机载激光雷达ppt课件
激光雷达系统ppt课件
组成
机载激光雷达
测量平台
姿态测量与导航系统
激光系统
数据处理
数码相机
同步控制
惯性导航
差分GPS
激光系统
工作流程
• • 机载激光雷达测量系统的的数据采集和处理过程 (一)航飞采集激光扫描数据及数码影像 1.在航飞前要制订飞行计划。航飞计划应包括航带划分,确定飞行高度、 速度、激光脉冲频率、航带宽度、激光反射镜转动速度、数码相机方位元素 及定位、相机拍摄时间间隔等,并将各航带的首尾坐标及其他导航坐标输入 导航计算机内,在飞行导航控制软件的辅助下进行飞行作业。 2.安置GPS接收机。为保证飞机飞行各时刻的三维坐标数据的精度,需 要在地面沿航线布设一定数量的GPS基准站,同时将GPS流动站安置在飞机 上。 3.激光扫描测量。预先设置好扫描镜的摆动方向和摆动角度,当飞机飞行 时,红外激光发生器向扫描镜上不停地发射激光,通过飞机的运动和扫描镜 的运动反射,使激光束打到地面并覆盖测区,当激光束到达地面或遇到其它 障碍物时被反射回来,被一光电接收感应器接收并将其转换成电信号。根据 激光发射至接收的时间间隔即可精确测出传感器至地面的距离。 4.惯性测量。当飞机飞行时,惯性测量装置同时也将飞机的飞行姿态测出 来,并和激光的有关数据、扫描镜的扫描角度一起记录在磁带上。 5.数码相机拍摄。利用数码相机进行拍摄时,需要对其拍摄时间间隔和拍 摄位置进行控制。通常是用GPS系统进行时间和位置控制。 6.数据传输。航飞数据采集结束后,将所有的激光扫描测量数据、数码影 像数据、GPS数据及惯性测量数据都传输到计算机中,为后续数据处理作准 备。
网点的平面坐标(X,Y)及其高程(Z)的数据集,它主要是描述区域地貌形态的空 间分布,是通过等高线或相似立体模型进行数据采集(包括采样和量测),然后进行 数据内插而形成的。DEM是对地貌形态的虚拟表示,可派生出等高线、坡度图等信息, 也可与DOM或其它专题数据叠加,用于与地形相关的分析应用,同时它本身还是制作 DOM的TM, Digital Terrain Model)最初是为了高速公路的自
激光雷达技术原理-第一章(课堂PPT)
3
第一章 绪论
LiDAR技术的优势
激光雷达是一种集成了多种高新技术的新型测绘仪器, 具有以下优势:
➢ 非接触式 ➢ 精度高(毫米级/亚毫米级) ➢ 速度快(可达120万点/秒) ➢ 密度大(点间距可达毫米级) ➢ 数据采集方式灵活,同时对环境光线、温度都要求较低
2
4
第一章 绪论
LiDAR测量原理 – 测时(Light transit time)
2 36
LiDAR工作原理
2
37
37
Laser Receiver
➢ 发射激光脉冲 ➢ 入射脉冲传播到目标物 ➢ 入射脉冲与目标物作用 ➢ 反射脉冲返回到接收机 ➢ 回波信号处理
2
38
38
Laser Receiver
➢ 发射激光脉冲 ➢ 入射脉冲传播到目标物 ➢ 入射脉冲与目标物作用 ➢ 反射脉冲返回到接收机 ➢ 回波信号处理
中国科学院国家天文台
意大利国家天文研究所
北京大学
米兰理工大学
清华大学
都灵理工大学
中国地质大学(北京学
华东师范大学
中方预算经费:500万
2
2
30
嫦娥二号探月卫星
2010年10月1日18时59分57 秒,搭载着嫦娥二号卫星的长 征三号丙运载火箭在西昌卫星 发射中心点火发射。
(1617年,荷兰人斯涅耳(W.Snell)首创三角测量法)
2
12
2020年4月25日星期六
13 Van Leeuwenhoeksingel, Delft, The Netherlands
•国际水利环境工程学院IHE
2020年4月25日星期六 14
Asian Night
2020年4月25日星期六 15
机载激光雷达航测技术
机载激光雷达航测技术机载三维激光雷达测量系统是一种主动航空遥感装置,是实现地面三维坐标和影像数据同步、快速、高精确获取,并快速、智能化实现地物三维实时、变化、真实形态特性再现的一种国际领先的测绘高新技术。
该技术基于激光测距、GPS定位、惯导测量、及航空摄影测量原理,可以快速、低成本、高精度地获取三维地形地貌、航空数码影像等空间地理信息数据。
激光雷达工作原理图1、机载激光雷达设备机载激光雷达测量系统设备主要包括三大部件:机载激光扫描仪、航空数码相机、定向定位系统POS(包括全球定位系统GPS和惯性导航仪IMU)。
其中机载激光扫描仪部件采集三维激光点云数据,测量地形同时记录回波强度及波形;航空数码相机部件拍摄采集航空影像数据;POS系统部件测量设备在每一瞬间的空间位置与姿态,其中GPS确定空间位置,IMU惯导测量仰俯角、侧滚角和航向角数据。
机载激光雷达设备主要构成天宝公司Harrier 68i是当今世界最强性能水平的全新一代机载三维激光雷达系统之一,在系统稳定性、硬件性能指标、软件配套等方面领先于其它同类产品。
Harrier 68i机载激光雷达测量系统该设备具有以下特点:➢能够接收无穷次回波的全波形数据➢最大脉冲频率可高达40万赫兹➢距离精度最高可为±2 cm➢实现与GPS、INS、数码相机等设备无缝结合➢符合激光安全标准,允许在任何高度进行安全操作➢IMU惯导仪的采样频率高达200Hz➢集成高精度航空数码相机,像素为6000万2、生产流程机载激光雷达航测作业的生产环节,主要包括航飞权申请、航摄设计、航摄数据采集、数据预处理、激光数据分类、数字高程模型(DEM)制作、数字正射影像(DOM)制作、建筑物三维白模生产等环节。
机载激光雷达航测工作流程1)航摄准备。
该阶段除需进行项目所需资料的收集以及人员和设备的配备保障等各项项目准备工作外,最主要的工作是按相关规定和流程申请获得项目测区的航飞空域使用权,这是开展后续工作的前提条件。
《激光雷达成像技术》PPT课件
脉冲重复频率 fr:
fr N F
其中:N (m n)-像素;F-帧频
总的扫描时间:
Ttostsc st
tot be am
Tdwell
其中:tot-总扫描角; tot-光束发散角;Tdwell=1/fr-光束滞留时间
飞行时扫描频率:
f scan
V d res N
Micro electro-mechanical system (MEMS)
距离选通激光成像雷达
Burst illuminations Ladar (BIL)
距离选通激光成像雷达
激光测距仪+扫描仪+数字相机 距离范围:3~800m 距离分辨率:厘米量级 波长:1.5m
热像仪图像
BIL图像
闪烁式激光成像雷达
Mirror plate size
Optical scanning angle
Scan trajectory (fast axis) Scan trajectory (slow axis) Scan jitter
Reflectivity
Mirror flatness
Operating temperature
V—高度H(m)的飞行速度;N=mn—探测器单元数量; dres—探测器面元尺寸
扫描时脉冲积累数:
n B fr 6m
其中:B-天线3dB光束宽度(deg);fr-重频;m-天线每分转数
瞄准误差与滞后角效应:
.
d
2
d
dt
nr
dt
c
其中:-滞后角;d/dt-扫描速率;-往返时间;r-到目标距离;c-光 速;n-传播介质平均折射率
<7.5m >7.5m 500GHz 在150m处为1.5m正方形
激光雷达与应用.PPT课件
手术操作名称未统一 主要手术漏填、不准确 其他手术或操作漏填、不准确
出院状态不正确
不能正确理解离院方式(医嘱离院、转院、非 医嘱离院、其他、死亡)
有手术操作、手术费用为0 分项费用加起来不等于总费用 入院时间大于出院时间
编码选择错误 编码库未统一
首页信息主要涉及部门:临床科室 病案科 财务科 信息科
例1 -主要诊断:心肌梗塞 -DRG F 60B 价格 2900欧元 例2 -主要诊断:心肌梗塞 -其他诊断:肺炎、心衰 -DRG F 60A 价格 4400欧元 例3 -主要诊断:心肌梗塞 -其他诊断:肺炎、心衰、败血症 -操作PCI术 心脏导管 - DRG F 24A 价格 7800欧元 -机械通气10天 价格 18300欧元
激光雷达的应用---农林业
激光雷达
激 光 雷 达 探 测 农 耕 地 形
激光雷达的应用—电网
激光雷达
❖在电力、通信网络建设与维护中,利用 激光雷达的数据,可以了解整个线路设 计区域的地形与地面上物的情况,以资 评估建设方案的可行性与建设成本;在 线路发生灾难时,可以及时发现倒塌的 部位,便于抢修和维护。
实
首颗激光测高试验卫星ICESat于2003年1月13日在美国
例
地球观测 GLAS系统
Vandenberg空军基地成功发射。ICESat轨道高度约600 km。周期约183天,可覆盖地表86°N~86°S即两极的大 部分区域。GLAS是第一个用于连续全球观测的星载激光测
高系统。其主要任务是监测南极洲和格陵兰冰盖的高程变
首页多项内容无明确定义,无统一标准 诊断、手术操作名称未规范统一 缺手术分级目录
无全国统一的首页质控标准和评价标准
基本信息漏项、填写不准确 主要诊断的准确选择 其他诊断漏填 手术及操作项目漏填、漏项 诊断及手术操作的正确编码 医师签名、其他管理项目漏填、不准确等
机载激光雷达李德仁ppt课件
武汉大学 李德仁 院士 2010年7月23日, 青岛
主要内容
一、机载LiDAR原理,技术与应用 二、机载LiDAR与光学影像的联合处理 三、基于光学成像和激光雷达技术的移动
测量系统 四、地面LiDAR及在文物保护中的应用 五、结束语
一、机载LiDAR原理
激光回波测距原理
2nd 返回 从树枝
3rd返回
从地面
机载LiDAR多次回波信息-房屋
1st 返回
从房顶
1st (仅一次) 从地面返回
2nd 返回 从房檐
3rd返回
从地面
传统遥感传感器是地表的二维成像
全数字波形分析概念
离散回波记录
连续波回波记录
机载LiDAR分类
激光雷达
针对大气应用:大气圈层结构 航空测绘应用:地形测量 地面激光雷达:近地面三维建模
• 噪声
– 系统误差 – 高的及低的局外点(粗差) – 空洞
机载LiDAR数据精度影响因素
• LiDAR获得的水平和垂直精度和众多因素有关,主 要的有内外两种因素:
➢ GPS+IMU(POS)系统和激光系统本身都有自 身的精度限制,此为内因。
➢ 外因主要与航线设计、飞行条件、大气条件、地 形起伏因素和植被覆盖有关。
在测绘领域中,所谈的机载激光雷达大部分指用于地形测绘用的机载 激光雷达系统
• 事实上,机载LiDAR系统有陆地和海洋之分。海洋LiDAR是为了测量 海底地形而研制的,主要为国外的军方使用,我们通常说的机载 LiDAR主要操作于陆地上,为获取陆地DEM数据而研制的。
• LIDAR系统的操作平台主要为飞机。一般航摄飞机、直升机都可以搭 载LIDAR。美国NASA开始在卫星上搭载LiDAR,他们发射的ICEsat 卫星上就有LiDAR系统。
《机载激光雷达》课件
随着技术的不断进步和应用需求的不断增加,机载激光雷达技术将不断向更高精 度、更高效率、更安全可靠的方向发展。
THANKS
感谢观看
《机载激光雷达》PPT课件
目 录
• 机载激光雷达简介 • 机载激光雷达技术 • 机载激光雷达应用案例 • 机载激光雷达的挑战与未来发展
01 机载激光雷达简 介
定义与特点
总结词
机载激光雷达是一种集激光测距、全球定位系统(GPS)和惯性测量单元( IMU)于一体的遥感技术。
详细描述
机载激光雷达通过向地面发送激光脉冲并接收反射回来的信号,能够获取高精 度的三维地形数据。它具有高分辨率、高精度、快速获取数据等优点,广泛应 用于地形测绘、城市规划、资源调查等领域。
地震灾害评估
利用机载激光雷达技术,评估地震灾害对建筑物 和基础设施的影响,为灾后重建提供技术支持。
考古探测
遗址区地形测绘
通过机载激光雷达技术,获取遗址区高精度、高分辨率的地形数 据,为考古研究提供基础资料。
遗址区建筑物结构分析
利用机载激光雷达数据,分析遗址区建筑物的结构特点,为文物修 复和保护提供依据。
激光发射与接收
激光发射器根据不同的应用需求 ,发射不同波长的激光束,常见 的波长有近红外、中红外和远红
外等。
接收器通常使用光电倍增管或雪 崩二极管等光电传感器,用于接 收反射回来的光束,并将其转换
为电信号。
激光雷达通过测量反射回来的光 束与发射光束的时间差,计算出
目标的距离信息。
数据处理与分析
1
遗址区植物种类鉴定
通过分析机载激光雷达数据,鉴定遗址区植物种类,为环境考古和 生态研究提供数据支持。
04 机载激光雷达的 挑战与未来发展
机载激光雷达海洋测深技术.ppt
基于声波的回声测深技术
? 机载激光测深
在含有盐、气泡和浮游生物的海水中,光波和电磁波的衰减都非常大,声波在海 水中衰减小、传播距离长,因此基于声波的回声测深技术是应用最广最为成熟的 水深测量技术。
多波束测深系统是 一 个全覆盖式声纳测深系统,其波束在海底的覆盖宽度是水 深的 3 ~7 倍,个别系统最大可达 10 倍。在深水测区具有很大的优势,但在水 深小于 50m 的浅水区或存在暗礁时,声呐测量技术往往使用受限,测量效率也 急剧下降,且存在着严重的安全隐患。
? 最佳透光窗口:波长为 0. 47 ~ 0. 58μm 之间的蓝绿光表现出了衰减系数 最小的特性。
? 特点:精度高、分辨率高、灵活机动、测点密度高、现了水陆一体 化无缝测量。
? 与多波束测深系统不同的是,机载激光测深系统由于在海底的覆盖宽度仅仅 与飞机的航高有关,而与要测量的水深无关,因此特别适合于沿岸浅水区的 全覆盖水深测量。
2020/4/16
2020/4/16
主动式遥测技术,利用的是光在海水中的 传播特性。
按照波段数量可分为双色激光机载 LiDAR 测深系统和单色激光机载 LiDAR 测深系 统。
2020/4/16
2020/4/16
2020/4/16
? 随着技术的进一步发展,当前出现了单 色激光机载 LiDAR 测深系统。单色激 光机载 LiDAR 测深系统仅采用波长为 532nm 的蓝绿激光作为激光器发射光 源,其一部分激光束到达海面后沿原路 径反射,另一部分激光束则穿透海面到 达海底,经海底反射沿原路径返回,并 被激光接收器接收。根据二者到达接收 器的时间差,即可计算出海水的深度。 采用单色激光作为发射源,既简化系统 结构,又不需双色激光同步而提高测深 精度,是机载 LiDAR 测深系统的发展 趋势
激光雷达作业课件
激光雷达的应用领域
军事侦察
激光雷达可以用于获取高精度 地形数据,为军事侦察和作战
提供支持。
地形测绘
通过激光雷达测量,可以快速 获取高精度地形数据,为地图 制作和地理信息系统提供基础 数据。
无人驾驶
激光雷达是无人驾驶车辆中重 要的传感器之一,用于感知周 围环境,实现自主导航和避障 功能。
环境监测
激光雷达可以用于监测大气污 染、气象变化和森林覆盖等情 况,为环境保护和治理提供支
扫描范围
扫描系统的扫描范围决定了激光雷达 的覆盖范围和分辨率。
数据处理系统
数据处理算法
数据处理系统负责处理接收到的 电信号,通过算法将其转换为三
维坐标数据。
数据存储与传输
数据处理系统还需要负责数据的存 储和传输,以便后续分析和应用。
系统集成
数据处理系统需要与整个激光雷达 系统集成,确保数据的一致性和准 确性。
激光雷达作业课件
contents
目录
• 激光雷达概述 • 激光雷达系统组成 • 激光雷达数据处理流程 • 激光雷达数据处理软件 • 激光雷达数据处理案例
01
激光雷达概述
激光雷达的定义
激光雷达是一种集激光、全球定位系统(GPS)和惯性测量单元(IMU)于一体的 主动遥感系统。
它通过向目标发射激光束,并测量反射回来的时间,计算出目标的距离和方位信息 。
软件功能
数据预处理
对导入的点云数据进行滤波、 降噪、去重等预处理操作,提 高数据质量。
数据分类
根据不同的应用场景,对点云 数据进行分类,如地面、建筑 物、树木等。
数据导入
支持多种格式的激光雷达数据 导入,包括XYZ、LAS等格式 。
激光雷达简介PPT优秀课件
目标 物体
伺服 系统
前置放 主放 大器 大器
信号 模数 处理 转换
主处 理器
距离 速度 角度 目标图 信息 信息 信息 像信息
通信 系统
屏幕 显示
理论 发射 基础 系统
接收 系统
信息 处理
运载 体积 平台 重量
工作 模式
第 一 代
经典理 论
气体激光, 传统光学
系统
单元探测器, 脉冲体制, 直接接收
D电非P子S扫S扫发描描射,,面外阵差探接测收器,
集成模块, DSP芯片, 成像显示
车/机载, 弹/星载
功能部 件, MOEM S,小
多波长复合, 多功能模块, 智能化模块
第 四 代
光子探 测,纳 米物理
阵列发射, 微光学系
统
微光学系统, 焦平面阵列 探测器,光
纤导光
硬软件融 合,系统 级芯片, 高分辨率, 成像显示
以激光为载波,以 光电探测器为接收 器件,以光学望远 镜为天线,俗称“ 激光雷达”。
本质相同
1.工作原理:
传感器发射激光束打到目标物体上并反射回来,接收器准确地测量出 光脉冲从发射到被反射回的传播时间,光速已知,就可得到从激光雷达到目 标点的距离。
若激光束不断地扫描目标物,就可以得到目标物上全部目标点的数据, 用此数据进行成像处理后,就可得到精确的三维立体图像。
(c)Weak feedback C≈1, vertical scale 10 mV div−1.
(d) Moderate feedback C>1, vertical scale 20 mV div−1.
Velocity:Doppler Frequency
激光雷达LIDAR-PPT精选文档
手段:IMU有姿态量测功能,具有完全自主、无信号传播、 既能定位、测速,又可快速量测传感器瞬间的移动,输出 姿态信息等优点,但主要缺点是误差随时间迅速积累增长。 目的:获取机载LiDAR的姿态信息,即滚动、俯仰和航偏 角。
LiDAR的工作原理——POS系统:
DGPS与IMU对比:
DGPS系统:量测传感器的位置和速率,具有高精度,误差不随时间积累 等优点,但其动态性能差(易失锁)、输出频率低,不能两侧瞬间快速 的变化,没有姿态量测功能。 IMU系统:有姿态量测功能,具有完全自主、无信号传播、既能定位、 测速,又可快速量测传感器瞬间的移动,输出姿态信息等优点,但主 要缺点是误差随时间迅速积累增长。
侦察用成像激光雷达 障碍回避激光雷达 大气监测激光雷达 制导激光雷达 化学/生物战剂探测激光雷达 水下探测激光雷达 空间监视激光雷达 机器人三维视觉系统 其他军用激光雷达 弹道导弹防御激光雷达 靶场测量激光雷达 振动遥测激光雷达 多光谱激光雷达
LiDAR应用举例:
(一)激光成像雷达 激光雷达分辨率高,可以采集三维数据,如方位角俯仰角-距离、距离-速度-强度,并将数据以图像的形式显 示,获得辐射几何分布图像、距离选通图像、速度图像等 ,有潜力成为重要的侦察手段。
LiDAR的分类:
按不同功能:
①跟踪雷达(测距和测角); ②测速雷达(测量多普勒信息); ③动目标指示雷达(目标的多普勒信息); ④成像雷达(测量目标不同部位的反射强度和距离等信 号); ⑤差分吸收雷达(目标介质对特定频率光的吸收强度) 等。
LiDAR的应用前景:
因此,最优化的方法是对两个系统获得的信息进行综 合,这样可得到高精度的位置、速率和姿态数据。
激光雷达车载应用 ppt课件
5
根据激光测距原理计算,就得到从激光雷达到目标点的距离, 脉冲激光不断地扫描目标物,就可以得到目标物上全部目标 点的数据,用此数据进行成像处理后,就可得到精确的三维立 体图像.
ppt课件
6
在业内的大致应用
借助激光雷达发展无人驾驶技术 激光雷达用于汽车逆向设计 激光雷达用于车身的零部件检测 激光雷达实现汽车的主动安全 激光雷达辅助意念驾驶的实现 将激光雷达用于车辆检测 将激光雷达用于智能交通信号控制 将激光雷达用于交通事故勘察
ppt课件
32
而它的一个特点就是价格特别便宜,此前报道中,他们的 CTO Jeff Owens 说每台成本在 200 美元。在此次 CES 上,Quanergy 相 关负责人向 GeekCar 透露,如果订货量是一万台,那每部产品成本有 望控制在 100 美元以下,但是量产得再等两年。
如此便宜的价格,Quanergy给出的答案是“相控阵激光雷达技 术”。抛去传统激光雷达昂贵的旋转部件。用电子扫描代替机械部件 ,采用集成电路上的小镜子扫描各个方向,然后输出车辆周围的3D图 像。创始人Dr.Louay Eldada对具体技术三缄其口,只表示核心技术是 自己的博士研究课题。
目前已有的Ibeo全自动驾驶测试车上,常用的多点布 局组合是miniLUX和LUX两款产品。
ppt课件
31
Quanergy
Quanergy 是一家成立了三年的公司,在今年的CES上也推出了 自己的新产品:S2。号称是世界上第一款固态激光雷达。从外观来看 ,S3 是个黑色长方体,内部无任何转动机构。它可以放在手上,大小 和 Puck Auto 算是打了个平手。它的参数是8 线,探测范围为 10 厘 米-150 米。
ppt课件
27
激光雷达LIDARPPT课件
.
13
LiDAR的分类:
按不同功能:
✓ ①跟踪雷达(测距和测角); ✓ ②测速雷达(测量多普勒信息); ✓ ③动目标指示雷达(目标的多普勒信息); ✓ ④成像雷达(测量目标不同部位的反射强度和距离等信
号); ✓ ⑤差分吸收雷达(目标介质对特定频率光的吸收强度)
等。
.
14
LiDAR的应用前景:
✓ 侦察用成像激光雷达 ✓ 障碍回避激光雷达 ✓ 大气监测激光雷达 ✓ 制导激光雷达 ✓ 化学/生物战剂探测激光雷达 ✓ 水下探测激光雷达 ✓ 空间监视激光雷达 ✓ 机器人三维视觉系统 ✓ 其他军用激光雷达 ✓ 弹道导弹防御激光雷达 ✓ 靶场测量激光雷达 ✓ 振动遥测激光雷达 ✓ 多光谱激光雷达
光雷达精度而言没有影响 ✓ 单色性和相干性好。
.
4
LiDAR 的定义
机载LiDAR(LightLaser Deteetion and Ranging),又称机载雷达, 是激光探测及测距系统的简称 。
L
激光
POS系统(IMU /DGPS)
.
5
LiDAR的工作原理——POS系统:
LiDAR???
.
1
LiDAR出现的历史条件:
1839年
由Daguerre和 Niepce拍摄第 一张相片以来, 利用相片制作 相片平面图(X、 Y)技术一直沿 用至今。
1901年
荷兰人 Fourcade发明 了摄影测量的 立体观测技术, 使得从二维相 片可以获取地 面三维数据(X、 Y、Z)成为可能。
.
15
LiDAR应用举例:
(一)激光成像雷达
激光雷达分辨率高,可以采集三维数据,如方位角俯仰角-距离、距离-速度-强度,并将数据以图像的形式显 示,获得辐射几何分布图像、距离选通图像、速度图像等 ,有潜力成为重要的侦察手段。
激光雷达基本知识PPT课件
本 知 识
② 光电探测器。 适合于激光雷达用的光电探测器主要有PIN光电二极管、硅雪崩
二极管(SiAPD)、光电导型碲镉汞(HgCdTe)探测器和光伏型 碲镉汞探测器 ③ 光学天线 透射式望远镜(开普勒、伽利略) 反射式望远镜(牛顿式、卡塞哥伦) 收发合置光学天线 收发分置光学天线 自由空间光路 全光纤光路 波片(四分之一、二分之一) 分束镜、合束镜、布鲁斯特窗片
6. 信号处理方法 微弱信号检测、数字化处理与算法
7. 数据处理方法 数据反演、显示
一、基本知识
本
知
激光雷达的概念及内涵
识
“雷达”(RADAR-Radio
Detection And Ranging)。传
统的雷达是以微波和毫米波作
为载波的雷达,大约出现1935
年左右。
最早公开报道提出激光雷达的 概念是: 1967年美国国际电话 和电报公司提出的,主要用于 航天飞行器交会对接,并研制
知 3. 激光雷达的优点
识
工作频率非常高,较微波高3~4
个数量级。
激光作为雷达辐射源探测运动 目标时多普勒频率非常高,因而 速度分辨率极高。
工作频率处于电子干扰频谱和微 波隐身有效频率之外,有利于对 抗电子干扰和反隐身。
本 知 识
能量高度集中。 用很小的准直孔径(10cm左右)即可获得很高的天线增益和极窄 的波束(1mrad左右),而且无旁瓣,因而可实现高精度测角(优 于0.1mrad)、单站定位、低仰角跟踪和高分辨率三维成像,且 不易被敌方截获,自身隐蔽性强。
探测方式和测量原理等对激光雷达体制 进行分类。
按不同信号形式: ①脉冲
②连续波
本 知 识
按不同功能: ①跟踪雷达(测距和测角); ②测速雷达(测量多普勒信息); ③动目标指示雷达(目标的多普勒信息) ; ④成像雷达(测量目标不同部位的反射强 度和距离等信号);
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、机载激光雷达
激光雷达工作原理图
四、机载激光雷达
机载激光雷达设备 机载激光雷达测量系统设备主要包括三大部件:
机载激光扫描仪、航空数码相机、定向定位系统POS (包括全球定位系统GPS和惯性导航仪IMU)。
四、机载激光雷达
POS系统:
POS系统部件测量设备在每一瞬间的空间位置与姿态, 其中GPS确定空间位置,IMU惯导测量仰俯角、侧滚角和航 向角数据。
针对困难复杂环境下三维地表数 据的高精度获取和处理环节,以低 空直升机作为载体的激光测量,改 变传统地形图生产的制作流程和方 法,实现1:500大比例尺数字线划 地形图的快速生成。
LiDAR在海岸工程方面的应用
传统的摄影测量技术有时不能用于反差小或无明显特征的地 区,如海岸及海岸地区。另外海岸地区的动态环境也需要经常更 新基准测量数据。机载LIDAR是一种主动传感技术,能以低成本 做高动态环境下常规基础海岸线测量,且具有一定的水下探测能 力,可测量近海水深70m内水下地形,可用于海岸带、海边沙丘、 海边提防和海岸森林的三维测量和动态监测。
对于规划电网线路,通过机载激光雷达测量 技术采集和处理的规划沿线数据,为电力线路优 化,外业勘测,设计施工提供数据支持与指导。
对于已建设电网线路,利用机载激光雷达测 量技术采集和处理的电网沿线数据,可以恢复电 线实际形状,自动测量电线到地面的距离和相邻 电线间距,计算垂曲度、跨度等,实现危险点预 警,以便及时调整与维修线路。
四、机载激光雷达
机载 LIDAR 又称机载激光雷达,是激光探测及 测距系统的简称。机载激光雷达测量系统是一种主动 航空遥感装置,是实现地面三维坐标和影像数据同步、 快速、高精确获取,并快速、智能化实现地物三维实 时、变化、真实形态特性再现的一种国际领先的测绘 高新技术。
LIDAR是一种集激光测距、GPS(全球定位系 统)和INS(惯性导航系统)三种技术与一体的空间 测量系统 。是一种新型传感器,具有十分广泛的应用 范围和应用前景。
LiDAR在灾害监测与环境监测方面的应用
利用机载LIDAR产生的DEM,水文学家可以预测洪水的范 围,制定灾难减轻方案以及补救措施。也广泛应用于自然灾害 (如飓风、地震、洪水滑坡等)的灾后评估和响应。
由于激光雷达数据构成的三角网高程值可以用颜色表示不同 高度的水位,对于水利测量、水灾评估都极有用处。
城市淹没分析
LiDAR在灾害监测与环境监测方面的应用
泥石流监测
地震断裂带监测
LiDAR在数字城市方面的应用
在数字化程度越来越高的今天,基于二维城市形象系统已经 不能满足形象时代的要求,将三维空间形象完整呈现已经成为发 展的必然,也是“数字地球”的要求。因此,对快速获取三维空 间数据,模拟和再现现实生活提出了更高的要求。LIDAR系统在 城市中更能体现其不受航高、阴影遮挡等限制的优势,能够快速 采集三维空间数据和影像,房屋建模速度快,高程精度高,纹理 映射自动化程度高,能够满足分析与测量的需求,广泛用于城市 规划的大比例尺地形图获取。
其应用已超出传统测量、遥感所覆盖的范围,成 为一种独特的数据获取方式。
四、机载激光雷达
激光测距原理 激光雷达最基本的工作原理与无线电雷达没有区
别,即由雷达发射系统发送一个信号,经目标反射后 被接收系统收集,通过测量反射光的运行时间而确定 目标的距离。
激光器到反射物体的距离(d)=光速(c)×时间(t)/2 激光束发射的频率能从每秒几个脉冲到每秒几万 个脉冲,接收器将会在一分钟内记录六十万个点。结 合GPS得到的激光器位置坐标信息,INS得到的激光 方向信息,可以准确地计算出每一个激光点的大地坐 标X、Y、Z,大量的激光点聚集成激光点云,组成点 云图像。
四、机载激光雷达
LiDAR数据采集及高程模型(DEM)的应用 • 农林业方面应用 • 电力行业应用 • 公路勘察设计应用 • 海岸工程方面应用 • 灾害监测与环境监测应用 • 数字城市应用
LiDAR在数字高程模型(DEM)的应用
和传统测绘方法相比,LiDAR具有的优势: 1、能更快捷、经济地获取高密度、高精度的大面积的高程数据。 2、建筑物和植被阴影对周围物体测量不造成的影响 3、在其他的测量仪器难以到达的区域具有独特的优势 4、Lidar直接获取三维坐标,无需对DEM数据进行正射校正。
LiDAR在公路勘察设计应用
传统的公路勘察设计方法主要基 于航空摄影测量辅之于人工测量的 方式,但是航空摄影测量方法受天 气、地形、植被的影响和精度限制, 无法获取桥隧设计所需的1:500比 例尺高精度数据资料;而采用GPS、 全站仪等人工地面测量的方法,由 于地势陡峭、植被遮挡等原因,往 往难以施测且很难适应工程建设的 需求。
机载LiDAR采用动态载波相位差分GPS系统,利用安装了 电机上与LiDAR相连接的和设在一个或多个基准站的至少两 台GPS信号接收机同步而连续地观测GPS卫星信号、同时记 录瞬间激光和数码相机开启脉冲的时间标记,再进行载波相 位测量差分定位技术的离线数据后处理,获取LiDAR的三维 坐标。
惯导的基本工作原理是以牛顿力学定律为基础,通过测量 载体在惯性参考系的加速度,将它对实践进行积分,且把它 变换到导航坐标系中,就能够得到在导航坐标系中的速度、 偏航角和位置等信息。
三维 建模
三维 建模
三维 建模
四、机载激光雷达
机载LIDAR的特点
• 一种直接测量系统(主动式); • 能够穿透植被的叶冠; • 基本不需要地面控制点,基本不需要进入测量现场; • 24小时全天候工作; • 数据的绝对精度在0.30米以内; • 提供密集的点阵数据(点间距可以小于1米); • 可同时测量地面和非地面层; • 具有迅速获取数据的能力。
LiDAR在农林业方面应用
激光雷达技术能够精确地获取树木和林冠下地形地貌和农作 物信息,在农业、林业调查与规划利用中,我们可以利用激光 雷达的数据,分析森林树木、农作物的覆盖率和面积,了解其 疏密程度以及不同树龄树木的情况、推算其数量,以便于人们 对森林和农业进行合理规划和利用。
LiDAR在电力行业应用
四、机载激光雷达
激光扫描仪: 机载激光扫描仪部件采集三维激光点云数据,
测量地形同时记录回波强度及波形激光扫描仪,是 LiDAR的核心,一般由激光发射器、接收器、时间间 隔测量装置、传动装置、计算机和软件组成。
线激光器发出的光平面扫描物体表面,面阵CCD 采集被测物面上激光扫描线的漫反射图像,在计算 机中对激光扫描线图像进行处理,依据空间物点与 CCD面阵像素的对应关系计算物体的景深信息,得到 物体表面的三维坐标数据,快速建立原型样件的三 维模型。
城市整体规划
利用机载LiDAR数据提取城市三维建筑物模型
具有多次反射 LIDAR数据
预处理 (消除大误差)
消除树丛 (利用多次反射)
航空影像
生成DEM
分类地面点
三维数字 建筑物模型
生成DOM
提取建筑物 矢量轮廓
删除地面点 清除噪声和碎片
得到建筑物点
矢量数据采集和3D建模
George Vosselman 2005