材料力学 截面的几何性质
材料力学第六章 截面的几何性质惯性矩
IP
2dA
A
(y2
A
z2 )dA
IZ
Iy.
返回 下一张 上一张 小结
第三节 惯性矩和惯性积的 y1dA (y a)2 dA A
y2dA 2a ydA a2 dA
I z1 z a2 A; y1 y b2 A;
2dA
A
(y2
A
z2 )dA
IZ
Iy.
Izy
z y dA;
A
五、平行移轴公式:
I z1 z a2 A; y1 y b2 A;
I z1y1 I zy abA;
返回 下一张 上一张 小结
六、主惯性轴和主惯性矩: 主惯性轴(主轴)—使 I zoyo 0 的这对正交坐标轴; 主惯性矩(主惯矩)—截面对主惯性轴的惯性矩; 形心主惯性轴(形心主轴)—通过形心的主惯性轴; 形心主惯性矩(形心主惯矩)—截面对形心主轴的惯性矩。
I z1y1 I zy abA;
注意: y、z轴必须是形心轴。
二、转轴公式:
Iz1
A y12dA
( y cos z sin)2 dA;
A
I z1
Iz
Iy 2
Iz
Iy 2
cos 2
I zy
sin 2;
I y1
Iz
2
Iy
Iz
2
Iy
cos 2
I zy
sin 2;
I z1y1
Iz
Iy 2
三、惯性积:
定义:平面图形内, 微面积dA与其两个坐 标z、y的乘积zydA在整个图形内的积分称为 该图形对z、y轴的惯性积。
Izy
z y dA;
A
特点: ①惯性积是截面对某两个正交
材料力学 截面图形几何性质
(此为平行移轴公式 )
注意: •式中的a、b代表坐标值,有时可能取负值。
•等号右边各首项为相对于形心轴的量。
9
材料力学Ⅰ电子教案
2.组合截面的惯性矩和惯性积
根据惯性矩和惯性积的定义易得组合截面对于某 轴的惯性矩(或惯性积)等于其各组成部分对于同一 轴的惯性矩(或惯性积)之和:
n
Ix
i1
I
xi
n
Iy
1
材料力学Ⅰ电子教案
二、形心公式:
yc
Sz A
; zc
Sy A
.
三、组合截面的静矩:n个简单图形组成的截面,其静矩为:
n
Sz Ai yci; i 1
n
S y Ai zci; i 1
n
四、组合截面形心公式:
Ai yci
yc
i 1 n
;
Ai
i 1
例5-1 求图示T形截面形心位置。
n
Ai zci
(20010) (5 150) 2 (10 300) 0 20010 2 (10 300)
38.8 mm
由于对称知: xc=0
3
y y1 200
C O
10 150 yC x1
x
目录
材料力学Ⅰ电子教案
求图示半径为r的半圆形对其直径轴x的静矩及其形心坐标yC。
解:过圆心O作与x轴垂直的y轴,在距x任意高度y处取一个与x 轴平行的窄条,
y
d A 2 r2 y2 • d y
dA
dy
yC
所以
Sx
A
yd
A
r
0
y( 2
r2 y2 )d y 2 r3 3
Cr
y
第4章(截面的几何性质)重要知识点总结(材料力学)
【陆工总结材料力学考试重点】之(第4章)截面的几何性质1、静矩与形心?答:图形几何形状的中心称为形心。
对于图示的任意平面图形,任取一微元dA,设其坐标为(y,z),则定义:平面图形对于z轴的静矩:S z=∫ydAA平面图形对于y轴的静矩:S y=∫zdAA定义平面图形对于坐标轴(y,z)的惯性积:I yz=∫yzdAA根据积分的性质可知:当选取的y、z轴不一样时,则惯性积I yz也不一样。
若对于某对坐标轴y0、z0使得I y=0,则该对坐标轴y0、z0称为主轴,过0z0形心的主轴称为形心主轴(注:求主轴非常麻烦,大家只需记住以下结论)。
结论:1)圆截面的任何两条过圆心的且互相垂直的直径都是形心主轴;2)矩形截面的两条对称轴就是形心主轴;3)若截面有2跟对称轴,此两轴即为形心主轴,若截面只有一根对称轴,则该轴必为形心主轴,令一形心主轴为通过形心且与该对称轴垂直的轴。
2、简单截面的惯性矩与极惯性矩?答:(1)惯性矩与极惯性矩的定义如图,任意图形的面积为A,在其上任取微元dA,坐标为(y,z),则定义:平面图形对于z轴的惯性矩为:I z=∫y2dAA平面图形对于y轴的惯性矩为:I y=∫z2dAA平面图形对坐标原点O点的极惯性矩为:I p=∫ρ2dAA式中:ρ为该微元dA到原点的距离,由图可知:y2+z2=ρ2则:I p=I y+I z。
(2)常用截面的惯性矩和极惯性矩①实心圆截面(注:直径为d,对于形心主轴(即y、z轴过圆心O))I p=πd432,又:I p=I y+I z,故:I y=I z=πd464②空心圆截面(注:外径为D,内径为d,空心比α=dD,对于形心主轴)I p=πD432(1−α4),又:I p=I y+I z,故:I y=I z=πD464(1−α4)③矩形截面(注:设z轴方向宽度为b,y轴方向高度为h,对于形心主轴)I y=ℎb312I z=bℎ3123、组合截面的惯性矩与平行移轴公式?答:(1)组合截面惯性矩的计算对于图所示的组合截面(从圆截面中挖掉一个正方形后剩下的阴影部分),则根据负面积法求组合截面对轴的惯性矩:Iz组=Iz圆−Iz矩(2)惯性矩的平行移轴公式I z1=I z+Aa2式中:A为平面图形的面积,a为z轴与z1轴之间的距离。
截面的几何性质
图形对于 z 轴的静矩
附录 截面的几何性质 /一 静矩、形心及相互关系 y y
z zC
计算
dA
y
C A
z
yC
O
O
z
分力之矩之和
S y zdA
A
合力之矩
S y AzC
S z AyC
S z ydA
A
附录 截面的几何性质 /一 静矩、形心及相互关系
静矩与形心坐标之间的关系
S y zdA
i 1 n
例I-3 求图示T形截面的形心位置
解:把T形截面看做由①、②两 yC 个矩形截面组成。
100
C1 ①
z
20
A1 20 100 2000mm
2
C
yC1 10mm
A2 20 140 2800mm2
yC 2 90mm
yC
②
C2
140
y
Ay A
i i
Ci
A1 yC1 A2 yC 2 A1 A2
例题 矩形截面惯性矩的计算
b
I z y dA h y bdy
2
2
A
2
y b 3
同理:
3
h 2 h 2
bh 12
3
h
o
z
y
3 b 2 b 2
z 2 2 I y z dA b z hdz h 2 3 A
b 2
hb3 12
dy
h 2
y
附录 截面的几何性质/二 惯性矩、惯性积、极惯性矩与惯性半径
zc
h/2 z h/2 z1
dy y O
bh 3 2 h2 y 2bdy I z y dA A 12 2
第26讲第五章 材料力学(九)
第五节截面图形的几何性质一、静矩与形心对图所示截面静矩的量纲为长度的三次方。
对于由几个简单图形组成的组合截面形心坐标显然,若z轴过形心,y c=0,则有S z=0,反之亦然:若y轴过形心,z c=0,则有S y=0,反之亦然。
【真题解析】5—30(2007年真题)图所示矩形截面,m-m线以上部分和以下部分对形心轴z的两个静矩( )。
(A)绝对值相等,正负号相同(B)绝对值相等,正负号不同(c)绝对值不等,正负号相同(D)绝对值不等,正负号不同解:根据静矩定义,图示矩形截面的静矩等于m-m线以上部分和以下部分静矩之和,即,又由于z轴是形心轴,Sz=0,故答案:(B)二、惯性矩、惯性半径、极惯性矩、惯性积对图所示截面,对z轴和y轴的惯性矩为惯性矩总是正值,其量纲为长度的四次方,也可写成i z、i y称为截面对z、y轴的惯性半径,其量纲为长度的一次方。
截面对0点的极惯性矩为因=y2+z2,故有I p=I z+I y,显然I p也恒为正值,其量纲为长度的四次方。
截面对y、z轴的惯性积为I yz可以为正值,也可以为负值,也可以是零,其量纲为长度的四次方。
若y、z两坐标轴中有一个为截面的对称轴,则其惯性积I yz恒等于零。
例6图(a)、(b)所示的两截面,其惯性矩关系应为哪一种?A.(I y)1>(I y)2,(I z)1=(I z)2B. (I y)1=(I y)2, (I z)1>(I z)2C.(I y)1=(I y)2,(I z)1<(I z)2D. (I y)1<(I y)2,(I z)1=(I z)2解:两截面面积相同,但图 (a)截面分布离z轴较远,故I z较大。
对y轴惯性矩相同。
答案:B2016—63真题面积相同的两个如图所示,对各自水平形心轴 z 的惯性矩之间的关系为()。
提示:图( a )与图( b )面积相同,面积分布的位置到 z 轴的距离也相同,故惯性矩I za=I zb而图( c )虽然面积与( a )、( b )相同,但是其面积分布的位置到 z 轴的距离小,所以惯性矩I zc也小。
材料力学 3 截面的几何性质
大小:正,负,0。
y
量纲:[长度]3
二、截面的形心 几何形心=等厚均质薄片重心 z 形心坐标公式:
yc
C
zc
yc zc
y dA A z dA
A
A
Sz A Sy A
O
A
y
S y A zc
S z A yc
结论: 若 S z 0 yc 0 z 轴通过形心。反之,亦成立。
转轴公式
sin 2 I yz cos2
I y1 I z1 I y I z
二、形心主轴和形心主惯性矩 1、主轴和主惯性矩:坐标旋转到= 0 时,
Ix y
0 0
Ix I y 2
sin20 I xy cos 20 0
tan 2 0
2 I xy Ix Iy
z1
I yzc y1 z1 dA
A
a
O
z
yc
I z A y 2dA A (b y1 )2 dA
2 A ( y1 2by1 b 2 )dA
y
zc 为形心轴, S zc Ayc 0
I zc 2bS zc b 2 A
I zc b 2 A
2
a
2677710 .52 cm 4
平 衡 项 惯 性 矩 6686481 . 857.8 单 个 形 心 惯 性 矩 779.53
组合截面可以大大提高截面惯性矩。
I y Iz 2 cos2 I yz sin 2 cos2 I yz sin 2
I y Iz 2
I y Iz 2
当=0时,
dI y1 d
材料力学-扭转截面几何性质
异形截面
异形截面是指那些不规则形 状的截面,具有特殊的机械 性能。
扭转截面性质的计算方法
几何法
根据扭转截面的形状和尺寸, 通过几何计算得到相关性质。
解析法
应用数学解析方法,如微积分 和数值计算,来求解扭转截面 的性质。
实验法
通过实验测量获得扭转截面的 性质,如转角-扭矩曲线。
扭转截面性质的重要性
总结和展望
扭转截面几何性质对于材料力学和结构设计具有重要意义,应继续深入研究 和应用。
1 设计和分析
2 材料选择
对于结构设计和力学分析, 了解扭转截面性质是至关 重要的。
扭转截面性质也对材料选 择和应用提供指导。
3 性能预测
通过了解扭转截面性质, 可以预测和评估材料的性 能和寿命。
扭转截面性质的应用领域
桥梁工程
在桥梁工程中,了解扭转截面性 质能保证结构的扭转刚度和稳定 性。
制造业
在制造业中,了解扭转截面性质 可以改善产品的强度和可靠性。
航空航天工程
在航空航天工程中,了解扭转截 面性质可以提高飞行器的性能和 安全性。
扭转截面几何性质的实例分析
1
案例一
通过扭转截面的计算,优化了建筑物的结构设计,提高了整体稳定性。
2
案例二
通过实验测量扭转截面的性质,改善了机械设备的工作效率和安全性。
产品的质量和竞争力。
材料力学-扭转截面几何 性质
扭转截面几何性质是研究物体在扭转时的形状和特性,对材料力学和结构设 计至关重要。
扭转截面几何性质的定义
扭转截面几何性质是指材料在受到扭转力矩时的截面形状和特性,如扭转刚 度、截面面积等。
扭转截面形状的分类
圆形截面
圆形截面是最常见和最简单 的扭转截面形状。
材料力学第四章截面的几何性质
在材料力学中,剪切中心是剪切应力作用下截面 发生剪切变形的点。通过计算截面的形心,可以 近似确定剪切中心的位置。
确定截面的质心
质心是截面质量的中心点,通过计算截面的形心, 可以近似确定质心的位置,这对于动力学分析和 稳定性分析非常重要。
03 主轴和主惯性矩
主轴的定义与计算
主轴
截面上的各点处到截面形心距离最大的方向。
预测物体的变形和破坏
通过分析截面的几何性质,可以预测 物体在不同受力条件下的变形和破坏 行为,为工程实践提供指导。
02 截面的面积和形心
截面面积的定义与计算
截面面积的定义
截面面积是指通过截面边界轮廓 线围成的区域面积。
截面面积的计算
可以通过测量截面轮廓线的长度 ,然后使用公式计算面积。对于 不规则形状,可以使用微元法或 积分法计算。
截面几何性质的应用前景
随着科技的发展和工程需求的提高,截面几何性质在材料力学中的重要性将更加凸 显,其在航空航天、交通运输、建筑等领域的应用将更加广泛。
随着新型材料的不断涌现,截面几何性质的研究将有助于深入了解这些材料的力学 行为,为新型材料的优化和应用提供理论支持。
随着数值模拟和计算机技术的发展,截面几何性质的研究将更加精确和深入,有助 于提高工程结构的分析和设计水平。
在实际工程中,主轴和主惯性矩也是 进行有限元分析时的重要输入参数, 用于模拟结构的力学行为并优化设计。
在结构设计时,根据主轴和主惯性矩 可以合理地选择材料的类型和截面的 形状,以提高结构的刚度和稳定性。
04 极惯性矩和惯性积
极惯性矩的定义与计算
极惯性矩
截面对任意直径的极惯性矩等于截面 面积与该直径的平方的乘积。
截面是确定物体受力分布和变形程度 的关键因素,通过研究截面的几何性 质,可以深入了解物体的力学性能, 为工程设计和安全评估提供依据。
截面的几何性质—平行移轴公式(材料力学)
1、平行移轴公式
右图任意截面,zc、yc 轴为通过截面形心C的一对正交轴,z、y轴为分别与zc、yc 轴平行的轴,
两平行轴之间的距离分别为a和b。
根据定义,图形对zc、yc 轴的惯性矩和惯性积分别为
Izc yc2dA, I yc zc2dA, Izc yc yc zcdA
I zy
i 1
I yzi
Izi, Iyi
,Iyz i
----指第
i个简单截面对
y, z
轴的惯性矩,惯性积。
例题 求T形截面对其形心轴 zC 的惯性矩(单位为mm)。
解:将截面分成两个矩形截面。 截面的形心必在对称轴 y 上。
取过矩形2的形心且平行于底边的轴作为参考轴记作z轴。
A1
20140
2800mm2 ,
Iz c
I1 zc
I2 zc
7.68106
4.43106
12.11106 mm4
20 140
yc
20
1
a1 zc
y1 a2 yc z
2
100
a2A b2A
c
I zy I zc yc abA
上式即为惯性矩和惯性积的平行移轴公式。
y
z yc
b
zc
dA
C
yc
a y zc
O
z
2、组合截面的惯性矩、惯性积
组合截面对某轴的惯性矩、惯性积,等于各简单图形对此轴的惯性矩、惯性积的代数和。
n
Iz Iz i
i 1
n
I y I y
i1 i
n
ycdA a2
dA
A
A
A
A
A
A
材料力学附录I-1
I.2 极惯性矩 惯性矩 惯性积 2. 惯性矩
x 2 d A A I x y 2 d A A Iy
称为整个截面对y轴或x轴的惯性矩,亦称面积对轴 的二次矩,常用单位为m4或mm4。
图 I-5
I p 2 d A x2 d A y 2 d A I y I x
A A A
上式表明平面图形对任意两个互相垂直的轴的惯性矩之和等于该图 形面积对两轴交点的极惯性矩。 平面图形对过同一原点的任意两个互相垂直的轴的惯性矩之和是一个常量。
3. 惯性积
I xy
xy d A
A
称为整个截面图形A对x、y轴的惯性积。惯性积是对一对正交轴定义的,
因此也是面积的二次矩,可正、可负也可能为零,常用单位为m4或mm4。 若x、y轴中有一个轴为截面的对称轴,则整个截面对两轴的惯性积恒 等于零。可以证明,在对称轴两侧对称位置处的微面积对于两轴的惯性积 数值相等而符号相反,因此整个截面对两轴的惯性积必然等于零。若x、y 轴都为对称轴,则整个截面对两轴的惯性积自然为零。
S x S x I S xII
图 I-4 例题I-3图
由 S x I S xII 0 ,可得
S x I S xII
I.2 极惯性矩 惯性矩 惯性积 1. 极惯性矩
I p 2 dA
A
定义为整个截面对O点的极惯性矩。 极惯性矩的数值恒为正,常用单位为m4或mm4。
图 I-5
S x y d A y d A1 y d A2 A A1 A2 S y x d A x d A1 x d A2 A A1 A2
或
S x yC A yC1 A1 yC 2 A2 yCi Ai i 1 n S y xC A xC1 A1 xC 2 A2 xCi Ai i 1
第三章 截面的几何性质
[例3-4] 计算图示箱式截面对水平形心轴z的惯性矩Iz。 500
C
·
z
(mm)
50
50
500
yC
y C外 400
z’
解:选参考系 yz 确定形心位置:
· C ·1 C ·
z
yC
y C内 425
C2
500 800 400 400 550 425 500 800 400 550 369.44 mm
I yc、I zc、I yczc
tan 2 0
2
2 I yczc I yc I zc
I yc I zc I yc 0 I yc I zc 2 I yczc I zc0 2 2
[例3-5] 在矩形内挖去一与上边内切的圆,求图形的 形心主轴。(b=1.5d)
I y0 I y I z I y Iz 主惯性矩: 2 2 I z0 I2 yz
2
I y0z0
I y Iz 2
sin 2 0 I yz cos 2 0 0
tan 2 0
2 I yz I y Iz
i 1
n
i 1
Ai
zc
Sy A
i 1 n
Ai z i
i 1
n
Ai
[例3-1]
试确定左图的形心。
zc
C2
C yc , zc
C1
y
A1 z1 A2 z2 A1 A2 10 80 5 10 110 65 39.74 mm 10 80 10 110 A1 y1 A2 y2 yc A1 A2 10 80 40 10 110 5 19.74 mm 10 80 10 110
材料力学截面性质
二 零次矩 一次矩
S y = xdA
A
次
矩 极惯性矩
I p = ( x 2 + y 2 )dA
A
惯性矩
I x = y 2dA
A
惯性积
I xy = xydA
A
定义
A = dA
A
∫
∫ ∫
∫ ∫
S x = ydA
A
I y = x dA
2 A
Байду номын сангаас
∫
∫
符号 单位
轴过 形心 关于 形心 计算
恒正
m2
可正可负
m3
恒正
A A 2 2 2 极惯性矩 I p = ∫ ( x + y )dA = ∫r dA A A
惯性积 I xy = ∫ xy dA
A
常用图形的惯性矩
I xy = I x′y abA ′ +
平行移轴公式 转轴公式
+ I x = I x′ a 2 A
+ I y = I y ′ b 2 A
I xy = ∫ xy dA
A
3 7 = 3a 2 · – a + 3a 2 · –a = 15a 3 Sy 2 2 A = 2 · 3a 2 5 ∴ yc = – a 2
极惯性矩 ( polar moment of inertia )
I p = ∫ ( x 2 + y 2 )dA = ∫r 2 dA
1 性矩为 Ix = — π D 4(1–α 4 ) ,极惯性矩为 64
α 为内径与外径之比。 重要结论 坐标轴是图形的对称轴,则惯性积为零。
三、平行移轴定理 ( parallel-axis theorem )
材料力学 截面的几何性质
O1 O 2
O
x
O3
x 1
C
课堂练习
I.
&
任意图形,若对某一对正交坐标轴的惯性积为零, 则这一对坐标轴一定是该图形的( )。
B
A. 形心轴; B. 主轴 C. 主形心轴 D. 对称轴 在图示开口薄壁截面图形中,当( 为一对主轴。
y
)时,y-z轴始终保持
A. y轴不动,x轴平移; B. x轴不动,y轴平移; C. x轴不动,y轴任意移动;
y b C 1x C 2x O a x
æ 1 öæ 2 ö æ 1 öæ h ö = ç bh ÷ç h ÷ + ç ah ÷ç ÷ è 2 øè 3 ø è 2 øè 3 ø
h 2 = (a + 2 b ) 6
形心位置
h
x = 0
h 2 (a + 2 b ) h a + 2 b S x y = = பைடு நூலகம்· = 6 A h 3 a + b (a + b ) 2
主惯性矩:
图形对主轴的惯性矩,称主惯性矩
形心主轴:
过形心的主轴称为形心主轴
形心主矩:
图形对形心主轴的惯性矩称为形心主矩
课堂练习
I.
&
在下列关于平面图形的结论中,(
)是错误的。
A.图形的对称轴必定通过形心; B.图形两个对称轴的交点必为形心; C.图形对对称轴的静矩为零; D.使静矩为零的轴必为对称轴。 在平面图形的几何性质中,(
y
dA y
ü2、惯性矩和极惯矩永远为正,
惯性积可能为正、为负、为零。
x 1
ü3、任何平面图形对于通过其形
材料力学 附录 截面的几何性质
(Properties of Plane Areas) 三、组合截面的静矩和形心 (The first moments ¢roid of a composite area)
由几个简单图形组成的截面称为组合截面.
截面各组成部分对于某一轴的静矩之代数和,等于该截 面对于同一轴的静矩.
(Properties of Plane Areas)
§1-1 截面的静矩和形心 (The first moment of the area & centroid of
an area)
一、静矩(The first moment of the area )
截面对 y , z 轴的静矩为
z
S y
zdA
A
Sz
ydA
A
dA z
静矩可正,可负,也可能等于零.
1
矩形 2
A2 10 80 800mm2
y2
10
80 2
50mm
z2 5mm
所以 y A1 y1 A2 y2 23mm A1 A2
z A1z1 A2z2 38mm A1 A2
y1
z1
2 z2
10
O y2
y
90
(Properties of Plane Areas)
方法2 用负面积法求解,图形分割及坐标如图(b)
yC , zC ̄ 过截面的形心 C 且与 y, z轴平行
的坐标轴(形心轴)
z
Iy , Iz , Iyz — 截面对 y, z 轴的惯性矩和惯性积.
zC
IyC , IzC , IyCzC ̄ 截面对形心轴 yC , zC的惯性矩
n
Ai zi
z
材料力学 截面性质
(Ai 和xi , yi分别为第i个简单图形的面积及其形心坐标)
5. 组合截面的形心坐标公式
n
将 S y Ai xi i1
n
S x Ai yi i1
代入 S y A x Sx A y
解得组合截面的形心坐标公式为:
n
Ai xi
x
i 1 n
Ai
i 1
n
Ai yi
y
i 1 n
Ai
i 1
(注:被“减去”部分图形的面积应代入负值)
例 试计算图示三角形截面对x轴的静矩。
y
dy
h
b(y)
y
O
b
x
解:取平行于x轴的狭长条,易求 b( y) b (h y)
因此 d A b (h y) d y
ห้องสมุดไป่ตู้
h
所以对x轴的静矩为
h hb
bh2
S x
y d A (h y)y d y
A
0h
6
2
4
I2 xc yc
x
I x1 A y12 d A
y
Ix1
cos2
y2 d A sin2
A
x2 d A
A
2sin cos A xy d A
I x cos2 I y sin2 2I xy sin cos
利用二倍角函数代入上式,得转轴公式 :
I x1
Ix
2
Iy
Ix
Iy 2
cos2
I xy sin 2
n
Ix
i1
I
xi
n
Iy
i1
I
yi
n
I xy I i1 xyi
截面图形的几何性质-材料力学
yC
Sz A
558000 9000
62
Sz Sz1 Sz2 120 40 20 140 30110 558000
A A1 A2 120 40 140 30 9000
120
I
CI
C
CII
II
y 30
参考轴
z 40
yC
zC 140
注意
① 由两块组成组合图形,其复合图形形心一定位于两个子图的形心连线上。 ② 组合图形形心计算公式也适用于负面积情况, 但要记住面积为负号。
z
I
C1 C
s
C2
II
b
y1 h
y
y2
t
典型例题
例3 已知组合截面尺寸t=20mm,h=140mm,b=100mm。试求截面图
形对形心轴 y 的惯性矩。
t
解: 由平行移轴定理
矩形1对y轴的惯性矩:
I (1) y
I y1
b12 A1
矩形2对y轴的惯性矩:
I (2) y
I y2
b22 A2
整个截面的惯性矩:
Iz
y 2 dA
A
h y2bdy 0
b
y3 3
/
h 0
bh3 3
y
h b
dy y
z
典型例题
例2 试求图示截面对形心轴zC轴的惯性矩。
IzC
y 2 dA
A
h
2 h
y2bdy
2
b
y3 3
h
/
2
h
2
bh3
12
I yC
z 2dA
A
y
yC
hb3 =
材料力学-截面的几何性质
1 2
(
I
y
Iz)
1 2
(
I
y
Iz )cos 2
I yz sin
2
I z1
1 2
(
I
y
Iz)
1 2
(
I
y
Iz )cos 2
I yz sin
2
(a)
I y1z1
1 2
(
I
y
Iz )sin
2
I yz sin
2
4.2 主惯性轴和主惯性矩(principal moment of inertia)
A
y2dA
A
z2dA
A
Iz Iy
此式说明了极惯性矩与轴惯性矩之间的关系。
z y
o
A dA
z y
惯性积
定义
I yz
yzdA
A
z A
y
dA
为图形对y、z轴的惯性积 。
z
o
y
惯性积的数值可正,可负,也可为零。惯性积的量纲是[长 度]4 ,常用单位为m4和mm4。
定理:若有一个轴是图形的对称轴,则图形对这对轴 的惯性积必然为零。
例题 试求图示图形对形心轴的惯性矩和 惯性积。
解:将图形看作是两个矩形的结合。 形心坐标为
yc 0
zc
A1z1 A1
A2 z2 A2
103.3mm
z 100
20
I CI
C
140
CII
103.3
II
a1 a2 y
y
20
求图形对y、z轴的惯性矩
z 100
I z I zI I zII
201003 140 203
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
录
附录Ⅰ
§Ⅰ-1 §Ⅰ-2 §Ⅰ-3 §Ⅰ-4
截面的几何性质
截面的静矩和形心位置 惯性矩、惯性积和惯性半径 平行移轴公式 转轴公式 主惯性矩
静矩与形心
一、静矩的定义(与力矩类似)(也称面积矩或一次矩) 截面对z轴的静矩: y 截面对y轴的静矩:
Sz Sy
dS
A A
z
ydA
A
3
z 100
I
C
CI
a1 a2
I y I yI I yII 443 10 768 10
4
4
y
1211 104 mm 4
由于z轴是对称轴 ,故图形对两轴的惯性积为
140 103.3
CII
II
y
I yz 0
20
I z y 2 dA 2h y 2 bdy
3
附
录
组合截面形心
组合截面:如果截面的图形是由几个简单图形(如矩形、圆形 等)组成的,这种截面称为组合截面。 组合截面对X、Y轴静矩的计算:
S x Ai yci Ayc
i
n
S y Ai xci Axc
i
n
Ai——任一简单图形的面积; xci,yci——任一简单图形的形心坐标; n——全部简单图形的个数。 确定组合截面形心位置的公式:
C H/2
X
1 h 1 h yc 1 y1 ( y1 ) ( y1 ) 2 2 2 2
h 1 h S x Ayc 1 b( y 1 ) ( y 1 ) 2 2 2
b
b 2 2 (h 4y1 ) 8
例2、图形对 x 轴的静矩为
y
b( h y ) 1 2 s x A y dA 0 y h dy 6 bh
则
z
y
dA
A
I p 2dA y 2dA z 2d A
A A A
Iz I y
此式说明了极惯性矩与轴惯性矩之间的关系。
o
z
y
惯性积
定义
z
y
dA
A
I yz yzdA
A
ቤተ መጻሕፍቲ ባይዱ
为图形对y、z轴的惯性积 。
z
y 惯性积的数值可正,可负,也可为零。惯性积的量纲是[长 度]4 ,常用单位为m4和mm4。
A 2 c A 2 c
及坐标变换公式
a o
z
y
y yc b z zc a
将图形对y轴的惯性矩用关于形心坐 标系的坐标来表达
z
y
b C
zc
yc dA zc yc
I y z dA zc a dA
2 2 A A
a
z
y
zc2 dA a 2 A 2a zc dA o A A I yc a 2 A 2aS yc
2
I zy I zC yC abA
注意: 1、 C点必须为形心,即:zC、yC必须是形心轴。 2、式中的a、b是代数值。(可能取负值。)
29
例:已知 M max 1.2 10 N m ,求最大弯曲正应力。
5
解: 确定中性轴的位置
4 28 16 14 8 10 (14 5) 13cm yC 28 16 8 10
n i
组合截面对某一轴的静矩应等 于其各组成部分对该轴静矩的 代数和。
xc
Ax
i
ci
A
i
n
yc
A y
i i
n
ci
i
A
i
n
i
附 例题
录
一矩形截面如图所示,图中的b、h和y1均为已知值。试
求有阴影线部分的面积对于对称轴X的静矩。
Y
解:
H/2
y1
h A b( y 1 ) 2
yc1
2 ( yC 2byC b2 )dA A
C
zC
I zC 2bSzC b2 A
轴zC为形心轴 SzC AyC 0
b
I z I zC b A
2
28
平行移轴公式:
I z I zC b A
2
b为轴z与zC的轴距
a为轴y与yC的轴距
同理可得
I y I yC a A
100 20 I yI (150 103.3)2 12 100 20
3
I
C
CI
a1 a2
y
140 103.3
CII
II
y
443 104 mm 4
20
20 140 I yII (103.3 70)2 20 140 12 20 768 104 mm 4
A
*典型截面惯性矩的计算 1、矩形截面 h
h 2
b
dy y h z
2
1 3 b 3 bh y 3 h 12
2
同理
y
1 3 I y z dA hb A 12
2
26
2、实心圆截面
y
已知
I P dA A
2
A A
D 4
32
A
D
z
则 I P 2 dA y 2 dA z 2 dA I z I y 由对称性知 I y I z 所以
圆环形对y(或z)轴的惯性矩为
1 D 4 4 I y I z Ip 1 2 64
d D
由于y轴为对称轴,故
I yz 0
平行移轴定理
对于平面图形,建立坐标系Oyz和基于 形心C的坐标系Cyczc,由定义
z
y
b C
zc
yc dA zc yc
I yc z dA, I zc y dA
o
D
d
y
I p dA 2 d
2 3 A
D 2 0
D
32
4
1 D 4 I y Iz Ip 2 64
圆环形
I P 2 3d
D 2 d 2
D
4
32
d
4
z
y
4
32
32
( D4 d 4 )
D 4
32
1
I y1 z12dA, I z1 y12dA, I y1z1 y1z1 dA
A A A
从图中任意一点取微面积dA,它在新旧坐 标(y1,z1)和(y,z)有如下关系
y1 y cos z sin z1 z cos y sin
将此关系代入Iy1、Iz1和Iy1z1中,得
b2
b2
很容易得到下列结果
z1
zc dy z 2
I zc y dA
2 A
b 2 b 2
3 b h 2 y hdy 12
h2 h2
dA C
yc
I z1 I z2 y 2 dA
A
b
0
3 b h 2 y hdy 3
b2
b2
圆形
z
直径为d的圆形,选取图示圆环形积分 微元,
o
定理:若有一个轴是图形的对称轴,则图形对这对轴 的惯性积必然为零。
z
I yz yzdA 0
A
y
dA
y
dA
z
y
o
2.5 常见图形的惯性矩、惯性积
1. 均质矩形板
z1
zc
z2
dz
质量为m,长度为l的均质杆,建 立图示坐标系,则有
h2 h2
dA C
z
yc
3 bh I yc z 2dA z 2bdz A h 2 12 h2
o
z
y
惯性矩
z
2 2
A y
dA
I y z dA, I z y dA
A A
分别称Iy、Iz为图形对y轴和z轴的惯 性矩。惯性矩的量纲是[长度]4,惯性 矩是恒正的量。
o
z
y
惯性矩的国际单位是m4,常用单位是cm4,mm4。
惯性矩的大小不仅与图 形面积有关,而且与图形面 积相对于坐标轴的分布有关。 面积离坐标轴越远,惯性矩 越大;反之,面积离坐标轴 越近,惯性矩越小。
Sz A yc
y
S y A zc
A
y dA A
Sz A
z
dA
C
zC
y
yC
z
(1)若z、y轴通过形心C,则 yC=zC=0,因此Sz=Sy=0。 即:截面对其形心轴的静矩等 于零。反之,若截面对某轴的 静矩为零,则该轴必过其形心。 (2) 对于有对称轴的截面, 对称轴必然是形心轴.
2 2
90 20
II
20 y
100
9000 45 4000 45 225000mm 3
i 1
i 1
Sz 210000mm 3
极惯性矩 惯性矩 惯性积
极惯性矩
定义
z
A y
dA
I p dA
2 A
为图形对坐标原点o的极惯性矩。 极惯性矩恒为正值,它的量纲为[长 度]4,常用单位为m4和mm4。
8
I z [16 283 12 16 28 (14 13)2 ] [8 103 12 8 10 (19 13)2 ]
14
28 z C