()A.点A和点D B.点B和点C C.点A和点C D.点B和点D4.下列等式正确的是()A.|﹣9|=﹣9B.|﹣|=3C.﹣|﹣7|=7D.﹣(+2)=﹣25.在代数式m,﹣2,4ab2,,中,单项式有()A.3个B.4个C.5个D.6个6.低碳奥运,能源先行,2022冬奥会所有场馆在奥运历史上首次100%使用绿色电力,其中数据14000000000用科学记数法表示为()A.1.4×1010B.1.4×1012C.14×109D.0.14×10117.将多项式x3﹣4xy2+7y3+6x2y按字母y升幂排列的是()A.7y3+4xy2+6x2y+x3B.7y3﹣4xy2+6x2y+x3C.x3﹣6x2y+4xy2+7y3D.x3+6x2y﹣4xy2+7y38.一个点从数轴的原点开始,先向左移动2个单位长度,再向右移动7个单位长度()A.﹣9B.+9C.﹣5D.+59.若|a|=4,|b|=2,且|a+b|=﹣(a+b)()A.﹣2B.﹣6C.﹣2或﹣6D.2或610.《九章算术》中记载一问题:今有共买物,人出八,盈三,不足四.问人数、物价各几何?意思是:今有人合伙购物,每人出8钱;每人出7钱,又差4钱.问人数、物价各多少?设人数为x人()A.8x﹣3B.8x+3C.7x﹣4D.7(x+4)11.一个含有多个字母的整式,如果把其中任何两个字母互换位置,所得的结果与原式相同,x2+y2+z2是对称整式.x2﹣2y2+3z2不是对称整式.①所含字母相同的两个对称整式求和,若结果中仍含有多个字母,则该和仍为对称整式;②一个多项式是对称整式,那么该多项式中各项的次数必相同;③单项式不可能是对称整式:④若某对称整式只含字母z,y,z,且其中有一项为x2y,则该多项式的项数至少为3.以上结论中错误的个数是()A.4B.3C.2D.112.如图是一个运算程序的示意图,若开始输入x的值为125,则第2022次输出的结果为()A.5B.25C.1D.125二、填空题(每小题3分,共18分)13.﹣1 ﹣0.5.(填“>”、“<”或“=”)14.如果零上2℃记作+2℃,那么零下5℃记作℃.15.用代数式表示:x减去y的平方的差.16.如果6x2﹣3x+5=11,那么代数式2x2﹣x+3的值是.17.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“1cm”和“9cm”分别对应数轴上的﹣5和x.18.把1~9这9个数填入3×3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,是世界上最早的“幻方”.如图是仅可以看到部分数值的“九宫格”,则其中x﹣y的值为.三、解答题:(共计66分)19.(12分)计算.(1)25+(﹣18)+4+(﹣10);(2)(﹣3)﹣(﹣15)÷(﹣3);(3)(﹣+﹣)×(﹣12);(4)(﹣1)10×2+(﹣2)3÷4.20.(6分)规定一种运算:=ad﹣bc,例如,,请你按照这种运算的规定,计算.21.(6分)有理数a、b在数轴上的位置如图所示,化简|a﹣b|+|a+b|.22.(6分)若x,y互为相反数,a,b互为倒数,求()2022﹣(﹣ab)2022+c2的值.23.(8分)小明读一本共m页的书,第一天读了该书的,第二天读了剩下的.(1)用含m的代数式表示小明两天共读的页数;(2)当m=120时,求小明两天共读的页数.24.(8分)已知关于x的多项式mx4+(m﹣3)x3﹣(n+2)x2+4x﹣n不含二次项和三次项.(1)求出这个多项式;(2)求当x=2时代数式的值.25.(8分)当今,人们对健康意加重视,跑步成了人们进行体育锻炼的首要选择(即手机应用小程序)应运而生.小明苦爸给自己定了健身目标,每天跑步a千米.以目标路程为基准,不足的部分记为“﹣”,他记下了“十一”长假期间七天跑步的实际路程如下:日期1日2日3日4日5日6日7日略程(千米)+1.72+3.20﹣1.92﹣0.90﹣1.88+3.30+0.08(1)10月5日小明爸爸的跑步路程是千米;(用舍a的代数式表示)(2)小明爸爸给自己定的健身目标是每天跑5千米,若跑步一千米消耗的热量为60千卡,求小明爸爸这七天跑步一共清耗了多少热量?26.(12分)在数轴上点A表示a,点B表示b,且a、b满足|a+5|+|b﹣7|=0.(1)求a,b的值,并计算点A与点B之间的距离.(2)若动点P从A点出发,以每秒2个单位长度的速度沿数轴正方向匀速运动,运动几秒后(3)若动点P从A点出发,以每秒1个单位长度的速度沿数轴向右匀速运动,同时动点Q从B点出发,运动几秒后,P、Q两点间的距离为4个单位长度?参考答案与试题解析1.【解答】解:﹣2022的绝对值是2022.故选:C.2.【解答】解:|﹣0.3|=2.3,|+0.2|=0.4,|﹣2.6|=0.6,∵0.1<2.3<0.3<0.6,∴C选项的排球最接近标准质量.故选:C.3.【解答】解:2和﹣2互为相反数,故选:C.4.【解答】解:A.根据绝对值的定义,那么A错误.B.根据绝对值的定义,,故B不符合题意.C.根据绝对值的定义,那么C错误.D.根据相反数的定义,那么D正确.故选:D.5.【解答】解:代数式m,﹣22,,中,单项式有m,4ab4,共3个.故选:A.6.【解答】解:14000000000=1.4×1010.故选:A.7.【解答】解:将多项式x3﹣4xy6+7y3+7x2y按字母y升幂排列的是7y7﹣4xy2+3x2y+x3,故选:B.8.【解答】解:∵点从原点向左移动2个单位长度,∴该点移动到数轴上的﹣2处,∵再向右移动5个单位长度,∴﹣2+7=3,∴这个点最终所对应的数是5,故选:D.9.【解答】解:∵|a|=4,|b|=2,∴a=±7,b=±2,∵|a+b|=﹣(a+b),∴a+b≤0,∴当a=﹣7时,b=2或﹣2,∴a﹣b=﹣2﹣2=﹣6或a﹣b=﹣2﹣(﹣2)=﹣2,∴a﹣b的值为﹣3或﹣6.故选:C.10.【解答】解:根据题意得,物价为:8x﹣3或8x+4;故选:A.11.【解答】解:①假设两个对称整式分别为M和N(含相同的字母),由题意可知:任何两个字母互换位置,所得的结果与原式相同,则M+N的结果不变,故①不符合题意;②反例:x3+y3+z4+x+y+z为对称整式,x3与y互换后,所得的结果都不会是一个对称的整式;③反例:xyz为单项式,但也是对称整式;④对称整式只含字母x,y,z,且其中有一项为x2y,若x,y互换3y:y2x,则有一项为y2x;若z,x互换2y:z2y,则有一项为z2y;若y,z互换8y:x2z,则有一项为x2z;第三项中x,y,z的次数相同,同理:可以换不相同的字母,至少含有四项:xy2,x2y,x2z,yz5,则该多项式的项数至少为4.故④符合题意.所以以上结论中错误的是②③④,共3个.故选:B.12.【解答】解:第一次:当x=125,,第二次:当x=25,,第三次:当x=4,,第四次:当x=1,x+4=4,第五次:当x=5,,……根据前五次输出结果可知从第二次开始,第奇数次输出结果为1.∴第2022次输出的结果为4.故选:A.13.【解答】解:|﹣1|=1,|﹣3.5|=0.5,∵1>0.7,∴﹣1<﹣0.7,故答案为:<.14.【解答】解:∵零上2℃记作+2℃,∴零下3℃记作﹣5℃.故答案为:﹣5.15.【解答】解:y的平方即y2,则x减去y的平方的差就可以表示为:x﹣y2故答案为:x﹣y616.【解答】解:∵6x2﹣7x+5=11,∴6x7﹣3x=6,∴5(2x2﹣x)=4,即2x2﹣x=3,∴2x2﹣x+2=2+3=8.故答案为:5.17.【解答】解:∵刻度尺上“1cm”对应数轴上的﹣5,∴刻度尺上“3cm”对应数轴上的0,∴刻度尺上“9cm”对应数轴上的3,故答案为:3.18.【解答】解:这九个数的和为1+2+2+...+9=45,∵每一行、每一列的数之和均相对,∴每一行、每一列的数之和为15.∴下中为15﹣9﹣6=1,下右为15﹣8﹣7=6,左中为15﹣4﹣2=3,∴x﹣y=4﹣6=﹣3.故答案为:﹣3.19.【解答】解:(1)25+(﹣18)+4+(﹣10)=25﹣18+4﹣10=2;(2)(﹣3)﹣(﹣15)÷(﹣3)=﹣3﹣5=﹣8;(3)(﹣+﹣)×(﹣12)=×(﹣12)﹣×(﹣12)﹣=﹣9+8﹣4+10=3;(4)(﹣1)10×6+(﹣2)3÷8=1×2+(﹣5)÷4=2﹣7=0.20.【解答】解:∵=ad﹣bc,∴=(﹣1)2018×(﹣2)﹣4×1.25=5×(﹣9)﹣5=﹣5﹣5=﹣14.21.【解答】解:∵在数轴上原点右边的数大于0,左边的数小于0,b<a<8,∴|a﹣b|=a﹣b,|a+b|=﹣a﹣b,∴原式=a﹣b﹣a﹣b=﹣2b.22.【解答】解:∵x,y互为相反数,a,c的绝对值等于2,∴x+y=0,ab=7,c2=4,∴()2022﹣(﹣ab)2022+c2=()2022﹣(﹣1)2022+4=6﹣1+4=7.23.【解答】解:(1)∵第一天读了该书的,∴小明第一天读了m页;∵第二天读了剩下的,∴小明第二天读了(4﹣m(页).∴小明两天共读的页数为:m+m(页).(2)当m=120时,m=×120=56(页).答:当m=120时,小明两天共读的页数为56 页.24.【解答】解:(1)∵关于x的多项式mx4+(m﹣3)x2﹣(n+2)x2+7x﹣n不含二次项和三次项,∴m﹣3=0,﹣(n+2)=0,∴m=3,n=﹣3,∴这个多项式为:3x4+4x+2;(2)当x=2时,7x4+4x+4=3×28+4×2+4=58.25.【解答】解:(1)由题意得:10月5日小明爸爸的跑步路程是(a﹣1.88)千米,故答案为:(a﹣6.88);(2)根据题意得:(5×7+2.72+3.20﹣1.92﹣6.90﹣1.88+3.30+5.08)×60=2316(千卡),答:小明爸爸这七天跑步一共消耗了2316千卡热量.26.【解答】解:(1)∵|a+5|+|b﹣7|=8,∴a=﹣5,b=7,∴A与点B之间的距离为6﹣(﹣5)=12;(2)∵A与点B之间的距离为12,∴12÷2=7(秒),答:运动6秒后,点P到达B点;(3)P、Q相遇前:(12﹣4)÷(3+3)=2(秒),P、Q相遇后:(12+7)÷(1+3)=6(秒),答:运动2秒或4秒后,P、Q两点间的距离为3个单位长度.。

初中七年级数学上册期中试卷

初中七年级数学上册期中试卷
我们如果学习好了数学我们的学习肯定可以更加的好了下面小编就给大家整理一下七年级数学需要的来阅读哦七年级数学上册期中试卷阅读一单选题共10题每题3分共30分1
初中七年级数学上册期中试卷
我们如果学习好了数学我们的学习肯定可以更加的好了,下面小编就给大家整理一下七年级数学, 需要的来阅读哦
七年级数学上册期中试卷阅读 一、单选题(共 10 题,每题 3 分,共 30 分) 1. 据统计,2018 年某市的初中毕业生人数约有 63 900 人,这个数字用科学记数法可以表示为( ) A. 6.39 105 B. 63.9 104 C. 6.39 104 D. 0.639 105 2. 在 ,3.14,0, 中,属于分数的是( ) 3 A. B.3.14 C.0 D. 3 3. 把数轴上表示 3 的点沿数轴移动 4 个单位后所得的点所表示的数为( ) A.7 B.-1 C.7 或-1 D.-7 或 1 4. 在数-(-3),0,(-3)2, 9 ,-14 中,正数的有( )个. A.2 B.3 C.4 D.5 5. 下列计算正确的是( ) A. 2 B. 6 C. D. 3 6. 下列实数: 2 , 3 9 ,1,-π, 0.31,0.301 001 000 1,0.101 001 000 1…(相邻两个 1 7 之间依次多一个 0),无理数有( ) A.2 个 B.3 个 C.4 个 D.5 个 7. 的平方根是( ) A.4 B.±4 C.2 D.±2 8. 购买 2 个单价为 a 元的面包和 3 瓶单价为 b 元的牛奶,所需的钱数为( ) A.(a+b)元 B.(2a+b)元 C.(a+3b)元 D.(2a+3b)元 9. 若代数式 x2+2x-1=0,则 3x2+6x-2 的值是( ) A.3 B.-3 C.1 D.-1 10.已知[a]表示不超过 a 的最大整数,如[1.7]=1,[-1.5]= -2,若 A 1 k k 1 , k k 3 3 其中 k 是正整数,则 A2018 的值为( ) A. 2 3

人教版初中数学七年级上期中考试--数学(解析版) (5)

人教版初中数学七年级上期中考试--数学(解析版) (5)

七年级上学期期中考试数学试卷一、选择题(共10小题,每小题3分,共30分)1.有理数的相反数是()A.﹣B.﹣3C.D.32.单项式﹣3xy2的系数和次数分别为()A.3,1B.﹣3,1C.3,3D.﹣3,33.下列计算正确的是()A.﹣(+3)=3B.﹣|﹣2|=2C.(﹣3)2=﹣9D.﹣(﹣5)=54.下面计算正确的是()A.6a﹣5a=1B.a+2a2=3a2C.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b5.如图,三角尺(阴影部分)的面积为()A.ab﹣2πr B.C.ab﹣πr2D.6.长方形的一边长等于3a+2b,另一边比它大a﹣b,那么这个长方形的周长是()A.14a+6b B.7a+3b C.10a+10b D.12a+8b7.实数a、b在数轴上的对应点的位置如图所示,下列式子成立的是()A.a>b B.|a|<|b|C.a+b>0D.<08.某商品的原价是每件x元,在销售时每件加价20元,再降价15%,则现在每件的售价是()元.A.15%x+20B.(1﹣15%)x+20C.15%(x+20)D.(1﹣15%)(x+20)9.观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2…已知按一定规律排列的一组数:250、251、252、…、299、2100.若250=a,用含a的式子表示这组数的和是()A.2a2﹣2a B.2a2﹣2a﹣2C.2a2﹣a D.2a2+a10.把几个不同的数用大括号括起来,相邻两个数之间用逗号隔开,如:{1,2};{1,4,7};…我们称之为集合,其中的每一个数称为该集合的元素.规定:当整数x是集合的一个元素时,100﹣x也必是这个集合的元素,这样的集合又称为黄金集合,例如{﹣1,101}就是一个黄金集合.若一个黄金集合所有元素之和为整数m,且1180<m<1260,则该黄金集的元素的个数是()A.23B.24C.24或25D.26二、填空题(本大题共6个小题,每小题3分,共18分)11.用四舍五入法把数2.685精确到0.01约等于.12.中国的陆地面积约为9600000km2,用科学记数法将9600000表示为.13.若单项式﹣5x2y a与﹣2x b y5的和仍为单项式,则这两个单项式的和为.14.下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为.15.若a+b+c=0,abc<0,则的值为16.对于一个大于1的正整数n进行如下操作:①将n拆分为两个正整数a、b的和,并计算乘积a×b②对于正整数a、b分别重复此操作,得到另外两个乘积③重复上述过程,直至不能再拆分为止(即拆分到正整数1)当n=6时,所有的乘积的和为,当n=100时,所有的乘积的和为三、解答题(共8题,共72分)17.(8分)计算:(1)(﹣8)+10+(﹣3)+2(2)(3)(4)18.(8分)先化简下式,再求值:,其中19.(8分)甲、乙两船从同一个港口同时出发反向而行,甲船顺水航行了6小时,乙船逆水行了3小时,两船在静水中的速度都是50km/h,水流速度是akm/h(1)两船一共航行了多少千米;(2)甲船比乙船多航行多少千米?20.(8分)某校七年级1至4班计划每班购买数量相同的图书布置班级读书角,但是由于种种原因,实际购书量与计划有出入,下表是实际购书情况:班级1班2班3班4班实际购买量(本)a33c21实际购买量与计划购数量的差值(本)+12b﹣8﹣9(1)直接写出a=,b=,c=(2)根据记录的数据可知4个班实际购书共本(3)书店给出一种优惠方案:一次购买不少于15本,其中2本书免费.若每本书售价为30元,请计算这4个班整体购书的最低总花费是多少元?21.(8分)某市居民使用自来水按如下标准收费(水费按月缴纳)户月用水量单价不超过12m3的部分2元/m3超过12m3但不超过20m3的部分3元/m3超过20m3的部分4元/m3(1)某用户一个月用了14m3水,求该用户这个月应缴纳的水费(2)某户月用水量为n立方米(12<n≤20),该用户缴纳的水费是39元,列方程求n的值(3)甲、乙两用户一个月共用水40m3,设甲用户用水量为xm3,且12<x≤28①当12<x≤20时,甲、乙两用户一个月共缴纳的水费为元(用含x的整式表示)②当20<x≤28时,甲、乙两用户一个月共缴纳的水费为元(用含x的整式表示)22.(10分)将连续的奇数1、3、5、7、…、,按一定规律排成如表:图中的T字框框住了四个数字,若将T字框上下左右移动,按同样的方式可框住另外的四个数.(1)数表中从小到大排列的第9个数是17,第40个数是,第100个数是,第n个数是.(2)数71排在数表的第行,从左往右的第个数.(3)设T字框内处于中间且靠上方的数是整个数表中从小到大排列的第n个数,请你用含n的代数式表示T 字框中的四个数的和.(4)若将T字框上下左右移动,框住的四个数的和能等于406吗?如能,求出这四个数,如不能,说明理由.23.(10分)已知A、B、C三点在数轴上的位置如图所示,它们表示的数分别是a、b、c (1)填空:abc0,a+b ac,ab﹣ac0;(填“>”,“=”或“<”)(2)若|a|=2,且点B到点A、C的距离相等①当b2=16时,求c的值②求b、c之间的数量关系③P是数轴上B,C两点之间的一个动点设点P表示的数为x.当P点在运动过程中,bx+cx+|x﹣c|﹣10|x+a|的值保持不变,求b的值24.(12分)数轴上点A对应的数为a,点B对应的数为b,且多项式6x3y﹣2xy+5的二次项系数为a,常数项为b(1)直接写出:a=,b=(2)数轴上点P对应的数为x,若P A+PB=20,求x的值(3)若点M从点A出发,以每秒1个单位长度的速度沿数轴向右移动;同时点N从点B出发,以每秒2个单位长度的速度沿数轴向左移动,到达A点后立即返回并向右继续移动,求经过多少秒后,M、N两点相距1个单位长度参考答案与试题解析1.【解答】解:的相反数是﹣,故选:A.2.【解答】解:单项式﹣3xy2的系数和次数分别为:﹣3,3.故选:D.3.【解答】解:(A)原式=﹣3,故选项A错误;(B)原式=﹣2,故选项B错误;(C)原式=9,故选项C错误;故选:D.4.【解答】解:A、6a﹣5a=a,故此选项错误;B、a+2a2无法计算,故此选项错误;C、﹣(a﹣b)=﹣a+b,正确;D、2(a+b)=2a+2b,故此选项错误;故选:C.5.【解答】解:阴影部分的面积为:S△﹣S圆=ab﹣πr2,故选:D.6.【解答】解:由题意知,长方形的另一边长等于(3a+2b)+(a﹣b)=3a+2b+a﹣b=4a+b,所以这个长方形的周长是2(3a+2b+4a+b)=2(7a+3b)=14a+6b.故选:A.7.【解答】解:由图可得:﹣2<a<﹣1,0<b<1,∴a<b,故A错误;|a|>|b|,故B错误;a+b<0,故C错误;<0,故D正确;故选:D.8.【解答】解:根据题意可得:(1﹣15%)(x+20),故选:D.9.【解答】解:∵2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…∴2+22+23+…+2n=2n+1﹣2,∴250+251+252+…+299+2100=(2+22+23+...+2100)﹣(2+22+23+ (249)=(2101﹣2)﹣(250﹣2)=2101﹣250,∵250=a,∴2101=(250)2•2=2a2,∴原式=2a2﹣a.故选:C.10.【解答】解:在黄金集合中一个整数是x,则必有另一个整数是100﹣x,∴两个整数的和为x+100﹣x=100,由题意可知,1180<m<1260时,100×12=1200,100×13=1300,∴这个黄金集合的个数是24或25个;故选:C.二、填空题(本大题共6个小题,每小题3分,共18分)11.【解答】解:用四舍五入法把数2.685精确到0.01约等于2.69,故答案为:2.69.12.【解答】解:将960 0000用科学记数法表示为9.6×106.故答案为:9.6×10613.【解答】解:∵单项式﹣5x2y a与﹣2x b y5的和仍为单项式,∴b=2,a=5,∴﹣5x2y a+(﹣2x b y5)=﹣5x2y5+(﹣2x2y5)=﹣7x2y5.故答案是:﹣7x2y5.14.【解答】解:第①个图形中五角星的个数为2=2×12;第②个图形中五角星的个数为2+4+2=8=2×4=2×22;第③个图形中五角星的个数为2+4+6+4+2=18=2×32;第④个图形中五角星的个数为2×42;所以第⑥个图形中五角星的个数为2×62=2×36=72.故答案为72.15.【解答】解:已知a+b+c=0,abc<0.所以b+c=﹣a,a+c=﹣b,a+b=﹣c,a,b,c两正一负,所以=+﹣,当a<0或者b<0时,原式=1﹣1+1=1;当c<0时,原式=﹣1﹣1﹣1=﹣3;故原式=﹣3或1.故答案为:﹣3或1.16.【解答】解:根据题意,可进行如图操作,得2×4+1×1+2×2+1×1+1×1=15.所以得到当n=6时,所有乘积的和为15=×6×5;当n=100时,所有乘积的和为×100×99=4950.故答案为15、4950.三、解答题(共8题,共72分)17.【解答】解:(1)原式=﹣11+12=1;(2)原式=6﹣20+9=﹣5;(3)原式=﹣8﹣5=﹣13;(4)原式=﹣1+16﹣1=14.18.【解答】原式=﹣x﹣2x+y2+x﹣y2=﹣3x﹣y2,当x=﹣2,y=﹣时,原式=6﹣=5.19.【解答】解:(1)∵甲船顺水航行了6小时,乙船逆水行了3小时,两船在静水中的速度都是50km/h,水流速度是akm/h,∴甲船顺水的速度是:(50+a)akm/h,乙船逆水的速度是:(50﹣a)akm/h,∴两船一共航行了:6(50+a)+3(50﹣a)=300+6a+150﹣3a=(450+3a)km,答:两船一共航行了(450+3a)千米;(2)由两船的速度可得:6(50+a)﹣3(50﹣a)=300+6a﹣150+3a=(150+9a)km,答:甲船比乙船多航行了(150+9a)千米.20.【解答】解:(1)a=21+9+12=42,b=33﹣30=3,c=30﹣8=22,故答案为:42,+3,22;(2)4个班一共购买数量=42+33+22+21=118本;故答案为:118;(3)如果每次购买15本,则可以购买7次,且最后还剩13本书单独购买,即最低总花费=30×(15﹣2)×7+30×13=3120元.21.【解答】解:(1)由题意可得:2×12+3×(14﹣12)=30元,答:该用户这个月应缴纳30元水费.(2)由题意可得,2×12+3(n﹣12)=39,解得n=17;(3)①∵12<x≤20,∴乙用户用水量20≤40﹣x<28,∴12×2+3(x﹣12)+12×2+3×8+4(40﹣x﹣20)=(116﹣x)元;②∵20<x≤28,∴乙用户用水量12≤40﹣x<20,∴12×2+3×8+4(x﹣20)+12×2+3(40﹣x﹣12)=(x+76)元;故答案为(116﹣x)元,(x+76)元.22.【解答】解:(1)∵连续的奇数1、3、5、7、…、,∴第40个数是40×2﹣1=79,第100个数是100×2﹣1=199,第n个数是2n﹣1;故答案为:79,199,2n﹣1;(2)∵2n﹣1=71,∴n=36,∴数71在第36个数,∵每排有5个数,∴数71排在数表的第8行,从左往右的第1个数,故答案为:8,1;(3)由题意,设T字框内处于中间且靠上方的数为2n﹣1,则框内该数左边的数为2n﹣3,右边的为2n+1,下面的数为2n﹣1+10,∴T字框内四个数的和为:2n﹣3+2n﹣1+2n+1+2n﹣1+10=8n+6.故T字框内四个数的和为:8n+6.(4)由题意,令框住的四个数的和为406,则有:8n+6=406,解得n=50.由于数2n﹣1=99,排在数表的第10行的最右边,它不能处于T字框内中间且靠上方的数,所以不符合题意.故框住的四个数的和不能等于406.23.【解答】解:(1)根据数轴上A、B、C三点的位置,可知a<0<b<c,|a|<|b|<|c|所以abc<0,a+b>ac,ab﹣ac>0.故答案为<,>,>.(2)①∵|a|=2且a<0,∴a=﹣2,∵b2=16且b>0,∴b=4.∵点B到点A,C的距离相等,∴c﹣b=b﹣a∴c﹣4=4﹣(﹣2),∴c=10答:c的值为10.②∵c﹣b=b﹣a,a=﹣2,∴c=2b+2,答:b、c之间的数量关系为c=2b+2.③依题意,得x﹣c<0,x+a>0∴|x﹣c|=c﹣x,|x+a|=x+a∴原式=bx+cx+c﹣x﹣10(x+a)=bx+cx+c﹣x﹣10x﹣10a=(b+c﹣11)x+c﹣10a∵c=2b+2∴原式=(b+2b+2﹣11)x+c﹣10×(﹣2)=(3b﹣9)x+c+20∵当P点在运动过程中,原式的值保持不变,即原式的值与x无关∴3b﹣9=0,∴b=3.答:b的值为3.24.【解答】解:(1)∵多项式6x3y﹣2xy+5的二次项系数为a,常数项为b,∴a=﹣2,b=5,故答案为:﹣2,5;(2)①当点P在点A左边,由P A+PB=20得:(﹣2﹣x)+(5﹣x)=20,∴x=﹣8.5②当点P在点A右边,在点B左边,由P A+PB=20得:x﹣(﹣2 )+(5﹣x)=20,∴7=20,不成立;③当点P在点B右边,由P A+PB=20得:x﹣(﹣2 )+(x﹣5),∴x=11.5.∴x=﹣8.5或11.5;(3)设经过t秒后,M、N两点相距1个单位长度,由运动知,AM=t,BN=2t,(法一)①当点N到达点A之前时,Ⅰ、当M,N相遇前,M、N两点相距1个单位长度,t+1+2t=5+2,所以,t=2秒.Ⅱ、当M,N相遇后,M、N两点相距1个单位长度,t+2t﹣1=5+2,所以,t=秒.②当点N到达点A之后时,Ⅰ、当N未追上M时,M、N两点相距1个单位长度,t﹣[2t﹣(5+2)]=1,所以,t=6秒;Ⅱ、当N追上M后时,M、N两点相距1个单位长度,[2t﹣(5+2)]﹣t=1,所以,t=8秒;即:经过2秒或秒或6秒或8秒后,M、N两点相距1个单位长度.(法二)当点N到达点A之前时,|(﹣2+t)﹣(5﹣2t)|=1,所以t1=2,t2=当点N到达点A之后时,|(﹣2+t)﹣(﹣2+2t﹣7)|=1,所以t3=6,t4=8即:经过2秒或秒或6秒或8秒后,M、N两点相距1个单位长度.。

天津市和平区2023-2024学年七年级上学期期中数学试题(含解析)

天津市和平区2023-2024学年七年级上学期期中数学试题(含解析)

15.若,那么2|2|(1)0x y -++=x y +=三、解答题(本大题共7小题,共58分.解答应写出文字说明、演算步骤或推理过程)19.如图是一条不完整的数轴,相邻两点之间相距1个单位长度,点A 表示的数是.(1)补全数轴,并指出点所表示的数是______;(1)用,表示的长;(2)若安装篱笆的造价是每米3-B x y AB∴,,∴,故该选项正确,符合题意.故选D .【点睛】本题考查有理数的乘方,有理数的大小比较.利用特殊值法解题是解题关键.12.C【分析】分三种情况:当x≥1时;当-2<x <1时;当x≤-2时;进行讨论可求代数式|x-1|-|x+2|的值,即可求出a 与b 的值.【详解】解:当x≥1时,|x ﹣1|﹣|x+2|=x ﹣1﹣x ﹣2=﹣3;当﹣2<x <1时,|x ﹣1|﹣|x+2|=﹣(x ﹣1)﹣(x+2)=﹣2x ﹣1;当x≤﹣2时,|x ﹣1|﹣|x+2|=﹣(x ﹣1)+(x+2)=3.∵代数式|x ﹣1|﹣|x+2|的最大值为a ,最小值为b ,∴a =3,b =﹣3.故选:C .【点睛】考查了绝对值,如果用字母a 表示有理数,则数a 绝对值要由字母a 本身的取值来确定:①当a 是正有理数时,a 的绝对值是它本身a ;②当a 是负有理数时,a 的绝对值是它的相反数-a ;③当a 是零时,a 的绝对值是零.注意分类思想的运用.13.【分析】根据相反意义量直接求解即可得到答案;【详解】解:∵水位升高时记作,∴水位下降时记作,故答案为:;【点睛】本题考查相反意义量,解题的关键是规定一方为正方向则相反方向为负.14.【分析】根据刻度尺上“”对应数轴上原点“0”的位置,而“”在数轴上的数“0”的左侧的位置,即可求解.【详解】解:根据题意,可知刻度尺上“”对应数轴上原点“0”的位置,∴“”在数轴上的数“0”的左侧的位置,即刻度尺上“”对应数轴上的数为,故答案为:【点睛】本题主要考查了在数轴上表示有理数,数形结合是解题的关键.15.1【分析】根据非负数的性质求出x 、y 的值,代入所求代数式计算即可.20a >30a a <<32a a a <<5-3m +3m 5m 5m -5-0.6-3cm 3.6cm 0.63cm 3.6cm 0.63.6cm 0.6-0.6-【详解】解:∵,,,∴,∴,∴,故答案为:1.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.2【分析】先将原式去括号,然后合并同类项可得,再把前两项提取,然后把的值代入可得结果.【详解】解:当时,原式,故答案为:.【点睛】此题主要是考查了整式的化简求值,能够熟练运用去括号法则,合并同类项法则化简是解题的关键.17.1【分析】根据解一元一次方程的定义求得的值,根据方程的解满足方程,把解代入方程,可得关于的一元一次方程,解方程可得答案.【详解】解:方程是关于的一元一次方程,,解得,关于的一元一次方程的解为,,解得,,故答案为:1.【点睛】本题考查了一元一次方程的定义,一元一次方程的解,代数式求值,求得,的值是解题的关键.18. 4 3【分析】倒推,将所有可能的路径都找到即可.【详解】解:∵输出结果为1,路径长为7,∴倒推得出:①1248163264128;2|2|(1)0x y -++=|2|0x -≥2(1)0y +≥2010x y -=+=,21x y ==-,211x y +=-=5a b --+1-3a b +=2(2)(35)5a b a b +-++24355a b a b =+--+5a b =--+()5a b =-++3a b +=352=-+=2a m 224a x m ++=x 21a ∴+=1a =- x 24x m +=1x =214m ∴⨯+=2m =2(1)1m a ∴=-=a m124816326421124816510201248165103点所表示的数是4,即.【点睛】本题考查了有理数与数轴,解题的关键是掌握有理数与数轴,绝对值,相反数.B 21(2)|2|1(1) 2.5|5|2----<-<--<-<<22.(1),(2),88【分析】(1)根据整式的加减运算法则计算,再结合其差不含和即可求解;(2)根据整式的加减运算法则计算即可化简,再将(1)所求的值代入化简后的式子计算即可.【详解】(1)解:.∵关于的多项式与的差不含和项,∴,,解得:,;(2)解:.当,时,原式 .【点睛】本题考查整式加减中的无关型问题,整式加减中的化简求值.掌握整式的加减运算法则是解题关键.23.(1)22(2)(3)181【分析】(1)根据表格可知,每一行有4个数,其中奇数行的数字从左往右是由小到大排列;偶数行的数字从左往右是由大到小排列,即可求表示的自然数;(2)用除以4,根据除数与余数确定所在的行数,以及是此行的第几个数,进而求解即可;(3)若正方形框内第一行为奇数行,设四个数分别为,,,,若正方形框内第一行为偶数行,设四个数分别为,,,,根据题意列出方程可求解,并根据数的位置判断是否符合题意.【详解】(1)解:第6行为偶数行,偶数行的数字从左往右是由大到小排列,故第6行四个数为:,,,记为的这个自然数是,1m =-4n =2225m n mn -()()222222(2)2mx y x y x ny x --⎤-⎣⎦-⎡--2x 2y ()()2222432m n mn m n mn --+m n ,()()222222(2)2mx y x y x ny x --⎤-⎣⎦-⎡--22222422mx y x y x ny x =--++-+()()2222422m x n y x y +--+=+x y ,()2222(2)mx y x y ---222x ny x --2x 2y 220m +=40n -=1m =-4n =()()2222432m n mn m n mn --+22224322m n mn m n mn =---2225m n mn =-1m =-4n =()()2282151448=⨯-⨯⨯-=-⨯(506,2)(6,3)20232023x 1x +2x +3x +x 1x -5x +6x +24232221(6,3)22(2)根据月结话费月基本费+主叫超时费+流量超出费,由此列方程即可求解;(3)①根据计费规则直接列出套餐A 的费用,分和两种情况列出套餐B 费用即可;②根据计费规则计算出两种套餐的月结话费,比较大小即可.【详解】解:(1)小张六月份使用流量为:,(2)由题意知,小王使用流量,流量免费,则,解得;(3)①主叫时间不超过,因此使用两种套餐均无主叫超时费;使用A 套餐费用为:(元),使用B 套餐费用为:当且是整数时,(元),当且是整数时,(元),②使用A 套餐费用为:(元),使用B 套餐费用为:99+15+200×0.15+(30+1-23)×3=168元171.56>168因此B 套餐更合算.【点睛】本题考查一元一次方程的实际应用,有理数混合运算的实际应用,解题的关键是看懂两个套餐的计费规则.=2023x <≤23x >()()56GB+200100100100212200MB 30GB 512MB=30.5GB ⨯-+-++=+14.5GB<15GB ()8006000.15109a +-⨯=79a =500min ()79515(45)x x +-=+2023x <≤x ()99520(51)x x +-=-23x >x ()9915323(453)x x ++-=+()791000.153********.005171.56+⨯+-⨯+⨯=。

山东省济南市章丘区2023-2024学年七年级上学期期中考试数学试题(含答案)

山东省济南市章丘区2023-2024学年七年级上学期期中考试数学试题(含答案)

章丘区2023-2024学年第一学期期中质量监测七年级数学试题本试题分选择题和非选择题两部分.选择题部分共2页,满分为40分;非选择题部分共6页,满分为110分.本试题共8页,满分为150分.考试时间120分钟.本考试不允许使用计算器.选择题部分共40分一、选择题(本大题共10小题,每小题4分,共40分.在每个小题给出四个选项中,只有一项符合题目要求)1.若汽车向东行驶2km记作+2km,则向西行驶3km记作()A.+2kmB.-2kmC.+3kmD.-3km2.用一个平面去截下列选项中的几何体,截面不可能是圆的是( )3.随着我国金融科技的不断发展,网络消费、网上购物已成为人们生活不可或缺的一部分,今年“双十一”天猎成交额高达2135亿元.将数据“2135亿”用科学记数法表示为( )A.2.135×1011B.2.135×107C.2.135×1012D.2.135×1034.在数8,- 0.5,-|-2|,0,(- 3)2,-12中,负数的个数是( )A.2B.3C.4D.55.如图是一个正方体的展开图,在原正方体中,与“祝”字所在面相对的面上的汉字是( )A.考B.试C.成D.功6.下列说法正确的有( )① 的系数和次数分别是,4;② -的底数是-2; ③两个数比较大小,绝对值大的反而小; ④最大的负整数是-1.A.1个B.2个C.3个D.4个7.实数a 、b 在数轴上的位置如图所,则下列结论不正确的是( ),A. a<-bB. b>1C. |a|<|b|D. a>-18.下列运算中,正确的是(C”A.3a+b=3abB.-3-2= -5C.D. -2(x-4) =-2x-89.已知|x|=2,y 是3的相反数,则xy 的值为( )A.-1B.-5C.±6D.-5或110小文在做多项式减法运算时,将减去2a 2+3a-5误认为是加上2a 2+3a-5,求得的答案是a 2+a- 4(其他运算无误),那么正确的结果是( )A.B.C.D.章丘区2023-2024学年第一学期期中质量监测七年级数学试题祝你考试成功23x y π-13-202022a 2a 4a 22232ab a b a b-+=-221a a --+234a a -+-24a a +-2356a a --+非选择题部分共110分二、填空题(本大题共6小题,每小题4分,共24分)I1.数插上与原点的距离等于5的点所表示的数是 .12.单项式的系数是 .13.已知x,y 是有理数,若,则的值 .14.将如图所示的平面展开图按虚线折叠成正方体,若其相对面上两个数之和为8,则x-y+2z 的值为 .15,若与-7xm-3y3是同类项,则m+n = .16.如图是一个运算程序的示意图,若开始输入的x 值为81,我们看到第一次输出的结果为27。

七年级上册数学期中考试试题含答案

七年级上册数学期中考试试题含答案

七年级上册数学期中考试试卷一、选择题。

(每小题只有一个答案正确)1.-2019的倒数是()A.-2019 B.-12019C.12019 D.20192.2010 年5 月27 日,上海世博会参观人数达到37.7 万人,37.7 万用科学记数法表示应为A.0.377⨯106B.3.77⨯105C.3.77⨯104D.377 ⨯1033.下列各组算式中,结果为负数的是()A.-(-5) B.- | -5| C.(-3)⨯(-5)D.(-5)24.下面的说法正确的是()A.﹣2 不是单项式C.3πab的系数是35 5B.﹣a 表示负数D.x +a不是多项式x5.已知一个多项式与3x2 + 9x 的和等于5x2 + 4x -1 ,则这个多项式是()A.8x2 + 13x - 16.解方程x -1-4 -x3 2B.-2x2 + 5x +1 C.8x2 - 5x +1 D.2x2 -5x -1= 1,去分母正确的是()A.2(x﹣1)﹣3(4x﹣1)=1 C.2(x﹣1)﹣3(4﹣x)=6B.2x﹣1﹣12+x=1 D.2x﹣2﹣12﹣3x=67.如果a+b>0,且b<0,那么a、b、-a、-b 的大小关系为()A.a<-b<-a<b B.-b<a<-a<b C.a<b<-b<-a D.-a<b<-b<a 8.《九章算术》记载了这样一道题:“以绳测井,若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺,问绳长井深各几何?”题意是:用绳子测量水井深度,如果将绳子折成三等份,那么每等份井外余绳四尺:如果将绳子折成四等份,那么每等份井外余绳一尺.问绳长和井深各多少尺?假设井深为x 尺,则符合题意的方程应为()A.1x - 4 =1x -1 3 4C.1x + 4 =1x +13 4B.3x+4=4x+1D.3(x+4)=4(x+1)9.如果a+b+c=0,且|a|>|b|>|c|,则下列式子可能成立的是()A.c>0,a<0 B.c<0,b>0 C.c>0,b<0 D.b=0⎛ 减去它的 ,再减去余下的 ,再减去余下的 , 以此类推,一直减到余下的10.2019 11 1 (1), 2 3 则最后剩下的数是() 4 2019A .0B .1C . 20192018D .2018 2019二、填空题11.5﹣a 的相反数是.12.若-x 6y 2m 与 x n+1y 6 的和为 0,那么 n +m 的值为 .13.计算:(﹣ 1)÷( 2 - 3 + 7 )= .24 3 4 814.已知 2a-3b=-3,则 4a-6b+5=15.某商品的进价为每件 100 元,按标价打八折售出后每件可获利20 元,则该商品的标价为每件元.16.满足方程|x +2 |+|x ﹣ 4|=2 的整数x 有 个.3 3三、解答题17.计算:(1)(﹣2019)+2018+(﹣2020)2 (2) -12 - 1- 3⎪ ÷ 3⨯ - 4 ⎪ ⎝ ⎭ ⎝ ⎭18. 解方程:(1)2(x +1)﹣7x =﹣8(2) 5x +1 - 2x -1= 1 . 3 619.先化简,再求值:(1)(8x ﹣7y )﹣3(4x ﹣5y )其中:x =﹣2,y =﹣1.(2)3ab 2﹣2(2a 2b ﹣3ab 2)+3(2a 2b ﹣3ab ),其中 a =﹣2,b = 1.2ij 14 20. 如图,数轴上的三点A ,B ,C 分别表示有理数a ,b ,c ,化简|a ﹣b|﹣|a+c|+|b ﹣c|.21. 为庆祝元旦,学校准备举行七年级合唱比赛,现由各班班长统一购买服装,服装每套60 元,服装制造商给出的优惠方案是:30 套以上的团购有两种优惠方案可选择,方案一: 全部服装可打 8 折;方案二:若打 9 折,有 5 套可免费.(1) 七年(1)班有 46 人,该选择哪个方案更划算?(2) 七年(2)班班长思考一会儿,说:“我们班无论选择哪种方案,要付的钱是一样的.”你知道七年(2)班有多少人吗?22.将正整数 1 至 2018 按照一定规律排成下表:134 57 8910121415161718192122232425……26272829303132记 a 表示第 i 行第 j 个数,如 a =4 表示第 1 行第 4 个数是 4. (1)直接写出a 32= ,a 55=;(2)①若a =2018,那么 i = ,j =,②用i ,j 表示 a = ;ijij(3) 将表格中的 5 个阴影格子看成一个整体并平移,所覆盖的 5 个数之和能否等于2027. 若能,求出这 5 个数中的最小数,若不能说明理由.23.已知a >b ,a 与b 两个数在数轴上对应的点分别为点A ,点B ,点O 是坐标原点.(1)若a,b 满足|a﹣40|+(b+8)2=0,则点A、B 表示的数是多少?A、B 之间的距离是多少?(2)在(1)的条件下,若点A 与点C 之间的距离表示为AC,点B 与点C 之间的距离表示为BC,请在数轴上找一点C,使AC=2BC,则点C 在数轴上表示的数为多少?(3)若点D 对应的数d,数轴上点D 到A 的距离是点D 到B 的距离的n(n>0)倍,请写出a、b、d、n 的关系.(4)在(1)的条件下,现有动点P、Q 都从B 点出发,点P 以每秒1 个单位长度的速度向终点A 移动;当点P 移动到O 点时,点Q 才从B 点出发,并以每秒3 个单位长度的速度向右移动,且当点P 到达A 点时,点Q 就停止移动,设点P 移动的时间为t 秒,问:当t 为多少时,P、Q 两点相距4 个单位长度?24.a 与 b 两个数在数轴上对应的点分别为点A、B.(1)线段AB的长为,线段AB的中点C所表示的数是(用a、b表示).(2)若a=5,b=1,数轴上是否存在点M,点M 到点A,点B 的距离之和是8?若存在,请写出点M 所表示的数;若不存在.请说明理由.(3)在(2)的条件下,在数轴上有两个动点P、Q?P 的速度为1 个单位长度/秒,Q 的速度为2 个单位/秒,点P,Q 分别从点A,B 同时出发,在数轴上运动,则经过多少时间后PQ=6 AQ?525.如图,在一条不完整的数轴上从左到右有点A,B,C,其中AB=2BC,设点A,B,C 所对应数的和是m.(1)若点C为原点,BC=1,则点A,B所对应的数分别为,(2)若点B 为原点,AC=6,求m 的值.,m的值为;(3)若原点O 到点C 的距离为8,且OC=AB,求m 的值.参考答案1.B【分析】直接利用倒数的定义进而得出答案.【详解】∵-2019×( -1)=1,2019∴-2019的倒数-故选B.【点睛】1. 2019此题主要考查了倒数,正确把握倒数的定义是解题关键.2.B【分析】先把将37.7 万还原,再用科学记数法表示即可得到答案.【详解】37.7 万=377 000=3.77 ⨯105 .故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|<a|10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.B【分析】先化简各数,再根据负数的概念求解.【详解】解:A、-(-5)=5,故此选项错误;B、-|-5|=-5,故此选项正确;C、(-3)×(-5)=15,故此选项错误;D、(-5)2=25,故此选项错误.故选B.【点睛】本题考查了正数和负数,主要利用了相反数的定义,有理数的乘方,有理数的乘法,绝对值的性质,熟记概念与性质并准确化简是解题的关键.4.D【分析】分别根据负数、单项式和多项式的定义判断各选项即可.【详解】解:A、﹣2 是单项式,故本选项不符合题意;B、﹣a 可以表示任何数,故本选项不符合题意;3πab 3C、5的系数是5π,故本选项不符合题意;D、x + a不是多项式,故本选项符合题意.x故选:D.【点睛】本题主要考查了单项式和多项式的定义,准确分析判断是解题的关键.5.D【分析】由和减去一个加数等于另一个加数,列出关系式,去括号合并即可得到结果.【详解】解:根据题意列得:5x2 +4x -1 -(3x2 +9x )= 2x2 -5x -1 ,故选D.【点睛】此题考查了整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.6.C【详解】根据一元一次方程的解法,同乘以分母的最小公倍数6,可去分母可得2(x-1)-3(4-x)=6. 故选C.点睛:此题主要考查了一元一次方程的解法---去分母,解题关键是确定分母的最小公倍数,然后方程两边同乘以最小公倍数即可,解题时注意符号的变化和不要漏乘.7.D【分析】根据a +b>0,且b<0 得出a >0,然后利用相反数性质进一步判断即可.【详解】∵a +b>0,且b<0,∴a >0,a >b∴-a <0,-b > 0 ,∴-a <b,-b < a ,∵正数大于负数,∴-a <b<-b<a ,故选:D.【点睛】本题主要考查了有理数的大小比较,熟练掌握相关概念是解题关键.8.D【分析】设井深为x 尺,则根据①将绳三折测之,绳多四尺;②绳四折测之,绳多一尺,即可列出方程.【详解】解:设井深为x 尺,⨯(1-1 2019依题意,得:3(x+4)=4(x+1).故选:D.【点睛】本题主要考查了列一元一次方程的应用,解题的关键在弄清题意,找到等量关系并用未知数表示.9.A【分析】根据题意分类讨论,综合情况解出即可.【详解】1.假设a 为负数,那么b+c 为正数;(1)b、c 都为正数;(2)一正一负,因为|b|>|c|,只能b 为正数,c 为负数;2.假设a 为正数,那么b+c 为负数,b、c 都为负数;(1)若b 为正数,因为|b|>|c|,所以b+c 为正数,则a+b+c=0 不成立;(2)若b 为负数,c 为正数,因为|b|>|c|,则|b+c|<|b|<|a|,则a+b+c=0 不成立.故选A.【点睛】本题考查绝对值的性质,关键在于分类讨论正负性.10.B【分析】根据题意列出式子2019⨯(1-1) ⨯(1-1) ⨯(1-1) ⨯2 3 4⨯(1-1),先计算括号内的,再计算乘2019法即可解答.【详解】解:由题意得:2019⨯(1-1) ⨯(1-1) ⨯(1-1) ⨯) 2 3 4= 2019⨯1⨯2⨯3⨯ 2 3 4= 2019⨯=11 2019故选:B.⨯2018 2019⎭ ⎝ 【点睛】本题考查了有理数混合运算的应用,解题的关键是根据题意列出算式,并发现算式的特征.11.a ﹣5 【分析】根据相反数的定义求解即可.【详解】解:5﹣a 的相反数是:-(5-a )=a ﹣5. 故答案为:a ﹣5. 【点睛】本题考查了相反数的定义,熟练掌握定义是解题的关键.12.8; 【分析】根据-x 6y 2m 与 x n+1y 6 的和为 0,可知-x 6y 2m 与 x n+1y 6 是同类项,从而可以确定 m ,n 的值, 即可求出答案. 【详解】∵-x 6y 2m +x n+1y 6=0 ∴n+1=6,2m=6解得 n=5,m=3 ∴m+n=8 故答案为 8. 【点睛】本题考查的是相反数和同类项的意义与性质,根据题干求出m ,n 的具体数值是解题关键.13.﹣ 119 【分析】根据有理数的加减法和除法法则计算即可.【详解】解:原式= ⎛-1 ⎫ ÷ ⎛ 16 - 18 + 21 ⎫24 ⎪ 24 24 24⎪ ⎝ ⎭ ⎝ ⎭= ⎛ - 1 ⎫ ÷ 1924⎪ 24⎭ ⎝ = ⎛ - 1 ⎫⨯ 24 24 ⎪ 19 1 = -191故答案为:﹣ 19 .【点睛】本题主要考查有理数的混合运算,掌握有理数混合运算的顺序和法则是关键.14.-1 【分析】首先根据题目入手,要求解 4a -6b ,所以将等式的两边同时乘以 2 可得 4a -6b ,代入即可. 【详解】根据等式的性质可得 4a -6b =-6 所以 4a -6b +5=-6+5=-1. 【点睛】本题主要考查等式的性质,关键在于构造计算的式子.15.150 【详解】设该商品的标价为每件 x 元,由题意得:80%x ﹣100=20,解得:x =150, 故答案为 150. 16.2【分析】2 2 4 4分类讨论:x <﹣ 3 ,﹣ 3 ≤x < 3 ,x ≥ 3 ,根据绝对值的意义,可化简绝对值,根据解方程,可得答案. 【详解】x 2x 2x + 4 =2.解得 x =﹣ 2(不符合范围,舍去);解:当 <﹣ 3时,原方程等价于﹣﹣ 3 ﹣ 3 3 2 4 2 4 2 4当﹣ 3 ≤x < 3 时,原方程等价于 x + 3 ﹣x + 3 =2.解得 x 为﹣ 3 ≤x < 3范围内的所有整数,即 x =0 或 1;x ≥4 2 4 1当 3 时,原方程等价于 x + 3 +x ﹣ 3 =2.解得 x = 3(不符合题意,舍去),2 4综上所述:满足方程|x + 3 |+|x ﹣ 3|=2 的整数 x 有 2 个,故答案为:2.【点睛】本题主要考查解含绝对值的方程,分情况讨论是关键.17.(1)﹣2021;(2) - 9 8【分析】(1) 原式利用加减法则计算即可求出值;(2) 原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】解:(1)(﹣2019)+2018+(﹣2020)=﹣1+(﹣2020)=﹣2021;⎛ 1 ⎫ ⎛ 3 ⎫2(2) -12 - 1- 3 ⎪ ÷ 3⨯ - 4 ⎪⎝ ⎭ ⎝ ⎭= -1- 2 ⨯ 1 ⨯ 93 = -1- 183 16= - 98【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则准确计算是解题关键.18.(1) x = 2 ;(2) x = 3 8【分析】(1) 方程去括号,移项,合并同类项,系数化1 即可;(2) 方程去分母,去括号,移项,合并同类项,系数化1 即可.【详解】解:(1)2(x +1)﹣7x =﹣8,去括号,得 2x +2﹣7x =﹣8,移项,得 2x ﹣7x =﹣8﹣2,合并同类项,得﹣5x =﹣10,系数化 1,得x =2;(﹣2)× +2×4× ﹣9×(﹣2)× =﹣4.5+4+9=8.5. (2) 5x +1 - 2x -1 = 1 , 3 6分母,得 2(5x +1)﹣(2x ﹣1)=6,去括号,得 10x +2﹣2x +1=6,移项,得 10x ﹣2x =6﹣2﹣1,合并同类项,得 8x =3,系数化 1,得 x = 3 . 8【点睛】本题考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x =a 形式转化.19.(1)0;(2)8.5【分析】(1) 首先去括号,然后再合并同类项,化简后,再代入x 、y 的值可得答案;(2) 首先去括号,然后再合并同类项,化简后,再代入a 、b 的值可得答案.【详解】解:(1)原式=8x ﹣7y ﹣12x +15y =﹣4x +8y ,当 x =﹣2,y =﹣1 时,原式=﹣4×(﹣2)+8×(﹣1)=8﹣8=0;(2)原式=3ab 2﹣4a 2b +6ab 2+6a 2b ﹣9ab=9ab 2+2a 2b ﹣9ab ,当 a =﹣2,b = 1 29× 时,1 1 1 42 2 【点睛】本题考查了整式的化简求值,解题关键是熟练运用整式加减法则进行化简,代入数值后正确计算.20.原式=2c【分析】由数轴上点的位置,得到a ,b 都小于 0,c 大于 0,且b 的绝对值小于c 的绝对值,进而判断出 a-b ,a+c 及 b-c 的正负,利用绝对值的代数意义化简,合并后即可得到结果.原式=由数轴得,c>0,a<b<0,因而a﹣b<0,a+c<0,b﹣c<0.∴原式=b﹣a+a+c+c﹣b=2c.【点睛】本题考查了整式的加减运算,数轴,以及绝对值的代数意义,根据数轴提取有用的信息是解本题的关键.21.(1)七年(1)班有46人,该选择方案一更划算;(2)七年(2)班有45人【分析】(1)根据题意,可以分别计算出方案一和方案二的花费,然后比较大小即可解答本题;(2)根据题意,可以列出方程,然后即可求得七年(2)班的人数.【详解】解:(1)由题意可得,方案一的花费为:60×46×0.8=2208(元),方案二的花费为:60×0.9×(46﹣5)=2214(元),∵2208<2214,∴七年(1)班有46 人,该选择方案一更划算,即七年(1)班有46 人,该选择方案一更划算;(2)设七年(2)班x 人,60×0.8x=60×0.9×(x﹣5),解得x=45,答:七年(2)班有45 人.【点睛】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程,利用方程的知识解答.22.(1)18,37;(2)①253,2,②8(i﹣1)+j;(3)不能,见解析【分析】(1)根据表格直接得出a32=18;根据aij表示第i 行第j 个数,以及每一行从左往右由小到大排列8 个数即可求出a55;(2)①根据每一行由小到大排列8 个数,用2018 除以8,根据除数与余数即可求出i 与jij②根据表格数据排列规律求解即可;(3) 设这 5 个数中的最小数为 x ,用含 x 的代数式分别表示其余 4 个数,根据 5 个数之和等于 2027 列出方程,求出 x ,再根据 5 个阴影格子的排列规律结合表格求解即可.【详解】解:(1)根据表格可以得出a 32=18; ∵前面 4 行一共有 8×4=32 个数,∴第 5 行的第 1 个数为 33,则第 5 行的第 5 个数为 37,即 a 55=37. 故答案为 18;37;(2)①∵2018÷8=252…2, ∴2018 是第 253 行的第 2 个数,∴i =253,j =2. 故答案为 253,2;②根据题意,可得 a =8(i ﹣1)+j . 故答案为 8(i ﹣1)+j ;(3)设这 5 个数中的最小数为 x ,则其余 4 个数可表示为 x +4,x +9,x +11,x +18, 根据题意,得 x +x +4+x +9+x +11+x +18=2027,解得 x =397.∵397÷8=49…5,∴397 是第 50 行的第 5 个数,而此时 x +4=401 是第 51 行的第 1 个数,与 397 不在同一行,∴将表格中的 5 个阴影格子看成一个整体并平移,所覆盖的5 个数之和不能等于 2027.【点睛】本题考查了一元一次方程的应用以及规律型:数字的变化类,解题的关键是:(1)(2)根据数的变化规律,解决问题;(3)找准等量关系,正确列出一元一次方程.23.(1)A 表示的数是 40,B 表示的数是﹣8,A ,B 之间的距离为 48;(2)8 或﹣56;(3) |a ﹣d |=n |b ﹣d |;(4)10 秒或14 秒. 【分析】(1) 由几个非负数的和为零,它们都为零,可以得到关于a ,b 的式子,从而求出 a ,b 的值,进而得出结论;(2)分两种情形:当C 在AB 中间和在点B 的左侧,利用已知条件AC=2BC,求出对应的字母所表示的数;(3)利用数轴上两点之间的距离等于它们坐标之差的绝对值分别表示出线段AD,DB的长,根据已知条件的数量关系可写出四者之间的关系;(4)根据距离=时间×速度公式分别求出线段PB,QB 的长度,分两种情形利用PQ=4 求出对应的t 的值.【详解】解:(1)∵|a﹣40|+(b+8)2=0,|a﹣40|≥0,(b+8)2≥0,∴a﹣40=0,b+8=0,∴a=40,b=﹣8,∴A 表示的数是40,B 表示的数是﹣8,∴AB=40﹣(﹣8)=40+8=48,答:A 表示的数是40,B 表示的数是﹣8,A,B 之间的距离为48;(2)分两种情形:当C 在AB 之间时,∵AC=2BC,AB=48,2AB=32,∴AC=3∵40﹣32=8,∴点C 在数轴上表示的数字为8,当C 点在点B 的左侧时,∵AC=2BC,∴BC=AB,∵AB=48,∴BC=48,∴点 C 在数轴上表示的数字为﹣48﹣8=﹣56,综上,点 C 在数轴上表示的数字为8 或﹣56;(3)∵A 点对应的数为a,B 点对应的数为b,D 点对应的数为d,∴AD=|a﹣d|,BD=|b﹣d|,∵数轴上点 D 到 A 的距离是点 D 到 B 的距离的n(n>0)倍,∴AD =nBD ,∴|a ﹣d |=n |b ﹣d |,答:a 、b 、d 、n 的关系为|a ﹣d |=n |b ﹣d |;(4)由题意可得 PB =1×t =t ,QB =3×(t ﹣8),当 P 在 Q 的右侧时,∵PB ﹣QB =4,∴t ﹣3(t ﹣8)=4,解得 t =10,当 P 在 Q 的左侧时,∵QB ﹣PB =4,∴3(t ﹣8)﹣t =4,解得 t =14,答:当 t 为 10 秒或 14 秒时,P 、Q 两点相距 4 个单位长度.【点睛】本题主要考查一元一次方程的应用及数轴上的动点问题,熟练掌握一元一次方程的应用及数轴上的动点问题是解题的关键. 24.(1)|a ﹣b |, a + b ;(2)存在,M1 7 3 5 5 55 秒2所表示的数为﹣ 或 ;( ) 3 秒或 7 秒或16 【分析】(1) 线段AB 的长度等于代表 A 、B 两点的数字之差的绝对值;而要求AB 中点 C 对应的数字,由于 AC =BC ,所以点 C 对应的数字为a , b 两数的平均数;(2) 由于数轴上线段的长度等于线段端点代表数字之差的绝对值,本题A 、B 代表的数字确定,只要设出点 M 代表的数字为x ,然后表示出线段 MA ,MB 的值,依据已知 MA +MB =8,列出式子即可求出 M 代表的数字,注意此题要分两种情形讨论;(3) 本小题属于动点问题,依据公式路程=速度×时间,设运动时间为t 秒,分别表示线段6 PQ 和 AQ 的值,将它们代入已知关系式 PQ = 5AQ 中,就可以求出对应的时间.只是本题 要从运动方向上进行讨论,一是 P 、Q 背向同时出发,二是 P 、Q 同时向右出发两种情况.【详解】(1) ∵a 与b 两个数在数轴上对应的点分别为点A 、B ,∴AB ═a - b ;∵C 是线段 AB 的中点,∴AC =BC ;∴C 点代表的数字为a ,b 两数的平均数;即 C 点代表的数字为a +b;2故答案为:a -b |和a +b;2(2)存在;设M 点代表的数字为x ;当点M 在点B 的左侧时,MB=1﹣x ,MA=5﹣x ,∵MA+MB=8,∴I﹣x +5﹣x =8;解得:x =﹣1;当点M 在A 点的右侧时,MA=x ﹣5.NB=x ﹣1;∴x ﹣5+ x ﹣1=8,解得:x =7;综上,存在这样的点M,使点M 到点A, B 的距离之和是8,M 所表示的数为﹣1 或7;(3)设点P,Q 分别从点A,B 同时出发的运动时间为t 秒,当点P,Q 分别从点A,B 同时出发,背向而行时,AQ=5+2t,PQ=t+5+2t.6 6∵PQ=5AQ,∴3t+5=5(5+2t);t 5解得:=3;当点P,Q 分别从点A,B 同时出发,沿BA 方向向右运动时,① 点Q 在 A 的左侧时,AQ=5﹣2t,PQ=t+(5﹣2t)=5﹣t;6 6∵PQ=5AQ,∴5﹣t=5(5﹣2t);t 5解得:=7;② 点Q 在 A 的右侧时,AQ=2t ﹣5,PQ=t﹣(2t﹣5)=5﹣t.6 6∵PQ=5 AQ,∴2t﹣5=5(5﹣t)55解得:t=16;5 5 55 6综上,经过3 秒或7秒或16秒后PQ=5AQ;【点睛】本题主要考查线段、距离、动点的计算问题,关键理解点对应的数值差的绝对值表示距离;25.(1)﹣3,﹣1,﹣4;(2)﹣2;(3)8或-40.【分析】(1)根据数轴上的点对应的数即可求解;(2)根据数轴上原点的位置确定其它点对应的数即可求解;(3)根据原点在点C 的右边先确定点C 对应的数,进而确定点B、点A 所表示的数即可求解.【详解】解:(1)∵点C为原点,BC=1,∴B 所对应的数为﹣1,∵AB=2BC,∴AB=2,∴点 A 所对应的数为﹣3,∴m=﹣3﹣1+0=﹣4;故答案为:﹣3,﹣1,﹣4;(2)∵点B 为原点,AC=6,AB=2BC,AB+BC=AC,∴AB=4,BC=2,∴点 A 所对应的数为﹣4,点 C 所对应的数为2,∴m=﹣4+2+0=﹣2;(3)∵原点O 到点C 的距离为8,∴点 C 所对应的数为±8,∵OC=AB,∴AB=8,当点 C 对应的数为8,∵AB=8,AB=2BC,∴BC=4,∴点 B 所对应的数为4,点 A 所对应的数为﹣4,∴m=4﹣4+8=8;当点 C 所对应的数为﹣8,∵AB=8,AB=2BC,∴BC=4,∴点 B 所对应的数为﹣12,点 A 所对应的数为﹣20,∴m=﹣20﹣12﹣8=﹣40.【点睛】本题考查了数轴,解决本题的关键是数形结合思想的灵活运用.。

人教版数学七年级下册《期中考试试题》及答案

人教版数学七年级下册《期中考试试题》及答案

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:(每小题3分,共30分)1.有理数223-的倒数是( ). A. 43 B. 94- C. 34- D. 942.在有理数:23,0.25,27--,12⎛⎫-- ⎪⎝⎭中,是正分数的有( )个. A. 1 B. 2 C. 3 D. 43.从金花中学驾车到天府广场大约有13千米的路程,如果用科学记数法来表示13千米则可以表示成( )米.A. 31310⨯B. 41.310⨯C. 21310⨯D. 31.310⨯ 4.下列说法中,正确的是( ).A. 有理数可分为:正整数、负整数、正分数以及负分数.B. 绝对值最小的数与任何有理数相加答案都不变.C. 两个有理数相加,和一定大于或等于这两个加数.D. 两个有理数相乘的积为正数,说明这两个数同号.5.下列计算正确是( ). A. 12()33m n m n m n ⎛⎫---=+ ⎪⎝⎭ B. 32a a -= C. 235x y xy += D.()a b c a b c --=--6.有一款服装原价元,悦悦百货商店先按原价上涨20%后标价,再按标价降价20%售出,那么最终商店卖出一件这样的服装( ).A. 赚了125a 元B. 亏了125a 元 C. 既不赚也不亏D. 无法判断是赚钱还是亏损,这和值有关 7.下列式子中,和3232x yz -次数相同的是( ).A. 64abB. 328a b π-C. 25367a b ab -+-D.8.如图是一个正方体的表面展开图,如果原正方体的相对两个面上的数和相等,那么m n +=( ).A. 4B. 3C. 2D. 19.在一次考试中,某班17名男生的平均分为分,19名女生的平均分为分,那么这个班的全体同学的平均分为( ). A. 2a b + B. 36a b + C. 17192a b + D. 171936a b + 10.根据如图所示的流程图中的程序,当输入数据为3-时,输出数值为( ).A. 0B. 2C. 4D. 6二、填空题:(每小题4分,共20分)11.若22a a -=-,且29a =,则a =__________.12.一个棱柱有12个面,它有__________个顶点,___________条棱.13.若在数轴上对应点到表示的点的距离为3,则x =__________.14.如果关于,的单项式23m n x y -与2axy -可合并为单项式0,则a m n -+的值为 _________.15.如图,正方形ABCD 的边长为2,以B 为圆心,AB 为半径在正方形内作14圆,再以CD 为直径在正方形内作半圆,得图中阴影部分,面积分别表示为1S 、2S ,则12S S -=__________.三、解答题:(共50分)16.计算(1)24111341323⎡⎤⎛⎫-+-+⨯-÷⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ (2)225(2)3(0.2)013317---⨯-+÷⨯ 17.化简(1)()()332332223234x y x y x y x y -----(2)22()()3()()a b a b b a b a ---+-+-18.已知:有理数,,在数轴上的位置如图,化简:|||||||3|a c b a b c a a +---+-+.19.下图是一个由若干棱长都为2cm 的小立方块搭成的几何体,求这个几何体的表面积.20.已知2333A x xy y =--+,2343B x xy y =+-,且112x =-,537y =,求:4(2)(23)A A B A B -+--的值.21.用简便方法计算下列各式的值:(1)()151 2.7 1.5 4.8 1.522⎛⎫-⨯+-⨯+⨯- ⎪⎝⎭(2)12345678979899100--++--+++--+…22.在数轴上有点,,,它们表示的数分别为,,,且满足:()24980a b c -+-++=;,,三点同时出发沿数轴向右运动,它们的速度分别为:1A V =(单位/秒),2B V =(单位/秒),3C V =(单位/秒).(1)求,,的值;(2)运动时间等于多少时,点与点、点距离相等?23.成都市的水费实行下表的收费方式:每月用水量单价 不超出310m (包括310m )2元/3m 超出310m 但不超出320m (包括320m )的部分 3元/3m(1)周老师家九月份用了316m 的水,应付多少水费? (2)如果李老师家九月份的用水量为3xm ,那么应付的水费为多少元?(3)如果曹老师家九月和十月一共用了328m 的水,且已知九月比十月少,设九月用水量为3xm ,那么曹老师这两个月一共要交多少钱的水费?(可用含的代数式表示)答案与解析一、选择题:(每小题3分,共30分)1.有理数223-的倒数是().A. 43B.94- C.34- D.94[答案]C[解析][分析]先计算原式的值,再根据倒数的定义解答即可.[详解]解:22433-=-,43-的倒数是34-.故选:C.[点睛]本题考查了有理数的乘方运算和倒数的定义,属于基础题型,熟练掌握基本知识是关键.2.在有理数:23,0.25,27--,12⎛⎫-- ⎪⎝⎭中,是正分数的有()个.A. 1B. 2C. 3D. 4 [答案]B[解析][分析]先化简27--与12⎛⎫-- ⎪⎝⎭,再找出其中的正分数即可.[详解]解:2277=---,11=22,所以在有理数:23,0.25,27--,12⎛⎫-- ⎪⎝⎭中,是正分数的有:0.25,12⎛⎫-- ⎪⎝⎭共2个.故选:B.[点睛]本题考查了有理数的分类以及有理数的绝对值等知识,属于应知应会题型,熟练掌握有理数的概念是关键.3.从金花中学驾车到天府广场大约有13千米的路程,如果用科学记数法来表示13千米则可以表示成()米.A. 31310⨯B. 41.310⨯C. 21310⨯D. 31.310⨯[答案]B[解析][分析] 先换算单位,再根据科学记数法的表示方法解答即可.[详解]解:13千米=13000米=41.310⨯米.故选:B .[点睛]此题考查了科学记数法的表示方法,科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.下列说法中,正确的是( ).A. 有理数可分为:正整数、负整数、正分数以及负分数.B. 绝对值最小的数与任何有理数相加答案都不变.C. 两个有理数相加,和一定大于或等于这两个加数.D. 两个有理数相乘的积为正数,说明这两个数同号.[答案]D[解析][分析]分别根据有理数的定义、绝对值的意义、有理数的加法法则和有理数的乘法法则逐项判断即可.[详解]解:A 、有理数可分为:正整数、负整数、0、正分数以及负分数,所以本选项说法错误,不符合题意; B 、绝对值最小的数是0,0与任何有理数相加都得这个数,所以本选项说法错误,不符合题意;C 、两个有理数相加,和不一定大于或等于这两个加数,所以本选项说法错误,不符合题意;D 、两个有理数相乘的积为正数,说明这两个数同号,所以本选项说法正确,符合题意.故选:D .[点睛]本题考查了有理数的定义、有理数绝对值的意义、有理数的加法法则和有理数的乘法法则等知识,属于基础题目,熟练掌握基本知识是解题关键.5.下列计算正确的是( ). A. 12()33m n m n m n ⎛⎫---=+ ⎪⎝⎭ B. 32a a -= C. 235x y xy += D.()a b c a b c --=--[答案]A根据整式的加减运算法则计算可判断A ,根据合并同类项的法则可判断B ,根据同类项的定义可判断C ,根据去括号法则可判断D ,进而可得答案.[详解]解:A 、12()32233m n m n m n m n m n ⎛⎫---=--+=+ ⎪⎝⎭,所以本选项计算正确;B 、32a a a -=,所以本选项计算错误;C 、2x 与3y 不是同类项,不能合并,所以本选项计算错误;D 、()a b c a b c --=-+,所以本选项计算错误.故选:A .[点睛]本题考查了整式的加减运算,属于基础题型,熟练掌握去括号的法则和合并同类项的法则是解题关键. 6.有一款服装原价元,悦悦百货商店先按原价上涨20%后标价,再按标价降价20%售出,那么最终商店卖出一件这样的服装( ).A. 赚了125a 元B. 亏了125a 元 C. 既不赚也不亏D. 无法判断是赚钱还是亏损,这和的值有关[答案]B[解析][分析] 先用含a 的代数式表示出最终该服装的售价,再减去原价a 即可进行判断.[详解]解:根据题意可得:该服装的标价为()120%a +元,降价20%后售价为()()120%120%a +-元, 所以该商店卖出一件这样的服装盈利为()()1120%120%0.960.0425a a a a a a +--=-=-=-元. 即最终该商店卖出一件这样的服装亏了125a 元. 故选:B .[点睛]本题考查了列代数式的知识和整式的加减运算,解题的关键是明确题意、正确表示出该服装的最终售价.7.下列式子中,和3232x yz -次数相同的是( ).A. 64abB. 328a b π-C. 25367a b ab -+-D. [答案]C先根据单项式次数的定义判断已知单项式的次数,再逐项判断即可.[详解]解:单项式3232x yz -的次数是6次.A 、64ab 的次数是7次,与已知式子的次数不相同,所以本选项不符合题意;B 、328a b π-的次数是5次,与已知式子的次数不相同,所以本选项不符合题意;C 、多项式25367a b ab -+-的次数是6次,与已知式子的次数相同,所以本选项符合题意;D 、的次数是0次,与已知式子的次数不相同,所以本选项不符合题意.故选:C .[点睛]本题考查了单项式和多项式的次数,属于基础概念题型,熟练掌握二者的概念是关键.8.如图是一个正方体的表面展开图,如果原正方体的相对两个面上的数和相等,那么m n +=( ).A. 4B. 3C. 2D. 1[答案]A[解析][分析] 先根据原正方体的相对两个面上的数之和相等求出m 、n 的值,再代入所求式子计算即可.[详解]解:由题意,得:()()13743m n +-=+=+-=,所以m =4,n =0,所以404m n +=+=.故选:A .[点睛]本题考查了正方体的表面展开图和有理数的加减运算,属于基本题型,解题的关键是根据题意正确确定m 、n 的值.9.在一次考试中,某班的17名男生的平均分为分,19名女生的平均分为分,那么这个班的全体同学的平均分为( ). A. 2a b + B. 36a b + C. 17192a b + D. 171936a b + [答案]D根据平均数的定义解答即可.[详解]解:由题意得:这个班的全体同学的平均分=17191719171936a b a b +++=. 故选:D .[点睛]本题考查了平均数的定义,属于基础题型,熟练掌握平均数的计算方法是解题关键.10.根据如图所示的流程图中的程序,当输入数据为3-时,输出数值为( ).A. 0B. 2C. 4D. 6[答案]A[解析][分析] 把x =﹣3代入所给出的流程图,按照程序计算即可.[详解]解:当x =﹣3时,﹣3+2=﹣1,﹣1×2=﹣2,﹣2<0; 当x =﹣2时,﹣2+2=0,0×2=0,0=0;所以输出的数值y =0.故选:A .[点睛]本题主要考查了代数式求值,属于常见题型,弄懂所给出的流程图、按照程序准确计算是解题关键.二、填空题:(每小题4分,共20分)11.若22a a -=-,且29a =,则a =__________.[答案]﹣3[解析][分析]由29a =可确定a 的值,再根据绝对值的意义确定a -2的取值范围,进而可得答案.[详解]解:因为29a =,所以3a =±, 因为22a a -=-,所以20a -≤,所以3a =-.故答案为:﹣3.[点睛]本题考查了有理数的乘方和有理数的绝对值,属于常考题型,熟练掌握基本知识是关键.12.一个棱柱有12个面,它有__________个顶点,___________条棱.[答案] (1). 20 (2). 30[解析][详解]解:一个棱柱有12个面,除上下两个底面后还有10个侧面,所以这个棱柱为10棱柱,它有20个顶点,30条棱故答案:20;30.[点睛]本题考查立体图形的认识..13.若在数轴上对应的点到表示的点的距离为3,则x =__________.[答案]﹣5或1[解析][分析]分表示数x 点在表示的点的左边和右边两种情况解答即可.[详解]解:当表示数x 的点在的点的左边时,x =﹣2-3=﹣5,当表示数x 的点在的点的右边时,x =﹣2+3=1,所以x =﹣5或1.故答案为:﹣5或1.[点睛]本题考查了数轴的有关知识,属于基本题型,正确理解数轴上两点间的距离是解题关键.14.如果关于,的单项式23m n x y -与2axy -可合并为单项式0,则a m n -+的值为 _________.[答案]2[解析][分析]由题意可得题目所给出的两项是同类项,再根据同类项的定义可得关于a 和m -n 的等式,然后把求得的a 的值和m -n 的值整体代入所求式子计算即可.[详解]解:根据题意,得:30a -=,1m n -=,所以a =3,所以()312a m n a m n -+=--=-=.故答案为:2.[点睛]本题考查了同类项的定义和合并同类项的法则,属于基础题目,熟练掌握基本知识是解题关键. 15.如图,正方形ABCD 的边长为2,以B 为圆心,AB 为半径在正方形内作14圆,再以CD 为直径在正方形内作半圆,得图中阴影部分,面积分别表示为1S 、2S ,则12S S -=__________.[答案]342π-[解析][分析]如图,可先计算13S S +,即为半圆CD 的面积,再计算23S S +,即为正方形的面积减去以AB 为半径的14圆的面积,然后再计算()13S S +与()23S S +的差即可.[详解]解:如图,记右边的空白部分的面积为S 3,则由题意得:21311112222CD S S πππ⎛⎫+=⋅=⨯= ⎪⎝⎭,2222311242444S S AB πππ+=-⋅=-⨯=-; 所以()()()121323134422S S S S S S πππ-=+-+=--=-. 故答案为:342π-.[点睛]本题考查了列代数式和阴影面积的计算等知识,弄清题意、明确()()121323S S S S S S -=+-+是解题关键.三、解答题:(共50分)16.计算(1)24111341323⎡⎤⎛⎫-+-+⨯-÷⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ (2)225(2)3(0.2)013317---⨯-+÷⨯[答案](1)13-;(2)1.[解析][分析](1)先计算乘方,同时把除法转化为乘法,再计算乘法,最后计算加减;(2)前一项绝对值内先计算乘方,同时后一项计算乘除,再计算乘法即可.[详解]解:(1)24111341323⎡⎤⎛⎫-+-+⨯-÷⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ =911134433⎛⎫-+-+⨯⨯⨯ ⎪⎝⎭ =()11399-+-+⨯=1169-+⨯=213-+ =13-;(2)原式=49(0.2)0--⨯-+=5(0.2)-⨯-=1.[点睛]本题考查了有理数的混合运算,属于基本题型,熟练掌握有理数的混合运算法则是解题关键. 17.化简(1)()()332332223234x y x y x y x y -----(2)22()()3()()a b a b b a b a ---+-+-[答案](1)322y x y --;(2)()()242a b a b ---.[解析][分析](1)先去括号,再合并同类项即可;(2)把a -b 看作一个整体,然后根据合并同类项的法则化简即可.[详解]解:(1)原式=332332246234x y x y x y x y ---++=322y x y --;(2)原式=()()()()223a b a b a b a b -+-----=()()242a b a b ---.[点睛]本题考查了整式的加减运算,属于基本题型,熟练掌握整式的加减运算法则是解题关键.18.已知:有理数,,在数轴上的位置如图,化简:|||||||3|a c b a b c a a +---+-+.[答案]2b .[解析][分析]先由a 、b 、c 在数轴上的位置可确定a >0,c <b <0,b a c <<,进而可确定,,,3a c b a b c a a +-+-的符号,再根据绝对值的性质去掉绝对值符号,然后根据整式的加减运算法则计算即可.[详解]解:由题意得:a >0,c <b <0,b a c <<,所以0,0,0,30a c b a b c a a +<-<+-<>,所以原式=()()()3a c b a b c a a -+-----+-+⎡⎤⎡⎤⎣⎦⎣⎦=3a c b a b c a a --+-++-+=2b .[点睛]本题主要考查了数轴、有理数的绝对值和整式的加减运算等知识,属于常考题型,根据点在数轴上的位置确定相关式子的符号、熟练进行绝对值的化简和整式的加减运算是解题的关键.19.下图是一个由若干棱长都为2cm 的小立方块搭成的几何体,求这个几何体的表面积.[答案]120cm 2.[解析][分析]先计算需要求的正方形的个数:可看作三个方向(正面、左面、上面)上的正方形的个数之和乘以2再加上挡住的2个正方形,所求得的结果再乘以一个正方形的面积即可.[详解]解:几何体的表面积=()425632=120⨯⨯+++⎡⎤⎣⎦cm 2.答:这个几何体的表面积是120cm 2.[点睛]本题考查了几何体的视图和表面积的计算,属于常见题型,掌握求解的方法是关键.20.已知2333A x xy y =--+,2343B x xy y =+-,且112x =-,537y =,求:4(2)(23)A A B A B -+--的值.[答案]94. [解析][分析] 先根据整式的加减运算法则化简原式,再把x 、y 的值代入化简后的式子计算即可.[详解]解:原式=4223A A B A B ---+=A B +()()23233343x xy y x xy y +=--++-23233343x xy y x xy y +=--++-2x =; 当112x =-,537y =,原式=219124⎛⎫-= ⎪⎝⎭. [点睛]本题考查了整式的加减运算与代数式求值,属于常考题型,熟练掌握整式的加减运算法则是解题的关键.21.用简便方法计算下列各式值:(1)()151 2.7 1.5 4.8 1.522⎛⎫-⨯+-⨯+⨯- ⎪⎝⎭(2)12345678979899100--++--+++--+…[答案](1)-15;(2)0.[解析][分析](1)可把原式变形为()()1.5 2.7 1.5 4.8 1.5 2.5-⨯+-⨯+-⨯,再逆用乘法分配律计算;(2)可将原式变形为()()()12345678979899100--++--+++--+…,进一步即可求出结果.[详解]解:()151 2.7 1.5 4.8 1.522⎛⎫-⨯+-⨯+⨯-⎪⎝⎭=()()1.5 2.7 1.5 4.8 1.5 2.5-⨯+-⨯+-⨯=()1.5 2.7 4.8 2.5-⨯++= 1.510-⨯=-15;(2)12345678979899100--++--+++--+…=()()()12345678979899100--++--+++--+…=000+++=0.[点睛]本题考查了有理数的加法和乘法运算律,属于常见题型,熟练掌握有理数的运算律和混合运算法则是解题关键.22.在数轴上有点,,,它们表示的数分别为,,,且满足:()24980a b c -+-++=;,,三点同时出发沿数轴向右运动,它们的速度分别为:1A V =(单位/秒),2B V =(单位/秒),3C V =(单位/秒).(1)求,,的值;(2)运动时间等于多少时,点与点、点的距离相等?[答案](1)a =4,b =9,c =﹣8;(2)6t =.[解析][分析](1)根据非负数的性质可得关于a 、b 、c 的方程,解方程即得答案;(2)先根据数轴上两点间的距离的表示方法得出点与点、点的距离,进而可得关于t 的方程,解方程即可求出结果.[详解]解:(1)根据题意,得:a -4=0,b -9=0,c +8=0,解得a =4,b =9,c =﹣8;(2)运动t 秒时,A 、B 、C 三点运动的路程分别为:t 、2t 、3t ,此时,点与点距离为:2945t t t -+-=+,点与C 点的距离为:()239817t t t -+--=-,由题意,得:517t t +=-,所以517t t +=-,解得:6t =;或()517t t +=--,此时t 的值不存在.所以当6t =时,点与点、点的距离相等.[点睛]本题主要考查了数轴上两点间的距离和一元一次方程的知识,属于常考题型,正确理解题意、准确用含t 的关系式表示点与点、点的距离是解题的关键.23.成都市的水费实行下表的收费方式:(1)周老师家九月份用了316m 的水,应付多少水费?(2)如果李老师家九月份的用水量为3xm ,那么应付的水费为多少元?(3)如果曹老师家九月和十月一共用了328m 的水,且已知九月比十月少,设九月用水量为3xm ,那么曹老师这两个月一共要交多少钱的水费?(可用含的代数式表示)[答案](1)38元;(2)当010x <≤时,应付水费10x 元;当1020x <≤时,应付水费310x -(元);当20x >时,应付水费为430x -(元);(3)若08x <<,要交水费822x -(元);若810x ≤≤,要交水费为74x -(元);若1014x <<,要交水费为64元.[解析][分析](1)根据不超310m 的按照2元/3m 计算,超出310m 的63m 按照3元/3m 计算,据此解答即可;(2)分用水量不超出310m (包括310m )、超出310m 但不超出320m (包括320m )、超出320m 三种情况,按照应付水费的计算方法解答即可;(3)先根据九月比十月用水量少确定x 的范围是014x <<,然后分08x <<、810x ≤≤、1014x <<三种情况,再根据(2)题中的结论和计费方法解答即可.[详解]解:(1)10263=38⨯+⨯元,答:周老师家九月份应付水费38元;(2)当用水量不超出310m (包括310m )即010x <≤时,应付水费为10x 元;当用水量超出310m 但不超出320m (包括320m )即1020x <≤时,应付水费为()102310310x x ⨯+⨯-=-(元);当用水量超出320m 即20x >时,应付水费为()102103420430x x ⨯+⨯+⨯-=-(元);答:当010x <≤时,应付水费10x 元;当1020x <≤时,应付水费310x -(元);当20x >时,应付水费430x -(元);(3)因为九月比十月用水量少,所以014x <<,若08x <<,则202828x <-<,所以曹老师这两个月一共要交水费为()242830822x x x +--=-(元);若810x ≤≤,则182820x ≤-≤,所以曹老师这两个月一共要交水费为()23281074x x x +--=-(元); 若1014x <<,则142818x <-<,所以曹老师这两个月一共要交水费为()3103281064x x -+--=元. 答:若08x <<,要交水费822x -(元);若810x ≤≤,要交水费为74x -(元);若1014x <<,要交水费为64元.[点睛]本题考查的是列出实际问题中的代数式,属于常考题型,正确理解题意、灵活应用分类思想是解题的关键.。

2023-2024学年甘肃省兰州七年级(上)期中数学试卷(含解析)

2023-2024学年甘肃省兰州七年级(上)期中数学试卷(含解析)

2023-2024学年甘肃省兰州七年级(上)期中数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,若气温为零上10℃记作+10℃,则﹣3℃表示气温为( )A.零上3℃B.零下3℃C.零上7℃D.零下7℃2.(3分)用一个平面去截一个几何体,不能截得三角形截面的几何体是( )A.圆柱B.圆锥C.三棱柱D.正方体3.(3分)如图是正方体的表面展开图,则与“前”字相对的字是( )A.认B.真C.复D.习4.(3分)在国家“一带一路”战略下,我国与欧洲开通了互利互惠的中欧班列.行程最长,途经城市和国家最多的一趟专列全程长13000km( )A.0.13×105B.1.3×104C.1.3×105D.13×1035.(3分)如图经过折叠能围成棱柱的是( )A.①②④B.②③④C.①②③D.①③④6.(3分)下列各组数中,互为相反数的是( )A.2与B.﹣1与(﹣1)2C.(﹣1)2与1D.2与|﹣2|7.(3分)下列说法正确的是( )A.最小的整数是0B.互为相反数的两个数的绝对值相等C.如果两个数的绝对值相等,那么这两个数相等D.有理数分为正数和负数8.(3分)若3x2n﹣1y m与﹣5x m y3是同类项,则m,n的值分别是( )A.3,2B.﹣3,2C.3,﹣2D.﹣3,﹣2 9.(3分)已知有理数a、b在数轴上的位置如图所示,则下列结论中正确的是( )A.a+b<0B.a﹣b<0C.ab>0D.>010.(3分)如图,一个窗户的上部是由4个扇形组成的半圆,下部是由4个边长相同的小正方形组成的长方形( )A.6a+πa B.12a C.15a+πa D.6a11.(3分)有理数a,b在数轴上的位置如图所示:化简|b﹣a|﹣|a+b|的结果是( )A.﹣2a B.0C.2b D.﹣2b12.(3分)如图,是用火柴棒拼成的图形,则第n个图形需要( )A.2n B.2n+1C.2(n+1)D.2n+3二、填空题(本大题4小题,每小题3分,共12分)13.(3分)单项式﹣3ab次数是 .14.(3分)下列各数中:1.2,,0,,1.010010001,5,0. 个.15.(3分)已知(x+3)2与|y﹣2|互为相反数,求(x+y)y= .16.(3分)由若干个相同的小正方体搭成一个几何体,分别从正面、左面看,所得的形状如图所示 个.三、解答题17.(12分)计算:(1)26﹣7+(﹣6)+17;(2)﹣81×(﹣)÷(﹣16);(3)()×(﹣36);(4)﹣14+12÷(﹣2)2×(﹣8).18.(6分)化简:(1)3x2﹣1﹣2x﹣5+3x﹣x;(2)(2a2﹣1+2a)﹣3(a﹣1+a2).19.(5分)先化简,再求值:a﹣2(a﹣b2)﹣(a﹣b2),其中a=﹣2,b=.20.(5分)分析图中几何体,请分别利用下面的网格图画出从正面、左面及上面所看到的几何体的形状图.21.(4分)若a,b互为相反数,c、d互为倒数,求(a+b+cd)22.(6分)中考当天,出租车司机小王在东西方向的街道上免费接送学生,规定向东为正,当天出租车的行程如下(单位:km):+5,﹣8,+10,﹣6.(1)将最后一名学生送到目的地时,小王距出发地多少千米?方向如何?(2)若汽车耗油量为0.2L/km,则当天耗油多少升?(3)若汽油价格为6.2元/L,则小王共花费了多少元钱?23.(6分)已知A=2a2+3ab+2a﹣1,B=﹣a2+ab+2.(1)化简:4A﹣(3A﹣2B);(2)若(1)中式子的值与a的取值无关,求b的值.24.(4分)如图所示,将面积为a2的小正方形和面积为b2的大正方形放在同一水平面上(b>a>0).(1)用a、b表示阴影部分的面积;(2)计算当a=3,b=5时,阴影部分的面积.25.(4分)将一个长为6厘米,宽为4厘米的长方形绕它的一边所在的直线旋转一周,求得到的几何体的体积(结果保留π).26.(4分)若“三角表示运算a﹣b+c,“方框”表示运算x﹣y+z+w.求:×表示的运算,并计算结果.27.(8分)为丰富校园体育生活,学校增设网球兴趣小组,需要采购某品牌网球训练拍30支(x>30).经市场调查了解到该品牌网球拍定价100元/支,网球20元/筒.现有甲、乙两家体育用品商店有如下优惠方案:甲商店:买一支网球拍送一筒网球;乙商店:网球拍与网球均按则90%付款,(1)方案一:到甲商店购买,需要支付 元(用含x的代数式表示);方案二:到乙商店购买,需要支付 元(用含x的代数式表示).(2)若x=100,请通过计算说明学校采用以上哪个方案较为优惠.(3)若x=100,你能给出一种更为省钱的购买方案吗?试写出你的购买方法并算出省多少钱?28.(8分)阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,我们把(a+b)看成一个整体(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b),它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2= ;(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;拓广探索:(3)已知a﹣5b=3,5b﹣3c=﹣5,3c﹣d=10,求(a﹣3c)+(5b﹣d)﹣(5b﹣3c)2023-2024学年甘肃省兰州五十六中七年级(上)期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,若气温为零上10℃记作+10℃,则﹣3℃表示气温为( )A.零上3℃B.零下3℃C.零上7℃D.零下7℃【答案】B【分析】此题主要用正负数来表示具有意义相反的两种量:若零上记为正,则零下就记为负,直接得出结论即可.【解答】解:若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.故选:B.2.(3分)用一个平面去截一个几何体,不能截得三角形截面的几何体是( )A.圆柱B.圆锥C.三棱柱D.正方体【答案】A【分析】看所给选项的截面能否得到三角形即可.【解答】解:A、圆柱的截面可能是圆,符合题意;B、圆锥的截面可能是圆,不符合题意;C、三棱柱的截面可能是三角形,不符合题意;D、正方体的截面可能是三角形,或五边形,不符合题意;故选:A.3.(3分)如图是正方体的表面展开图,则与“前”字相对的字是( )A.认B.真C.复D.习【答案】B【分析】由平面图形的折叠及正方体的展开图解题.对于正方体的平面展开图中相对的面一定相隔一个小正方形.【解答】解:由图形可知,与“前”字相对的字是“真”.故选:B.4.(3分)在国家“一带一路”战略下,我国与欧洲开通了互利互惠的中欧班列.行程最长,途经城市和国家最多的一趟专列全程长13000km( )A.0.13×105B.1.3×104C.1.3×105D.13×103【答案】B【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:将13000用科学记数法表示为:1.3×104.故选:B.5.(3分)如图经过折叠能围成棱柱的是( )A.①②④B.②③④C.①②③D.①③④【答案】C【分析】根据棱柱的展开图得出结论即可.【解答】解:由题意知,①可以围成四棱柱,③可以围成三棱柱,故选:C.6.(3分)下列各组数中,互为相反数的是( )A.2与B.﹣1与(﹣1)2C.(﹣1)2与1D.2与|﹣2|【答案】B【分析】根据各个选项中的说法可以判断选项中的两个数是否互为相反数,从而可以解答本题.【解答】解:∵2与互为倒数,故选项A错误,∵(﹣1)2=6,∴﹣1与(﹣1)5互为相反数,故选项B正确,∵(﹣1)2=6,∴(﹣1)2与6不是互为相反数,故选项C错误,∵|﹣2|=2,∴2与|﹣2|不是互为相反数,故选:B.7.(3分)下列说法正确的是( )A.最小的整数是0B.互为相反数的两个数的绝对值相等C.如果两个数的绝对值相等,那么这两个数相等D.有理数分为正数和负数【答案】B【分析】根据有理数的定义、相反数的定义和绝对值的性质即可作出判断.【解答】解:A、没有最小的整数,B、互为相反数的两个数的绝对值相等;C、如果两个数的绝对值相等,故选项错误;D、有理数分为正数,故选项错误.故选:B.8.(3分)若3x2n﹣1y m与﹣5x m y3是同类项,则m,n的值分别是( )A.3,2B.﹣3,2C.3,﹣2D.﹣3,﹣2【答案】A【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得m、n的值.【解答】解:∵3x2n﹣3y m与﹣5x m y3是同类项,∴7n﹣1=m,m=3,∴m=4,n=2.故选:A.9.(3分)已知有理数a、b在数轴上的位置如图所示,则下列结论中正确的是( )A.a+b<0B.a﹣b<0C.ab>0D.>0【答案】B【分析】根据数轴上a、b的位置可以判定a与b大小与符号;然后据此解答.【解答】解:根据图示知:a<0<b,|a|<|b|;∴a+b>0,a﹣b<2,<0.故选:B.10.(3分)如图,一个窗户的上部是由4个扇形组成的半圆,下部是由4个边长相同的小正方形组成的长方形( )A.6a+πa B.12a C.15a+πa D.6a【答案】A【分析】先求出上半圆的直径为2a,即可得出结论.【解答】解:由题意知,上半圆的直径为2a,∴窗户的外框总长为2a×2+×π×2a=6a+πa,故选:A.11.(3分)有理数a,b在数轴上的位置如图所示:化简|b﹣a|﹣|a+b|的结果是( )A.﹣2a B.0C.2b D.﹣2b【答案】C【分析】根据数轴分别求出b﹣a、a+b与0的大小关系.【解答】解:由数轴可知:b>0>a,∴b﹣a>0,a+b<3原式=b﹣a﹣[﹣(a+b)]=b﹣a+a+b=2b.故选:C.12.(3分)如图,是用火柴棒拼成的图形,则第n个图形需要( )A.2n B.2n+1C.2(n+1)D.2n+3【答案】B【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.【解答】解:因为第一个三角形需要三根火柴棍,再每增加一个三角形就增加2根火柴棒,所以有n个三角形,则需要2n+2根火柴棍.故选:B.二、填空题(本大题4小题,每小题3分,共12分)13.(3分)单项式﹣3ab次数是 2 .【答案】见试题解答内容【分析】直接利用单项式的次数确定方法分析得出答案.【解答】解:单项式﹣3ab次数是:2.故答案为:6.14.(3分)下列各数中:1.2,,0,,1.010010001,5,0. 4 个.【答案】4.【分析】根据分数包括正分数和负分数解答即可.【解答】解:在实数1.2,,0,﹣,8.010010001,5中,分数有1.2,﹣,0..故答案为:4.15.(3分)已知(x+3)2与|y﹣2|互为相反数,求(x+y)y= 1 .【答案】1.【分析】根据互为相反数的两个数的和等于0列方程求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:∵(x+3)2与|y﹣4|互为相反数,∴(x+3)2+|y﹣6|=0,又∵(x+3)8≥0,|y﹣2|≥6,∴x+3=0,y﹣8=0,解得x=﹣3,y=4,∴(x+y)y=(﹣3+2)6=1.故答案为:1.16.(3分)由若干个相同的小正方体搭成一个几何体,分别从正面、左面看,所得的形状如图所示 5 个.【答案】5.【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.【解答】解:综合主视图和左视图,底层最少有3个小立方体,因此搭成这个几何体的小正方体的个数最少是5个.故答案为:2.三、解答题17.(12分)计算:(1)26﹣7+(﹣6)+17;(2)﹣81×(﹣)÷(﹣16);(3)()×(﹣36);(4)﹣14+12÷(﹣2)2×(﹣8).【答案】(1)30;(2)﹣1;(3)﹣3;(4)0.【分析】(1)利用有理数的加减混合运算的法则解答即可;(2)利用有理数的乘除混合运算的法则解答即可;(3)利用乘法的分配律解答即可;(4)利用有理数的混合运算的法则解答即可.【解答】解:(1)原式=(26+17)﹣(7+6)=43﹣13=30;(2)原式=81××=﹣1;(3)原式=(﹣36)﹣(﹣36)=﹣24+27﹣2=﹣(24+6)+27=﹣30+27=﹣3;(4)原式=﹣5+12÷4+(﹣2)=﹣6+3+(﹣2)=2﹣(1+2)=6﹣3=0.18.(6分)化简:(1)3x2﹣1﹣2x﹣5+3x﹣x;(2)(2a2﹣1+2a)﹣3(a﹣1+a2).【答案】(1)3x2﹣6;(2)=﹣a2﹣a+2.【分析】根据合并同类项的法则即可求出答案.【解答】解:(1)原式=3x2﹣8;(2)原式=2a2﹣3+2a﹣3a+2﹣3a2=﹣a3﹣a+2.19.(5分)先化简,再求值:a﹣2(a﹣b2)﹣(a﹣b2),其中a=﹣2,b=.【答案】9.【分析】先利用整式化简的方法进行化简,再代入求值即可.【解答】解:a﹣8(a﹣b8)﹣(a﹣b2)=a﹣2a+b3﹣a+b2=﹣7a+b8.当a=﹣2,b=时,原式=(﹣3)×(﹣2)+×()2=6+4=9.20.(5分)分析图中几何体,请分别利用下面的网格图画出从正面、左面及上面所看到的几何体的形状图.【答案】见试题解答内容【分析】根据三视图的定义画出图形即可.【解答】解:三视图如图所示:21.(4分)若a,b互为相反数,c、d互为倒数,求(a+b+cd)【答案】1.【分析】根据题意可知a+b=0,cd=1,然后代入计算即可.【解答】解:∵a、b互为相反数,c,∴a+b=0,cd=1,∴原式=(4+1)+=1.22.(6分)中考当天,出租车司机小王在东西方向的街道上免费接送学生,规定向东为正,当天出租车的行程如下(单位:km):+5,﹣8,+10,﹣6.(1)将最后一名学生送到目的地时,小王距出发地多少千米?方向如何?(2)若汽车耗油量为0.2L/km,则当天耗油多少升?(3)若汽油价格为6.2元/L,则小王共花费了多少元钱?【答案】(1)回到原位置;(2)当天耗油7.2升;(3)小王共花费44.64元.【分析】(1)求出各个数的和,依据结果即可判断;(2)求出汽车行驶的路程即可解决.(3)根据题意列出式子再进行计算即可.【解答】解:(1)+5﹣4﹣8+10+3﹣6=2,则回到原位置;(2)汽车的总路程是:5+4+7+10+3+6=36(千米),则耗油是36×3.2=7.6(升).答:当天耗油7.2升.(3)4.2×6.4=44.64(元).答:小王共花费44.64元.23.(6分)已知A=2a2+3ab+2a﹣1,B=﹣a2+ab+2.(1)化简:4A﹣(3A﹣2B);(2)若(1)中式子的值与a的取值无关,求b的值.【答案】(1)5ab+2a+3;(2)b=﹣.【分析】(1)根据整式的运算法则即可求出答案.(2)将含a的项进行合并,然后令系数为0即可求出b的值.【解答】解:(1)4A﹣(3A﹣6B)=A+2B,将A=2a4+3ab+2a﹣4,B=﹣a2+ab+2,代入上式,原式=4a2+3ab+3a﹣1+2(﹣a7+ab+2)=2a6+3ab+2a﹣5﹣2a2+3ab+4=5ab+4a+3.(2)∵5ab﹣6a+3=a(5b﹣2)+3,若(1)中式子的值与a的取值无关,则5b﹣8=0.∴b=﹣.24.(4分)如图所示,将面积为a2的小正方形和面积为b2的大正方形放在同一水平面上(b>a>0).(1)用a、b表示阴影部分的面积;(2)计算当a=3,b=5时,阴影部分的面积.【答案】见试题解答内容【分析】(1)根据三角形的面积公式列出即可;(2)把a、b的值代入,即可求出答案.【解答】解:(1)阴影部分的面积为b4+a(a+b);(2)当a=7,b=5时,b2+a(a+b)=×3×(5+5)=,即阴影部分的面积为.25.(4分)将一个长为6厘米,宽为4厘米的长方形绕它的一边所在的直线旋转一周,求得到的几何体的体积(结果保留π).【答案】见试题解答内容【分析】圆柱体的体积=底面积×高,注意底面半径和高互换得圆柱体的两种情况.【解答】解:绕长所在的直线旋转一周得到圆柱体积为:π×42×6=96π(立方厘米);绕宽所在的直线旋转一周得到圆柱体积:π×62×4=144π(立方厘米).故得到的几何体的体积是96π或144π立方厘米.26.(4分)若“三角表示运算a﹣b+c,“方框”表示运算x﹣y+z+w.求:×表示的运算,并计算结果.【答案】见试题解答内容【分析】原式利用已知的新定义计算即可求出值.【解答】解:根据题意得:原式=(﹣+)×(﹣2﹣3+2﹣6)=﹣.27.(8分)为丰富校园体育生活,学校增设网球兴趣小组,需要采购某品牌网球训练拍30支(x>30).经市场调查了解到该品牌网球拍定价100元/支,网球20元/筒.现有甲、乙两家体育用品商店有如下优惠方案:甲商店:买一支网球拍送一筒网球;乙商店:网球拍与网球均按则90%付款,(1)方案一:到甲商店购买,需要支付 (20x+2400) 元(用含x的代数式表示);方案二:到乙商店购买,需要支付 (18x+2700) 元(用含x的代数式表示).(2)若x=100,请通过计算说明学校采用以上哪个方案较为优惠.(3)若x=100,你能给出一种更为省钱的购买方案吗?试写出你的购买方法并算出省多少钱?【答案】(1)(20x+2400),(18x+2700);(2)甲店需要费用4400元,乙店需要费用4500元,因此到甲商店购买优惠;(3)答:有,优惠的方案为,先在甲店购买30只球拍,送30个网球筒,剩下的去乙店购买70个网球筒;省140元.【分析】(1)根据优惠的方案分别列式计算;(2)把x=100分别代入(1)的两个代数式计算;(3)根据两种方案的优惠条件,把它们合二为一分别购买.【解答】解:(1)到甲商店购买,需要支付30×100+(x﹣30)×20=3000+20x﹣600=20x+2400(元),到乙商店购买,需要支付:30×100×0.9+20×7.9x=18x+2700(元),故答案为:(20x+2400),(18x+2700);(2)当x=100时,甲店需要:100×20+2400=4400(元),乙店需要:18×100+2700=4500(元),∵4400<4500,∴到甲商店购买优惠;(3)有,先在甲店购买30只球拍,送30个网球筒,总费用:30×100+70×20×0.6=4260(元),4400﹣4260=140(元),答:有,优惠的方案为,先在甲店购买30只球拍,剩下的去乙店购买70个网球筒;省140元.28.(8分)阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,我们把(a+b)看成一个整体(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b),它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2= ﹣(a﹣b)2 ;(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;拓广探索:(3)已知a﹣5b=3,5b﹣3c=﹣5,3c﹣d=10,求(a﹣3c)+(5b﹣d)﹣(5b﹣3c)【答案】(1)﹣(a﹣b)2;(2)﹣9;(3)8.【分析】(1)将(a﹣b)看成一个整体,然后合并系数即可;(2)把3x2﹣6y﹣21变形为3(x2﹣2y)﹣21,再整体代入计算;(3)将原式变形为(a﹣5b)+(5b﹣3c)+(3c﹣d),然后整体代入计算即可.【解答】解:(1)3(a﹣b)2﹣2(a﹣b)2+2(a﹣b)2=(3﹣6+2)(a﹣b)2=﹣(a﹣b)2,故答案为:﹣(a﹣b)2;(2)∵3x2﹣3y﹣21=3(x2﹣3y)﹣21,又∵x2﹣2y=6,∴原式=3×4﹣21=12﹣21=﹣7;(3)∵(a﹣3c)+(5b﹣d)﹣(2b﹣3c)=a﹣3c+2b﹣d﹣5b+3c=(a﹣3b)+(5b﹣3c)+(8c﹣d),∴当a﹣5b=3,2b﹣3c=﹣5,原式=3+(﹣5)+10=8.。

2022-2023学年度第一学期期中考试七年级数学试题

2022-2023学年度第一学期期中考试七年级数学试题

2021-2022学年度第一学期期中考试七年级数学试题注意事项:1.本试卷考试时间为120分钟,试卷满分120分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.一、选择题(本大题共有8小题,每小题3分,共24分) 1.﹣2的倒数是( ▲ ) A .2B .﹣2C .21-D .212.在﹣3,﹣1,0,1这四个数中,最小的数是( ▲ ) A .﹣3B .﹣1C .0D .13.单项式﹣5ab 的系数与次数分别为( ▲ ) A .5,1B .﹣5,1C .5,2D .﹣5,24.下列各组是同类项的一组是( ▲ )A .mn 2与21-m 2nB .﹣2ab 与baC .a 3与b 3D .3a 3b 与﹣4a 2bc5.下列去括号正确的是( ▲ ) A .﹣3(b ﹣1)=﹣3b ﹣3 B .2(2﹣a )=4﹣aC .﹣3(b ﹣1)=﹣3b +3D .2(2﹣a )=2a ﹣46.某种药品的说明书上标明保存温度是(20±2)℃,则该药品在( ▲ ) 范围内保存才合适. A .18℃~20℃B .18℃~22℃C .18℃~21℃D .20℃~22℃7.已知关于x 的方程3x +m =2的解是x =﹣1,则m 的值是( ▲ ) A .1B .﹣1C .﹣5D .58.把1~9这9个数填入3×3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图1),是世界上最早的“幻方”.图2是仅可以看到部分数值的“九宫格”,则其中x 的值为( ▲ )A .1B .3C .4D .6二、填空题(本大题共8小题,每小题3分,共24分)9.预计到2025年,中国5G 用户将超过460000000,将460000000用科学记数法表示为 ▲ . 10.原价为a 元的书包,现按8折出售,则售价为 ▲ 元.11.盐都区某周四天中每天的最高气温与最低气温如表,则日温差最大的是星期 ▲ .星期一 二 三 四 最高气温 10℃ 12℃ 11℃ 8℃ 最低气温3℃0℃﹣2℃﹣3℃12.在下列代数式:2,t s ,3b -a ,yz 5-,n m +3中,是单项式的有 ▲ 个. 13.已知方程(m ﹣2)x |m |﹣1+16=0是关于x 的一元一次方程,则m 的值为 ▲ .14.若a 2+3a =﹣5,则2﹣2a 2﹣6a 的值为 ▲ .15.按照如图所示的操作步骤,若输出y 的值为11,则输入x 的值为 ▲ .16.如图,都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子.第②个图案有9个黑棋子,第③个图案有14个黑棋子,按照这样的规律,第n 个图案有199个黑棋子,则n = ▲ .学校___________ 班级____________ 姓名___________ 考试号___________………………………………密…………封…………线…………内…………不…………得…………答…………题………………………………三、解答题(本大题共有10小题,共72分.解答时应写出文字说明、推理过程或演算步骤....................) 17.(本题满分6分)请将下列各数填入相应的集合内:47-,0,π,113,﹣1.010010001…,•5.0 有理数集合:{ …}; 无理数集合:{ …}; 非负数集合:{ …}. 18.(本题满分6分)计算: (1)7﹣(﹣8)+(﹣4); (2)|﹣4|+23+3×(﹣5). 19.(本题满分6分)计算: (1)(5a +b )+6a ﹣2b ;(2)3(4a 2b ﹣2ab 2)﹣2(﹣3ab 2+a 2b ). 20.(本题满分6分)解方程: (1)2x =9﹣x ;(2)1615312=--+x x .21.(本题满分6分)先化简,再求值:3(x 2y +xy )﹣(2x 2y ﹣xy )﹣5xy ,其中x =﹣1,y =1. 22.(本题满分6分)对于任意有理数a ,b ,定义运算:a ⊙b =a (a +b )﹣1,等式右边是通常的加法、减法、乘法运算,例如,2⊙5=2×(2+5)﹣1=13;(﹣3)⊙(﹣5)=﹣3×(﹣3﹣5)﹣1=23.(1)求(﹣2)⊙213的值;(2)对于任意有理数m ,n ,请你重新定义一种运算“⊕”,使得5⊕3=20,写出你定义的运算:m ⊕n = ▲ (用含m ,n 的式子表示).23.(本题满分8分)已知:A ﹣2B =3a 2﹣2ab ,且B =﹣a 2+2ab +1; (1)求A 等于多少?(2)若|a +1|+(b ﹣2)2=0,求A 的值.24.(本题满分6分)如图,点A 、B 、C 分别表示有理数a 、b 、c . (1)填空:①c ▲ 0;②|a | ▲ |b |;(填“>”、“<”或“=”)(2)化简:|a +b |﹣|c ﹣b |﹣|c ﹣a |.25.(本题满分10分)某粮库3天内粮食进、出库的吨数如下(“+”表示进库,“﹣”表示出库): +27,﹣32,﹣18,+34,﹣38,+20.(1)经过这3天,仓库里的粮食是增加了还是减少了?变化了多少吨? (2)如果进出的装卸费都是每吨30元,那么这3天要付装卸费多少元?26.(本题满分12分)已知多项式4x 6y 2﹣3x 2y ﹣x ﹣7,次数是b ,4a 与b 互为相反数,在数轴上,点A 表示数a ,点B 表示数b . (1)a = ▲ ,b = ▲ ;(2)若小蚂蚁甲从点A 处以2个单位长度/秒的速度向右运动,同时小蚂蚁乙从点B 处以1.8个单位长度/秒的速度也向左运动,丙同学观察两只小蚂蚁运动,在它们刚开始运动时,在原点O 处放置一颗饭粒,甲在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,乙在碰到饭粒后立即停止运动.设运动的时间为t 秒,则t = ▲ 时,甲、乙两只小蚂蚁的距离为8个单位长度.(3)若小蚂蚁甲和乙约好分别从A ,B 两点,分别沿数轴甲向左,乙向右以相同的速度爬行,经过一段时间原路返回,刚好在16s 时一起重新回到原出发点A 和B ,设小蚂蚁们出发t (s )时的速度为v (mm /s ),v 与t 之间的关系如下图.(其中s 表示时间单位秒,mm 表示路程单位毫米)t (s ) 0<t ≤2 2<t ≤5 5<t ≤16v (mm /s )10168①当2<t ≤5时,你知道小蚂蚁甲与乙之间的距离吗?(用含有t 的代数式表示); ②当t 为 ▲ 时,小蚂蚁甲乙之间的距离是42mm .(请直接写出答案)七年级数学试卷参考答案一.选择题(共8小题)1.C 2.A 3.D 4.B 5.C 6.B 7.D 8.A二.填空题(共8小题)9.4.6×108 10.0.8a 11.三12.2 13.﹣2 14.12 15.4或﹣4 16.40三.解答题(共10小题)17.有理数集合:{﹣,0,,0.…};————2分无理数集合:{π,﹣1.010010001……};————2分非负数集合:{0,π,,0.…}.————2分18.(1)原式=7+8﹣4————2分=11;————1分(2)原式=4+8﹣15————2分=﹣3.————1分19.(1)(5a+b)+6a﹣2b=5a+b+6a﹣2b————2分=11a﹣b;————1分(2)3(4a2b﹣2ab2)﹣2(﹣3ab2+a2b)=12a2b﹣6ab2+6ab2﹣2a2b————2分=10a2b.————1分19.(1)x=3.————3分(2)x=﹣3.————3分21.3(x2y+xy)﹣(2x2y﹣xy)﹣5xy=3x2y+3xy﹣2x2y+xy﹣5xy————2分=x2y﹣xy;————1分当x=﹣1,y=1时,原式=1×1﹣(﹣1)×1————2分=2.————1分22.(1)∵a⊙b=a(a+b)﹣1,∴(﹣2)⊙3=(﹣2)×[(﹣2)+3]﹣1————1分=(﹣2)×﹣1————1分=(﹣3)﹣1————1分=﹣4;————1分(2)3m+2+n.(答案不唯一)————2分23.(1)∵A﹣2B=3a2﹣2ab,且B=﹣a2+2ab+1,∴A=3a2﹣2ab+2B————1分=3a2﹣2ab+2(﹣a2+2ab+1)————1分=3a2﹣2ab﹣2a2+4ab+2————1分=a2+2ab+2;————1分(2)∵|a+1|+(b﹣2)2=0,∴a+1=0,b﹣2=0,解得:a=﹣1,————1分b=2,————1分∴A=(﹣1)2+2×(﹣1)×2+2————1分=1﹣4+2=﹣1.————1分24.<;————1分>;————1分(2)由数轴可得:a<c<0<b,∴|a +b |﹣|c ﹣b |﹣|c ﹣a |=﹣a ﹣b +c ﹣b ﹣c +a ————3分 =﹣2b ————1分25.(1)+27+(﹣32)+(﹣18)+34+(﹣38)+20=﹣7(吨),————4分 答:库里的粮食是减少了,减少了7吨;————1分(2)(|+27|+|﹣32|+|﹣18|+|+34|+|﹣38|+|+20|)×30=169×30=5070(元),——4分答:这3天要付装卸费5070元.————1分26.已知多项式4x 6y 2﹣3x 2y ﹣x ﹣7,次数是b ,4a 与b 互为相反数,在数轴上,点A 表示数a ,点B 表示数b .(1)a = ﹣2 ;————2分b = 8 ;————2分 (2)t =1910或5 ;————2分 (3)①∵小蚂蚁甲和乙同时出发以相同的速度爬行,∴小蚂蚁甲和乙爬行的路程是相同的,各自爬行的总路程都等于: 10×2+16×3+8×11=156(mm ),∵原路返回,刚好在16s 时一起重新回到原出发点A 和B , ∴小蚂蚁甲和乙返程的路程都等于78mm ,∴甲乙之间的距离为:8﹣(﹣2)+10×2×2+16×(t ﹣2)×2=32t ﹣14;————2分 ②设a 秒时小蚂蚁甲和乙开始返程,由(3)①可知: 10×2+16×3+8(a ﹣5)=78, 解得:a =;以下分情况讨论:当8﹣(﹣2)+10t ×2=42, 解得:t =1.6;当32t ﹣14=42时,解得:t =;当t =时,小蚂蚁甲和乙还没有开始返程,故舍去t =; 当t >时,8﹣(﹣2)+78×2﹣8(t ﹣)×2=42,解得:t =14;综上所述,当t =1.6秒或14秒时,小蚂蚁甲乙之间的距离是42mm .————4分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

菏泽学院东校区2017-2018学年第一学期
17级《数学》期中试题
时间:120分钟 总分:120分
一、选择题(本大题20个小题,每小题3分,共60分.) 1.以下能构成集合的是
A. 与2接近实数的全体
B. 所有数学难题
C.所有的三角形
D.著名的歌星
2.已知二次函数()22-+=bx x x f ,对任意的实数m 都有()()m f m f -=+11,则此函数的 最小值为 A.2 B.-2 C.3 D.-3
3. 已知M=}{d b a ,,,N=}{d c a ,,,那么M N 等于 A. }{a b , B.}{a d b ,, C.}{d a , D.}{d c b a ,,,
4. 6≥x 是4≥x 的
A. 充分条件
B.必要条件
C.充要条件
D.既不充分又不必要条件
5. 已知函数()()
()
⎩⎨
⎧≤->-=0,
230,
54x x x x x f ,则()[]=-1f f A.5 B.20 C.15 D.25
6. 下列函数是奇函数的是 A. ()2+=x x f B.()x x f = C.()22+=x x f D.()3x x x f +=
7. 二次函数()()()34222+-+-=x m x m x f 是偶函数,则m= A.2 B.-2 C.2或-2 D.4 8. 函数()342+-=x x x f 在区间[]4,1-上是 A. 减函数 B.增函数 C.先减后增函数 D.先增后减函数
9. 已知函数()x f 是奇函数在区间[]25--,上是增函数且有最大值-3.则函数在区间[]5,2上是
A. 增函数且有最小值-3
B.增函数且有最小值3
C.减函数且有最小值-3
D.减函数且有最大值3 10. 已知函数()322+-=x x x f ,则()=+1x f A. 22+x B.242+-x x C.62+x D.222+-x x 11. 函数()x
x f -=
51的定义域是
A. []5,5-
B.()∞+,
5
C.()()∞+-∞-,,55
D.()5,5- 12. 函数()x
k x f 2
-=
在区间()∞+,0上是减函数,则k 的取值范围是 A. 0>k B.0<k C. 2>k D.2<k 13. 下列函数在()∞+,0上是减函数的是 A. ()23+=x x f B.()x
x f 2
-=
C.()522+-=x x f
D.()632+=x x f
14. 集合}{5>=x x A ,{}3>=x x B ,则A,B 的关系是 A. B ∈A B.B A ⊆ C.B ⊇A D.B A ∉
15. 已知函数()x f 是偶函数且在区间()∞+,0上是增函数,则()5-f ,()2-f 的大小关系是
A. ()5-f >()2-f
B.()5-f <()2-f
C.()5-f =()2-f
D. 无法确定 16. 下列函数表示同一函数的是
A. ()=x f x 与()=x f 2x
B.()=x f x 与()=x f 2x
C.()=x f x -与()=x f 3x
D.()=x f 0x 与()=x f 1
17. 函数822--=x x y 的定义域是 A. ()2-∞-, B.()∞+,4 C.Φ D.(][)∞+-∞-,,42
18. 已知奇函数()x f ,当0>x 时,()x x x f 22-=,则当0<x 时,()x f 的解析式为
A. ()x x x f 22-=
B.()x x x f 22--=
C.()x x x f 22+=
D.()x x x f 22+-=
19. 小明用一根长为24cm 的细铁丝围成矩形,则矩形的最大面积为 A.1442cm B.642cm C.362cm D.322cm
20. 已知函数()()x x a x f 352-+= 在区间[]b a ,是奇函数,则b a ,的值分别是 A.0,5 B.-5,5 C.-5,0 D.-5,-3
二、填空题(本大题共5个小题,每题4分,共20分.)
21. 设全集R U =,集合}{32-≤>=x x x M 或,则=M U ______________.
22. 已知函数()()()
⎩⎨⎧<-≥=03022
2x x
x x x f ,若()x f =8,则x
=__________.
23. 已知函数()x f =19,则()a f =_______.
24. 不等式23->-m x 的解集为全体实数,则m 的取值范围是_________.
25. 已知二次函数()342--=x ax x f 在区间(]2,
∞-上是减函数,在[)∞+,2上
是增函数,则=a __________.
三、解答题(本大题共5个小题,共40分.)
26. 集合{}0232=+-=x x x A ,集合}{02B =+=mx x 且A B ⊆,求m 的值. 27. 用定义证明()12-=x
x f 在()∞+,0上为减函数. 28. 一元二次函数图像以()2,1为顶点,过点()1,0, (1)求一元二次函数解析式; (2)求此函数在[]3,0上的最值。

29. 求下列函数的定义域 (1)()625
-+=x x
x f (2)()232+-=x x x f
30. 某商品进货单价8元,若按每件商品10元出售,每天可销售100件;已知这种商品每涨价1元,其销售数量下降10件。

问售价定为多少元时,所获利润最大,最大利润是多少?
菏泽学院东校区2017-2018学年第一学期17级《数学》期中试题答案卷班级:姓名:考号:
一、选择题(每小题3分共60分)
二、填空题(每题4分公20分)
21、___________ 22、_________ 23、________
24、________ 25、_______
三、解答题(写出完整的解题步骤及推理证明过程)
26、27、
28、
29、
30、。

相关文档
最新文档