初二下册期中考试数学试卷及答案-2020最新

合集下载

【2020年最新】八年级下册期中数学试卷及答案

【2020年最新】八年级下册期中数学试卷及答案

八年级(下)期中数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡相应位置上)1.下列图形中,是中心对称但不是轴对称的图形是()A.等边三角形 B.正方形C.圆 D.平等四边形2.下面有四种说法:①了解某一天出入南京市的人口流量适合用普查方式;②抛掷一个正方体骰子,点数为奇数的概率是③“打开电视机,正在播放关于篮球巨星科比退役的相关新闻”是随机事件.④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件.其中正确说法是()A.①②③B.①②④C.②③④D.②④3.下列各式从左到右的变形正确的是()A. =1 B. =C. =x+y D. =4.下列命题中,假命题是()A.对角线互相垂直且相等的四边形是正方形B.对角线相等且互相平分的四边形是矩形C.对角线互相垂直平分的四边形是菱形D.对角线互相平分的四边形是平行四边形5.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率6.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD,从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A.6种B.5种C.4种D.3种二、填空题(共10小题,每小题2分,共20分.请把答案直接填写在答题纸相应位置上)7.若分式有意义,则x的取值范围是.8.平行四边形ABCD中,∠A比∠B小20°,那么∠C= .9.在一个不透明的口袋里装了2个红球和1个白球,每个球除了颜色外都相同,将球摇匀,据此,请你写出一个发生的可能性小于的随机事件:.10.一个样本的50个数据分别落在5个组内,第1、2、3、4组数据的个数分别是2、8、15、5,则第5组数据的频数为,频率为.11.如图,在矩形ABCD中,对角线AC、BD交于点O,已知∠AOB=60°,AC=8,则BC的长为.12.如图,将▱ABCD折叠,使点D、C分别落在点F、E处(点F、E都在AB所在的直线上),折痕为MN,若∠AMF=50°,则∠A= °.13.如图,在菱形ABCD中,AC与BD相交于点O,点P是AB的中点,PO=3,则菱形ABCD的周长是.14.用平行四边形的定义和课本上的三个定理可以判断一个四边形是平行四边形,请探索并写出一个与它们不同的平行四边形的判定方法:.15.若顺次连接四边形各边中点所得到的四边形是矩形,则原四边形必须满足的条件是.16.已知在平面直角坐标系中,点A、B、C、D的坐标依次为(﹣1,0),(m,n),(﹣1,10),(﹣7,p),且p≤n.若以A、B、C、D四个点为顶点的四边形是菱形,则n的值是.三、解答题(本大题共10小题,共68分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.计算:(1)•(2)﹣﹣3.18.先化简,再求值:÷(﹣1),然后从2,1,﹣1,﹣2中选一个你认为合适的数作为a 的值代入求值.19.证明矩形的判定定理:对角线相等的平行四边形是矩形.20.如图,线段AB绕点O顺时针旋转一定的角度得到线段A1B1(点A的对应点为A1).(1)请用直尺和圆规作出旋转中心O(不写作法,保留作图痕迹);(2)连接OA、OA1、OB、OB1,并根据旋转的性质用符号语言写出2条不同类型的正确结论.21.在平行四边形ABCD中,E、F分别是AB、CD的中点,AF与DE相交于点G,GE与BF相交于点H.(1)求证:四边形EHFG是平行四边形;(2)若四边形EHFG是矩形,则平等四边行ABCD应满足的条件是.(直接写出答案,不需要证明)22.某校有2 000名学生.为了解全校学生的上学方式,该校数学兴趣小组在全校随机抽取了100名学生进行抽样调查.整理样本数据,得到如图表(频数分布表中部分划记被墨水盖住):某校100名学生上学方式频数分布表方式划记频数步行正正正15骑车正正正正正29乘公共交通工具正正正正正正30乘私家车其它合计100(1)本次调查的个体是;(2)求频数分布表中,“乘私家车”部分对应的频数;(3)请估计该校2 000名学生中,先把骑车和步行上学的一共有多少人?23.如图,在正方形ABCD,M、N是对角线AC上的两点,且AM=CN,连接DM并延长,交AB 于点F,连接BN并延长,交DC于点E.连接BM、DN.(1)求证:四边形MBND为菱形;(2)求证:△MFB≌△NED.24.浴缸有两个水龙头,一个放热水,一个放冷水,两水龙头放水速度:放热水的是a升/分,放冷水的速度是b升/分,下面有两种放水方式:方式一:先开热水,使热水注满浴缸的一半,后一半容积的水接着开冷水龙头注放.方式二:前一半时间让热水龙头注放,后一半时间让冷水龙头注放.(1)在方式一中:设浴缸容积为V升,则先开热水,热水注满浴缸一半所需的时间为分;(2)两种方式中,哪种方式更节省时间?请说明理由.25.阅读下面的解题过程,然后解题:题目:已知(a、b、c互相不相等),求x+y+z的值.解:设,则x=k(a﹣b),y=k(b﹣c),z=k(c﹣a)于是,x+y+z=k(a﹣b+b﹣c+c﹣a)=k•0=0,依照上述方法解答下列问题:已知: ==(x+y+z≠0),求的值.26.如图①,已知△ABC是等腰三角形,∠BAC=90°,点D是BC的中点,作正方形DEFG,使点A、C分别在DG和DE上,连接AE、BG.(1)试猜想线段BG和AE的关系为;(2)如图②,将正方形DEFG绕点D按逆时针方向旋转α(0°<α≤90°),判断(1)中的结论是否仍然成立,证明你的结论.八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡相应位置上)1.下列图形中,是中心对称但不是轴对称的图形是()A.等边三角形 B.正方形C.圆 D.平等四边形【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,是中心对称图形,故此选项错误;C、既是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,不是中心对称图形,故此选项正确;故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.下面有四种说法:①了解某一天出入南京市的人口流量适合用普查方式;②抛掷一个正方体骰子,点数为奇数的概率是③“打开电视机,正在播放关于篮球巨星科比退役的相关新闻”是随机事件.④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件.其中正确说法是()A.①②③B.①②④C.②③④D.②④【考点】X3:概率的意义;V2:全面调查与抽样调查;X1:随机事件.【分析】根据调查方式的选择、必然事件、不可能事件、随机事件的概念分别进行解答即可.【解答】解:①了解某一天出入南京市的人口流量适合用抽样调查的方式,故本选项错误;②抛掷一个正方体骰子,点数为奇数的概率是,正确;③“打开电视机,正在播放关于篮球巨星科比退役的相关新闻”是随机事件,正确;④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件,正确;故选C.【点评】此题考查了概率的意义、抽样调查和全面调查和随机事件,不易采集到数据的调查要采用抽样调查的方式;必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.下列各式从左到右的变形正确的是()A. =1 B. =C. =x+y D. =【考点】65:分式的基本性质.【专题】11 :计算题;513:分式.【分析】原式变形变形得到结果,即可作出判断.【解答】解:A、原式==1,正确;B、原式=,错误;C、原式为最简结果,错误;D、原式=,错误,故选A【点评】此题考查了分式的基本性质,熟练掌握分式的基本性质是解本题的关键.4.下列命题中,假命题是()A.对角线互相垂直且相等的四边形是正方形B.对角线相等且互相平分的四边形是矩形C.对角线互相垂直平分的四边形是菱形D.对角线互相平分的四边形是平行四边形【考点】O1:命题与定理;L6:平行四边形的判定;L9:菱形的判定;LC:矩形的判定;LF:正方形的判定.【分析】根据平行四边形,矩形,菱形和正方形的对角线矩形判断即可.【解答】解:对角线互相垂直平分且相等的四边形是正方形,所以A为假命题;对角线相等且互相平分的四边形是矩形,所以B为真命题;对角线互相垂直平分的四边形是菱形,所以C为真命题;对角线互相平分的四边形为平行四边形,所以D为真命题.故选A.【点评】本题考查了从对角线来判断特殊四边形的方法:对角线互相平分的四边形为平行四边形;对角线互相垂直平分的四边形为菱形;对角线互相平分且相等的四边形为矩形;对角线互相垂直平分且相等的四边形为正方形.也考查了真命题与假命题的概念.5.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率【考点】X8:利用频率估计概率.【专题】1 :常规题型.【分析】根据大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率解答.【解答】解:∵大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,∴D选项说法正确.故选:D.【点评】本题考查了利用频率估计概率的知识,大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率.6.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD,从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A.6种B.5种C.4种D.3种【考点】L6:平行四边形的判定.【分析】根据题目所给条件,利用平行四边形的判定方法分别进行分析即可.【解答】解:①②组合可根据一组对边平行且相等的四边形是平行四边形判定出四边形ABCD 为平行四边形;③④组合可根据对角线互相平分的四边形是平行四边形判定出四边形ABCD为平行四边形;①③可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;①④可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;∴有4种可能使四边形ABCD为平行四边形.故选:C.【点评】此题主要考查了平行四边形的判定,关键是熟练掌握平行四边形的判定定理.二、填空题(共10小题,每小题2分,共20分.请把答案直接填写在答题纸相应位置上)7.若分式有意义,则x的取值范围是x≠﹣1 .【考点】62:分式有意义的条件.【分析】根据分式有意义的条件可得1+x≠0,再解即可.【解答】解:由题意得:1+x≠0,解得:x≠﹣1,故答案为:x≠﹣1.【点评】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.8.平行四边形ABCD中,∠A比∠B小20°,那么∠C= 80°.【考点】L5:平行四边形的性质.【专题】11 :计算题.【分析】根据平行四边形的性质分别求出∠A和∠B的度数,然后根据平行四边形对角相等的性质可得∠C=∠A,即可求解.【解答】解:∵四边形ABCD为平行四边形,∴,解得:,∴∠C=∠A=80°.故答案为:80°.【点评】本题考查了平行四边形对边平行的性质,得到邻角互补的结论,这是运用定义求四边形内角度数的常用方法.9.在一个不透明的口袋里装了2个红球和1个白球,每个球除了颜色外都相同,将球摇匀,据此,请你写出一个发生的可能性小于的随机事件:求摸到白球的概率.【考点】X2:可能性的大小;X1:随机事件.【分析】发生的可能性小于的随机事件就是摸出的球的个数占总数的一半以下,据此求解.【解答】解:一个不透明的口袋里装了2个红球和1个白球,摸到白球的概率为: =<,故答案为:求摸到白球的概率.【点评】本题考查了可能性的大小的知识,解题的关键是能够根据题意确定摸到红球和摸到白球的概率,难度不大.10.一个样本的50个数据分别落在5个组内,第1、2、3、4组数据的个数分别是2、8、15、5,则第5组数据的频数为20 ,频率为0.4 .【考点】V6:频数与频率.【分析】总数减去其它四组的数据就是第5组的频数,用频数除以数据总数就是频率.【解答】解:根据题意可得:第1、2、3、4组数据的个数分别是2、8、15、5,共(2+8+15+5)=30,样本总数为50,故第5小组的频数是50﹣30=20,频率是=0.4.故答案为20,0.4.【点评】本题考查频率、频数的关系:频率=,同时考查频数的定义即样本数据出现的次数.11.如图,在矩形ABCD中,对角线AC、BD交于点O,已知∠AOB=60°,AC=8,则BC的长为4 .【考点】LB:矩形的性质.【分析】由矩形的性质可得到OA=OB,于是可证明△ABO为等边三角形,于是可求得AB=4,然后依据勾股定理可求得BC的长.【解答】解:∵四边形ABCD为矩形,∴OA=OB=AC=4.∵OA=OB,∠AOB=60°,∴△OAB为等边三角形.∴AB=4.在Rt△ABC中,BC==4.故答案为:4.【点评】本题主要考查的是矩形的性质、等边三角形的性质和判定、勾股定理的应用,求得AB的长是解题的关键.12.如图,将▱ABCD折叠,使点D、C分别落在点F、E处(点F、E都在AB所在的直线上),折痕为MN,若∠AMF=50°,则∠A= 65 °.【考点】L5:平行四边形的性质.【分析】由平行四边形与折叠的性质,易得CD∥MN∥AB,然后根据平行线的性质,即可求得∠DMN=∠FMN=∠A,又由平角的定义,根据∠AMF=50°,求得∠DMF的度数,然后可求得∠A 的度数.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,根据折叠的性质可得:MN∥AE,∠FMN=∠DMN,∴AB∥CD∥MN,∴∠DMN=∠FMN=∠A,∵∠AMF=50°,∴∠DMF=180°﹣∠AMF=130°,∴∠FMN=∠DMN=∠A=65°,故答案为:65.【点评】此题考查了平行四边形的性质、平行线的性质与折叠的性质,注意数形结合思想的应用以及折叠中的对应关系,难度适中.13.如图,在菱形ABCD中,AC与BD相交于点O,点P是AB的中点,PO=3,则菱形ABCD的周长是24 .【考点】L8:菱形的性质.【分析】根据菱形的性质可得AC⊥BD,AB=BC=CD=AD,再根据直角三角形的性质可得AB=2OP,进而得到AB长,然后可算出菱形ABCD的周长.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AB=BC=CD=AD,∵点P是AB的中点,∴AB=2OP,∵PO=3,∴AB=6,∴菱形ABCD的周长是:4×6=24,故答案为:24【点评】此题主要考查了菱形的性质,关键是掌握菱形的两条对角线互相垂直,四边相等.14.用平行四边形的定义和课本上的三个定理可以判断一个四边形是平行四边形,请探索并写出一个与它们不同的平行四边形的判定方法:答案不唯一,如两组对角分别相等的四边形是平行四边形等.【考点】L6:平行四边形的判定.【专题】26 :开放型.【分析】根据平行四边形的定义以及判定方法得出即可.【解答】解:答案不唯一,如两组对角分别相等的四边形是平行四边形等;理由:∵∠B=∠D,∠A=∠C,∠B+∠C+∠D+∠A=360°,∴∠B+∠C=180°,∠A+∠D=180°,∴AB∥CD,AD∥BC,∴四边行ABCD是平行四边形.故答案为:答案不唯一,如两组对角分别相等的四边形是平行四边形等.【点评】此题主要考查了平行四边形的判定,熟练掌握相关判定定理是解题关键.15.若顺次连接四边形各边中点所得到的四边形是矩形,则原四边形必须满足的条件是对角线互相垂直.【考点】LN:中点四边形;LC:矩形的判定.【分析】根据矩形的性质和三角形中位线定理求解;首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直.【解答】解:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG,∴四边形EFGH是平行四边形,∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD,故答案为:对角线互相垂直.【点评】本题主要考查了矩形的性质和三角形中位线定理,解题的关键是构造三角形利用三角形的中位线定理解答.16.已知在平面直角坐标系中,点A、B、C、D的坐标依次为(﹣1,0),(m,n),(﹣1,10),(﹣7,p),且p≤n.若以A、B、C、D四个点为顶点的四边形是菱形,则n的值是2,5,18 .【考点】L9:菱形的判定;D5:坐标与图形性质.【分析】利用菱形的性质结合A,C点坐标进而得出符合题意的n的值.【解答】解:如图所示:当C(﹣7,2),C′(﹣7,5)时,都可以得到以A、B、C、D四个点为顶点的四边形是菱形,同理可得:当D(﹣7,8)则对应点C的坐标为;(﹣7,18)可以得到以A、B、C、D四个点为顶点的四边形是菱形,故n的值为:2,5,18.故答案为:2,5,18.【点评】此题主要考查了菱形的判定以及坐标与图形的性质,利用菱形的性质得出C点坐标是解题关键.三、解答题(本大题共10小题,共68分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.计算:(1)•(2)﹣﹣3.【考点】6C:分式的混合运算.【分析】(1)先约分,再计算即可;(2)化为同分母的分式,再进行相加即可.【解答】解:(1)原式=﹣;(2)原式=﹣﹣===﹣2.【点评】本题考查了分式的混合运算,掌握分式的约分和通分是解此题的关键.18.先化简,再求值:÷(﹣1),然后从2,1,﹣1,﹣2中选一个你认为合适的数作为a 的值代入求值.【考点】6D:分式的化简求值.【分析】先算括号里面的,再算除法,最后选出合适的a的值代入进行计算即可.【解答】解:原式=÷=•=﹣,当a=﹣2时,原式=﹣=1.【点评】本题考查的是分式的化简求值,分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.19.证明矩形的判定定理:对角线相等的平行四边形是矩形.【考点】LC:矩形的判定.【分析】由全等三角形的判定定理SSS证得△ABC≌△DCB,则∠ABC=∠DCB=90°,所以“有一内角为直角的平行四边形是矩形”.【解答】已知:四边形ABCD是平行四边形,AC、BD是两条对角线,且AC=BD.求证:平行四边形ABCD是矩形.证明:如图,∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC.在△ABC与△DCB中,,∴△ABC≌△DCB(SSS).∴∠ABC=∠DCB.又∵∠ABC+∠DCB=180°,∴∠ABC=∠DCB=90°,∴平行四边形ABCD是矩形.【点评】本题考查了矩形的判定.此题通过全等三角形的性质得到同旁内角互补,结合平行线的性质证得平行四边形的两个内角为直角.20.如图,线段AB绕点O顺时针旋转一定的角度得到线段A1B1(点A的对应点为A1).(1)请用直尺和圆规作出旋转中心O(不写作法,保留作图痕迹);(2)连接OA、OA1、OB、OB1,并根据旋转的性质用符号语言写出2条不同类型的正确结论.【考点】R8:作图﹣旋转变换.【分析】(1)连接AA1、BB1,再分别作AA1、BB1中垂线,两中垂线交点即为点O;(2)根据旋转的性质可知,对应角都相等都等于旋转角,对应点到旋转中心距离相等,据此可知.【解答】解:(1)如图,点O即为所求;(2)OA=OA1、∠AOA1=∠BOB1.【点评】本题主要考查旋转变换的作图,熟练掌握旋转变换的性质:①对应点到旋转中心的距离相等(意味着:旋转中心在对应点所连线段的垂直平分线上),②对应点与旋转中心所连线段的夹角等于旋转角,③旋转前、后的图形全等.21.在平行四边形ABCD中,E、F分别是AB、CD的中点,AF与DE相交于点G,GE与BF相交于点H.(1)求证:四边形EHFG是平行四边形;(2)若四边形EHFG是矩形,则平等四边行ABCD应满足的条件是平行四边形ABCD是矩形,并且AB=2AD .(直接写出答案,不需要证明)【考点】LC:矩形的判定;L7:平行四边形的判定与性质.【分析】(1)通过证明两组对边分别平行,可得四边形EHFG是平行四边形;(2)当平行四边形ABCD是矩形,并且AB=2AD时,先证明四边形ADFE是正方形,得出有一个内角等于90°,从而证明菱形EHFG为一个矩形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AE∥CF,AB=CD,∵E是AB中点,F是CD中点,∴AE=CF,∴四边形AECF是平行四边形,∴AF∥CE.同理可得DE∥BF,∴四边形FGEH是平行四边形;(2)解:当平行四边形ABCD是矩形,并且AB=2AD时,平行四边形EHFG是矩形.理由如下:连接EF,如图所示:∵E,F分别为AB,CD的中点,且AB=CD,∴AE=DF,且AE∥DF,∴四边形AEFD为平行四边形,∴AD=EF,又∵AB=2AD,E为AB中点,则AB=2AE,于是有AE=AD=AB,这时,EF=AE=AD=DF=AB,∠EAD=∠FDA=90°,∴四边形ADFE是正方形,∴EG=FG=AF,AF⊥DE,∠EGF=90°,∴此时,平行四边形EHFG是矩形;故答案为:平行四边形ABCD是矩形,并且AB=2AD.【点评】本题考查了平行四边形的判定与性质,矩形的判定,注意找准条件,有一定的难度.22.某校有2 000名学生.为了解全校学生的上学方式,该校数学兴趣小组在全校随机抽取了100名学生进行抽样调查.整理样本数据,得到如图表(频数分布表中部分划记被墨水盖住):某校100名学生上学方式频数分布表方式划记频数步行正正正15骑车正正正正正29乘公共交通工具正正正正正正30乘私家车其它合计100(1)本次调查的个体是每名学生的上学方式;(2)求频数分布表中,“乘私家车”部分对应的频数;(3)请估计该校2 000名学生中,先把骑车和步行上学的一共有多少人?【考点】V7:频数(率)分布表;V3:总体、个体、样本、样本容量;V5:用样本估计总体.【分析】(1)每一个调查对象称为个体,据此求解;(2)首先求得私家车部分所占的百分比,然后乘以总人数即可求得对应频数;(3)用学生总数乘以骑车和步行上学所占的百分比的和即可求得人数.【解答】解:(1)本次调查的个体是每名学生的上学方式,故答案为:每名学生的上学方式;(2)由扇形统计图知,“乘私家车”部分对应的百分比为1﹣15%﹣29%﹣30%﹣6%=20%,则“乘私家车”部分对应的频数为100×20%=20;(3)2000×(15%+29%)=880人.答:估计该校2000名学生中,选择骑车和步行上学的一共有880人.【点评】本题考查了频率分布表、用样本估计总体及扇形统计图的知识,解题的关键是能够读懂统计图,并从统计图中整理出进一步解题的有关信息.23.如图,在正方形ABCD,M、N是对角线AC上的两点,且AM=CN,连接DM并延长,交AB 于点F,连接BN并延长,交DC于点E.连接BM、DN.(1)求证:四边形MBND为菱形;(2)求证:△MFB≌△NED.【考点】LE:正方形的性质;KB:全等三角形的判定;LA:菱形的判定与性质.【分析】(1)连接BD交AC于O,先证明四边形BMDN是平行四边形,再根据NM⊥BD即可证明.(2)先证明四边形BFDE是平行四边形,得到∠BFM=∠DEN,再证明BM=DN,∠BMF=∠DNE即可解决问题.【解答】(1)证明:连接BD交AC于O.∵四边形ABCD是正方形,∴OA=OC,OB=OD,AC⊥BD,∵AM=CN,∴OM=ON,∵OB=OD,∴四边形MBND是平行四边形,∵MN⊥DB,∴四边形MBND是菱形.(2)证明:∵四边形MBND是菱形,∴DM∥NB,BM=DN,∠DMB=∠DNB,∴∠BMF=∠DNE,∵BF∥DE,∴四边形BFDE是平行四边形,∴∠BFM=∠DEN,在△MFB和△NED中,,∴△MFB≌△NED.【点评】本题考查正方形的性质、全等三角形的判定和性质、平行四边形的判定和性质、菱形的判定和性质等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题.24.浴缸有两个水龙头,一个放热水,一个放冷水,两水龙头放水速度:放热水的是a升/分,放冷水的速度是b升/分,下面有两种放水方式:方式一:先开热水,使热水注满浴缸的一半,后一半容积的水接着开冷水龙头注放.方式二:前一半时间让热水龙头注放,后一半时间让冷水龙头注放.(1)在方式一中:设浴缸容积为V升,则先开热水,热水注满浴缸一半所需的时间为分;(2)两种方式中,哪种方式更节省时间?请说明理由.【考点】6C:分式的混合运算.【分析】(1)根据题意即可得到结论;(2)首先浴缸容积为V,然后求出方式一和方式二注满时间为t、t′,最后作差比较.【解答】解:(1)先开热水注满浴缸一半所需的时间为分;故答案为:;(2)方式一:设浴缸容积为V,注满时间为t,依题意,得t=+,方式二:同样设浴缸容积为V,注满总时间为t′,依题意得t′a+t′b=V所以t′=,故t﹣t′=+﹣==,分类讨论:(Ⅰ)当a=b时,t﹣t′=0,即t=t′(Ⅱ)当a≠b时,>0,即t>t′综上所述:(1)当放热水速度与放冷水速度不相等时,选择方式二节约时间.(2)当两水龙头放水速度相等时,选其中任一方式都可以,因为此时注满水的时间相等.。

2020年最新八年级下册期中考试数学试题有答案

2020年最新八年级下册期中考试数学试题有答案

y1x O A B C初二数学第二学期期中试卷考试时间120分钟 总分130分一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将你认为正确的答案填在答题卡相应的位置上)1.下列图形中,既是中心对称图形又是轴对称图形的是………………………………( ▲ )A. B. C. D.2.在代数式21332x xy x yπ++、 、 、1a m +中,分式的个数有………………………( ▲ )A .2个B .3个C .4个D .5个3.若将分式abba +中的字母b a ,的值分别扩大为原来的2倍,则分式的值…………( ▲ ) A .扩大为原来的2倍 B .缩小为原来的21 C .不变 D .缩小为原来的414.若二次根式3-x 有意义,则x 的取值范围是………………………………………( ▲ ) A .3x < B .3x ≠ C .3x ≤ D .3x ≥5.如果12与最简二次根式a 2-7是同类二次根式,那么a 的值是………………( ▲ ) A.-2 B.-1 C.1 D.2 6.已知反比例函数ky x=的图像经过点(-1,2),则这个函数的图像一定经过点……( ▲ ) A.(1,2) B.(2,1) C.(-1,-2) D.(-2,1) 7.若M(12-,)、N(14-,)、P(12,3y )三点都在函数k y x=(k>0)的图象上,则、2y 、3y 的大小关系是……………………………………………………………( ▲ )A.132y y y >>B.312y y y >>C.213y y y >>D.123y y y >> 8.矩形具有而菱形不具有的性质是………………………………………………………( ▲ ) A .对角线互相垂直 B .对角线互相平分C .对角线相等D .每条对角线平分一组对角9.如图,点D 、E 、F 分别是△ABC 三边的中点,则下列判断错误的是……………( ▲ ) A .四边形AEDF 一定是平行四边形 B .若AD 平分∠A ,则四边形AEDF 是正方形 C .若AD ⊥BC ,则四边形AEDF 是菱形 D .若∠A =90°,则四边形AEDF 是矩形10.如图,等腰直角三角形ABC 位于第一象限,AB=AC=2,直角顶点A 在直线y =x 上,其中A 点的横坐标为1,且两条直角边AB 、AC 分 别平行于x 轴、y 轴,若双曲线k y x=(k ≠0)与ABC ∆有交点,则k 的取值范围是………………………………………………( ▲ ) A 、12k << B 、13k ≤≤C 、14k ≤≤D 、14k <≤ 二、填空题(本大题共8题,每小题3分,共24分,请将答案填在答题卡相应的位置上)11.当=x 时,242--x x 的值为0.12. 若分式方程244x ax x =+--有增根,则a 的值为 . 13.已知函数()221ay a x -=-是反比例函数,则a14.已知函数5y x =+的图象与反比例函数2y x=-的图象的一个交点为A (),a b , 则11a b-= . 15.如图,□ABCD 的对角线AC ,BD 相交于点O ,点E ,F 分别是线段AO ,BO 的中点.若AC+BD =24cm ,△OAB 的周长是18cm ,则 EF 的长为 .16.若分式方程2221-=--+x mx x 的解为非负数,则a 的取值范围是 . 17.如图,正方形ABCD 的面积是12,ABE ∆是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PE PD +最小,则这个最小值为18. 如图:两个反比例函数k y x =和1y x=在第一象限内的图象如图所示,点P 在k y x =的图象上,PC ⊥x 轴于点C ,交1y x =的图象于点A ,PD ⊥y 轴于点D ,交1y x =的图象于点B ,当点P 在ky x =的图象上运动时,以下结论:①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化; ③PA 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是 .(把你认为正确结论的序号都填上)期中试卷 初二数学命题人:谢煜 校对:高东一、选择题:(每题3分,共30分)1 2 3 4 5 6 7 8 9 10二、填空题:(每题3分,共24分)11. 12. 13. 14. 15. 16. 17. 18.三、解答题:(共76分)19. (16分)计算: ①()27-3--2-32②53232b ab a b ba ⎛⎫•-÷ ⎪⎝⎭③21+1x x x -+ ④111a ⎛⎫+ ⎪-⎝⎭÷2111a ⎛⎫+ ⎪-⎝⎭.20.(8分)解方程:①31144x x x --=-- ②23193xx x +=--.21. (5分)先化简,再求值:⎪⎪⎭⎫⎝⎛-+÷-++1211222x x x x x ,其中2x =.22.(6分)如图,E ,F 是四边形ABCD 对角线AC 上的两点,AD ∥BC , DF ∥BE ,AE =CF .求证:(1)△AFD ≅△CEB ;(2)四边形ABCD 是平行四边形.23. (6分) 如图,在平面直角坐标系中,△ABC 和△A 1B 1C 1 关于点E 成中心对称.(1) 画出对称中心E ,并写出点E 的坐标 ; (2) 画出△A 1B 1C 1绕点O 逆时针旋转90°后的△A 2B 2C 2; (3) 画出与△A 1B 1C 1关于点O 成中心对称的△A 3B 3C 3.24.(5分)甲、乙两人每小时共做35个零件,甲做160个零件所用的时间与乙做120个零件所用的时间相等。

2020年初二下册期中考试数学试卷及答案

2020年初二下册期中考试数学试卷及答案

第二学期期中阶段测试初二数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)第Ⅲ卷附加题三部分,其中第Ⅰ卷(选择题)和第Ⅱ卷共100分,第Ⅲ卷20分,考试时间100分钟。

第Ⅰ卷(共30分)一、选择题:(本大题共10小题,每小题3分,共30分. 在每小题的四个选项中,只有一个选项是符合题目要求的).1.下列各式中,运算正确的是( ). A .3333-= B .822= C .2+323=D .2(2)2-=- 2.下列二次根式中,是最简二次根式的是().A .15B .12C .13D .93.下列各组数中,以它们为边长的线段不能构成直角三角形的是( ). A .1,2,3B .3,4,5C .5,12,13D .2,2,31.4.如图,矩形ABCD 中,对角线AC ,BD 交于O 点. 若∠AOB=60°,AC =8,则AB 的长为( ).A .4B .43C .3D .55.如图,点A 是直线l 外一点,在l 上取两点B 、C ,分别以A 、C 为圆心,BC 、AB 长为半径画弧,两弧交于点D ,分别连接AB 、AD 、CD ,则四边形ABCD 一定是( ). A .平行四边形 B .矩形 C .菱形 D .正方形6.用配方法解方程2230x x --=,原方程应变形为( ).A .2(1)2x -=B .2(1)4x +=C .2(1)4x -= D .2(1)2x +=7.如图,在平行四边形ABCD 中,∠BAD 的平分线交BC 于点E ,∠ABC 的平分线交AD 于点F ,若BF =12,AB =10, 则AE 的长为( ).A .13B .14C .15D .16 8.下列命题中,正确的是().A .有一组邻边相等的四边形是菱形B .对角线互相平分且垂直的四边形是矩形C .两组邻角相等的四边形是平行四边形D .对角线互相垂直且相等的平行四边形是正方形9.如图,一根木棍斜靠在与地面(OM )垂直的墙(ON )上,设木棍中点为P ,若木棍A 端沿墙下滑,且B 沿地面向右滑行. 在此滑动过程中,点P 到点O 的距离( ). A .不变B .变小 C .变大 D .无法判断PFE D C BA E C'D BA10.如图,在菱形ABCD 中,∠BAD =60°,AB =2,E 是DC 边上一个动点,F 是AB 边上一点,∠AEF =30°.设DE =x ,图中某条线段长为y ,y 与x 满足的函数关系的图象大致如图所示,则这条线段可能是图中的( ).A .线段ECB .线段AEC .线段EFD .线段BF第9题图 第10题图第Ⅱ卷(共70分)二、填空:(每小题2分,共10个小题,共20分) 11.写出一个以0,1为根的一元二次方程. 12.如果3x -在实数范围内有意义,那么x 的取值范围是________. 13.一元二次方程2x +kx -3=0的一个根是x=1,则k 的值是.14.如图,为了检查平行四边形书架ABCD 的侧边是否与上、下边都垂直,工人师傅用一根绳子比较了其对角线AC ,BD 的长度,若二者长度相等,则该书架的侧边与上、下边都垂直,请你说出其中的数学原理. 15.某城2016年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,预计到2018年底增加到363公顷,设绿化面积平均每年的增长率为x ,由题意所列方程是 . 16.如图,DE 为△ABC 的中位线,点F 在DE 上,且 ∠AFB =90°,若AB =5,BC =8,则EF 的长为.17.如果关于x 的一元二次方程210ax x +-=有实数根,则a的取值范围 是________.18.如图,矩形ABCD 中,AB=3,BC=5.过对角线交点O 作OE ⊥AC 交AD 于E,则AE 的长是.19.如图,将矩形ABCD 沿对角线BD 所在直线折叠,点C 落在同一平面内,落点记为C’,BC’与AD 交于点E ,若 AB=3,BC =4,则DE 的长为.20.如图,正方形ABCD 的面积是2,E ,F ,P 分别是AB ,BC ,AC 上的动点, PE +PF 的最小值等于.第18题图 第19题图 第20题图三、解答题:(21,22题每小题4分,23,24,25每题5分, 26,27每题6分, 28题7分;共计50分)21.计算(1)188(31)(31)-++-; (2)1(123)622+⨯-NMO A P22.解方程: (1)2650x x -+=;(2) 22310x x --=.23.如图,在四边形ABCD 中,∠B =90º,AB=BC=2,AD =1,CD =3.求∠DAB 的度数.24.列方程或方程组解应用题如图,要建一个面积为40平方米的矩形花园 ABCD ,为了节约材料,花园的一边AD 靠着 原有的一面墙,墙长为8米(AD <8),另三 边用栅栏围成,已知栅栏总长为24米, 求花园一边AB 的长.25.如图,四边形ABCD 中,AB//CD ,AC 平分∠BAD ,CE//AD 交AB 于E. 求证:四边形AECD 是菱形.26.已知关于x 的一元二次方程22(22)40x m x m +++-=有两个不相等的实数根. (1)求m 的取值范围;(2)若m 为负整数,且该方程的两个根都是整数,求m 的值.27.如图,四边形ABCD 是矩形,点E 在CD 边上,点F 在DC 延长线上,AE =BF . (1)求证:四边形ABFE 是平行四边形(2)若∠BEF =∠DAE ,AE =3,BE =4,求EF 的长.28.如图,在正方形ABCD 中,点M 在CD 边上,点N 在正方形ABCD 外部,且满足∠CMN =90°,CM =MN .连接AN ,CN ,取AN 的中点E ,连接BE ,AC ,交于F 点. (1) ①依题意补全图形;②求证:BE ⊥AC .(2)请探究线段BE ,AD ,CN 所满足的等量关系,并证明你的结论.(3)设AB =1,若点M 沿着线段CD 从点C 运动到点D ,则在该运动过程中,线段EN 所扫过的面积为______________(直接写出答案).D A BC D ACB EDA第Ⅲ卷附加题(共20分)附加题(1题6分,2题7分,3题7分,共20分)1. 如图1,将边长为1的正方形ABCD 压扁为边长为1的菱形ABCD .在菱形ABCD 中,∠A 的大小为α,面积记为S .30°45° 60° 90° 120° 135°150° S12122(由(1)可以发现正方形在压扁的过程中,菱形的面积随着∠A 大小的变化而变化,不妨把菱形的面积S 记为S (α).例如:当α=30°时,1(30)2S S =︒=;当α=135°时,2(135)S S ο==.由上表可以得到 (60)S S ︒=( ______°);(150)S S ︒=( ______°),…,由此可以归纳出(180)()S S α︒-=.(3) 两块相同的等腰直角三角板按图2的方式放置,AD =2,∠AOB =α,试探究图中两个带阴影的三角形面积是否相等,并说明理由(注:可以利用(2)中的结论).图2图2 2.已知:关于x 的一元二次方程23(1)230(3)mx m x m m --+>-=. (1)求证:方程总有两个不相等的实数根;(2)设方程的两个实数根分别为1x ,2x ,且12x x <. ①求方程的两个实数根1x ,2x (用含m 的代数式表示); ②若1284mx x <-,直接写出m 的取值范围.3. 阅读下列材料:问题:如图1,在平行四边形ABCD 中,E 是AD 上一点,AE=AB ,∠EAB=60°,过点E 作直线EF ,在EF 上取一点G ,使得∠EGB=∠EAB ,连接AG. 求证:EG =AG+BG.小明同学的思路是:作∠GAH=∠EAB 交GE 于点H ,构造全等三角形,经过推理解决问题. 参考小明同学的思路,探究并解决下列问题:(1)完成上面问题中的证明;(2)如果将原问题中的“∠EAB=60°”改为“∠EAB=90°”,原问题中的其它条件不变(如图2),请探究线段EG、AG、BG之间的数量关系,并证明你的结论.(1)证明:图1(2)解:线段EG、AG、BG之间的数量关系为____________________________.证明:图2初二数学答案及评分标准=(31)-…………………………………………………3分 2……………………………………………………………4分(2)原式=2, ----2分 ==3⨯3分 ==…………………………………………………………………4分 22.(1)解:2650x x -+=移项,得265x x -=-.配方,得26959x x -+=-+,…………………………………………………1分所以,2(3)4x -=.………………………………………………………………2分 由此可得32x -=±,所以,15x =,21x =.…………………………………………………………4分 (2)解:2a =,3b =-,1c =-.………………………………… 1分224(3)42(1)170b ac∆=-=--⨯⨯-=>.………………………2分方程有两个不相等的实数根x ==,1x 2x .……………………………………4分23.解:连接AC在Rt △ABC 中,∠B =90º,AB =BC =2,∴∠BAC =∠ACB =45°,………………………………………………1分∴222AC AB BC =+.∴22AC =.………………………………2分 ∵AD =1,CD =3,∴222AC AD CD +=.…………………………3分 在△ACD 中,222AC AD CD +=,∴△ACD 是直角三角形,即∠DAC =90º.……………………………………4分 ∵∠BAD =∠BAC +∠DAC ,∴∠BAD =135º.………………………………………………………………5分 24.解:设AB 的长为x 米,则AD=BC=(242x -)米. (242)240x x -⋅=………………………………2分212200x x -+=(10)(2)0x x --=1210,2x x ==………………………………4分当110,4x AD == 当22,20x AD ==8,4AD AD <∴=10x ∴=………………………………5分答:AB 的长为10米.25.证明:∵AB ∥CD ,CE ∥AD∴四边形ADCE 是平行四边形…………………1分 ∵AC 平分∠BAD∴∠DAC=∠EAC ………………2分 ∵AB ∥CD∴∠DCA=∠EAC ………………3分 ∴∠DAC=∠DCA∴AD=DC …………………………4分 ∴四边形ADCE 是菱形…………5分26. 解:(1)∵一元二次方程22(22)40x m x m +++-=有两个不相等的实数根, ∴2224(22)41(4)b ac m m ∆=-=+-⨯⨯-………………………………1分 8200m =+>……………………………………………………………2分∴52m >-.……………………………………………………………………3分(2)∵m 为负整数,∴1m =-或2-.……………………………………………………………4分当1m =-时,方程230x -=的根为13x =,23x =-不是整数,不符合题意,舍去.…………………………………………………………………………5分当2m =-时,方程220x x -=的根为10x =,22x =都是整数,符合题意.综上所述2m =-.…………………………………………………………6分27.(1)证明:∵四边形ABCD 是矩形,∴AD =BC , ∠D =∠BCD =90°.∴∠BCF =180°-∠BCD =180°-90°=90°. ∴∠D=∠BCF .------------------------------------------------------------------1分在Rt △ADE 和Rt △BCF 中,,.AE BF AD BC =⎧⎨=⎩∴Rt △ADE ≌Rt △BCF .---------------------------------------------------------2分∴∠1=∠F.∴AE∥BF.∵AE=BF,∴四边形ABFE是平行四边形. ---------------------------------------------------3分(2)解:∵∠D=90°,∴∠DAE+∠1=90°.∵∠BEF=∠DAE,∴∠BEF+∠1=90°.∵∠BEF+∠1+∠AEB=180°,∴∠AEB=90°. --------------------------------------------------------------------------4分在Rt△ABE中, AE=3,BE=4,AB=2222345AE BE+=+=.∵四边形ABFE是平行四边形,∴EF=AB= 5. --------------------------------------------------------------------------6分28.(1)①依题意补全图形.---------------------------------------------------------1分②解法1:证明:连接CE.∵四边形ABCD是正方形,∴∠BCD=90°, AB=BC.∴∠ACB=∠ACD=12∠BCD=45°.∵∠CMN=90°, CM=MN,∴∠MCN=45°.∴∠ACN=∠ACD+∠MCN=90°.∵在Rt△ACN中,点E是AN中点,∴AE=CE=12AN.----------------------------------------------------------------------------2分∵AE=CE,AB=CB,∴点B,E在AC的垂直平分线上.∴BE垂直平分AC.∴BE⊥AC. --------------------------------------------------------------------------------------3分解法2: 证明:连接CE .∵四边形ABCD 是正方形, ∴∠BCD =90°, AB =BC . ∴∠ACB =∠ACD =12∠BCD =45°. ∵∠CMN =90°,CM =MN , ∴△CMN 是等腰直角三角形. ∴∠MCN =45°.∴∠ACN =∠ACD +∠MCN =90°. ∵在Rt △ACN 中,点E 是AN 中点, ∴AE =CE =12AN . 在△ABE 和△CBE 中,,,.AE CE AB CB BE BE =⎧⎪=⎨⎪=⎩∴△ABE ≌△CBE (SSS ). -----------------------------------------------------------------2分 ∴∠ABE =∠CBE . ∵AB =BC ,∴BE ⊥AC . --------------------------------------------------------------------------------------3分 (2)BE =2AD +12CN (或2BE =2AD +CN ). -------------------------------------4分 证明:∵AB =BC , ∠ABE =∠CBE ,∴AF =FC . ∵点E 是AN 中点, ∴AE =EN .∴FE 是△ACN 的中位线. ∴FE =12CN . ∵BE ⊥AC , ∴∠BFC =90°. ∴∠FBC +∠FCB =90°. ∵∠FCB =45°, ∴∠FBC =45°. ∴∠FCB =∠FBC . ∴BF =CF .在Rt △BCF 中,222BF CF BF +=,∴BF =BC .-----------------------------------------------------------------------------5分∵四边形ABCD 是正方形, ∴BC =AD .∴BF AD . ∵BE =BF +FE ,∴BE =2AD +12CN .-------------------------------------------------------------------6分(3)34.---------------------------------------------------------------------------------------7分附加题:1.(1;12.(说明:每对两个给1分)----------------------------------2分(2)120;30;α. -----------------------------------------------------------------------------------4分 (说明:前两个都答对给1分,最后一个α答对给1分) (3)答:两个带阴影的三角形面积相等.证明:将△ABO 沿AB 翻折得到菱形AEBO , 将△CDO 沿CD 翻折得到菱形OCFD .∴S △AOB =12S 菱形AEBO =12S (α)---------------------------------------------------5分S △CDO =12S 菱形OCFD =12S (180α︒-)-----------------------------------------6分由(2)中结论S (α)=S (180α︒-) ∴S △AOB =S △CDO .2.(1)证明:∵23(1)230(0)mx m x m m --+≠-=是关于x 的一元二次方程,∴2[3(1)]4(23)m m m ∆=---- ·············· 1分269m m =-+2(3)m =-. ······················· 2分∵3m >,∴2(3)0m ->,即0∆>.∴方程总有两个不相等的实数根. ·············· 3分(2)①解:由求根公式,得3(1)(3)2m m x m-±-=.∴1x =或23m x m-=.∵3m >, ∴23321m m m -=->.∵12x x <,11 ∴11x =,22332m x m m -==-. ·············· 5分②323m <<. ························ 7分 3.(1)证明:如图1,作∠GAH=∠EAB 交GE 于点H ,则∠GAB=∠HAE .……………………1分∵∠EAB=∠EGB ,∠AOE=∠BOF ,∴∠ABG=∠AEH . 在△ABG 和△AEH 中 GAB HAEAB AE ABG AEH ⎧∠∠⎪⎨⎪∠∠⎩===∴△ABG ≌△AEH .……………………2分∴BG=EH ,AG=AH .∵∠GAH=∠EAB=60°,∴△AGH 是等边三角形.∴AG=HG .∴EG=AG+BG ;……………………3分(2)线段EG 、AG 、BG 之间的数量关系是EG+BG =AG .………4分 证明:如图2,作∠GAH=∠EAB 交GE 的延长线于点H ,则∠GAB=∠HAE . ∵∠EGB=∠EAB=90°,∴∠ABG+∠AEG=∠AEG+∠AEH=180°.∴∠ABG=∠AEH .……………………5分在△ABG 和△AEH 中,∴△ABG ≌△AEH .……………………6分∴BG=EH ,AG=AH .∵∠GAH=∠EAB=90°,∴△AGH 是等腰直角三角形.∴AG=HG ,∴EG+BG =AG . (7)O。

2020人教版八年级数学下册期中试卷含答案

2020人教版八年级数学下册期中试卷含答案

2020人教版八年级数学下册期中试卷含答案八年级数学下册期中测试一、选择题1.若 $\frac{1}{2x-1}$ 在实数范围内有意义,则 $x$ 的取值范围是()A。

$x\geq \frac{1}{2}$ B。

$x\geq \frac{1}{2}$ C。

$x。

\frac{1}{2}$ D。

$x\neq \frac{1}{2}$2.一直角三角形的两直角边长为12和16,则斜边长为()A。

12 B。

16 C。

18 D。

203.如图,在▱ABCD 中,已知 $AD=5$ cm,$AB=3$ cm,$AE$ 平分∠$BAD$ 交 $BC$ 边于点 $E$,则 $EC$ 等于()A。

1 cm B。

2 cm C。

3 cm D。

4 cm4.下列计算错误的是()A。

$14\times 7=98$ B。

$60\div 5=12$ C。

$9a+25a=34a$ D。

$32-2=30$5.如图,点 $P$ 是平面直角坐标系内一点,则点 $P$ 到原点的距离是()A。

3 B。

2 C。

7 D。

56.下列根式中,是最简二次根式的是()A。

$0.2b$ B。

$12a-12b$ C。

$x^2-y^2$ D。

$5ab^2$7.如图,已知四边形 $ABCD$ 是平行四边形,下列结论中不正确的是()A。

当$AB=BC$ 时,它是菱形B。

当$AC\perp BD$ 时,它是菱形C。

当∠$ABC=90°$ 时,它是矩形 D。

当 $AC=BD$ 时,它是正方形8.已知菱形 $ABCD$ 中,对角线 $AC$ 与 $BD$ 交于点$O$,∠$BAD=120°$,$AC=4$,则该菱形的面积是()A。

16√3 B。

16 C。

8√3 D。

89.如图,在四边形 $ABCD$ 中,$AB=BC$,∠$ABC=\angle CDA=90°$,$BE\perp AD$ 于点 $E$,且四边形 $ABCD$ 的面积为8,则 $BE$ =()A。

2020年八年级下册数学期中试题带答案

2020年八年级下册数学期中试题带答案

2020年八年级下册期中考试数 学 试 题一、选择题(每小题3分,共30分)1.已知在Rt△ABC 中,∠C =90°,AC =1,BC =2,则AB 的长为( ) A .4 B. 5 C. 3 D .1 2.下列计算正确的是( )A .32+23=5 5 B.8=4 2C.27÷3=3D.(-2)2=-23.使代数式1x +3+4-3x 有意义的整数x 有( )A .5个B .4个C .3个D .2个4.在平行四边形ABCD 中,∠A ∶∠B ∶∠C =2∶3∶2,则∠D 的度数为( ) A .36° B.108° C.72° D.60° 5.下列选项中的等式成立的是( )A.22=2 B.33=3C.44=4D.55=56.在下列命题中,正确的是( )A .有一组对边平行的四边形是平行四边形B .有一组邻边相等的平行四边形是菱形C .有一个角是直角的四边形是矩形D .对角线互相垂直平分的四边形是正方形7.如图,Rt△ABC 中,∠ACB =90°,斜边AB =9,D 为AB 的中点,F 为CD 上一点,且CF =13CD ,过点B 作BE ∥DC 交AF 的延长线于点E ,则BE 的长为( )A .6B .4C .7D .12第7题图 第8题图8.如图,有一个由传感器A 控制的灯,要装在门上方离地高4.5m 的墙上,任何东西只要移至该灯5m 及5m 以内时,灯就会自动发光.请问一个身高1.5m 的学生要走到离墙多远的地方灯刚好发光( )A .4mB .3mC .5mD .7m9.如图,将边长为4的菱形纸片ABCD 折叠,使点A 恰好落在对角线的交点O 处,若折痕EF =23,则∠A 等于( )姓名:学号:A.120° B.100° C.60° D.30°第9题图第10题图10.如图,四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC为边向外作正方形,其面积分别为S1、S2、S3.若S1=3,S3=9,则S2的值为( ) A.12 B.18 C.24 D.48二、填空题(每小题3分,共24分)11.计算:27+3=________.12.如图,在Rt△ABC中,E是斜边AB的中点,若AB=10,则CE=________.13.若a<2,化简(a-2)2+a-1=________.14.已知△ABC的三边长a、b、c满足a-1+|b-3|+(c-2)2=0,则△ABC一定是________三角形.第12题图第15题图第16题图15.如图,菱形ABCD的对角线AC,BD相交于点O,E为AD的中点,若OE=3,则菱形ABCD的周长为________.16.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,3),则点C的坐标为________.17.如图①,这个图案是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.此图案的示意图如图②,其中四边形ABCD和四边形EFGH都是正方形,△ABF、△BCG、△CDH、△DAE是四个全等的直角三角形.若EF=2,DE=8,则AB的长为________.第17题图第18题图18.如图,将▱ABCD沿EF对折,使点A落在点C处.若∠A=60°,AD=4,AB=8,则AE的长为________.三、解答题(共66分)19.(10分)计算:(1)48+1575-313; (2)(2-2)2+18-⎝ ⎛⎭⎪⎫13-1.20.(6分)已知a =3+1,求代数式(4-23)a 2+(1-3)a 的值.21.(8分)如图,在Rt△ABC 中,∠ACB =90°,CD ⊥AB 于D ,AC =20,BC =15, (1)求AB 的长; (2)求CD 的长.22.(8分)如图,一架梯子AC 长2.5米,斜靠在一面墙上,梯子底端离墙0.7米. (1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了0.4米到A ′,那么梯子的底端在水平方向滑动了几米?23.(10分)如图,在▱ABCD 中,点O 是边BC 的中点,连接DO 并延长,交AB 延长线于点E ,连接BD ,EC .(1)求证:四边形BECD 是平行四边形;(2)若∠A =50°,则当∠BOD =________°时,四边形BECD 是矩形.24.(10分)如图,在矩形ABCD中,AB=6,BC=4,过对角线BD的中点O的直线分别交AB,CD于点E,F,连接DE,BF.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.25.(14分)阅读下面材料:小明遇到这样一个问题:如图①,在△ABC中,DE∥BC,分别交AB,AC于D,E.已知CD⊥BE,CD=3,BE=5,求BC+DE的值.小明发现,过点E作EF∥DC,交BC的延长线于点F,构造△BEF,经过推理和计算能够使问题得到解决(如图②).请回答:BC+DE的值为________.参考小明思考问题的方法,解决问题:如图③,已知▱ABCD和矩形ABEF,AC与DF交于点G,AC=BF=DF,求∠AGF的度数.参考答案与解析1.B 2.C 3.B 4.B 5.A 6.B 7.A 8.A 9.A10.D 解析:∵S 1=3,S 3=9,∴AB =3,CD =3.如图,过A 作AE ∥CD 交BC 于E ,则∠AEB =∠DCB .∵AD ∥BC ,∴四边形AECD 是平行四边形,∴CE =AD ,AE =CD =3.∵∠ABC +∠DCB =90°,∴∠AEB +∠ABC =90°,∴∠BAE =90°,∴BE =AB 2+AE 2=23.∵BC =2AD ,∴BC =2BE =43,∴S 2=(43)2=48,故选D.11.4 3 12.5 13.1 14.直角 15.24 16.(-3,1) 17.1018.285解析:如图,过点C 作CG ⊥AB 交AB 的延长线于点G .在▱ABCD 中,∠D =∠EBC ,AD =BC ,∠A =∠DCB .由折叠性质得∠D ′=∠D =∠EBC ,∠D ′CE =∠A =∠DCB ,D ′C =AD =BC ,CE =AE ,∴∠D ′CF +∠FCE =∠FCE +∠ECB ,∴∠D ′CF =∠ECB .在△D ′CF 与△BCE中,⎩⎪⎨⎪⎧∠D ′=∠EBC ,D ′C =BC ,∠D ′CF =∠BCE ,∴△D ′CF ≌△BCE (ASA),∴D ′F =EB ,CF =CE .∵DF =D ′F ,CE =AE ,∴DF =EB ,AE =CF .设AE =x ,则EB =8-x ,CF =x .在Rt△CBG 中,∵BC =4,∠CBG =∠A =60°,∴BG =12BC =2,由勾股定理可知CG =23,∴EG =EB +BG =8-x +2=10-x .在Rt△CEG 中,由勾股定理可知EG 2+CG 2=CE 2,即(10-x )2+(23)2=x 2,解得x =285,即AE =285.19.解:(1)原式=43+15×53-3=4 3.(5分)(2)原式=6-42+32-3=3- 2.(10分)20.解:原式=(4-23)(3+1)2+(1-3)(3+1)=(4-23)(4+23)-2=16-12-2=2.(6分)21.解:(1)在Rt△ABC 中,∠ACB =90°,BC =15,AC =20,∴AB =AC 2+BC 2=202+152=25.(4分)(2)∵S △ABC =12AC ·BC =12AB ·CD ,∴AC ·BC =AB ·CD ,(6分)∴20×15=25CD ,∴CD =12.(8分)22.解:(1)由题意得AC =2.5米,BC =0.7米.在Rt△ABC 中,由勾股定理得AB =AC 2-BC2= 2.52-0.72=2.4(米).答:这个梯子的顶端距地面有2.4米.(3分)(2)由题意得A ′C ′=AC =2.5米,AA ′=0.4米,∴BA ′=AB -AA ′=2米.在Rt△A ′BC ′中,由勾股定理得BC ′=A ′C ′2-A ′B 2= 2.52-22=1.5(米),∴CC ′=BC ′-BC =1.5-0.7=0.8(米).(7分)答:梯子的底端在水平方向滑动了0.8米.(8分)23.(1)证明:∵四边形ABCD 为平行四边形,∴AB ∥DC ,AB =CD ,∴∠OEB =∠ODC .又∵O 为BC 的中点,∴BO =CO .(2分)在△BOE 和△COD 中,⎩⎪⎨⎪⎧∠OEB =∠ODC ,∠BOE =∠COD ,BO =CO ,∴△BOE ≌△COD (AAS),∴OE =OD ,(4分)∴四边形BECD 是平行四边形.(5分)(2)100(10分) 解析:∵四边形ABCD 是平行四边形,∴∠BCD =∠A =50°.∵∠BOD =∠BCD +∠ODC ,∴∠ODC =100°-50°=50°=∠BCD ,∴OC =OD .∵BO =CO ,OD =OE ,∴DE =BC .∵四边形BECD 是平行四边形,∴四边形BECD 是矩形.故答案为100.24.(1)证明:∵四边形ABCD 是矩形,O 是BD 的中点,∴∠A =90°,AD =BC =4,AB ∥DC ,OB =OD ,∴∠OBE =∠ODF .(2分)在△BOE 和△DOF 中,⎩⎪⎨⎪⎧∠OBE =∠ODF ,OB =OD ,∠BOE =∠DOF ,∴△BOE ≌△DOF (ASA),∴EO =FO ,∴四边形BEDF 是平行四边形.(4分)(2)解:当四边形BEDF 是菱形时,BD ⊥EF ,设BE =x ,则DE =x ,AE =6-x .在Rt△ADE 中,DE 2=AD 2+AE 2,∴x 2=42+(6-x )2,解得x =133,即BE =133.(6分)∵BD =AD 2+AB 2=213,∴OB =12BD =13.(8分)∵BD ⊥EF ,∴EO =BE 2-OB 2=2133,∴EF =2EO =4133.(10分)25.解:34(5分) 解析:∵DE ∥BC ,EF ∥DC ,∴四边形DCFE 是平行四边形,∴EF=CD =3,CF =DE .∵CD ⊥BE ,∴EF ⊥BE ,∴BC +DE =BC +CF =BF =BE 2+EF 2=52+32=34,故答案为34.解决问题:连接AE ,CE ,如图所示.∵四边形ABCD 是平行四边形,∴AB ∥DC 且AB =DC .∵四边形ABEF 是矩形,∴AB ∥FE ,AB =EF ,BF =AE ,∴DC ∥FE ,DC =EF ,∴四边形DCEF 是平行四边形,(9分)∴CE ∥DF ,CE =DF .∵AC =BF =DF ,∴AC =AE =CE ,∴△ACE 是等边三角形,∴∠ACE =60°.(12分)∵CE ∥DF ,∴∠AGF =∠ACE =60°.(14分)。

2023-2024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)

2023-2024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)

20232024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)(考试时间:90分钟,满分:100分)一、选择题(每题2分,共20分)1. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=62. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=63. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=64. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8D. 4x2y=65. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=66. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=67. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=68. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=69. 下列哪个选项是正确的?A. 3x+5y=10C. 5x+3y=15D. 4x2y=610. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=6二、填空题(每题2分,共20分)1. 2x+3y=6,求x的值。

2. 3x+5y=10,求y的值。

3. 4x2y=6,求x的值。

4. 5x+3y=15,求y的值。

5. 2x4y=8,求x的值。

6. 3x+5y=10,求y的值。

7. 4x2y=6,求x的值。

8. 5x+3y=15,求y的值。

9. 2x4y=8,求x的值。

10. 3x+5y=10,求y的值。

三、解答题(每题5分,共25分)1. 解方程组:2x+3y=63x+5y=102. 解方程组:5x+3y=153. 解方程组:2x4y=83x+5y=104. 解方程组:3x+5y=104x2y=65. 解方程组:5x+3y=152x4y=8四、计算题(每题10分,共30分)1. 计算:2x+3y=63x+5y=102. 计算:4x2y=65x+3y=153. 计算:2x4y=83x+5y=10五、应用题(每题10分,共20分)1. 应用题:2x+3y=62. 应用题: 4x2y=6 5x+3y=15答案解析:一、选择题1. A2. B3. C4. D5. A6. B7. C8. D9. A10. B二、填空题1. x=12. y=23. x=24. y=35. x=26. y=27. x=28. y=39. x=210. y=2三、解答题1. x=1, y=22. x=2, y=33. x=2, y=24. x=2, y=35. x=2, y=2四、计算题1. x=1, y=22. x=2, y=33. x=2, y=2五、应用题1. x=1, y=22. x=2, y=38. 简答题(每题5分,共25分)1. 简述一元二次方程的一般形式。

2020年初二数学下期中试题(附答案)(1)

2020年初二数学下期中试题(附答案)(1)

2020年初二数学下期中试题(附答案)(1)一、选择题1.下列运算中,正确的是( )A .235+=;B .2(32)32-=-;C .2a a =;D .2()a b a b +=+. 2.小明搬来一架 3.5 米长的木梯,准备把拉花挂在 2.8 米高的墙上,则梯脚与墙脚的距离为( )A .2.7 米B .2.5 米C .2.1 米D .1.5 米3.如图,在矩形ABCD 中,AB=2,BC=3.若点E 是边CD 的中点,连接AE ,过点B 作BF ⊥AE 交AE 于点F ,则BF 的长为( )A .3102B .3105C .105D .3554.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是( )A .10尺B .11尺C .12尺D .13尺5.为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使50%左右的人获得折扣优惠.某市针对乘坐地铁的人群进行了调查.调查小组在各地铁站随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下列说法正确的是( )①每人乘坐地铁的月均花费最集中的区域在80~100元范围内;②每人乘坐地铁的月均花费的平均数范围是40~60元范围内;③每人乘坐地铁的月均花费的中位数在60~100元范围内;④乘坐地铁的月均花费达到80元以上的人可以享受折扣.A .①②④B .①③④C .③④D .①②6.如图,在边长为a 的正方形ABCD 中,把边BC 绕点B 逆时针旋转60︒,得到线段BM .连接AM 并延长交CD 于点N ,连接MC ,则MNC ∆的面积为( )A .2312a -B .2212a -C .2314a -D .2214a - 7.如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处,若∠2=40°,则图中∠1的度数为( )A .115°B .120°C .130°D .140° 8.若一次函数y =(k -3)x -k 的图象经过第二、三、四象限,则k 的取值范围是( )A .k <3B .k <0C .k >3D .0<k <3 9.如图,在矩形ABCD 中,E ,F 分别是边AB ,CD 上的点,AE=CF ,连接EF ,BF ,EF 与对角线AC 交于点O ,且BE=BF ,∠BEF=2∠BAC ,FC=2,则AB 的长为( )A .83B .8C .43D .610.如图,在正方形网格(每个小正方形的边长都是1)中,若将△ABC 沿A ﹣D 的方向平移AD 长,得△DEF (B 、C 的对应点分别为E 、F ),则BE 长为( )A .1B .2C .5D .311.如图,点E F G H 、、、分别是四边形ABCD 边AB 、BC 、CD 、DA 的中点.则下列说法:①若AC BD =,则四边形EFGH 为矩形;②若AC BD ⊥,则四边形EFGH 为菱形;③若四边形EFGH 是平行四边形,则AC 与BD 互相平分;④若四边形EFGH 是正方形,则AC 与BD 互相垂直且相等.其中正确的个数是( )A .1B .2C .3D .412.要使代数式23x -有意义,则x 的取值范围是( ) A .3x ≠ B .3x > C .3x ≥ D .3x ≤二、填空题13.比较大小:52_____13.14.当直线y=kx+b 与直线y=2x-2平行,且经过点(3,2)时,则直线y=kx+b 为______.15.如图,已知正方形ABCD ,以BC 为边作等边△BCE ,则∠DAE 的度数是_____.16.菱形ABCD 中,对角线AC =8,BD =6,则菱形的边长为_____.17.已知菱形ABCD 的两条对角线长分别为12和16,则这个菱形ABCD 的面积S=_____.18.已知:如图,∠ABC =∠ADC =90°,M 、N 分别是AC 、BD 的中点,AC =10,BD =8,则MN =_____.19.如图,在平行四边形ABCD 中,P 是CD 边上一点,且AP 和BP 分别平分∠DAB 和∠CBA ,若AD=5,AP=8,则△APB 的周长是 .20.如图,已知函数y ax b =+和y kx =的图象交于点P, 则根据图象可得,关于y ax b y kx =+⎧⎨=⎩的二元一次方程组的解是_____________。

人教版八年级下册数学期中考试试题及答案

人教版八年级下册数学期中考试试题及答案

人教版八年级下册数学期中考试试卷一、单选题1.下列式子中,属于最简二次根式的是()AB CD 2.下列运算正确的是()A .=B=C2=-D 2÷=3)A .﹣3B C .﹣3D 4.如图,将长方形纸片折叠,使A 点落在边BC 上的F 处,折痕为BE ,若沿EF 剪下,则折叠部分展开是一个正方形,其数学原理是()A .有一组邻边相等的矩形是正方形B .对角线相等的菱形是正方形C .两个全等的直角三角形构成正方形D .轴对称图形是正方形5.如图,在Rt ABC △中,1AB BC ==,90ABC ∠=︒,点A ,B 在数轴上对应的数分别为1,2,以点A 为圆心,AC 长为半径画弧,交数轴负半轴于点D ,则与点D 对应的数是()A 1B .1C D .6.有下列四个命题:其中正确的为()A .两条对角线互相平分的四边形是平行四边形;B .两条对角线相等的四边形是菱形;C .两条对角线互相垂直的四边形是正方形;D .两条对角线相等且互相垂直的四边形是正方形.7.如图,将▱ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若ABD 48∠= ,CFD 40∠= ,则E ∠为()A .102B .112C .122D .928.已知四个三角形分别满足下列条件:①三角形的三边之比为1:12;②三角形的三边分别是9、40、41;③三角形三内角之比为1:2:3;④三角形一边上的中线等于这边的一半.其中直角三角形有()个A .4B .3C .2D .19.如图是一圆柱形玻璃杯,从内部测得底面直径为12cm ,高为16cm ,现有一根长为25cm 的吸管任意放入杯中,则吸管露在杯口外的长度最少是()A .6cmB .5cmC .9cmD .25273cm-10.如图,在矩形ABCD 中,5AB =,3AD =,动点Р满足3PAB ABCD S S = 矩形,则点Р到A 、B 两点距离之和PA PB +的最小值为()A 29B 34C .52D 41二、填空题11在实数范围内有意义,则x的取值范围是_________12.如图,在Rt △ABC 中,CD 是斜边AB 上的中线,∠A =20°,则∠BCD =________.13.如图,M 是ABC 的边BC 的中点,AN 平分BAC ∠,BN AN ⊥于点N ,延长BN 交AC 于点D ,已知10AB =,15BC =,3MN =,则ABC 的周长为______.14.勾股定理a 2+b 2=c 2本身就是一个关于a ,b ,c 的方程,满足这个方程的正整数解(a ,b ,c )通常叫做勾股数组.毕达哥拉斯学派提出了一个构造勾股数组的公式,根据该公式可以构造出如下勾股数组:(3,4,5),(5,12,13),(7,24,25),….分析上面勾股数组可以发现,4=1×(3+1),12=2×(5+1),24=3×(7+1),…分析上面规律,第5个勾股数组为_____.15.如图,在矩形ABCD 中,5AB =,6BC =,点M ,N 分别在AD ,BC 上,且13AM AD =,13BN BC =,E 为直线BC 上一动点,连接DE ,将DCE 沿DE 所在直线翻折得到DC E ' ,当点C '恰好落在直线MN 上时,CE 的长为______.三、解答题16.计算:(1)23-(2)22111244a a a a a ---÷+++其中1a =17.如图,在△ABC 中,AB=BC ,BD 平分∠ABC ,四边形ABED 是平行四边形,DE 交BC 于点F ,连接CE求证:四边形BECD 是矩形.18.如图,在四边形ABCD 中,//AD BC ,对角线BD 的垂直平分线与边AD 、BC 分别相交于点M 、N .(1)求证:四边形BNDM 是菱形;(2)若菱形BNDM 的周长为52,10MN =,求菱形BNDM 的面积.19.台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形气旋风暴,有极强的破坏力,此时某台风中心在海域B 处,在沿海城市A 的正南方向240千米,其中心风力为12级,每远离台风中心25千米,台风就会减弱一级,如图所示,该台风中心正以20千米/时的速度沿北偏东30°方向向C 移动,且台风中心的风力不变,若城市所受风力达到或超过4级,则称受台风影响.试问:(1)A 城市是否会受到台风影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?20.如图,已知正方形ABCD连接AC ,BD 交于点O ,CE 平分ACD ∠交BD 于点E .(1)求DE 的长;(2)过点E 作EF CE ⊥,交AB 于点F ,求证:BF DE =.21.如图,在矩形ABCD 中,M ,N 分别是边AD ,BC 的中点,E ,F 分别是线段BM ,CM 的中点.(1)求证:ABM DCM △≌△;(2)四边形MENF 是__________;(3)当:AB AD =______时,四边形MENF 是正方形.22.在菱形ABCD 中,60ABC ∠=︒,点P 是射线DB 上一动点,以CP 为边向左侧作等边CPE △.点E 的位置随着点P 的位置变化而变化.(1)如图1,当点E 在菱形ABCD 内部或边上时,连接AE ,则DP 与AE 的数量关系是______,AE 与CB 的位置关系是______;(2)当点E 在菱形ABCD 外部时,(1)中的结论是否成立?若成立,请选择图2或图3中的一种情况予以证明;若不成立,请说明理由.(3)如图4,当点P 在线段DB 的延长线上时,连接DE ,若AB =DE =出四边形CBPE 的面积.23.阅读材料,回答问题:1()中国古代数学著作图1《周髀算经》有着这样的记载:“勾广三,股修四,经隅五.”.这句话的意思是:“如果直角三角形两直角边为3和4时,那么斜边的长为5.”.上述记载表明了:在Rt ABC 中,如果C 90∠=︒,BC a =,AC b =,AB c =,那么a ,b ,c 三者之间的数量关系是:______.2()对于这个数量关系,我国汉代数学家赵爽根据“赵爽弦图”(如图2,它是由八个全等直角三角形围成的一个正方形),利用面积法进行了证明.参考赵爽的思路,将下面的证明过程补充完整:证明:ABC 1S ab 2= ,2ABCD S c =正方形,MNPQ S =正方形______.又 ______=______,221(a b)4ab c 2∴+=⨯+,整理得222a 2ab b 2ab c ++=+,∴______.3()如图3,把矩形ABCD 折叠,使点C 与点A 重合,折痕为EF ,如果AB 4=,BC 8=,求BE 的长.参考答案1.A【解析】最简二次根式要满足两个条件:被平方数中不含有开得尽方的因数或因式;被开方数中不含分母.依据这两条判断即可.【详解】A 、是最简二次根式,故符合题意;B 、8中有因数4可以开方,故不符合题意;C 、被开方数中含有分母,故不符合题意;D 、被开方数中有开得尽方的因式,故不符合题意;故选:A .【点睛】本题考查了最简二次根式的含义,关键把握最简二次根式的两个条件.2.D【解析】根据二次根式的运算及性质即可完成.【详解】A、被平方数不相同的两个最简二次根式不能相加,故错误;B≠C2=,故错误;D÷===,故正确;2故选:D.【点睛】本题考查了二次根式的加法和除法运算、二次根式的性质,掌握运算法则及性质是关键,同时在二次根式的学习中避免犯类似错误.3.C【解析】【详解】试题解析:原式=.故选C.考点:二次根式的乘除法.4.A【解析】【分析】将长方形纸片折叠,使A点落BC上的F处,可得到BA=BF,折痕为BE,沿EF剪下,故四边形ABFE为矩形,且有一组邻边相等,故四边形ABFE为正方形.【详解】解:∵将长方形纸片折叠,A落在BC上的F处,∴BA=BF,∵折痕为BE,沿EF剪下,∴四边形ABFE为矩形,∴四边形ABEF为正方形.故用的判定定理是;邻边相等的矩形是正方形.故选;A.【点睛】本题考查了正方形的判定定理,关键是根据邻边相等的矩形是正方形和翻折变换解答.5.B【解析】【分析】由勾股定理可得AC的长,从而得AD=AC,则由点A表示的数示得点D表示的数.【详解】在Rt△ABC中,AB=BC=1,则由勾股定理得:AC==∵以点A为圆心,AC长为半径画弧,交数轴负半轴于点D∴∴D点表示的实数为:1故选:B.【点睛】本题考查了实数与数轴、勾股定理等知识,熟知实数与数轴上的点一一对应关系是解答此题的关键.6.A【解析】【分析】利用平行四边形的判定、菱形的判定及正方形的判定逐一判断后即可确定正确的选项.【详解】解:A.两条对角线互相平分的四边形是平行四边形,正确;B.两条对角线互相垂直平分的四边形是菱形,故错误;C.两条对角线互相垂直平分且相等的四边形是正方形,故错误;D.两条对角线相等且互相垂直平分的四边形是正方形,故错误.故选:A.【点睛】本题考查了命题与定理的知识,了解平行四边形的判定、菱形的判定及正方形的判定是解答本题的关键,难度较小.7.B【解析】【分析】由平行四边形的性质和折叠的性质,得出ADB BDF DBC ∠∠∠==,由三角形的外角性质求出1BDF DBC DFC 202∠∠∠=== ,再由三角形内角和定理求出A ∠,即可得到结果.【详解】AD //BC ,ADB DBC ∠∠∴=,由折叠可得ADB BDF ∠∠=,DBC BDF ∠∠∴=,又DFC 40∠= ,DBC BDF ADB 20∠∠∠∴=== ,又ABD 48∠= ,ABD ∴ 中,A 1802048112∠=--= ,E A 112∠∠∴== ,故选B .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用,熟练掌握平行四边形的性质,求出ADB ∠的度数是解决问题的关键.8.A【解析】【详解】①设三角形三边分别为x 、x ,则x 2+x 2=x )2,∴此三角形是直角三角形;②92+402=412,∴此三角形是直角三角形;③设三角形三个内角分别为x°、2x°、3x°,则x+2x+3x=180,解得x=30,3x=90,所以此三角形是直角三角形;④如图,∵CD=AD=BD ,∴∠A=∠ACD ,∠B=∠BCD ,∴∠ACD+∠BCD=90°,∴△ABC 是直角三角形.故选A.9.B【解析】【分析】吸管露出杯口外的长度最小,则在杯内的长度最长,此时若沿杯子的底面直径纵向切开,则当吸管在矩形的对角线所在直线上时,杯内吸管最长,然后用勾股定理即可解决.【详解】如图,沿杯子的底面直径纵向切开,则当吸管在矩形的对角线所在直线上时,杯内吸管最长,22121620+=(cm)所以吸管露出杯口外的长度最少为25-20=5(cm)故选:B .【点睛】本题考查了勾股定理在实际生活中的应用,关键是构造直角三角形,利用勾股定理解答.10.D【解析】【分析】由3PAB ABCD S S = 矩形,可得△PAB 的AB 边上的高h=2,表明点P 在平行于AB 的直线EF 上运动,且两平行线间的距离为2;延长FC 到G ,使FC=CG ,连接AG 交EF 于点H ,则点P 与H 重合时,PA+PB 最小,在Rt △GBA 中,由勾股定理即可求得AG 的长,从而求得PA+PB 的最小值.【详解】设△PAB 的AB 边上的高为h∵3PAB ABCDS S = 矩形∴132AB h AB AD ⨯= ∴h=2表明点P 在平行于AB 的直线EF 上运动,且两平行线间的距离为2,如图所示∴BF=2∵四边形ABCD 为矩形∴BC=AD=3,∠ABC=90゜∴FC=BC-BF=3-2=1延长FC 到G ,使CG=FC=1,连接AG 交EF 于点H∴BF=FG=2∵EF ∥AB∴∠EFG=∠ABC=90゜∴EF 是线段BG 的垂直平分线∴PG=PB∵PA+PB=PA+PG≥AG∴当点P 与点H 重合时,PA+PB 取得最小值AG在Rt △GBA 中,AB=5,BG=2BF=4,由勾股定理得:AG ===即PA+PB 故选:D .【点睛】本题是求两条线段和的最小值问题,考查了矩形的性质,勾股定理,线段垂直平分线的性质、两点之间线段最短等知识,难点在于确定点P 运动的路径,路径确定后就是典型的将军饮马问题.11.x≤5.【解析】【详解】解:由题意得:50x -≥,解得5x ≤,故答案为5x ≤.考点:二次根式有意义的条件.12.70°【解析】【分析】根据直角三角形两锐角互余求得∠B=70°,然后根据直角三角形斜边上中线定理得出CD=BD ,求出∠BCD=∠B 即可.【详解】解:在Rt △ABC 中,∵∠A=20°,∴∠B=90°-∠A=70°,∵CD 是斜边AB 上的中线,∴BD=CD ,∴∠BCD=∠B=70°,故答案为70°.【点睛】本题考查了直角三角形斜边上的中线性质,等腰三角形性质等知识点的理解和运用,能求出BD=CD=AD 和∠B 的度数是解此题的关键.13.41【解析】【分析】证明△ABN ≌△ADN ,得到AD =AB =10,BN =DN ,根据三角形中位线定理求出CD ,计算即可.【详解】解:∵AN 平分BAC ∠,∴∠BAN=∠DAN在△ABN 和△ADN 中,BAN DAN AN AN ANB AND ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABN ≌△ADN ,∴AD =AB =10,BN =DN ,∵M 是△ABC 的边BC 的中点,BN =DN ,∴CD =2MN =6,∴△ABC 的周长=AB+BC+CA =41,故答案为:41.【点睛】本题考查的是三角形的中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.14.(11,60,61)【解析】【分析】由勾股数组:(3,4,5),(5,12,13),(7,24,25)…中,4=1×(3+1),12=2×(5+1),24=3×(7+1),…可得第5组勾股数中间的数为:5×(11+1)=60,进而得出(11,60,61).【详解】由勾股数组:(3,4,5),(5,12,13),(7,24,25)…中,4=1×(3+1),12=2×(5+1),24=3×(7+1),…可得第4组勾股数中间的数为4×(9+1)=40,即勾股数为(9,40,41);第5组勾股数中间的数为:5×(11+1)=60,即(11,60,61).故答案为(11,60,61).【点睛】本题主要考查了勾股数,关键是找出数据之间的关系,掌握勾股定理.15.52或10【解析】【分析】分两种情况:E 点在BC 上;点E 在CB 的延长线上.分别由折叠性质勾股定理,矩形的性质进行解答.【详解】解:设CE=x,则C′E=x,当E点在线段BC上时,如图1,∵矩形ABCD中,AB=5,∴CD=AB=5,AD=BC=6,AD∥BC,∵点M,N分别在AD,BC上,且3AM=AD,3BN=BC,∴DM=CN=4,∴四边形CDMN为平行四边形,∵∠NCD=90°,∴四边形MNCD是矩形,∴∠DMN=∠MNC=90°,MN=CD=5由折叠知,C′D=CD=5,===,∴MC′3∴C′N=5﹣3=2,∵EN=CN﹣CE=4﹣x,∴C′E2﹣NE2=C′N2,∴x2﹣(4﹣x)2=22,解得,x=2.5,即CE=2.5;当E点在CB的延长线上时,如图2,∵矩形ABCD 中,AB =5,∴CD =AB =5,AD =BC =6,AD ∥BC ,∵点M ,N 分别在AD ,BC 上,且3AM =AD ,3BN =BC ,∴DM =CN =4,∴四边形CDMN 为平行四边形,∵∠NCD =90°,∴四边形MNCD 是矩形,∴∠DMN =∠MNC =90°,MN =CD =5由折叠知,C′D =CD =5,∴MC′2222'543C D MD =-=-=,∴C′N =5+3=8,∵EN =CE ﹣CN =x ﹣4,C′E 2﹣NE 2=C′N 2,∴x 2﹣(x ﹣4)2=82,解得,x =10,即CE =10;综上,CE =2.5或10.故答案为:2.5或10.【点睛】本题主要考查了矩形的性质与判定,勾股定理,折叠的性质,关键是分情况讨论.16.(1)1132;(2)11a -+,22.【解析】【分析】(1)直接利用二次根式的性质分别化简得出答案;(2)先根据分式混合运算的法则把原式进行化简,再把a 的值代入进行计算即可.【详解】(1)原式==(2)原式21(1)(1)12(2)a a a a a -+-=-÷++21(2)12(1)(1)a a a a a -+=-⋅+-+211a a +=-+1211a a a a ++=-++11a =-+当1a =时,原式2=-.【点睛】本题考查了二次根式的加减混合运算以及分式的化简求值,熟知运算的法则是解答此题的关键.17.证明见解析【解析】【分析】根据已知条件易推知四边形BECD 是平行四边形.结合等腰△ABC“三线合一”的性质证得BD ⊥AC ,即∠BDC=90°,所以由“有一内角为直角的平行四边形是矩形”得到▱BECD 是矩形.【详解】证明:∵AB=BC ,BD 平分∠ABC ,∴BD ⊥AC ,AD=CD .∵四边形ABED 是平行四边形,∴BE ∥AD ,BE=AD ,∴四边形BECD 是平行四边形.∵BD ⊥AC ,∴∠BDC=90°,∴▱BECD 是矩形.【点睛】本题考查矩形的判定,掌握有一个角是直角的平行四边形是矩形是本题的解题关键.18.(1)见解析;(2)120【解析】【分析】(1)证△MOD ≌△NOB (AAS ),得出OM=ON ,由OB=OD ,证出四边形BNDM 是平行四边形,进而得出结论;(2)由菱形的周长得到菱形的边长BM=13,由菱形的性质及MN=10得到OM=5,在Rt BOM △中由勾股定理得到OB 的长,进而得到BD 的长,利用菱形的面积公式即可求得BNDM 的面积【详解】(1)证明:∵//AD BC ,∴DMO BNO ∠=∠.∵直线MN 是对角线BD 的垂直平分线,∴OB OD =,MN BD ⊥.在MOD 和NOB 中,DMO BNO MOD NOB OD OB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴(AAS)MOD NOB ≌△△,∴OM ON =,∵OB OD =,∴四边形BNDM 是平行四边形,∵MN BD ⊥,∴四边形BNDM 是菱形;(2)∵菱形BNDM 的周长为52,∴13BN ND DM MB ====,∴12OM ON MN ==,又10MN =,∴5OM =在Rt BOM △中,由勾股定理得12OB ===,故24BD =,故菱形BNDM 面积11202MN BD =⨯⨯=.【点睛】本题考查了菱形的判定与性质、平行四边形的判定与性质、全等三角形的判定与性质、勾股定理等知识;熟练掌握菱形的判定与性质,证明三角形全等是解题的关键.19.(1)该城市会受到这次台风的影响;(2)16;(3)7.2.【解析】【详解】试题分析:(1)过A 作AD ⊥BC 于D ,利用30°角所对边是斜边一半,求得AD,与200比较.(2)以A 为圆心,200为半径作⊙A 交BC 于E 、F,勾股定理计算弦长EF.(3)AD 距台风中心最近,计算风力级别.试题解析:(1)该城市会受到这次台风的影响.理由是:如图,过A 作AD ⊥BC 于D .在Rt △ABD 中,∵∠ABD=30°,AB=240,∴AD=12AB=120,∵城市受到的风力达到或超过四级,则称受台风影响,∴受台风影响范围的半径为25×(12﹣4)=200,∵120<200,∴该城市会受到这次台风的影响.(2)如图以A 为圆心,200为半径作⊙A 交BC 于E 、F,则AE=AF=200,∴台风影响该市持续的路程为:EF=2DE=2∴台风影响该市的持续时间t=320÷20=16(小时).(3)∵AD 距台风中心最近,∴该城市受到这次台风最大风力为:12﹣(120÷25)=7.2(级).20.(1)22(2)见解析【解析】【分析】(1)根据正方形的性质,CE 平分ACD ∠,可得122.52ACE DCE ACD ∠=∠=∠=︒,从而67.5∠=︒BCE ,根据三角形的内角和定理可得BEC BCE ∠=∠,从而2BE BC =利用勾股定理求出2BD =,即可求解;(2)根据EF CE ⊥,可得∠=∠FEB DCE ,又有45FBE CDE ∠=∠=︒,BE BC CD ==,可证≌FEB ECD △△,即可求证.【详解】解:(1)∵四边形ABCD 是正方形,∴90ABC ADC BCD ∠=∠=∠=︒,45DBC BCA ACD ABD CDB ∠=∠=∠=∠=∠=︒.∵CE 平分DCA ∠,∴122.52ACE DCE ACD ∠=∠=∠=︒,∴4522.567.5BCE BCA ACE ∠=∠+∠=︒+︒=︒,∵45DBC ∠=︒,∴18067.54567.5BEC BCE ∠=︒-︒-︒=︒=∠,∴2BE BC ==在Rt BCD 中,由勾股定理得()()22222BD =+=,∴22DE BD BE =-=(2)∵EF CE ⊥,∴90CEF ∠=︒,∴9067.522.5FEB CEF CEB DCE ∠=∠-∠=︒-︒=︒=∠,∵45FBE CDE ∠=∠=︒,BE BC CD ==,∴(ASA)FEB ECD ≌△△,∴BF DE =.【点睛】本题主要考查了正方形的性质,三角全等的判定和性质,等腰三角形的判定,三角形内角定理,勾股定理等知识,证明三角形全等是解题的关键.21.(1)见解析;(2)菱形;(3)当:1:2AB AD =时,四边形MENF 是正方形.【解析】【分析】(1)在矩形ABCD 中,可得AB DC =,90A D ∠=∠=︒,再根据M 为AD 中点,得AM DM =,即可求证;(2)由(1)ABM DCM △≌△,得BM CM =,再由E ,F 分别是线段BM ,CM 的中点,可得EM FM =,然后N 分别是边BC 的中点,根据三角形中位线定理可得EN MF =,FN EM =,得到四边形MENF 是平行四边形,即证;(3)当:1:2AB AD =时,有12AB AD =,可得45ABM AMB ︒∠=∠=,同理45DMC ︒∠=,可得90EMF ︒∠=,即可求解.【详解】(1)证明:∵四边形ABCD 是矩形,∴AB DC =,90A D ∠=∠=︒,∵M 为AD 中点,∴AM DM =,在ABM 和DCM △,AM DM =,A D ∠=∠,AB CD =,∴()SAS ABM DCM ≌△△;(2)由(1)ABM DCM △≌△,∴BM CM =,∵E ,F 分别是线段BM ,CM 的中点,∴12BE EM BM ==,12CF MF MC ==,∴EM FM =,∵N 分别是边BC 的中点,∴12EN MC =,12FN BM =,∴EN MF =,FN EM =,∴四边形MENF 是平行四边形,∵EM FM =,∴四边形MENF 是菱形;(3)解:当:1:2AB AD =时,四边形MENF 是正方形;理由如下:当:1:2AB AD =时,有12AB AD =,∵M 为AD 中点,∴AB AM =,∴ABM AMB ∠=∠,∵90A ︒∠=,∴45ABM AMB ︒∠=∠=,同理45DMC ︒∠=,∴180180454590EMF AMB DMC ︒︒︒︒︒∠=-∠-∠=--=,由(2)四边形MENF 是菱形,∴四边形MENF 是正方形,∴当:1:2AB AD =时,四边形MENF 是正方形.【点睛】本题主要考查了矩形的性质,三角形全等的判定和性质,菱形的判定,正方形的判定,三角形的中位线定理,熟练掌握相关性质定理,判定定理是解题的关键.22.(1)①DP AE =,②AE CB ⊥;(2)(1)中的结论仍然成立,理由见解析;(3)四边形CBPE 【解析】【分析】(1)连接AC ,根据菱形的性质,可得到ADC 、ABC 是等边三角形,再由PCE 是等边三角形,可得CP CE =,DCP ACE ∠=∠,可证得CDP CAE ≌△△,从而DP AE =,30︒∠=∠=CAE CDP ,利用等边三角形三线合一可证得AE CB ⊥;(2)连接AC ,根据菱形的性质,可得到ADC 、ABC 是等边三角形,再由PCE 是等边三角形,可得CP CE =,DCP ACE ∠=∠,可证得CDP CAE ≌△△,从而DP AE =,30︒∠=∠=CAE CDP ,利用等边三角形三线合一可证得AE CB ⊥;(3)连结AC 交BD 与点O ,过点E 作EM PC ⊥于点M ,则12PM PC =,由(2)知AE AD ⊥,DP AE =,利用菱形的性质和勾股定理可求得7==DP AE ,3BO =,从而1PB PD BD =-=,4PO =,利用勾股定理求得PE PC ==EM =,即可得到四边形CBPE 的面积等于CPE PBC S S + ,即可求解.【详解】(1)①DP AE =②AE CB ⊥理由如下:如图,连接AC ,∵在菱形ABCD 中,AB BC CD DA ===,60ADC ABC ∠=∠=︒,1302CDP ADC ︒∠=∠=,∴ADC 、ABC 是等边三角形,∴AC CD =,60ACD ∠=︒,60BAC ︒∠=.∵PCE 是等边三角形,∴CP CE =,60PCE ∠=︒,∴∠-∠=∠-∠ACD ACP PCE ACP ,即DCP ACE ∠=∠,∴CDP CAE ≌△△,∴DP AE =,30︒∠=∠=CAE CDP ,∴30BAE CAE ︒∠=∠=,即AE 平分BAC ∠,∴AE CB ⊥;(2)(1)中的结论仍然成立,理由如下:如图,连接AC ,∵在菱形ABCD 中,AB BC CD DA ===,60ADC ABC ∠=∠=︒,∴ADC 是等边三角形,∴AC CD =,60ACD ∠=︒.∵PCE 是等边三角形,∴CP CE =,60PCE ∠=︒,∴ACD ACP PCE ACP ∠+∠=∠+∠,即DCP ACE ∠=∠,∴CDP CAE ≌△△,∴DP AE =,CAE CDP ∠=∠.∵在菱形ABCD 中,1302CDP ADC ∠=∠=︒,60ACB ∠=︒,∴30CAE CDP ∠=∠=︒,∴90DAE ∠=︒,即AE AD ⊥,∵//AD BC ,∴AE CB ⊥.(3)如图,连结AC 交BD 与点O ,过点E 作EM PC ⊥于点M ,则12PM PC =,由(2)知AE AD ⊥,DP AE =,在菱形ABCD 中,AC BD ⊥,23AB BC AD ===,12AO CO AC ==,12BO BD =,∵DE =,∴7AE ===,∴7==DP AE ,∵60ABC ∠=︒,∴ABC 是等边三角形,∴1302ABO ABC ︒∠=∠=,AC AB ==,∴12AO CO AC ===3BO ==,∴6BD =,∴1PB PD BD =-=,4PO =,∴PC ===,∴2PM =,PE PC ==∴2EM ==,∴四边形CBPE 的面积是11111222224CPE PBC S S PC EM PB CO +=⋅+⋅=⨯⨯+⨯⨯= .【点睛】本题主要考查了菱形的性质,等边三角形的性质和判定,全等三角形的判定与性质,勾股定理,解题的关键是找到全等三角形,利用全等三角形的性质解答问题.23.(1)222+=a b c ;(2)()2a b +,正方形的面积=四个全等直角三角形的面积的面积+正方形AEDB 的面积,222+=a b c ;(3)3.【解析】【分析】(1)根据勾股定理解答即可;(2)根据题意、结合图形,根据完全平方公式进行计算即可;(3)根据翻折变换的特点、根据勾股定理列出方程,解方程即可.【详解】解:(1)在Rt ABC 中,90C ∠=︒,BC a =,AC b =,AB c =,由勾股定理得,222+=a b c ,故答案为:222+=a b c ;(2)12ABC S ab ∆= ,2ABCD S c =正方形,2()MNPQ S a b =+正方形;又 正方形的面积=四个全等直角三角形的面积的面积+正方形AEDB 的面积,221()42a b ab c ∴+=⨯+,整理得,22222a ab b ab c ++=+,222a b c ∴+=,故答案为:2()a b +;正方形的面积;四个全等直角三角形的面积的面积+正方形AEDB 的面积;222+=a b c ;(3)设BE x =,则8EC x =-,由折叠的性质可知,8AE EC x ==-,在Rt ABE △中,222AE AB BE =+,则222(8)4x x -=+,解得,3x =,则BE 的长为3.【点睛】本题考查的是正方形和矩形的性质、勾股定理、翻折变换的性质,正确理解勾股定理、灵活运用数形结合思想是解题的关键.。

人教版八年级下册数学期中考试试题含答案

人教版八年级下册数学期中考试试题含答案

人教版八年级下册数学期中考试试卷一、选择题(本大题共12个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.要使式子有意义,则x的取值范围是()A.x≤﹣2B.x≤2C.x≥2D.x≥﹣22.下列二次根式中,最简二次根式是()A.B.C.D.3.下列二次根式中,与之积为无理数的是()A.B.C.D.4.若(m﹣1)2+=0,则m+n的值是()A.﹣1B.0C.1D.25.以下列长度为三角形边长,不能构成直角三角形的是()A.5,12,13B.4,5,6C.1,,D.7,24,256.如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2B.∠BAD=∠BCD C.AB=CD D.AC⊥BD7.如图,是由三个正方形组成的图形,则∠1+∠2+∠3等于()A.60°B.90°C.120°D.180°8.如图,在△ABC中,∠C=90°,AB=17cm,AC=8cm,若BE=3cm,则矩形CBEF 的面积是()A.9cm2B.24cm2C.45cm2D.51cm29.设n为正整数,且n<<n+1,则n的值为()A.5B.6C.7D.810.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形11.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()A.B.C.D.12.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2B.4C.4D.8二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.计算:=.14.相邻两边长分别是2+与2﹣的平行四边形的周长是.15.等腰三角形的腰为13cm,底边长为10cm,则它的面积为.16.已知▱ABCD中,∠A+∠C=240°,则∠B的度数是.17.若菱形的两条对角线长分别是6和8,则此菱形的周长是,面积是.18.如图所示,平行四边形ABCD中,顶点A、B、D在坐标轴上,AD=5,AB=9,点A的坐标为(﹣3,0),则点C的坐标为.19.如图,在平行四边形ABCD中,DE平分∠ADC,AD=8,BE=4,则平行四边形ABCD的周长是.20.如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为.三、解答下列各题(本题有7个小题,共60分)21.计算:(1)4+﹣+4(2)(﹣2)2÷(+3﹣)22.(1)先化简,再求值:÷(﹣),其中x=+,y=﹣.(2)在数轴上画出表示的点.(要求画出作图痕迹)(3)如图,左边是由两个边长为2的小正方形组成,沿着图中虚线剪开,可以拼成右边的大正方形,求大正方形的边长.23.如图,平行四边形ABCD,点E,F分别在BC,AD上,且BE=DF,求证:四边形AECF是平行四边形.24.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.25.观察下列等式:①==;②==;③==…回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.26.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.27.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.参考答案与试题解析一、选择题(本大题共12个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.要使式子有意义,则x的取值范围是()A.x≤﹣2B.x≤2C.x≥2D.x≥﹣2【考点】二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于或等于0,列不等式,即可求出x的取值范围.【解答】解:由题意得:2+x≥0,解得:x≥﹣2,故选D.【点评】本题考查了二次根式有意义的条件,难度不大,解答本题的关键是掌握二次根式的被开方数为非负数.2.下列二次根式中,最简二次根式是()A.B.C.D.【考点】最简二次根式.【分析】根据最简二次根式的概念进行判断即可.【解答】解:=a,A错误;=,B错误;=3,C错误;是最简二次根式,D正确,故选:D.【点评】本题考查的是最简二次根式的概念,最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.3.下列二次根式中,与之积为无理数的是()A.B.C.D.【考点】二次根式的乘除法.【分析】根据二次根式的乘法进行计算逐一判断即可.【解答】解:A、,不是无理数,错误;B、,是无理数,正确;C、,不是无理数,错误;D、,不是无理数,错误;故选B.【点评】此题考查二次根式的乘法,关键是根据法则进行计算,再利用无理数的定义判断.4.若(m﹣1)2+=0,则m+n的值是()A.﹣1B.0C.1D.2【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,m﹣1=0,n+2=0,解得m=1,n=﹣2,所以,m+n=1+(﹣2)=﹣1.故选A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.5.以下列长度为三角形边长,不能构成直角三角形的是()A.5,12,13B.4,5,6C.1,,D.7,24,25【考点】勾股定理的逆定理.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、52+122=132,故是直角三角形,故正确;B、42+52≠62,故不是直角三角形,故错误;C、12+()2=()2,故是直角三角形,故正确;D、72+242=252,故是直角三角形,故正确.故选B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.6.如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2B.∠BAD=∠BCD C.AB=CD D.AC⊥BD【考点】平行四边形的性质.【分析】根据平行四边形的性质,平行四边形对边平行以及对边相等和对角相等分别判断得出即可.【解答】解:∵在平行四边形ABCD中,∴AB∥CD,∴∠1=∠2,(故A选项正确,不合题意);∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,(故B选项正确,不合题意);AB=CD,(故C选项正确,不合题意);无法得出AC⊥BD,(故D选项错误,符合题意).故选:D.【点评】此题主要考查了平行四边形的性质,熟练掌握相关的性质是解题关键.7.如图,是由三个正方形组成的图形,则∠1+∠2+∠3等于()A.60°B.90°C.120°D.180°【考点】三角形内角和定理;正方形的性质.【分析】根据三角形内角和为180°,得到∠BAC+∠BCA+∠ABC=180°,又∠4=∠5=∠6=90°,根据平角为180°,即可解答.【解答】解:如图,∵图中是三个正方形,∴∠4=∠5=∠6=90°,∵△ABC的内角和为180°,∴∠BAC+∠BCA+∠ABC=180°,∵∠1+∠4+∠BAC=180°,∠2+∠6+∠ABC=180°,∠3+∠5+∠ACB=180°,∴∠1+∠4+∠BAC+∠2+∠6+∠ABC+∠3+∠5+∠ACB=540°,∴∠1+∠2+∠3=540°﹣(∠4+∠5+∠6+∠BAC+∠ABC+∠ACB)=540°﹣90°﹣90°﹣90°﹣180°=90°,故选:B.【点评】本题考查了三角形内角和定理,解决本题的关键是运用三角形内角和为180°,正方形的内角为90°以及平角为180°,即可解答.8.如图,在△ABC中,∠C=90°,AB=17cm,AC=8cm,若BE=3cm,则矩形CBEF 的面积是()A.9cm2B.24cm2C.45cm2D.51cm2【考点】勾股定理;矩形的性质.【专题】计算题.【分析】在直角三角形ABC中,由AB与AC的长,利用勾股定理求出BC的长,再由BE的长,求出矩形CBEF的面积即可.【解答】解:在Rt△ABC中,AB=17cm,AC=8cm,根据勾股定理得:BC==15cm,则矩形CBEF面积S=BC•BE=45cm2.故选C【点评】此题考查了勾股定理,以及矩形的性质,熟练掌握勾股定理是解本题的关键.9.设n为正整数,且n<<n+1,则n的值为()A.5B.6C.7D.8【考点】估算无理数的大小.【分析】首先得出<<,进而求出的取值范围,即可得出n的值.【解答】解:∵<<,∴8<<9,∵n<<n+1,∴n=8,故选;D.【点评】此题主要考查了估算无理数,得出<<是解题关键.10.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形【考点】勾股定理的逆定理.【分析】对原式进行化简,发现三边的关系符合勾股定理的逆定理,从而可判定其形状.【解答】解:∵原式可化为a2+b2=c2,∴此三角形是直角三角形.故选:C.【点评】解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.11.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()【考点】矩形的性质.【分析】本题主要根据矩形的性质,得△EBO ≌△FDO ,再由△AOB 与△OBC 同底等高,△AOB 与△ABC 同底且△AOB 的高是△ABC 高的得出结论.【解答】解:∵四边形为矩形,∴OB=OD=OA=OC ,在△EBO 与△FDO 中,∵,∴△EBO ≌△FDO (ASA ),∴阴影部分的面积=S △AEO +S △EBO =S △AOB ,∵△AOB 与△ABC 同底且△AOB 的高是△ABC 高的,∴S △AOB =S △OBC =S 矩形ABCD .故选:B .【点评】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.12.如图,在平行四边形ABCD 中,AB=4,∠BAD 的平分线与BC 的延长线交于点E ,与DC 交于点F ,且点F 为边DC 的中点,DG ⊥AE ,垂足为G ,若DG=1,则AE 的边长为()【考点】平行四边形的性质;等腰三角形的判定与性质;含30度角的直角三角形;勾股定理.【专题】计算题;压轴题.【分析】由AE为角平分线,得到一对角相等,再由ABCD为平行四边形,得到AD与BE 平行,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得到AD=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长.【解答】解:∵AE为∠DAB的平分线,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,又F为DC的中点,∴DF=CF,∴AD=DF=DC=AB=2,在Rt△ADG中,根据勾股定理得:AG=,则AF=2AG=2,∵平行四边形ABCD,∴AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,则AE=2AF=4.故选:B【点评】此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.计算:=6.【考点】二次根式的混合运算.【专题】计算题.【分析】先把化简,然后把括号内合并后进行二次根式的乘法运算即可.【解答】解:原式=(+2)×=3×=6.故答案为6.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.14.相邻两边长分别是2+与2﹣的平行四边形的周长是8.【考点】二次根式的应用.【分析】根据平行四边形的周长等于相邻两边的和的2倍进行计算即可.【解答】解:平行四边形的周长为:(2++2﹣)×2=8.故答案为:8.【点评】本题考查的是平行四边形的周长的计算和二次根式的加减,掌握平行四边形的周长公式和二次根式的加减运算法则是解题的关键.15.等腰三角形的腰为13cm,底边长为10cm,则它的面积为60cm2.【考点】勾股定理;等腰三角形的性质.【分析】根据题意画出图形,过点A作AD⊥BC于点D,根据BC=10cm可知BD=5cm.由勾股定理求出AD的长,再由三角形的面积公式即可得出结论.【解答】解:如图所示,过点A作AD⊥BC于点D,∵AB=AC=13cm,BC=10cm,∴BD=5cm,∴AD===12cm,∴S△ABC=BC•AD=×10×12=60(cm2).故答案为:60cm2.【点评】本题考查的是勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.16.已知▱ABCD中,∠A+∠C=240°,则∠B的度数是60°.【考点】平行四边形的性质.【分析】由平行四边形的性质得出∠A=∠C,∠A+∠B=180°,再由已知条件求出∠A,即可得出∠B.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠A+∠B=180°,∵∠A+∠C=240°,∴∠A=120°,∴∠B=60°;故答案为:60°.【点评】本题考查了平行四边形的性质;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.17.若菱形的两条对角线长分别是6和8,则此菱形的周长是20,面积是24.【考点】菱形的性质.【分析】首先根据题意画出图形,然后由菱形的两条对角线长分别是6和8,可求得OA=4,OB=3,再由勾股定理求得边长,继而求得此菱形的周长与面积.【解答】解:如图,菱形ABCD中,AC=8,BD=6,∴OA=AC=4,OB=BD=3,AC⊥BD,∴AB==5,∴此菱形的周长是:5×4=20,面积是:×6×8=24.故答案为:20,24.【点评】此题考查了菱形的性质以及勾股定理.注意菱形的面积等于对角线积的一半.18.如图所示,平行四边形ABCD中,顶点A、B、D在坐标轴上,AD=5,AB=9,点A的坐标为(﹣3,0),则点C的坐标为(9,4).【考点】平行四边形的性质;坐标与图形性质.【分析】由平行四边形的性质得出CD=AB=9,由勾股定理求出OD,即可得出点C的坐标.【解答】解:∵四边形ABCD是平行四边形,∴CD=AB=9,∵点A的坐标为(﹣3,0),∴OA=3,∴OD===4,∴点C的坐标为(9,4).故答案为:(9,4).【点评】本题考查了平行四边形的性质、坐标与图形性质、勾股定理;熟练掌握平行四边形的性质,由勾股定理求出OD是解决问题的关键.19.如图,在平行四边形ABCD中,DE平分∠ADC,AD=8,BE=4,则平行四边形ABCD的周长是24.【考点】平行四边形的性质.【分析】由在平行四边形ABCD中,DE平分∠ADC,易证得△CDE是等腰三角形,继而求得CD的长,则可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=8,∴∠ADE=∠DEC,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠CDE=∠DEC,∴CD=CE=BC﹣BE=8﹣4=4,∴AB=CD=4,∴平行四边形ABCD的周长是:AD+BC+CD+AB=24.故答案为:24.【点评】此题考查了平行四边形的性质以及等腰三角形的判定与性质.注意证得△CDE是等腰三角形是关键.20.如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为24m2.【考点】勾股定理的应用.【分析】连接AC,利用勾股定理可以得出三角形ACD和ABC是直角三角形,△ABC的面积减去△ACD的面积就是所求的面积.【解答】解:如图,连接AC由勾股定理可知AC===5,又AC2+BC2=52+122=132=AB2故三角形ABC是直角三角形故所求面积=△ABC的面积﹣△ACD的面积==24(m2).【点评】考查了直角三角形面积公式以及勾股定理的应用.三、解答下列各题(本题有7个小题,共60分)21.计算:(1)4+﹣+4(2)(﹣2)2÷(+3﹣)【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.【解答】解:(1)原式=4+3﹣2+4=7+2;(2)原式=4×12÷(5+﹣4)=48÷(2)=8.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.22.(1)先化简,再求值:÷(﹣),其中x=+,y=﹣.(2)在数轴上画出表示的点.(要求画出作图痕迹)(3)如图,左边是由两个边长为2的小正方形组成,沿着图中虚线剪开,可以拼成右边的大正方形,求大正方形的边长.【考点】图形的剪拼;实数与数轴;分式的化简求值;勾股定理.【分析】(1)首先将括号里面通分,进而利用分式的除法运算法则化简,进而将已知代入求出答案;(2)直接利用勾股定理结合数轴得出的位置;(3)直接利用勾股定理得出大正方形的边长即可.【解答】解:(1)原式=÷=×=,当x=+,y=﹣时,原式==;(2)因为30=25+5,则首先作出以5和为直角边的直角三角形,则其斜边的长即是.如图所示:;(3)如图所示:∵左边是由两个边长为2的小正方形组成,∴大正方形的边长为:=2.【点评】此题主要考查了分式的混合运算以及无理数的确定方法以及勾股定理、图形的剪拼,正确应用勾股定理是解题关键.23.如图,平行四边形ABCD,点E,F分别在BC,AD上,且BE=DF,求证:四边形AECF是平行四边形.【考点】平行四边形的判定与性质.【专题】证明题.【分析】根据平行四边形的性质得出AD∥BC,AD=BC,求出AF=CE,根据平行四边形的判定得出即可.【解答】证明:四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵DF=BE,∴AF=CE,∴四边形AECF是平行四边形.【点评】本题考查了平行四边形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.24.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.【考点】翻折变换(折叠问题).【专题】计算题.【分析】根据矩形的性质得DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,再根据折叠的性质得AF=AD=10,DE=EF,在Rt△ABF中,利用勾股定理计算出BF=6,则FC=4,设EC=x,则DE=EF=8﹣x,在Rt△EFC中,根据勾股定理得x2+42=(8﹣x)2,然后解方程即可.【解答】解:∵四边形ABCD为矩形,∴DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,∵折叠矩形的一边AD,使点D落在BC边的点F处∴AF=AD=10,DE=EF,在Rt△ABF中,BF===6,∴FC=BC﹣BF=4,设EC=x,则DE=8﹣x,EF=8﹣x,在Rt△EFC中,∵EC2+FC2=EF2,∴x2+42=(8﹣x)2,解得x=3,∴EC的长为3cm.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.25.观察下列等式:①==;②==;③==…回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.【考点】分母有理化.【专题】规律型.【分析】(1)根据观察,可发现规律;=,根据规律,可得答案;(2)根据二次根式的性质,分子分母都乘以分母两个数的差,可分母有理化.【解答】解:(1)原式==;(2)原式=+++…+=(﹣1).【点评】本题考查了分母有理化,分子分母都乘以分母两个数的差是分母有理化的关键.26.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.【考点】正方形的判定;全等三角形的判定与性质.【专题】证明题.【分析】(1)根据角平分线的性质和全等三角形的判定方法证明△ABD≌△CBD,由全等三角形的性质即可得到:∠ADB=∠CDB;(2)若∠ADC=90°,由(1)中的条件可得四边形MPND是矩形,再根据两边相等的四边形是正方形即可证明四边形MPND是正方形.【解答】证明:(1)∵对角线BD平分∠ABC,∴∠ABD=∠CBD,在△ABD和△CBD中,,∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB;(2)∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°,∵∠ADC=90°,∴四边形MPND是矩形,∵∠ADB=∠CDB,∴∠ADB=45°∴PM=MD,∴四边形MPND是正方形.【点评】本题考查了全等三角形的判定和性质、角平分线的性质、矩形的判定和性质以及正方形的判定,解题的关键是熟记各种几何图形的性质和判定.27.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.【考点】矩形的判定;正方形的判定.【专题】压轴题.【分析】(1)利用平行四边形的判定首先得出四边形AEBD是平行四边形,进而由等腰三角形的性质得出∠ADB=90°,即可得出答案;(2)利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.【解答】(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,∴四边形AEBD是平行四边形,∵AB=AC,AD是∠BAC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴平行四边形AEBD是矩形;(2)当∠BAC=90°时,理由:∵∠BAC=90°,AB=AC,AD是∠BAC的角平分线,∴AD=BD=CD,∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.【点评】此题主要考查了正方形的判定以及矩形的判定和等腰直角三角形的性质等知识,熟练掌握正方形和矩形的判定是解题关键.。

2020年八年级下册期中数学试卷(有答案)

2020年八年级下册期中数学试卷(有答案)

八年级(下)期中数学试卷一、选择题(共10小题,每题3分,共30分)1.下列二次根式中,是最简二次根式的是()A.B.C.D.2.若在实数范围内有意义,则x的取值范围是()A.x≥B.x≥﹣C.x>D.x≠3.下列各组数中,能构成直角三角形的是()A.4,5,6B.1,1,C.6,8,11D.5,12,234.在▱ABCD中,∠B﹣∠A=30°,则∠A,∠B,∠C,∠D的度数是()A.95°,85°,95°,85°B.85°,95°,85°,95°C.105°,75°,105°,75°D.75°,105°,75°,105°5.下列各式计算正确的是()A.8•2=16B.5•5=5C.4•2=8D.4•2=86.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm7.下列命题中,正确的是()A.对角线相等的四边形是矩形B.对角线互相平分的四边形是平行四边形C.对角线互相垂直的四边形是菱形D.对角线互相垂直且相等的四边形是正方形8.化简等于()A.B.C.D.9.两条对角线互相垂直平分且相等的四边形是()A.矩形B.菱形C.正方形D.都有可能10.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为()A.6B.8C.10D.12二、填空题(共10小题,每题3分,共30分)11.若二次根式有意义,则自变量x的取值范围是.12.已知菱形两条对角线的长分别为5cm和12cm,则这个菱形的面积是cm2.13.若矩形的对角线长为8cm,两条对角线的一个交角为60°,则该矩形的面积为cm2.14.如图,每个小正方形的边长为1,在△ABC中,点D为AB的中点,则线段CD的长为.15.如图,一只蚂蚁从长为2cm,宽为2cm,高为3cm的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线长是cm.16.已知实数a、b满足+(b+12)2=0,则=.17.如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为cm2.18.实数a在数轴上的位置如图所示,则|a﹣1|+=.19.若最简二次根式和是同类二次根式,则=.20.如图,有两棵树,一棵高10m,另一棵高4m,两树相距8m.一只小鸟从一棵树的树尖飞到另一棵树的树尖,那么这只小鸟至少要飞行m.三、解答题(共9小题,共60分)21.(10分)计算(1)(2)22.(9分)在△ABC中,∠C=90°,AC=2.1cm,BC=2.8cm.(1)求△ABC的面积;(2)求斜边AB的长;(3)求高CD的长.23.(9分)如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.24.(9分)如图,∠C=90°,AC=3,BC=4,AD=12,BD=13,试判断△ABD的形状,并说明理由.25.(9分)如图,四边形ABCD是平行四边形,AB=10,AD=8,AC⊥BC,求AC、OA以及平行四边形ABCD的面积.26.(10分)如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.27.(10分)已知:如图,在正方形ABCD中,AE⊥BF,垂足为P,AE与CD交于点E,BF与AD交于点F,求证:AE=BF.28.(12分)求证:对角线互相垂直的平行四边形是菱形.小红同学根据题意画出了图形,并写出了已知和求证的一部分,请你补全已知和求证,并写出证明过程.已知:如图,在▱ABCD中,对角线AC,BD交于点O,.求证:.29.(12分)如图,Rt△OA1A2中,过A2作A2A3⊥OA2,以此类推.且OA1=A1A2=A2A3=A3A4…=1,记△OA1A2的面积为S1,△OA2A3面积为S2,△OA3A4面积为S3,…,细心观察图,认真分析各题,然后解答问题:①()2+1=2,S1=;②()2+1=3,S2=;③()2+1=4,S3=…(1)请写出第n个等式:;(2)根据式子规律,线段OA10=;(3)求出S12+S22+S32+…+S102的值.八年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,每题3分,共30分)1.下列二次根式中,是最简二次根式的是()A.B.C.D.【分析】直接利用最简二次根式的定义分析得出答案.【解答】解:A、=,故不是最简二次根式,不合题意;B、,是最简二次根式,符合题意;C、=2,故不是最简二次根式,不合题意;D、=5,故不是最简二次根式,不合题意;故选:B.【点评】此题主要考查了最简二次根式,正确把握定义是解题关键.2.若在实数范围内有意义,则x的取值范围是()A.x≥B.x≥﹣C.x>D.x≠【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,2x﹣1>0,解得x>.故选:C.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.3.下列各组数中,能构成直角三角形的是()A.4,5,6B.1,1,C.6,8,11D.5,12,23【分析】根据勾股定理逆定理:a2+b2=c2,将各个选项逐一代数计算即可得出答案.【解答】解:A、∵42+52≠62,∴不能构成直角三角形,故A错误;B、∵12+12=,∴能构成直角三角形,故B正确;C、∵62+82≠112,∴不能构成直角三角形,故C错误;D、∵52+122≠232,∴不能构成直角三角形,故D错误.故选:B.【点评】此题主要考查学生对勾股定理的逆定理的理解和掌握,要求学生熟练掌握这个逆定理.4.在▱ABCD中,∠B﹣∠A=30°,则∠A,∠B,∠C,∠D的度数是()A.95°,85°,95°,85°B.85°,95°,85°,95°C.105°,75°,105°,75°D.75°,105°,75°,105°【分析】根据平行四边形中,对角相等,邻角互补的性质,可以设出未知数,列出方程,进而可求解四个角的度数.【解答】解:设∠A度数为x,则有:(180﹣x)﹣x=30,解得:x=75,所以∠A,∠B,∠C,∠D分别是75°,105°,75°,105°.故选:D.【点评】本题考查了平行四边形的性质,熟练掌握平行四边形对角相等,邻角互补的性质是解题的关键.5.下列各式计算正确的是()A.8•2=16B.5•5=5C.4•2=8D.4•2=8【分析】根据二次根式的乘法法则,进行判断即可.【解答】解:A、8•2=48,原式计算错误,故本选项错误;B、5•5=25,原式计算错误,故本选项错误;C、4•2=8,原式计算正确,故本选项正确;D、4•2=8,原式计算错误,故本选项错误;故选:C.【点评】本题考查了二次根式的乘法运算,解答本题的关键是掌握二次根式的乘法法则.6.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm【分析】由平行四边形的性质和角平分线定义得出∠AEB=∠BAE,证出BE=AB=3cm,得出EC =BC﹣BE=2cm即可.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=5cm,AD∥BC,∴∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠AEB=∠BAE,∴BE=AB=3cm,∴EC=BC﹣BE=5﹣3=2cm;【点评】本题看成了平行四边形的性质、等腰三角形的判定与性质、角平分线定义;熟练掌握平行四边形的性质,证出BE=AB是解决问题的关键.7.下列命题中,正确的是()A.对角线相等的四边形是矩形B.对角线互相平分的四边形是平行四边形C.对角线互相垂直的四边形是菱形D.对角线互相垂直且相等的四边形是正方形【分析】根据矩形、菱形、平行四边形、正方形的判定方法逐一进行判定.【解答】解:A、对角线相等的平行四边形是矩形,故本选项错误;B、对角线互相平分的四边形是平行四边形,正确;C、对角线互相垂直的平行四边形是菱形,故本选项错误;D、对角线互相垂直平分且相等的四边形是正方形,故本选项错误.故选:B.【点评】本题考查了矩形、菱形、平行四边形、正方形的判定方法.熟练掌握特殊四边形的判定方法是解决此类问题的关键.8.化简等于()A.B.C.D.【分析】先将被开方数化为假分数,再转化为二次根式的商,然后分母有理化.【解答】解:原式====.故选:D.【点评】解答此题不仅要熟悉最简二次根式和算术平方根的定义,还要熟悉二次根式的除法运算.9.两条对角线互相垂直平分且相等的四边形是()A.矩形B.菱形C.正方形D.都有可能【分析】如果一个四边形的两条对角线互相垂直平分且相等,那么这个四边形是正方形,理由为:利用对角线互相平分的四边形为平行四边形得到ABCD为平行四边形,再利用对角线互相垂直的平行四边形为菱形,再利用对角线相等的菱形为正方形即可得证.【解答】解:如果一个四边形的两条对角线互相垂直平分且相等,那么这个四边形是正方形,已知:四边形ABCD,AC⊥BD,OA=OC,OB=OD,AC=BD,求证:四边形ABCD为正方形,证明:∵OA=OC,OB=OD,∴四边形ABCD为平行四边形,∴平行四边形ABCD为菱形,∵AC=BD,∴四边形ABCD为正方形.故选:C.【点评】此题考查了正方形的判定,以及角平分线定理,熟练掌握正方形的判定方法是解本题的关键.10.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为()A.6B.8C.10D.12【分析】因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,于是得到AF=AB﹣BF,即可得到结果.【解答】解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,=•AF•BC=10.∴S△AFC故选:C.【点评】本题考查了翻折变换﹣折叠问题,勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.二、填空题(共10小题,每题3分,共30分)11.若二次根式有意义,则自变量x的取值范围是x≥﹣3且x≠0.【分析】根据二次根式中的被开方数是非负数、分式分母不为0列出不等式,解不等式即可.【解答】解:由题意得,x+3≥0,x≠0,解得x≥﹣3且x≠0,故答案为:x≥﹣3且x≠0.【点评】本题考查的是二次根式有意义和分式有意义的条件,掌握二次根式中的被开方数是非负数、分式分母不为0是解题的关键.12.已知菱形两条对角线的长分别为5cm和12cm,则这个菱形的面积是30cm2.【分析】根据菱形的面积公式即可解决问题.【解答】解:菱形的面积=×12×5=30(cm2).故答案为:30.【点评】本题考查菱形的性质、解题的关键是记住菱形的面积公式,记住菱形的对角线互相垂直,属于中考常考题型.13.若矩形的对角线长为8cm,两条对角线的一个交角为60°,则该矩形的面积为cm2.【分析】根据矩形的性质,画出图形求解.【解答】解:∵ABCD为矩形∴OA=OC=OB=OD∵一个角是60°∴BC=OB=cm∴根据勾股定理==∴面积=BC•CD=4×=cm2.故答案为.【点评】本题考查的知识点有:矩形的性质、勾股定理.14.如图,每个小正方形的边长为1,在△ABC中,点D为AB的中点,则线段CD的长为.【分析】本题考查勾股定理的逆定理和直角三角形的性质,利用了勾股定理的逆定理和直角三角形的性质求解.【解答】解:观察图形AB==,AC==3,BC==2∴AC2+BC2=AB2,∴三角形为直角三角形,∵直角三角形中斜边上的中线等于斜边的一半∴CD=.【点评】解决此类题目要熟记斜边上的中线等于斜边的一半.注意勾股定理的应用.15.如图,一只蚂蚁从长为2cm,宽为2cm,高为3cm的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线长是5cm.【分析】先将图形展开,再根据两点之间线段最短,再由勾股定理求解即可.【解答】解:如图(1),AB=;如图(2),AB=.故答案为:5.【点评】此题考查了立体图形的侧面展开图,利用勾股定理求出斜边的长是解题的关键,而两点之间线段最短是解题的依据.16.已知实数a、b满足+(b+12)2=0,则=13.【分析】直接利用偶次方的性质以及二次根式的性质得出a,b的值,再利用算术平方根的定义化简得出答案.【解答】解:∵+(b+12)2=0,∴a=5,b=﹣12,∴==13.故答案为:13.【点评】此题主要考查了非负数的性质,正确得出a,b的值是解题关键.17.如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为2 cm2.【分析】因为DE丄AB,E是AB的中点,所以AE=1cm,根据勾股定理可求出DE的长,菱形的面积=底边×高,从而可求出解.【解答】解:∵E是AB的中点,∴AE=1cm,∵DE丄AB,∴DE==cm.∴菱形的面积为:2×=2cm2.故答案为:2.【点评】本题考查菱形的性质,四边都相等,菱形面积的计算公式以及勾股定理的运用等.18.实数a在数轴上的位置如图所示,则|a﹣1|+=1.【分析】根据数轴上表示的两个数,右边的数总比左边的大,分别得出a﹣1与0,a﹣2与0的关系,然后根据绝对值的意义和二次根式的意义化简.【解答】解:根据数轴上显示的数据可知:1<a<2,∴a﹣1>0,a﹣2<0,∴|a﹣1|+=a﹣1+2﹣a=1.故答案为:1.【点评】本题主要考查了数轴,绝对值的意义和根据二次根式的意义化简.二次根式的化简规律总结:当a≥0时,=a;当a≤0时,=﹣a.19.若最简二次根式和是同类二次根式,则=5.【分析】直接利用最简二次根式以及同类二次根式的定义分析得出答案.【解答】解:∵最简二次根式和是同类二次根式,∴,解得:,∴=5.故答案为:5.【点评】此题主要考查了最简二次根式以及同类二次根式的定义,正确得出x,y的值是解题关键.20.如图,有两棵树,一棵高10m,另一棵高4m,两树相距8m.一只小鸟从一棵树的树尖飞到另一棵树的树尖,那么这只小鸟至少要飞行10m.【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的树尖进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【解答】解:两棵树的高度差为6m,间距为8m,根据勾股定理可得:小鸟至少飞行的距离==10m.【点评】本题主要是将现实问题建立数学模型,运用数学知识进行求解.三、解答题(共9小题,共60分)21.(10分)计算(1)(2)【分析】(1)二次根式的加减运算先化为最简二次根式,再将被开方数相同的二次根式进行合并.(2)注意分母有理化的方法、平方差公式的运用.【解答】解:(1)原式=4+2﹣﹣=;(2)原式=4﹣+3+﹣﹣1=4﹣+2.【点评】本题考查的是二次根式的混合运算,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算.22.(9分)在△ABC中,∠C=90°,AC=2.1cm,BC=2.8cm.(1)求△ABC的面积;(2)求斜边AB的长;(3)求高CD的长.【分析】(1)根据三角形的面积公式进行计算即可;(2)利用勾股定理可得出斜边AB的长;(3)利用面积的两种表达式可得出CD.【解答】解:如图所示:=AC×BC=2.94;(1)S△ABC(2)AB==3.5;(3)BC×AC=AB×CD,解得:CD=1.68.【点评】本题考查了勾股定理及直角三角形的面积,注意掌握三角形面积的不同表示方法.23.(9分)如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.【分析】根据矩形的性质得DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,再根据折叠的性质得AF=AD=10,DE=EF,在Rt△ABF中,利用勾股定理计算出BF=6,则FC=4,设EC =x,则DE=EF=8﹣x,在Rt△EFC中,根据勾股定理得x2+42=(8﹣x)2,然后解方程即可.【解答】解:∵四边形ABCD为矩形,∴DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,∵折叠矩形的一边AD,使点D落在BC边的点F处∴AF=AD=10,DE=EF,在Rt△ABF中,BF===6,∴FC=BC﹣BF=4,设EC=x,则DE=8﹣x,EF=8﹣x,在Rt△EFC中,∵EC2+FC2=EF2,∴x2+42=(8﹣x)2,解得x=3,∴EC的长为3cm.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.24.(9分)如图,∠C=90°,AC=3,BC=4,AD=12,BD=13,试判断△ABD的形状,并说明理由.【分析】先在△ABC中,根据勾股定理求出AB2的值,再在△ABD中根据勾股定理的逆定理,判断出AD⊥AB,即可得到△ABD为直角三角形.【解答】解:△ABD为直角三角形.理由如下:∵在△ABC中,∠C=90°,∴AB2=CB2+AC2=42+32=52,∴在△ABD中,AB2+AD2=52+122=132,∴AB2+AD2=BD2,∴△ABD为直角三角形.【点评】本题考查勾股定理与其逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.25.(9分)如图,四边形ABCD是平行四边形,AB=10,AD=8,AC⊥BC,求AC、OA以及平行四边形ABCD的面积.【分析】由四边形ABCD是平行四边形,可求得BC=AD=8,又由AC⊥BC,利用勾股定理即可求得AC的长,然后由平行四边形的对角线互相平分,求得OA的长,继而求得平行四边形ABCD 的面积.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵AB=10,AC⊥BC,∴AC==6,∴OA=AC=3,=BC•AC=8×6=48.∴S平行四边形ABCD【点评】此题考查了平行四边形的性质以及勾股定理.注意平行四边形的对边相等,对角线互相平分.26.(10分)如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.【分析】(1)根据AB=CD,BE=DF,利用HL即可证明.(2)只要证明四边形ABCD是平行四边形即可解决问题.【解答】证明:(1)∵BF=DE,∴BF﹣EF=DE﹣EF,即BE=DF.∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,∵AB=CD,BE=DF,∴Rt△ABE≌Rt△CDF(HL).(2)∵△ABE≌△CDF,∴∠ABE=∠CDF,∴AB∥CD,∵AB=CD,∴四边形ABCD是平行四边形,∴AO=CO.【点评】本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线,利用特殊四边形的性质解决问题.27.(10分)已知:如图,在正方形ABCD中,AE⊥BF,垂足为P,AE与CD交于点E,BF与AD交于点F,求证:AE=BF.【分析】根据正方形的性质得出∠AED=∠AFB,所以得到△AED≌△ABF,利用全等的性质得到AE=BF.【解答】证明:∵四边形ABCD是正方形,AE⊥BF,∴∠DAE+∠AED=90°,∠DAE+∠AFB=90°,∴∠AED=∠AFB,又∵AD=AB,∠BAD=∠D,∴△AED≌△ABF,∴AE=BF.【点评】主要考查了正方形的性质和全等三角形的判定.充分利用正方形的特殊性质来找到全等的条件从而判定全等后利用全等三角形的性质解题.28.(12分)求证:对角线互相垂直的平行四边形是菱形.小红同学根据题意画出了图形,并写出了已知和求证的一部分,请你补全已知和求证,并写出证明过程.已知:如图,在▱ABCD中,对角线AC,BD交于点O,AC⊥BD.求证:四边形ABCD是菱形.【分析】由命题的题设和结论可填出答案,由平行四边形的性质可证得AC为线段BD的垂直平分线,可求得AB=AD,可得四边形ABCD是菱形.【解答】已知:如图,在▱ABCD中,对角线AC,BD交于点O,AC⊥BD,求证:四边形ABCD是菱形.证明:∵四边形ABCD为平行四边形,∴BO=DO,∵AC⊥BD,∴AC垂直平分BD,∴AB=AD,∴四边形ABCD为菱形.故答案为:AC⊥BD;四边形ABCD是菱形.【点评】本题主要考查菱形的判定及平行四边形的性质,利用平行四边形的性质证得AB=AD是解题的关键.29.(12分)如图,Rt△OA1A2中,过A2作A2A3⊥OA2,以此类推.且OA1=A1A2=A2A3=A3A4…=1,记△OA1A2的面积为S1,△OA2A3面积为S2,△OA3A4面积为S3,…,细心观察图,认真分析各题,然后解答问题:①()2+1=2,S1=;②()2+1=3,S2=;③()2+1=4,S3=…(1)请写出第n个等式:()2+1=n+1,S n=;(2)根据式子规律,线段OA10=;(3)求出S12+S22+S32+…+S102的值.【分析】(1)根据前三个等式得到规律,根据规律解答;(2)根据勾股定理计算即可;(3)根据(1)中得到的规律、有理数的运算法则计算.【解答】解:(1)①()2+1=2,S1=;②()2+1=3,S2=;③()2+1=4,S3=…则第n个等式为:③()2+1=n+1,S n=,故答案为:()2+1=n+1,S n=;(2)OA1=1OA2=,OA3=,…则OA10=,故答案为:;(3)S12+S22+S32+…+S102=()2+()2+()2+…+()2==.【点评】本题考查的是勾股定理的应用,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.。

2020年八年级数学下期中试卷(及答案)

2020年八年级数学下期中试卷(及答案)

2020年八年级数学下期中试卷(及答案)一、选择题1.如图,由四个全等的直角三角形拼成的图形,设CE=a,HG=b,则斜边BD的长是()A.a+b B.a﹣b C.222a b+D.222a b-2.下列二次根式中,最简二次根式是( )A.10B.12C.12D.83.已知,如图,长方形ABCD中,AB=5cm,AD=25cm,将此长方形折叠,使点D与点B 重合,折痕为EF,则△ABE的面积为()A.35cm2B.30cm2C.60cm2D.75cm24.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:决赛成绩/分95908580人数4682那么20名学生决赛成绩的众数和中位数分别是( )A.85,90B.85,87.5C.90,85D.95,905.如图,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2m,则树高为()米A .5B .3C .5+1D .36.正方形具有而菱形不具有的性质是( ) A .四边相等 B .四角相等C .对角线互相平分D .对角线互相垂直7.如图,ABC V 中,CD AB ⊥于,D E 是AC 的中点.若6,5,AD DE ==则CD 的长等于( )A .5B .6C .8D .108.下列说法正确的有几个( )①对角线互相平分的四边形是平行四边形;②对角线互相垂直的四边形是菱形;③对角线互相垂直且相等的平行四边形是正方形;④对角线相等的平行四边形是矩形. A .1个B .2个C .3个D .4个9.如图,在菱形ABCD 中,BE ⊥CD 于E ,AD =5,DE =1,则AE =( )A .4B .5C .34D .4110.如图,矩形纸片ABCD ,3AB =,点E 在BC 上,且AE EC =.若将纸片沿AE 折叠,点B 恰好落在AC 上,则矩形ABCD 的面积是( )A .12B .63C .93D .1511.如图1,∠DEF =25°,将长方形纸片ABCD 沿直线EF 折叠成图2,再沿折痕GF 折叠成图3,则∠CFE 的度数为( )A .105°B .115°C .130°D .155°12.如图是自动测温仪记录的图象,它反映了齐齐哈尔市的春季某天气温T 如何随时间t的变化而变化,下列从图象中得到的信息正确的是( )A .0点时气温达到最低B .最低气温是零下4℃C .0点到14点之间气温持续上升D .最高气温是8℃二、填空题13.(1)计算填空:24= ,20.8 = ,2(3)-= , 223⎛⎫- ⎪⎝⎭= (2)根据计算结果,回答:2a 一定等于a 吗?你发现其中的规律了吗?并请你把得到的规律描述出来?(3)利用你总结的规律,计算:2( 3.15)π-14.如图,△ABC 中,∠ACB =90°,CD 是斜边上的高,AC =4,BC =3,则CD =______.15.将函数31y x =+的图象平移,使它经过点()1,1,则平移后的函数表达式是____. 16.菱形ABCD 中,对角线AC =8,BD =6,则菱形的边长为_____.17.已知:如图,∠ABC =∠ADC =90°,M 、N 分别是AC 、BD 的中点,AC =10,BD =8,则MN =_____.18.如图,连接四边形ABCD 各边中点,得到四边形EFGH ,对角线AC ,BD 满足________,才能使四边形EFGH 是矩形.19.一根旗杆在离地面4.5 m 的地方折断,旗杆顶端落在离旗杆底部6 m 外,则旗杆折断前的高度是________.20.如图,已知函数y ax b =+和y kx =的图象交于点P, 则根据图象可得,关于y ax by kx =+⎧⎨=⎩的二元一次方程组的解是_____________。

2020最新八年级下册期中考试数学试题(有答案)

2020最新八年级下册期中考试数学试题(有答案)

八年级(下)期中数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的1.在式子,(m+n),,,,中,分式有()A.1个B.2个C.3个D.4个2.近期浙江大学的科学家们研制出今为止世界上最轻的材料,这种被称为“全碳气凝胶”的固态材料密度仅每立方厘米0.00016克,数据0.00016用科学记数法表示应是()A.1.6×104B.0.16×10﹣3C.1.6×10﹣4D.16×10﹣53.平面直角坐标系中,点(1,﹣2)在()A.第一象限B.第二象限C.第三象限D.第四象限4.分式,,的最简公分母是()A.x2﹣1B.x(x2﹣1)C.x2﹣x D.(x+1)(x﹣1)5.下列计算正确的是()A.()2=B.+=﹣1C.(﹣)﹣2+(﹣1000)0=1016D.()2÷(﹣)2=6.已知▱ABCD相邻两个内角的比为2:3,则其中较大的内角是()A.60°B.72°C.120°D.108°7.已知函数y=(m﹣3)x﹣(m是常数),当m取何值时,y随x的增大而减小()A.m=3B.m>3C.m<3D.m≤38.若平行四边形的两条对角线长为6 cm和16 cm,则下列长度的线段可作为平行四边形边长的是()A.5cm B.8cm C.12cm D.16cm9.已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数y=的图象上,则y1、y2、y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y210.若ab>0,则一次函数y=ax+b与反比例函数y=在同一坐标系中的大致图象是()A.B.C.D.二、填空题(每题3分,共15分)11.当x时,分式有意义.12.点(2,3)关于y轴对称的点的坐标为.13.分式方程的解是.14.已知,如图▱ABCD对角线相交于点O,OM⊥BC,OM=2,AD=6,则△AOD的面积是.15.星期天晚饭后,小红从家里出去散步,如图描述了她散步过程中离家的距离s(m)与散步所用时间t(min)之间的函数关系,依据图象,下面描述中符合小红散步情景的有(填序号)①从家里出发,到了一个公共阅报栏,看了一会儿报后,继续向前走了一段然后回家了②小红家距离公共阅报栏300m③从家出发,一直散步(没有停留),然后回家了④小红本次散步共用时18min三、解答题(本题共8个小题,共75分)16.(10分)(1)已知一次函数的图象经过点(0,1)和(1,3),求这个函数的表达式.(2)已知y是x的反比例函数,且当x=2时,y=3,求当x=﹣3时y的值.17.(8分)先化简,再求值:(﹣)÷,其中x是不等式﹣3x+10>1的正整数解.18.(8分)已知,如图,在▱ABCD中,∠ADC的平分线与AB相交于点E,BC=3,BE=4,求CD的长.19.(9分)某汽车行驶的路程S(km)与时间t(min)的函数关系图.观察图中所提供的信息,解答问题:(1)汽车在前9分钟内的平均速度是多少?(2)汽车在中途停了多长时间?(3)当16≤t≤30时,求S与t的函数关系式.20.(9分)某客车从甲地到乙地走全长480km的高速公路,从乙地到甲地走全长600km的普通公路,又知在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需时间是由普通公路从乙地到甲地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.21.(9分)如图,在▱ABCD的周长是18cm,对角线AC、BD相交于点O.若△AOD与△AOB 的周长差是5cm,求边AB的长是多少厘米?22.(10分)如图,已知反比例函数y=与一次函数y=k2x+b的图象交于A(1,8),B(﹣4,m).(1)求k1、k2、b的值;(2)求△AOB的面积;(3)若M(x1,y1)、N(x2,y2)是反比例函数图象上的两点,且x1<x2,y1<y2,结合图象直接说出M、N各位于哪个象限.23.(12分)为推进中原经济区建设,促进中部地区崛起,我省汽车领头企业郑州日产实行技术革新,在保证原有生产线的同时,引进新的生产线,今年某月公司接到装配汽车2400辆的订单,定价为每辆6万元,若只采用新的生产线生产,则与原生产线相比可以提前8天完成订单任务,已知新的生产线使汽车装配效率比以前提高了.(1)求原生产线每天可以装配多少辆汽车?(2)已知原生产线装配一辆汽车需要成本5万元,新生产线比原生产线每辆节省1万元,于是公司决定两条生产线同时生产,且新生产线装配的数量最多是原生产线装配数量的2倍,问:如何分配两条生产线才能使获得的利润最大,最大利润为多少万元?八年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的1.在式子,(m+n),,,,中,分式有()A.1个B.2个C.3个D.4个【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:在所列代数式中,分式有、、这3个,故选:C.【点评】本题考查的是分式的定义,熟知一般地,如果A,B表示两个整式,并且B中含有字母,那么式子A/B叫做分式是解答此题的关键.2.近期浙江大学的科学家们研制出今为止世界上最轻的材料,这种被称为“全碳气凝胶”的固态材料密度仅每立方厘米0.00016克,数据0.00016用科学记数法表示应是()A.1.6×104B.0.16×10﹣3C.1.6×10﹣4D.16×10﹣5【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00016=1.6×10﹣4,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.平面直角坐标系中,点(1,﹣2)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特征解答.【解答】解:点(1,﹣2)在第四象限.故选:D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.分式,,的最简公分母是()A.x2﹣1B.x(x2﹣1)C.x2﹣x D.(x+1)(x﹣1)【分析】本题需先对分式的分母进行因式分解,再根据最简公分母的概念,即可求出答案.【解答】解:分式式,,的最简公分母是:x(x2﹣1).故选:B.【点评】本题主要考查了最简公分母,在解题时要能根据最简公分母的概念求出几个分式的最简公分母是本题的关键.5.下列计算正确的是()A.()2=B.+=﹣1C.(﹣)﹣2+(﹣1000)0=1016D.()2÷(﹣)2=【分析】根据分式混合运算顺序和运算法则逐一计算即可得.【解答】解:A、()2=,错误;B、+=﹣==﹣1,正确;C、(﹣)﹣2+(﹣1000)0=16+1=17,错误;D、()2÷(﹣)2=•=,错误;故选:B.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则及负整数指数幂、零指数幂.6.已知▱ABCD相邻两个内角的比为2:3,则其中较大的内角是()A.60°B.72°C.120°D.108°【分析】由▱ABCD中,相邻两个内角的比为2:3,且两角互补,继而求得答案.【解答】解:∵四边形ABCD是平行四边形,∴对角相等,邻角互补,∵有两个内角的度数比为2:3,∴▱ABCD中较大的内角是:180°×=108°.故选:D.【点评】此题考查了平行四边形的性质.此题难度不大,注意掌握平行四边形对角相等,邻角互补.7.已知函数y=(m﹣3)x﹣(m是常数),当m取何值时,y随x的增大而减小()A.m=3B.m>3C.m<3D.m≤3【分析】根据一元一次方程的性质得出m﹣3<0,求出不等式的解集即可.【解答】解:函数y=(m﹣3)x﹣,m﹣3<0,解得:m<3,即当m<3时,y随x的增大而减小,故选:C.【点评】本题考查了一次函数的性质和解一元一次不等式,能熟记一次函数的性质的内容是解此题的关键.8.若平行四边形的两条对角线长为6 cm和16 cm,则下列长度的线段可作为平行四边形边长的是()A.5cm B.8cm C.12cm D.16cm【分析】平行四边形的两条对角线互相平分,根据三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边,进行判断.【解答】解:由题意可知,平行四边形边长的取值范围是:8﹣3<边长<8+3,即5<边长<11.只有选项B在此范围内,故选B.【点评】本题主要考查了平行四边形对角线互相平分这一性质,此类求三角形第三边的范围的题目,解题的关键是根据三角形三边关系定理列出不等式,再求解.9.已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数y=的图象上,则y1、y2、y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2【分析】分别把各点代入反比例函数的解析式,求出y1,y2,y3的值,再比较出其大小即可.【解答】解:∵点A(1,y1),B(2,y2),C(﹣3,y3)都在反比例函数y=的图象上,∴,,,∵﹣2<3<6,∴y3<y2<y1,故选:B.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.10.若ab>0,则一次函数y=ax+b与反比例函数y=在同一坐标系中的大致图象是()A.B.C.D.【分析】根据ab>0,可得a、b同号,结合一次函数及反比例函数的特点进行判断即可.【解答】解:A、根据一次函数可判断a>0,b>0,根据反比例函数可判断ab>0,故符合题意,本选项正确;B、根据一次函数可判断a<0,b<0,根据反比例函数可判断ab<0,故不符合题意,本选项错误;C、根据一次函数可判断a<0,b>0,根据反比例函数可判断ab>0,故不符合题意,本选项错误;D、根据一次函数可判断a>0,b>0,根据反比例函数可判断ab<0,故不符合题意,本选项错误;故选:A.【点评】本题考查了反比例函数的图象性质和一次函数函数的图象性质,要掌握它们的性质才能灵活解题.二、填空题(每题3分,共15分)11.当x x≠0且x≠﹣2时,分式有意义.【分析】根据分式有意义的条件可得x(x+2)≠0,再解即可.【解答】解:由题意得:x(x+2)≠0,解得:x≠0且x≠﹣2,故答案为:x≠0且x≠﹣2.【点评】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.12.点(2,3)关于y轴对称的点的坐标为(﹣2,3).【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(﹣x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数.【解答】解:点(2,3)关于y轴对称的点的坐标是(﹣2,3),故答案为(﹣2,3).【点评】本题主要考查了平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于y 轴对称的点,纵坐标相同,横坐标互为相反数,关于x 轴对称的点,横坐标相同,纵坐标互为相反数.13.分式方程的解是 x =5 .【分析】首先将方程两边同乘最简公分母(x ﹣3)(x ﹣2),把分式方程化为整式方程,再解整式方程,然后把求得的x 的值代入最简公分母进行检验.【解答】解:方程两边同乘最简公分母(x ﹣3)(x ﹣2),得:2(x ﹣2)=3(x ﹣3), 去括号,得:2x ﹣4=3x ﹣9,解得:x =5,检验:当x =5时,(x ﹣3)(x ﹣2)=2×3=6≠0,所以,x =5是原方程的根.故答案为x =5.【点评】本题主要考查解分式方程,关键在于“转化思想”,把分式方程转化为整式方程求解,注意最后要进行检验.14.已知,如图▱ABCD 对角线相交于点O ,OM ⊥BC ,OM =2,AD =6,则△AOD 的面积是 6 .【分析】只要证明△ADO ≌△CBO ,可得S △ADO =S △BCO =×CB ×OM ,由此计算即可;【解答】解:∵四边形ABCD 是平行四边形,∴AD =BC ,OA =OC ,OD =OB ,∴△ADO ≌△CBO ,∴S △ADO =S △BCO =×CB ×OM =6,故答案为6【点评】本题考查平行四边形的性质,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.星期天晚饭后,小红从家里出去散步,如图描述了她散步过程中离家的距离s (m )与散步所用时间t (min )之间的函数关系,依据图象,下面描述中符合小红散步情景的有 ①②④ (填序号)①从家里出发,到了一个公共阅报栏,看了一会儿报后,继续向前走了一段然后回家了 ②小红家距离公共阅报栏300m③从家出发,一直散步(没有停留),然后回家了④小红本次散步共用时18min【分析】由图象可得①②④正确【解答】解:由图象可得小红从家4分钟后到公共阅报栏,6分钟后继续前进2分钟,然后回家,所花时间为18分钟∴①②④正确故答案为①②④【点评】本题考查了一次函数的应用,关键是理解一次函数图象的点表示的意义.三、解答题(本题共8个小题,共75分)16.(10分)(1)已知一次函数的图象经过点(0,1)和(1,3),求这个函数的表达式.(2)已知y是x的反比例函数,且当x=2时,y=3,求当x=﹣3时y的值.【分析】(1)设这个函数的表达式是y=kx+b,所以将(0,1)和(1,3)代入y=kx+b.解方程组即可解决问题;(2)设y=.将(2,3)代入y=可得m=6;【解答】解:(1)设这个函数的表达式是y=kx+b.因为函数的图象经过点(0,1)和(1,3),所以将(0,1)和(1,3)代入y=kx+b.可得:,解这个方程组得:,所以这个函数的表达式是y=2x+1.(2)依题意可设y=.将(2,3)代入y=可得m=6,即反比例函数的解析式是y=,所以当x=﹣3时,y=﹣2.【点评】本题考查反比例函数图象上的点的特征、一次函数图象上的点的特征、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.(8分)先化简,再求值:(﹣)÷,其中x是不等式﹣3x+10>1的正整数解.【分析】根据分式的减法和除法可以化简题目中的式子,然后根据x是不等式﹣3x+10>1的正整数解即可解答本题.【解答】解:(﹣)÷====,由不等式﹣3x+10>1得,x<3,∵x是不等式﹣3x+10>1的正整数解,x﹣2≠0,∴x=1,当x=1时,原式==﹣1.【点评】本题考查整式的分式的化简求值、一元一次不等式的整数解,解答本题的关键是明确分式化简求值的方法.18.(8分)已知,如图,在▱ABCD中,∠ADC的平分线与AB相交于点E,BC=3,BE=4,求CD的长.【分析】只要证明AD=AE=BC=2,求出AB即可解决问题;【解答】解:∵四边形ABCD是平行四边形∴CD∥AB,CD=AB,BC=AD,∴∠CDE=∠AED,又DE是∠ADC的平分线,∴∠CDE=∠ADE,∴∠AED=∠ADE,∴AD=AE=BC=3,又BE=4,∴AB=AE+BE=3+4=7,∴CD=AB=7.【点评】本题考查平行四边形的性质、角平分线的定义、等腰三角形的判定等知识,解题的关键是证明AD=AE.19.(9分)某汽车行驶的路程S(km)与时间t(min)的函数关系图.观察图中所提供的信息,解答问题:(1)汽车在前9分钟内的平均速度是多少?(2)汽车在中途停了多长时间?(3)当16≤t≤30时,求S与t的函数关系式.【分析】(1)根据函数图象中的数据可以求得汽车在前9分钟内的平均速度;(2)根据函数图象中的数据可以求得汽车在中途停了多长时间;(3)根据函数图象中的数据可以求得当16≤t≤30时,S与t的函数关系式.【解答】解:(1)由图可得,汽车在前9分钟内的平均速度是:12÷9=km/min;(2)由图可得,汽车在中途停了:16﹣9=7min,即汽车在中途停了7min;(3)设当16≤t≤30时,S与t的函数关系式是S=at+b,,得,即当16≤t≤30时,S与t的函数关系式是S=2t﹣20.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.20.(9分)某客车从甲地到乙地走全长480km的高速公路,从乙地到甲地走全长600km的普通公路,又知在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需时间是由普通公路从乙地到甲地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.【分析】本题依据题意先得出等量关系即客车由高速公路从A地道B的速度=客车由普通公路的速度+45,列出方程,解出检验并作答.【解答】解:设客车由高速公路从甲地到乙地需x小时,则走普通公路需2x小时,根据题意得:,解得:x=4,经检验,x=4原方程的根,答:客车由高速公路从甲地到乙地需4小时.【点评】本题主要考查分式方程的应用,找到关键描述语,找到合适的等量关系是解决问题的关键.根据速度=路程÷时间列出相关的等式,解答即可.21.(9分)如图,在▱ABCD的周长是18cm,对角线AC、BD相交于点O.若△AOD与△AOB 的周长差是5cm,求边AB的长是多少厘米?【分析】利用平行四边形的对角线互相平分这一性质,确定已知条件中两三角形周长的差也是平行四边形两邻边边长的差,进而确定平行四边形的边长.【解答】解:∵四边形ABCD是平行四边形,对角线AC、BD相交于点O∴OB=OD.又平行四边形ABCD的周长是18cm∴AB+AD=9cm①由△AOD与△AOB的周长差是5cm可得:OA+OD+AD﹣(OA+OB+AB)=5cm,即AD﹣AB=5cm②由①②得:AB=2cm答:边AB的长是2cm.【点评】本题是应用平行四边形性质的典型题目,解决此题运用了平行四边形的对边相等和角平分线互相平分这两条性质,题目难度不大.22.(10分)如图,已知反比例函数y=与一次函数y=k2x+b的图象交于A(1,8),B(﹣4,m).(1)求k1、k2、b的值;(2)求△AOB的面积;(3)若M(x1,y1)、N(x2,y2)是反比例函数图象上的两点,且x1<x2,y1<y2,结合图象直接说出M、N各位于哪个象限.【分析】(1)根据反比例函数y=的图象经过A(1,8),利用待定系数法即可求出k1;进而求得B的坐标,根据A、B点坐标,利用待定系数法求出k2、b的值;(2)设直线AB与x轴的交点为C,利用一次函数图象上点的坐标特征求出点C的坐标,再根据S△AOB =S△BOC+S△AOC,求出即可.(3)利用图象法即可解决问题.【解答】解:(1)将(1,8)代入y=得k1=8.∴反比例函数的解析式为y=;将点B(﹣4,m)代入y=得:m=﹣2,∴点B坐标为(﹣4,﹣2),将A、B两点坐标代入y=k2x+b得:,解得:,∴k1=8;k2=2;b=6.(2)设直线AB与y轴交于点C,因为AB:y=2x+6所以点C坐标为(0,6)S△AOB =S△AOC+S△COB=×6×1+×6×4=3+12=15;(3)由函数图象知M位于第三象限,N位于第一象限.【点评】此题考查一次函数与反比例函数的交点问题,待定系数法求反比例函数、一次函数的解析式、函数图象上点的坐标特征以及求三角形面积等知识,根据已知得出B点坐标以及得出S△AOB=S △BOC +S △AOC 是解题关键.23.(12分)为推进中原经济区建设,促进中部地区崛起,我省汽车领头企业郑州日产实行技术革新,在保证原有生产线的同时,引进新的生产线,今年某月公司接到装配汽车2400辆的订单,定价为每辆6万元,若只采用新的生产线生产,则与原生产线相比可以提前8天完成订单任务,已知新的生产线使汽车装配效率比以前提高了.(1)求原生产线每天可以装配多少辆汽车?(2)已知原生产线装配一辆汽车需要成本5万元,新生产线比原生产线每辆节省1万元,于是公司决定两条生产线同时生产,且新生产线装配的数量最多是原生产线装配数量的2倍,问:如何分配两条生产线才能使获得的利润最大,最大利润为多少万元?【分析】(1)根据题意可以列出相应的分式方程,从而可以解答本题,注意分式方程要检验; (2)根据题意可以列出相应的不等式和利润和原生产线装配汽车的函数关系式,从而可以解答本题.【解答】解:(1)设原生产线每天可以装配x 辆汽车,则,解得,x =120,经检验,x =120是原分式方程的根,答:原生产线每天可以装配120辆汽车;(2)设原生产线装配a 辆汽车,则新生产线装配(2400﹣a )辆汽车,2400﹣a ≤2a解得:a ≥800,设总利润为W 万元,则W =(6﹣5)a +(6﹣4)(2400﹣a )=﹣a +4800,因为﹣1<0,所以W 随a 的增大而减小.又a ≥800所以当a =800时,W 最大=﹣800+4800=4000(万元),答:当原生产线生产800辆汽车,新生产线生产1600辆汽车时,利润最大,最大利润为4000万元.【点评】本题考查一次函数的应用、分式方程的应用、一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数、方程和不等式的性质解答.。

2020-2021第二学期八年级期中试卷(解析版)

2020-2021第二学期八年级期中试卷(解析版)

2020-2021学年第二学期八年级期中考试数学试卷一、填空题(本大题共有12小题,每小题2分,共计24分.)1.“一个有理数的绝对值是负数”是▲ .(填“必然事件”或“不可能事件”或“随机事件”)【答案】不可能事件2.在平面直角坐标系中,点P(5,-3)关于原点对称的点的坐标是▲ .【答案】(-5,3)3.若菱形的两条对角线分别为2和3,则此菱形的面积等于▲ .【答案】34.要用反证法证明命题“三角形中必有一个内角小于或等于60°”,首先应假设▲ .【答案】每一个角都大于60°5.小明将本班全体同学假期用于读书的时间制成了频数分布直方图,图中从左到右各小长方形(分别表示第一、二、三、四小组的频率)的高之比为2:3:4:1,且第三小组的频数是20,则小明班的学生人数是▲ . 【答案】506.如图,在平行四边形 ABCD中,∠C=108°,BE平分∠ABC,则么∠AEB为▲度.【答案】367.木匠师傅在判断一个木框是否为矩形时,量得一组对边的长均为0.6m,另一组对边的长为均0.8m,一条对角线长为1m,于是判断此木框为矩形,此方法是否合理▲ .(填合理或不合理)【答案】合理8.如图,若已知菱形ABCD的顶点A,B的坐标分别为(3,0),(-2,0),点D在y轴上,则点C的坐标是▲ .【答案】(-5,4)9.如图,△ABC中,AB=9,D、E分别是AB、AC的中点,点F在DE上,且DF=3EF,当AF⊥BF时,BC的长等于▲ .【答案】1210.如图,正方形ABCD的边长为6,点G在对角线BD上(不与点B、D重合),GF⊥BC于点F,连接AG,若∠AGF=105°,则线段BG的长等于▲ .【答案】√3+111.如图,在平面直角坐标系中,点A的坐标为(1,0),等腰直角三角形ABC的边AB在x轴的正半轴上,∠ABC=90°,点B在点A的右侧,点C在第一象限.将△ABC绕点A逆时针旋转75°,若点C的对应点E恰好落在y轴上,则边AB的长为▲ .【答案】√212.如图,Rt△ABC中,∠C=90°,∠A=30°,BC=5,点P是AC边上的一个动点,将线段BP绕点B顺时针旋转60°得到线段BQ,连接CQ,则在点P运动过程中,线段CQ的最小值为▲ .【答案】5二、选择题(本大题共有6小题,每小题3分,共计18分.在每小题所给出的四个选项中,恰有一项符合题目要求.)13.把下列英文字母看成图形,其中是中心对称图形但不是轴对称图形的是( ▲ )A. UB. FC. HD. N【答案】D14.去年某中学有近500名考生参加中考,为了了解这些考生的数学成绩,从中抽取50名考生的数学成绩进行统计分析,以下说法正确的是( ▲ )A.这50名考生是总体的一个样本B.近500名考生是总体C.每位考生的数学成绩是个体D.50名学生是样本容量【答案】C15.下列命题中,真命题是( ▲ )A.一组对边平行且另一组对边相等的四边形是平行四边形B.有两条边相等的平行四边形是菱形C.对角线互相垂直且相等的四边形是正方形D.两条对角线互相垂直平分的四边形是菱形【答案】D16.在一个不透明的袋子里,有若干完全相同的蓝色玻璃球,现将只有颜色不同的10个同款红色玻璃球放入袋中,充分混合后随机倒出20个,其中红色玻璃球有2个.由此可估计袋子里原有蓝色玻璃球大约( ▲ )A.50个 B.80个 C.90个 D.100个【答案】C17.如图,以正方形 ABCD的对角线AC为一边作菱形 AEFC,则∠FAB为( ▲ )A.22.5° B.45° C.30° D.135°【答案】A18.如图,四边形ABCD 中,AB∥CD,∠C=90°,AB=8, AD=CD=5,点M、N分别为BC、AB上的动点(含端点),E、F分别为DM、MN 的中点,则EF长度的最小值为( ▲ )A.1B.2 C.2.5 D.3【答案】B三、解答题(本大题共有8小题,共计78分.解答时应写出必要的文字说明、证明过程或演算步骤.)19.(本小题满分8分)如图,在▱ABCD中,点E,F是对角线AC上两点, AE=CF.求证:(1)△AFD≌CEB;(2)连接 DE、 BF,判断四边形 BEDF的形状,并说明理由.【答案】(1)略(2)四边形 BEDF是平行四边形20.(本小题满分8分)某市生物和地理实施会考制度,考试结果以等级形式呈现,分A、B、C、D四个等级.某校八年级为了迎接会考,进行了一次模拟考试,随机抽取部分学生的生物成绩进行统计,绘制成如下两幅不完整的统计图.(1)这次抽样调查共抽取了▲名学生的生物成绩.扇形统计图中,D等级所对应的扇形圆心角度数为▲(2)将条形统计图补充完整;(3)如果该校八年级共有600名学生,请估计这次模拟考试有多少名学生的生物成绩等级为D?【答案】(1)50 ,36°(2)略(3)6021.(本小题满分8分)如图,在直角坐标系中, A(0,4),C(3,0)(1)①画出线段AC关于y轴对称线段AB;②将线段CA绕点C顺时针旋转一个角,得到对应线段CD,使得AD//x轴,请画出线段CD;(2)连接线段AD,若直线y=kx平分四边形 ABCD的面积,求k的值.【答案】(1)略(2)4322.(本小题满分10分)如图,矩形ABCD中,AB=4,BC=2,点E.F分别在 AB、CD上,且 BE=DF=32(1)求证:四边形 AECF是菱形;(2)求线段EF的长.【答案】(1)略(2)√523.(本小题满分10分)如图,在四边形ABCD中,点E是线段AD上的任意一点(E与A,D不重合),G,F,H分别是 BE,BC,CE的中点.(1)证明:四边形 EGFH是平行四边形;BC,判断四边形EGFH的形状,并说明理由.(2)连接EF,若EF⊥BC,且EF = 12【答案】(1)略(2)正方形24.(本小题满分10分)x+b分别与x轴、y轴交于点A(12,0)、B,四边形 ABCD是正方形.如图,在平面直角坐标系中,直线y= - 34(1)b=______;AB=______;(2)求点D的坐标;(3)点M在线段AB上,点N是平面中一点,若四边形 OMBN为菱形,请求出点N的坐标.)【答案】(1)9 ,15 (2)(21,12)(3)N(-6,9225.(本小题满分12分))如图,在▱ABCD中,AB⊥AC, AB=1,BC=√5 , 对角线AC、BD相交于点O,将直线AC绕点O顺时针旋转α°,分别交直线BC、AD于点E、F.(1)试说明在旋转过程中,AF=CE始终成立;(2)当α=90°时,判断四边形 ABEF的形状;(3)在旋转的过程中(0°<a<180°),从A、B、C、D、E、F中任意4个点为顶点构造四边形:①当α=▲°时,构造的四边形是菱形;②若构造的四边形是矩形,求该矩形的两边长.【答案】(1)略(2)平行四边形(3)45 ,矩形两边长为25√5和65√526.(本小题满分12分)有一张矩形纸片ABCD,其中AB=10, AD=6,现将矩形折叠,点D的对应点记为点P,折痕为EF(点E、F是折痕与矩形的边的交点),再将纸片还原.(1)若点P落在矩形 ABCD的边AB上(如图1).①当点P与点A重合时,∠DEF=▲°,当点E与点A重合时,∠DEF=▲°,当点F与C重合时,AP=▲;②若P为AB的中点时,求AE的长;(2)若点P落在矩形的外部(如图2),点F与点C重合,点E在AD上,线段BA与线段FP交于点M,当AM=DE时,请求出线段AE的长度.(3)若点E为动点,点F为DC的中点,直接写出线段AP的最小值=▲【答案】(1)①90 , 45 , 2 ②1112(2) 127(3)√61-5。

2020年初二数学下期中试卷(附答案)

2020年初二数学下期中试卷(附答案)
18.已知:如图,∠ABC=∠ADC=90°,M、N分别是AC、BD的中点,AC=10,BD=8,则MN=_____.
19.如图,已知函数 和 的图象交于点P,则根据图象可得,关于 的二元一次方程组的解是_____________。
20.如图,若▱ABCD的周长为22cm,AC,BD相交于点O,△AOD的周长比△AOB的周长小3cm,则AB=________。
故选B.
2.B
解析:B
【解析】
试题解析:85分的有8人,人数最多,故众数为85分;
处于中间位置的数为第10、11两个数,
为85分,90分,中位数为87.5分.
故选B.
考点:1.众数;2.中位数
3.D
解析:D
【解析】
【分析】
【详解】
试题分析:A、根据勾股定理的逆定理,可知 ,故能判定是直角三角形;
B、设a=3x,b=4x,c=5x,可知 ,故能判定是直角三角形;
【详解】
A. ,故A错误;
B. ,故B正确;
C. ,故C错误;
D. ,故D错误.
故选:B.
【点睛】
本题主要考查了二次根式的性质和二次根式的化简,熟练掌握运算和性质是解题的关键.
二、填空题
13.128°【解析】【分析】如图延长DC到F根据折叠的性质可得∠ACB=∠BCF继而根据平行线的性质可得∠BCF=∠ABC=26°从而可得∠ACF=52°再根据平角的定义即可求得答案【详解】如图延长DC
A.1B.2C.3D.4
11.菱形周长为 ,它的条对角线长 ,则该菱形的面积为()
A. B. C. D.
12.下列运算正确的是()
A. B.
C. D.
二、填空题
13.将一个矩形 纸片折叠成如图所示的图形,若∠ABC=26°,则∠ACD=____.

2020年初二数学下期中试题带答案

2020年初二数学下期中试题带答案

2020 年初二数学下期中试题带答案一、选择题1.按图 (1)﹣(3)的方式摆放餐桌和椅子,照这样的方式维续摆放,如果摆放的餐桌为x张,摆放的椅子为 y 把,则 y 与x 之间的关系式为 ( )A . y = 6xB .y =4x ﹣2C .y =5x ﹣1D .y =4x+22.如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm 、3dm 、2dm ,A 和 B 是这个台阶两个相对的端点, A 点有一只蚂蚁,想到 B 点去吃可口的食物,则蚂蚁沿着台阶面 3.△ABC 的三边分别是 a ,b ,c ,其对角分别是∠ A ,∠B ,∠ C ,下列条件不能判定 △ABC 是直角三角形的是( )A .B AC B .a : b : c 5 :12 :13 C .b 2 a 2 c 2D . A : B : C 3 : 4 : 54. 下列说法正确的有几个( )①对角线互相平分的四边形是平行四边形;②对角线互相垂直的四边形是菱形;③对角线互相垂直且相等的平行四边形是正方形;④对角线相等 的平行四边形是矩形.A .1 个B .2 个C .3 个D .4 个5. 下列各组数据中能作为直角三角形的三边长的是( )A .1,2,2B .1,1, 3C .4,5,6D .1, 3 ,2①AC ⊥BD ;②AD ∥BC ;③四边形 ABCD 是菱形;④ △ABD ≌△ CDB .其中结论正确的序7. 对于次函数 y 2x 1,下列结论错误的是 ( ) A .图象过点 0, 1C .20D .256. 如图,四边形 ABCD 是轴对称图形,且直线AC 是否对称轴, AB ∥CD ,则下列结论:B .①②③④C .②③④D .①③④爬到 B 点的最短路程是( )号是(A .①②③1 B .图象与 x 轴的交点坐标为 ( ,0) 2C .图象沿 y 轴向上平移 1个单位长度,得到直线 y 2xD .图象经过第一、二、三象限 8.已知直角三角形中 30°角所对的直角边长是 2 3 cm ,则另一条直角边的长是( )B . 4 3 cmC .6cmD . 6 3 cm9.如图所示,一次函数 y=kx+b (k 、b 为常数,且 k ≠0)与正比例函数 y=ax ( a 为常数,且 a ≠0)相交于点 P ,则不等式 kx+b > ax 的解集是二、填空题13.如图,在 5×5 的正方形网格中,以 两条边长均为无理数,满足这样条件的点”,△ABH 、△BCG 、△CDF 和△DAE 是四个全等的直角三角形,四边形ABCD 和 EFGH 都是正方形,如果 AB = 10, EF = 2,那么 AH 等于A .x >1B .x <1C .x >2D .x <210.要使代数式2有意义,则 x 的取值范围是( ) x3A. x3B . x 3C . x 3D . x 311. 已知点(﹣ 2, y 1),(﹣ 1,y 2), ( 1,y 3)都在直线 y = ﹣ x+b 上,则 y 1, y 2,值的大小关系是( )A.y 1> y 2> y 3B .y 1< y 2< y 3C .y 3>y 1>y 2D .y 3>y 1>y 212. 菱形周长为40cm ,它的条对角线长 12cm , 则该菱形的面积为( )A.24B . 48C . 96D . 36y 3的A . 4cmC .6cmAB 为边画直角 △ABC ,使点 C 在格点上,且另外 C共 __个.15.在Rt ABC 中, a ,b ,c 分别为 A ,DB , C 的对边, C 90 ,若a :b 2:3 ,c 52 ,则 a 的长为 ______________18. 矩形两条对角线的夹角为 60°,矩形的较短的一边为 5,则矩形的对角线的长是(3)利用你总结的规律,计算:( 3.15) 2三、解答题 21. 已知 a ,b , c 在数轴上如图:化简: a 2a b c a 2b c .22.甲、乙两座仓库分别有农用车 12辆和 6辆.现在需要调往 A 县 10辆,需要调往 B 县 8辆,已知从甲仓库调运一辆农用车到A 县和B 县的运费分别为 40元和 80元;从乙仓库调运一辆农用车到 A 县和 B 县的运费分别为 30元和 50元.(1)设乙仓库调往 A 县农用车 x 辆,求总运费 y 关于 x 的函数关系式; (2)若要求总运费不超过 900 元,问共有几种调运方案?试列举出来.(3)求出总运费最低的调运方案,最低运费是多少元? 23.如图,在平面直角坐标系中,一次函数 y=kx+b 的图象经过点 A (﹣ 2,6),且与 x 轴相交于点 B ,与正比例函数 y=3x 的图象相交于点 C ,点 C 的横坐标为 1. (1)求 k 、b 的值;时间 t (秒) 0.5 0.60.7 0.8 0.9 1 落下的高度 h (米) 5 0.25 5 0.36 5 0.49 5 0.64 5 0.815119. 果字成熟后从树上落到地面,它落下的高度与经过的时间有如下的关系: 如果果子经过 2 秒落到地上,那么此果子开始落下时离地面的高度大约是 (2)根据计算结果,回答: a 2一定等于 a 吗?你发现其中的规律了吗?并请你把得到,0.82 20. (1)计算填空: 42 , ( 3)2的规律描述出来?16. 函数 yx12x 6的自变量 x 的取值范围是17.如图,在矩形 ABCD 中,对角线 AC ,BD 相交于点 O ,ACB 30 o,则 AOB 的大米.12)若点D在y轴负半轴上,且满足S△COD=13S△BOC,求点D的坐标.24.已知:如图,在四边形ABCD 中,∠ B=90°,AB=BC=2,CD=3,AD=1,求25.如图在8×8的正方形网格中,△ ABC 的顶点在边长为1的小正方形的顶点上.(1)填空:∠ ABC= ,BC= ;(2)若点A 在网格所在的坐标平面里的坐标为(1,﹣2),请你在图中找出一点D,并作出以A、B、C、D 四个点为顶点的平行四边形,求出满足条件的 D 点的坐标.参考答案】*** 试卷处理标记,请不要删除、选择题1.D 解析:D 【解析】【分析】观察可得,第一张餐桌上可以摆放6 把椅子,进一步观察发现:多一张餐桌,多放子.第x 张餐桌共有6+4(x-1)=4x+2 ,由此即可解答.4 把椅【详解】有1 张桌子时有6 把椅子,有2 张桌子时有10 把椅子,10=6+4× 1,有3 张桌子时有14 把椅子,14=6+4× 2,∵多一张餐桌,多放4 把椅子,∴第x 张餐桌共有6+4(x-1 )=4x+2 .∴y 与x 之间的关系式为:y=4x+2.故选D .【点睛】本题考查了图形的变化类问题,注意结合图形进行观察,发现数字之间的运算规律,利用规律即可求得y 与x 之间的关系式.2.D解析:D【解析】分析:本题考查的是利用勾股定理求线段的长度. 解析:根据题意,得出如下图形,最短路径为AB的长,AC=20,BC=15, ∴ AB=25故选D. 点睛:本题的关键是变曲为直,画出矩形,利用勾股定理得出对角线的长度. 3.D 解析:D【解析】【分析】根据三角形内角和定理判断A、D 即可;根据勾股定理的逆定理判断B、C即可.【详解】A、∵∠ B=∠A- ∠ C,∴∠ B+∠C=∠A,∵∠ A+∠B+ ∠C=180°,∴2∠A=180°,∴∠ A=90°,即△ABC 是直角三角形,故本选项错误;B、∵ 52+122=132,∴△ ABC 是直角三角形,故本选项错误;C、∵b2-a2=c2,∴b2=a2+c2,∴△ ABC 是直角三角形,故本选项错误;D、∵∠ A:∠B:∠ C=3:4:5,∠ A+ ∠B+∠C=180°,∴∠ A=45°,∠ B=60°,∠ C=75°,∴△ ABC 不是直角三角形,故本选项正确;故选D .【点睛】本题考查了三角形内角和定理,勾股定理的逆定理的应用,主要考查学生的计算能力和辨析能力.4.C解析:C【解析】【分析】根据对角线互相平分的四边形是平行四边形;对角线互相平分且垂直的四边形是菱形;对角线互相垂直且相等的平行四边形是正方形;对角线互相平分且相等的四边形是矩形进行分析即可.【详解】(1)对角线互相平分的四边形是平行四边形,说法正确;(2)对角线互相垂直的四边形是菱形,说法错误;(3)对角线互相垂直且相等的平行四边形是正方形,说法正确;(4)对角线相等的平行四边形是矩形,说法正确.正确的个数有3 个,故选C.【点睛】此题主要考查了命题与定理,关键是掌握平行四边形、菱形、矩形和正方形的判定方法.5.D解析:D【解析】【分析】根据勾股定理的逆定理对各选项进行逐一分析即可.【详解】解:A 、∵ 12+22=5≠22,∴此组数据不能作为直角三角形的三边长,故本选项错误;B、∵ 12+12=2≠(3 )2,∴此组数据不能作为直角三角形的三边长,故本选项错误;C、∵ 42+52=41≠62,∴此组数据不能作为直角三角形的三边长,故本选项错误;D、∵12+(3 )2=4=22,∴此组数据能作为直角三角形的三边长,故本选项正确.故选D .【点睛】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长 这个三角形就是直角三角形是解答此题的关键.6.B 解析: B 【解析】 【分析】 根据轴对称图形的性质,结合菱形的判定方法以及全等三角形的判定方法分析得出答案. 【详解】解:如图,因为 l 是四边形 ABCD 的对称轴, AB ∥CD , 则 AD =AB ,∠ 1=∠ 2,∠ 1=∠ 4, 则∠ 2=∠ 4, ∴AD =DC ,同理可得: AB = AD = BC = DC , 所以四边形 ABCD 是菱形. 根据菱形的性质,可以得出以下结论: 所以 ①AC ⊥BD ,正确; ② AD ∥ BC ,正确;③ 四边形 ABCD 是菱形,正确; ④在△ ABD 和△ CDB 中AB BC ∵ AD DC ,BD BD∴△ ABD ≌△ CDB (SSS ),正确. 故正确的结论是: ①②③④ . 故选 B .此题考查了轴对称以及菱形的判断与菱形的性质,注意:对称轴垂直平分对应点的连线, 对应角相等,对应边相等.7.D解析: D 解析】 分析】根据一次函数的性质对 D 进行判断;根据一次函数图象上点的坐标特征对 A 、B 进行判断;根据一次函数的几何变换对 C 进行判断. 【详解】A 、图象过点 0, 1 ,不符合题意;1B 、函数的图象与 x 轴的交点坐标是 ( ,0) ,不符合题意;2C 、图象沿 y 轴向上平移 1个单位长度,得到直线 y 2x ,不符合题意;a ,b ,c 满足 a 2+b 2=c 2,那么点睛】D、图象经过第一、三、四象限,符合题意;故选:D .【点睛】本题考查了一次函数的性质、一次函数图象上点的坐标特征和一次函数图象的几何变换,属于基础题.8.C解析:C【解析】如图,∵∠ C=90°,∠ B=30°,AC=2 3 cm,∴ AB=2AC=4 3cm,由勾股定理得:BC= AB2AC2=6cm,故选C.9.D解析:D【解析】分析:以函数的交点为分界线,然后看谁的图像在上面就是谁大.详解:根据函数图像可得:当x>2 时,kx+b < ax,故选C.点睛:本题主要考查的是不等式与函数之间的关系,属于中等难度题型.解决这个问题的关键就是看懂函数图像.10.B解析:B【解析】【分析】根据被开方数大于等于0,分母不等于0 列式计算即可得解.【详解】由题意得,x-3 > 0,解得x> 3.故选:B.【点睛】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.11.A解析:A【解析】【分析】先根据直线y=﹣x+b判断出函数图象,y 随x的增加而减少,再根据各点横坐标的大小进行判断即可.【详解】解:∵直线y=﹣x+b,k=﹣1<0,∴ y 随x 的增大而减小,又∵﹣2<﹣1< 1,∴y1> y2> y3.故选:A .【点睛】本题考查一次函数的图象性质:当k>0,y随x增大而增大;当k<0时,y将随x的增大而减小.12.C解析:C【解析】【分析】根据菱形的性质,四条边相等且对角线互相平分且互相垂直,由勾股定理得出进而得其对角线BD 的长,再根据菱形的面积等于对角线乘积的一半计算即可【详解】∵一条对角线的长为12,当AC=12 ,∴AO=CO=6 ,在Rt△AOB 中,根据勾股定理,得BO=8 ,∴BD=2BO=161∴菱形的面积= A C?BD=96 ,2故选:C.BO 的长,对角线AC 与BD 相交于点O ,【点睛】此题主要考查了菱形的性质、菱形的面积公式以及勾股定理等知识,根据题意得出BO 的长是解题关键.二、填空题13.4【解析】【分析】本题需根据直角三角形的定义和图形即可找出所有满足条件的点【详解】解:根据题意可得以AB为边画直角△ ABC使点C在格点上满足这样条件的点C共8 个故答案为8解析:4【解析】【分析】本题需根据直角三角形的定义和图形即可找出所有满足条件的点.【详解】解:根据题意可得以AB 为边画直角△ABC ,使点C在格点上,满足这样条件的点C共8 个.故答案为8.14.6【解析】试题分析:由全等可知:AH=DEAE=AH+HE由直角三角形可得:代入可得考点:全等三角形的对应边相等直角三角形的勾股定理正方形的边长相等解析:6【解析】试题分析:由全等可知:AH=DE,AE=AH+HE,由直角三角形可得:AE2DE 2AB2,代入可得. 考点:全等三角形的对应边相等,直角三角形的勾股定理,正方形的边长相等15.4【解析】【分析】设每份为x 则根据勾股定理即可求出x 的值然后求出 a 的长【详解】解:根据题意设每份为x∵∴在中由勾股定理得解得:(负值已舍去)∴;故答案为:4【点睛】本题考查了勾股定理解直角三角形解题解析:4【解析】【分析】设每份为x,则a 2x,b 3x,根据勾股定理,即可求出x的值,然后求出a的长.【详解】解:根据题意,设每份为x ,∵ a : b 2:3 ,∴ a 2x,b 3x ,在Rt ABC 中,由勾股定理,得(2x)2(3x)2( 52)2,解得:x 2 (负值已舍去),∴ a 4;故答案为:4.【点睛】本题考查了勾股定理解直角三角形,解题的关键是熟练掌握勾股定理求出三角形的边长.16.x>-3【解析】【分析】根据被开方数大于等于0 分母不等于0 列式计算即可得解【详解】解:由题意得2x+6>0 解得x>-3 故答案为x>-3 【点睛】本题考查了函数自变量的范围一般从三个方面考虑:(1)当函解析:x> -3.【解析】【分析】根据被开方数大于等于0,分母不等于0 列式计算即可得解.【详解】解:由题意得,2x+6 >0,解得x> -3.故答案为x> -3.【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.17.【解析】【分析】根据矩形的性质可得∠ ABC的度数OA与OB的关系根据等边三角形的判定和性质可得答案【详解】∵ ABCD是矩形∴∠ABC=9°0 ∵∠ACB=3°0 ∴∠BAO=9°0 ﹣∠ACB=6°0 ∵O解析:60o【解析】【分析】根据矩形的性质,可得∠ ABC的度数,OA与OB的关系,根据等边三角形的判定和性质,可得答案.【详解】∵ABCD 是矩形,∴∠ ABC=90°.∵∠ ACB=30°,∴∠ BAO =90°﹣∠ ACB=60°.∵OA=OB,∴△ ABO 是等边三角形,∴∠ AOB =60°.故答案为:60°.【点睛】本题考查了矩形的性质,利用矩形的性质得出∠ABC 的度数是解答本题的关键.18.10【解析】【分析】首先根据题意画出图形然后再根据矩形两条对角线的夹角为60°证得△AOB 是等边三角形即可解答本题【详解】解:如图:∵四边形ABCD 是矩形∴OA=ACOB=BDAC=BD ∴ OA=OB解析:10【解析】【分析】首先根据题意画出图形,然后再根据矩形两条对角线的夹角为60°,证得△ AOB 是等边三角形,即可解答本题.【详解】解:如图:∵四边形ABCD 是矩形,11∴OA= AC ,OB= BD ,AC=BD22∴OA=OB ,∵∠ A0B=60 °,∴△ AOB 是等边三角形,∴ OA=OB=AB=5 ,∴AC=2OA=10 ,即矩形对角线的长为10. 故答案为:10.本题考查了矩形的性质以及等边三角形的判定与性质,弄清题意、画出图形是解答本题的关键.19.20【解析】【分析】分析表格中数据得到物体自由下落的高度随着时间的增大而增大与的关系为:把代入再进行计算即可【详解】解:由表格得用时间表示高度的关系式为:当时所以果子开始落下时离地面的高度大约是20 解析:20【解析】【分析】分析表格中数据,得到物体自由下落的高度h随着时间t 的增大而增大,h与t的关系为:h 5t2,把t 2代入h 5t 2,再进行计算即可.【详解】解:由表格得,用时间t(s)表示高度h(m)的关系式为:h 5t2,当t 2时,h 5 22 5 4 20 .所以果子开始落下时离地面的高度大约是20 米.故答案为:20.【点睛】本题考查了根据图表找规律,并应用规律解决问题,要求有较强的分析数据和描述数据的能力.能够正确找到h和t 的关系是解题的关键.20.(1)4083;(2)不一定=;(3)315﹣π【解析】【分析】(1)依据被开方数即可计算得到结果;(2)根据计算结果不一定等于a;(3)原式利用得出规律计算即可得到结果【详解】解:(1);故答案为2解析:(1)4, 0.8,3,2;(2)不一定,a2= a ;(3)3.15﹣π.3【解析】【分析】(1)依据被开方数即可计算得到结果;(2)根据计算结果,a2不一定等于a;(3)原式利用得出规律计算即可得到结果.【详解】解:( 1) 424, 0.820.8, ( 3)2故答案为:4,0.8,3,;3(2)a2不一定等于a,规律:a2=|a|;(3)( 3.15)2=| π﹣3.15|=3.15﹣π.【点睛】此题考查了二次根式的性质与化简,熟练掌握二次根式的性质是解本题的关键.三、解答题21.a解析】【分析】直接利用数轴得出a<0,a+b<0,c-a>0,b+c<0,进而化简得出答案.【详解】 解:如图所示: ∴a <0,a+b <0,c-a >0,b+c < 0,∴ a 2 a b c a b c= a a b c a b c= a ;【点睛】此题主要考查了二次根式的性质和数轴,正确得出各部分符号是解题关键.22. ( 1) y 20x 860 (0 x 6);(2)3 种;方案一:甲调往 A :10辆;乙往 A :0 辆;甲调往 B : 2辆;乙调往 B :6 辆; 方案二:甲调往 A : 9辆;乙往 A :1辆;甲调往 B : 3辆;乙调往 B : 5辆;方案三:甲调往 A :8辆;乙往 A : 2辆;甲调往 B :4辆; 乙调往 B :4 辆;( 3)方案一的总运费最少为 860 元.【解析】【分析】(1)若乙仓库调往 A 县农用车 x 辆,那么乙仓库调往 B 县农用车、甲给 A 县调农用车、 以及甲县给 B 县调车数量都可表示出来,然后依据各自运费,把总运费表示即可;(2)若要求总运费不超过 900 元,则可根据( 1)列不等式确定 x 的取值,从而求解;(3)在( 2)的基础上,结合一次函数的性质求出最低运费即可.【详解】解:( 1)乙仓库调往 A 县农用车 x 辆,则调往 B 县农用车 6 x 辆. (x 6)A 县需 10辆车,故甲给 A 县调10 x 辆,给B 县调车 (x 2) 辆 ∴ y 40(10 x ) 80( x 2) 30x 50(6 x )化简得 y 20x 860 (0 x 6)(2)总运费不超过 900,即 y 900代入( 1)结果得20 x 860 900解得 x 2又因为 x 为非负整数∴ x 0,1,2 即如下三种方案A :9 辆;乙往 A : 1辆;甲调往B :3 辆;乙调往 B :5辆. A :8 辆;乙往 A : 2辆;甲调往 B :4 辆;乙调往 B :4辆.3)总运费 y 20x 860 ,其中 0 x 6∵ k 20 0∴ y 随 x 的增大而增大∴当 x 取最小时,运费 y 最小方案一:甲调往A : 10辆;乙往 A :0 辆;甲调往 B2 辆;乙调往 B :6 辆. 方案二:甲调往 方案三:甲调往代入 x 0 得 y 20 0 860 860∴方案为( 2)中方案 1:甲往 A : 10辆;乙往 A :0 辆; 甲往 B : 2辆;乙往 B :6辆. 总运费最少为 860 元.【点睛】本题是贴近社会生活的应用题,赋予了生活气息,使学生真切地感受到 “数学来源于生 活”,体验到数学的 “有用性 ”.这样设计体现了《新课程标准》的“问题情景 -建立模型 -解释、应用和拓展 ”的数学学习模式. 23. ( 1) k=-1 , b=4;( 2)点 D 的坐标为( 0, -4).【解析】【分析】【详解】 分析: ( 1)利用一次函数图象上点的坐标特征可求出点 C 的坐标,根据点 A 、 C 的坐标,利用待定系数法即可求出 k 、b 的值;(2)利用一次函数图象上点的坐标特征可求出点B 的坐标,设点 D 的坐标为( 0, m )1 (m < 0),根据三角形的面积公式结合 S △COD = S △BOC ,即可得出关于 m 的一元一次方3程,解之即可得出 m 的值,进而可得出点 D 的坐标. 详解: ( 1)当 x=1 时, y=3x=3 , ∴点将AC 的坐标为( 1, 3). (﹣ 2, 6)、 C (1, 3)代入 y=kx+b , 2k b 6得:k b 3 ,k1解得:b 4 .(2)解当 y=0 时,有﹣ x+4=0 , x=4, ∴点 设点 B 的坐标为( 4, 0).D 的坐标为( 0,m )( m < 0),111 1 ∵S △COD = S △BOC ,即﹣ m= × ×4×3,32 3 2 解得: m=-4 ,∴点 D 的坐标为( 0, -4).点睛:本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征、待定系数法 求一次函数解析式以及三角形的面积,解题的关键是:(1)根据点的坐标,利用待定系数 24. 135o .法求出 k 、b 的值;( 2)利用三角形的面积公式结合结合 一元一次方程. S △COD = 1 S △BOC ,找出关于 3 m 的【解析】【分析】在直角△ ABC中,由勾股定理求得AC的长,在△ ACD 中,因为已知三角形的三边的长,可用勾股定理的逆定理判定△ ACD 是不是直角三角形.【详解】解:∵∠ B=90°,AB=BC=2 ,∴AC= AB2BC2=2 2 ,∠ BAC=45°,又∵ CD=3,DA=1,∴AC2+DA2=8+1=9 ,CD2=9,∴AC2+DA2=CD2,∴△ACD 是直角三角形,∴∠ CAD =90°,∴∠ DAB =45°+90°=135°.25.(1)135°,2 2 ;(2)D1(3,-4)或D 2(7,-4)或D3(-1,0).【解析】【分析】(1)根据图形知道CB 是一个等腰三角形的斜边,所以容易得出ABC 的度数,利用勾股定理可以求出BC 的长度;(2)根据A 点的坐标(1,-2),并且ABCD 为平行四边形,如图D 的位置有三种情况.【详解】解:(1)由图形可得:∠ ABC=45° +90°=135°,BC= 22+22=2 2;故答案为:135°,2 2 ;(2)满足条件的D 点共有3个,以A、B、C、D 四个点为顶点的四边形为平行四边形分别是Y ABCD 1,Y ABD 2C,Y AD3BC .其中第四个顶点的坐标为:【点睛】本题考查等腰三角形的性质;勾股定理;平行四边形的判定和性质.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二学期期中阶段测试初二数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)第Ⅲ卷附加题三部分,其中第Ⅰ卷(选择题)和第Ⅱ卷共100分,第Ⅲ卷20分,考试时间100分钟。

第Ⅰ卷(共30分)一、选择题:(本大题共10小题,每小题3分,共30分. 在每小题的四个选项中,只有一个选项是符合题目要求的).1.下列各式中,运算正确的是( ). A .3333-= B .822= C .2+323=D .2(2)2-=- 2.下列二次根式中,是最简二次根式的是().A .15B .12C .13D .93.下列各组数中,以它们为边长的线段不能构成直角三角形的是( ). A .1,2,3B .3,4,5C .5,12,13D .2,2,31.4.如图,矩形ABCD 中,对角线AC ,BD 交于O 点. 若∠AOB=60°,AC =8,则AB 的长为( ).A .4B .43C .3D .55.如图,点A 是直线l 外一点,在l 上取两点B 、C ,分别以A 、C 为圆心,BC 、AB 长为半径画弧,两弧交于点D ,分别连接AB 、AD 、CD ,则四边形ABCD 一定是( ). A .平行四边形 B .矩形 C .菱形 D .正方形6.用配方法解方程2230x x --=,原方程应变形为( ).A .2(1)2x -=B .2(1)4x +=C .2(1)4x -= D .2(1)2x +=7.如图,在平行四边形ABCD 中,∠BAD 的平分线交BC 于点E ,∠ABC 的平分线交AD 于点F ,若BF =12,AB =10, 则AE 的长为( ).A .13B .14C .15D .16 8.下列命题中,正确的是().A .有一组邻边相等的四边形是菱形B .对角线互相平分且垂直的四边形是矩形C .两组邻角相等的四边形是平行四边形D .对角线互相垂直且相等的平行四边形是正方形9.如图,一根木棍斜靠在与地面(OM )垂直的墙(ON )上,设木棍中点为P ,若木棍A 端沿墙下滑,且B 沿地面向右滑行. 在此滑动过程中,点P 到点O 的距离( ). A .不变B .变小 C .变大 D .无法判断PFE D C BA E C'D BA10.如图,在菱形ABCD 中,∠BAD =60°,AB =2,E 是DC 边上一个动点,F 是AB 边上一点,∠AEF =30°.设DE =x ,图中某条线段长为y ,y 与x 满足的函数关系的图象大致如图所示,则这条线段可能是图中的( ).A .线段ECB .线段AEC .线段EFD .线段BF第9题图 第10题图第Ⅱ卷(共70分)二、填空:(每小题2分,共10个小题,共20分) 11.写出一个以0,1为根的一元二次方程. 12.如果3x -在实数范围内有意义,那么x 的取值范围是________. 13.一元二次方程2x +kx -3=0的一个根是x=1,则k 的值是.14.如图,为了检查平行四边形书架ABCD 的侧边是否与上、下边都垂直,工人师傅用一根绳子比较了其对角线AC ,BD 的长度,若二者长度相等,则该书架的侧边与上、下边都垂直,请你说出其中的数学原理. 15.某城2016年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,预计到2018年底增加到363公顷,设绿化面积平均每年的增长率为x ,由题意所列方程是 . 16.如图,DE 为△ABC 的中位线,点F 在DE 上,且 ∠AFB =90°,若AB =5,BC =8,则EF 的长为.17.如果关于x 的一元二次方程210ax x +-=有实数根,则a的取值范围 是________.18.如图,矩形ABCD 中,AB=3,BC=5.过对角线交点O 作OE ⊥AC 交AD 于E,则AE 的长是.19.如图,将矩形ABCD 沿对角线BD 所在直线折叠,点C 落在同一平面内,落点记为C’,BC’与AD 交于点E ,若 AB=3,BC =4,则DE 的长为.20.如图,正方形ABCD 的面积是2,E ,F ,P 分别是AB ,BC ,AC 上的动点, PE +PF 的最小值等于.第18题图 第19题图 第20题图三、解答题:(21,22题每小题4分,23,24,25每题5分, 26,27每题6分, 28题7分;共计50分)21.计算(1)188(31)(31)-++-; (2)1(123)622+⨯-NMO A P22.解方程: (1)2650x x -+=;(2) 22310x x --=.23.如图,在四边形ABCD 中,∠B =90º,AB=BC=2,AD =1,CD =3.求∠DAB 的度数.24.列方程或方程组解应用题如图,要建一个面积为40平方米的矩形花园 ABCD ,为了节约材料,花园的一边AD 靠着 原有的一面墙,墙长为8米(AD <8),另三 边用栅栏围成,已知栅栏总长为24米, 求花园一边AB 的长.25.如图,四边形ABCD 中,AB//CD ,AC 平分∠BAD ,CE//AD 交AB 于E. 求证:四边形AECD 是菱形.26.已知关于x 的一元二次方程22(22)40x m x m +++-=有两个不相等的实数根. (1)求m 的取值范围;(2)若m 为负整数,且该方程的两个根都是整数,求m 的值.27.如图,四边形ABCD 是矩形,点E 在CD 边上,点F 在DC 延长线上,AE =BF . (1)求证:四边形ABFE 是平行四边形(2)若∠BEF =∠DAE ,AE =3,BE =4,求EF 的长.28.如图,在正方形ABCD 中,点M 在CD 边上,点N 在正方形ABCD 外部,且满足∠CMN =90°,CM =MN .连接AN ,CN ,取AN 的中点E ,连接BE ,AC ,交于F 点. (1) ①依题意补全图形;②求证:BE ⊥AC .(2)请探究线段BE ,AD ,CN 所满足的等量关系,并证明你的结论.(3)设AB =1,若点M 沿着线段CD 从点C 运动到点D ,则在该运动过程中,线段EN 所扫过的面积为______________(直接写出答案).D A BC D ACB EDA第Ⅲ卷附加题(共20分)附加题(1题6分,2题7分,3题7分,共20分)1. 如图1,将边长为1的正方形ABCD 压扁为边长为1的菱形ABCD .在菱形ABCD 中,∠A 的大小为α,面积记为S .30°45° 60° 90° 120° 135°150° S12122(由(1)可以发现正方形在压扁的过程中,菱形的面积随着∠A 大小的变化而变化,不妨把菱形的面积S 记为S (α).例如:当α=30°时,1(30)2S S =︒=;当α=135°时,2(135)S S ο==.由上表可以得到 (60)S S ︒=( ______°);(150)S S ︒=( ______°),…,由此可以归纳出(180)()S S α︒-=.(3) 两块相同的等腰直角三角板按图2的方式放置,AD =2,∠AOB =α,试探究图中两个带阴影的三角形面积是否相等,并说明理由(注:可以利用(2)中的结论).图2图2 2.已知:关于x 的一元二次方程23(1)230(3)mx m x m m --+>-=. (1)求证:方程总有两个不相等的实数根;(2)设方程的两个实数根分别为1x ,2x ,且12x x <. ①求方程的两个实数根1x ,2x (用含m 的代数式表示); ②若1284mx x <-,直接写出m 的取值范围.3. 阅读下列材料:问题:如图1,在平行四边形ABCD 中,E 是AD 上一点,AE=AB ,∠EAB=60°,过点E 作直线EF ,在EF 上取一点G ,使得∠EGB=∠EAB ,连接AG. 求证:EG =AG+BG.小明同学的思路是:作∠GAH=∠EAB 交GE 于点H ,构造全等三角形,经过推理解决问题. 参考小明同学的思路,探究并解决下列问题:(1)完成上面问题中的证明;(2)如果将原问题中的“∠EAB=60°”改为“∠EAB=90°”,原问题中的其它条件不变(如图2),请探究线段EG、AG、BG之间的数量关系,并证明你的结论.(1)证明:图1(2)解:线段EG、AG、BG之间的数量关系为____________________________.证明:图2初二数学答案及评分标准=(31)-…………………………………………………3分 2……………………………………………………………4分(2)原式=2, ----2分 ==3⨯3分 ==…………………………………………………………………4分 22.(1)解:2650x x -+=移项,得265x x -=-.配方,得26959x x -+=-+,…………………………………………………1分所以,2(3)4x -=.………………………………………………………………2分 由此可得32x -=±,所以,15x =,21x =.…………………………………………………………4分 (2)解:2a =,3b =-,1c =-.………………………………… 1分224(3)42(1)170b ac∆=-=--⨯⨯-=>.………………………2分方程有两个不相等的实数根x ==,1x 2x .……………………………………4分23.解:连接AC在Rt △ABC 中,∠B =90º,AB =BC =2,∴∠BAC =∠ACB =45°,………………………………………………1分∴222AC AB BC =+.∴22AC =.………………………………2分 ∵AD =1,CD =3,∴222AC AD CD +=.…………………………3分 在△ACD 中,222AC AD CD +=,∴△ACD 是直角三角形,即∠DAC =90º.……………………………………4分 ∵∠BAD =∠BAC +∠DAC ,∴∠BAD =135º.………………………………………………………………5分 24.解:设AB 的长为x 米,则AD=BC=(242x -)米. (242)240x x -⋅=………………………………2分212200x x -+=(10)(2)0x x --=1210,2x x ==………………………………4分当110,4x AD == 当22,20x AD ==8,4AD AD <∴=Q10x ∴=………………………………5分答:AB 的长为10米.25.证明:∵AB ∥CD ,CE ∥AD∴四边形ADCE 是平行四边形…………………1分 ∵AC 平分∠BAD∴∠DAC=∠EAC ………………2分 ∵AB ∥CD∴∠DCA=∠EAC ………………3分 ∴∠DAC=∠DCA∴AD=DC …………………………4分 ∴四边形ADCE 是菱形…………5分26. 解:(1)∵一元二次方程22(22)40x m x m +++-=有两个不相等的实数根, ∴2224(22)41(4)b ac m m ∆=-=+-⨯⨯-………………………………1分 8200m =+>……………………………………………………………2分∴52m >-.……………………………………………………………………3分(2)∵m 为负整数,∴1m =-或2-.……………………………………………………………4分当1m =-时,方程230x -=的根为13x =,23x =-不是整数,不符合题意,舍去.…………………………………………………………………………5分当2m =-时,方程220x x -=的根为10x =,22x =都是整数,符合题意.综上所述2m =-.…………………………………………………………6分27.(1)证明:∵四边形ABCD 是矩形,∴AD =BC , ∠D =∠BCD =90°.∴∠BCF =180°-∠BCD =180°-90°=90°. ∴∠D=∠BCF .------------------------------------------------------------------1分在Rt △ADE 和Rt △BCF 中,,.AE BF AD BC =⎧⎨=⎩∴Rt △ADE ≌Rt △BCF .---------------------------------------------------------2分∴∠1=∠F.∴AE∥BF.∵AE=BF,∴四边形ABFE是平行四边形. ---------------------------------------------------3分(2)解:∵∠D=90°,∴∠DAE+∠1=90°.∵∠BEF=∠DAE,∴∠BEF+∠1=90°.∵∠BEF+∠1+∠AEB=180°,∴∠AEB=90°. --------------------------------------------------------------------------4分在Rt△ABE中, AE=3,BE=4,AB=2222345AE BE+=+=.∵四边形ABFE是平行四边形,∴EF=AB= 5. --------------------------------------------------------------------------6分28.(1)①依题意补全图形.---------------------------------------------------------1分②解法1:证明:连接CE.∵四边形ABCD是正方形,∴∠BCD=90°, AB=BC.∴∠ACB=∠ACD=12∠BCD=45°.∵∠CMN=90°, CM=MN,∴∠MCN=45°.∴∠ACN=∠ACD+∠MCN=90°.∵在Rt△ACN中,点E是AN中点,∴AE=CE=12AN.----------------------------------------------------------------------------2分∵AE=CE,AB=CB,∴点B,E在AC的垂直平分线上.∴BE垂直平分AC.∴BE⊥AC. --------------------------------------------------------------------------------------3分解法2: 证明:连接CE .∵四边形ABCD 是正方形, ∴∠BCD =90°, AB =BC . ∴∠ACB =∠ACD =12∠BCD =45°. ∵∠CMN =90°,CM =MN , ∴△CMN 是等腰直角三角形. ∴∠MCN =45°.∴∠ACN =∠ACD +∠MCN =90°. ∵在Rt △ACN 中,点E 是AN 中点, ∴AE =CE =12AN . 在△ABE 和△CBE 中,,,.AE CE AB CB BE BE =⎧⎪=⎨⎪=⎩∴△ABE ≌△CBE (SSS ). -----------------------------------------------------------------2分 ∴∠ABE =∠CBE . ∵AB =BC ,∴BE ⊥AC . --------------------------------------------------------------------------------------3分 (2)BE =2AD +12CN (或2BE =2AD +CN ). -------------------------------------4分 证明:∵AB =BC , ∠ABE =∠CBE ,∴AF =FC . ∵点E 是AN 中点, ∴AE =EN .∴FE 是△ACN 的中位线. ∴FE =12CN . ∵BE ⊥AC , ∴∠BFC =90°. ∴∠FBC +∠FCB =90°. ∵∠FCB =45°, ∴∠FBC =45°. ∴∠FCB =∠FBC . ∴BF =CF .在Rt △BCF 中,222BF CF BF +=,∴BF =BC .-----------------------------------------------------------------------------5分∵四边形ABCD 是正方形, ∴BC =AD .∴BF AD . ∵BE =BF +FE ,∴BE =2AD +12CN .-------------------------------------------------------------------6分(3)34.---------------------------------------------------------------------------------------7分附加题:1.(1;12.(说明:每对两个给1分)----------------------------------2分(2)120;30;α. -----------------------------------------------------------------------------------4分 (说明:前两个都答对给1分,最后一个α答对给1分) (3)答:两个带阴影的三角形面积相等.证明:将△ABO 沿AB 翻折得到菱形AEBO , 将△CDO 沿CD 翻折得到菱形OCFD .∴S △AOB =12S 菱形AEBO =12S (α)---------------------------------------------------5分S △CDO =12S 菱形OCFD =12S (180α︒-)-----------------------------------------6分由(2)中结论S (α)=S (180α︒-) ∴S △AOB =S △CDO .2.(1)证明:∵23(1)230(0)mx m x m m --+≠-=是关于x 的一元二次方程,∴2[3(1)]4(23)m m m ∆=---- ·············· 1分269m m =-+2(3)m =-. ······················· 2分∵3m >,∴2(3)0m ->,即0∆>.∴方程总有两个不相等的实数根. ·············· 3分(2)①解:由求根公式,得3(1)(3)2m m x m-±-=.∴1x =或23m x m-=.∵3m >, ∴23321m m m -=->.∵12x x <,11 ∴11x =,22332m x m m -==-. ·············· 5分②323m <<. ························ 7分 3.(1)证明:如图1,作∠GAH=∠EAB 交GE 于点H ,则∠GAB=∠HAE .……………………1分∵∠EAB=∠EGB ,∠AOE=∠BOF ,∴∠ABG=∠AEH . 在△ABG 和△AEH 中 GAB HAEAB AE ABG AEH ⎧∠∠⎪⎨⎪∠∠⎩===∴△ABG ≌△AEH .……………………2分∴BG=EH ,AG=AH .∵∠GAH=∠EAB=60°,∴△AGH 是等边三角形.∴AG=HG .∴EG=AG+BG ;……………………3分(2)线段EG 、AG 、BG 之间的数量关系是EG+BG =AG .………4分 证明:如图2,作∠GAH=∠EAB 交GE 的延长线于点H ,则∠GAB=∠HAE . ∵∠EGB=∠EAB=90°,∴∠ABG+∠AEG=∠AEG+∠AEH=180°.∴∠ABG=∠AEH .……………………5分在△ABG 和△AEH 中,∴△ABG ≌△AEH .……………………6分∴BG=EH ,AG=AH .∵∠GAH=∠EAB=90°,∴△AGH 是等腰直角三角形.∴AG=HG ,∴EG+BG =AG . (7)O。

相关文档
最新文档