操作系统os内存管理实验
操作系统“内存管理”实验报告
initpart();
printf("\t****************Hale Waihona Puke ***********MENU**
**************************\n");
printf("\t************** Enter: r 请求分配内存**************\n");
%d\n",pcbl->PCBelem[i].name,pcbl->
PCBelem[i].address,pcbl->PCBelem[i].len);
}
printf("当前的空闲分区有:\n");
printf("address length\n");
for(i=0;i<maxPart;i++)
{
if(partl->Partelem[i].valid==1)
for(i=1;i<maxPart;i++)
{
partl->Partelem[i].address=0;
partl->Partelem[i].len=0;
partl->Partelem[i].valid=0;
}
partl->sum=1;
}
voidrequest(charname,intlen)//进程name请求len大小的内存
printf("\t************** Enter: s 结束进程 **************\n");
printf("\t************** Enter: p 打印分配情况**************\n");
北理工操作系统内存管理实验报告
实验三:内存管理班级:学号:姓名:一、实验目的1.通过编写和调试存储管理的模拟程序以加深对存储管理方案的理解;2.熟悉虚存管理的页面淘汰算法;3.通过编写和调试地址转换过程的模拟程序以加强对地址转换过程的了解。
二、实验要求1.设计一个请求页式存储管理方案(自己指定页面大小),并予以程序实现。
并产生一个需要访问的指令地址流。
它是一系列需要访问的指令的地址。
为不失一般性,你可以适当地(用人工指定地方法或用随机数产生器)生成这个序列。
2.页面淘汰算法采用FIFO页面淘汰算法,并且在淘汰一页时,只将该页在页表中抹去。
而不再判断它是否被改写过,也不将它写回到辅存。
3.系统运行既可以在Windows,也可以在Linux。
三、实验流程图图1 页式存储管理程序参考流程四、实验环境硬件设备:个人计算机。
系统软件:windows操作系统,Visual C++6.0编译环境。
五、实验结果说明:模拟产生35个指令地址,随机产生20个指令地址进行排队,假设主存中共有10个工作集页帧。
将前9个指令调入内存,因为前9个指令中,页号为13的指令有两个,所以调入内存中共有8页。
此时主存中还有两个空闲帧。
此时按刚才随机顺序进行访问指令工作。
前9页因都在主存中可直接调用。
第10个随机地址为页号为5的指令,也在主存中,也可直接调用。
页号为24,3因不在主存中,需要调用进主存。
此时主存已满。
然后主存需要进行调用页号为27号的指令,因主存已满,需要执行FIFO算法,将最先进入主存的页号为30的指令调出,将27号放入第1000000帧。
以后需要调用的页面按照存在就无需调用,否则按FIFO原则进行调页工作。
六、实验感想七、实验代码#include <iostream>#include <iomanip>#include <stdlib.h>#include <time.h>#include <vector>#include <queue>//#include <algorithm>using namespace std ;#define PAGETABLE_NUM 35 //模拟进程的页表表项数量;#define AVAILABLEFRAME_NUM 10 //主存中固定工作集页帧的数量;#define RANDOMNUMBER_NUM 20 //产生随机指令地址的数量;structPageTableEntry{unsignedintFrameNum ;boolPressent ;};voidInitRandomAddr(vector<unsigned int>&RandomAddr) ;voidInitIdleFrameQueue(queue<unsigned int>&IdleFrameQueue) ;voidInitPageTable(vector<PageTableEntry>&PageTable, vector<unsigned int>&RandomAddr, queue<unsigned int>&IdleFrameQueue, queue<unsigned int>&AvtiveFrameQueue) ;voidSetPTE(PageTableEntry&PTE) ;int main(){int a ;//初始化RANDERNUMBER_NUM条随机的32位指令地址;vector<unsigned int>RandomAddr(RANDOMNUMBER_NUM) ;InitRandomAddr(RandomAddr) ;//初始化FIFS指针;vector<unsigned int>::iterator FIFS_pintor ;FIFS_pintor = RandomAddr.begin() ;//初始空闲帧队列;queue<unsigned int>IdleFrameQueue, ActiveFrameQueue ;InitIdleFrameQueue(IdleFrameQueue) ;//初始进程页表(模拟进程初始时,工作集已经使用至少10个页帧);vector<PageTableEntry>PageTable(PAGETABLE_NUM) ;InitPageTable(PageTable, RandomAddr, IdleFrameQueue, ActiveFrameQueue) ;//Testcout<<" 开始访问指令地址\n" ;vector<unsigned int>::iterator pt_RandomAddr ;for(pt_RandomAddr = RandomAddr.begin(); pt_RandomAddr != RandomAddr.end(); pt_RandomAddr++ ){unsignedintPageNum = (*pt_RandomAddr) >> 12 ;cout<<"地址:0x"<<hex<<*pt_RandomAddr<<dec<<"\t页号:"<<PageNum;if ( PageTable[PageNum].Pressent == 0 ) //该页不在主存中;{cout<<"\t该页不在主存,";if (IdleFrameQueue.empty()) //工作集空闲页帧已用完;{cout<<"执行FIFO淘汰算法\t";//FIFS算法淘汰一页;unsignedintFrame_Num ;Frame_Num = ActiveFrameQueue.front() ;ActiveFrameQueue.pop() ;PageTable[(*FIFS_pintor) >> 12].Pressent = 0 ; //标记此页已经被置换出主存;//置换进新页;PageTable[PageNum].FrameNum = Frame_Num ;PageTable[PageNum].Pressent = 1 ;ActiveFrameQueue.push(Frame_Num) ;//移动FIFS指针;FIFS_pintor++ ;}else{cout<<"调入所需页到空闲页\t";//调入当前所需的页到空闲页中;unsignedintFrame_Num ;Frame_Num = IdleFrameQueue.front() ;IdleFrameQueue.pop() ;PageTable[PageNum].FrameNum = Frame_Num ;PageTable[PageNum].Pressent = 1 ;ActiveFrameQueue.push(Frame_Num) ;}}elsecout<<"\t该页在主存";cout<<"\t帧号:"<<PageTable[PageNum].FrameNum<<endl ;}return 0 ;}voidInitRandomAddr(vector<unsigned int>&RandomAddr){cout<<" 生成随机指令地址\n" ;vector<unsigned int>::iterator pd ;srand( (unsigned)time( NULL ) );for(pd = RandomAddr.begin(); pd != RandomAddr.end(); pd++ ){//产生随机页号0~PAGETABLE_NUM - 1;unsignedint High_20 = rand() % PAGETABLE_NUM ;//产生随机偏移量0~4095 ;unsignedint Low_12 = rand() % 4096 ;unsignedintAddr = (High_20 << 12) | Low_12 ;*pd = Addr ;cout<<"随机指令地址:0x"<<setw(8)<<setfill('0') <<setiosflags(ios::uppercase | ios::fixed)<<hex<<*pd<<"\t页号:"<<dec<<High_20<<"\t偏移量:0x"<<hex<<Low_12<<dec<<endl ;}}voidInitIdleFrameQueue(queue<unsigned int>&IdleFrameQueue){//帧号从0~1048575,这里取1000000~1000016;for ( unsigned intFrameNum = 1000000; FrameNum< 1000000 + AVAILABLEFRAME_NUM; FrameNum++ )IdleFrameQueue.push(FrameNum) ;}voidInitPageTable(vector<PageTableEntry>&PageTable, vector<unsigned int>&RandomAddr, queue<unsigned int>&IdleFrameQueue, queue<unsigned int>&AvtiveFrameQueue){cout<<" 初始化页表; \n" ;for_each(PageTable.begin(), PageTable.end(), SetPTE) ;unsignedintPage_Num, Frame_Num ;for ( int count = 0; count < 9; count++){while(true){Page_Num = RandomAddr[count] >> 12 ;if ( PageTable[Page_Num].Pressent != 0 )break ;Frame_Num = IdleFrameQueue.front() ;IdleFrameQueue.pop() ;PageTable[Page_Num].FrameNum = Frame_Num ; //设置页帧号;PageTable[Page_Num].Pressent = 1 ; //标记页帧在主存中;AvtiveFrameQueue.push(Frame_Num) ; //记录活动页帧;cout<<"将模拟进程的第"<<Page_Num<<"页初始化至主存中,帧号为:"<<Frame_Num<<endl;}}cout<<endl ;}voidSetPTE(PageTableEntry&PTE){PTE.FrameNum = PTE.Pressent = 0 ; }。
操作系统存储管理实验报告
操作系统存储管理实验报告一、实验目的本次实验的目的是通过编写一段程序,实现对内存的分配和回收操作,并验证算法的正确性和性能。
二、实验内容1.实现首次适应算法首次适应算法是一种动态分配的内存管理算法,通过从低地址往高地址内存块,找到第一个满足需求的空闲块进行分配。
具体实现过程如下:(1)初始化内存空间,设置内存块的大小和地址范围;(2)编写一个函数,实现内存的分配操作,根据需求大小找到第一个合适的空闲块,并在其前后设置相应的标志位;(3)编写一个函数,实现内存的回收操作,根据释放块的地址,将其前后的标志位进行合并;(4)模拟应用程序的运行,测试内存的分配和回收操作。
2.实现最佳适应算法最佳适应算法是一种动态分配的内存管理算法,通过整个内存空间,找到最小的满足需求的空闲块进行分配。
具体实现过程如下:(1)初始化内存空间,设置内存块的大小和地址范围;(2)编写一个函数,实现内存的分配操作,遍历整个内存空间,找到满足需求且大小最小的空闲块进行分配;(3)编写一个函数,实现内存的回收操作,根据释放块的地址,将其前后的标志位进行合并;(4)模拟应用程序的运行,测试内存的分配和回收操作。
三、实验结果1.首次适应算法经过测试,首次适应算法能够正确地进行内存的分配和回收操作,并且算法的性能良好。
尽管首次适应算法在分配过程中可能会产生碎片,但是由于它从低地址开始,可以在较短的时间内找到满足需求的空闲块。
在实际应用中,首次适应算法被广泛采用。
2.最佳适应算法经过测试,最佳适应算法能够正确地进行内存的分配和回收操作,并且算法的性能较好。
最佳适应算法会整个内存空间,找到大小最小的满足需求的空闲块。
因此,在分配过程中不会产生很多的碎片,但是算法的执行时间较长。
四、实验总结通过本次实验,我们成功地实现了首次适应算法和最佳适应算法,并对算法的正确性和性能进行了验证。
两种算法在内存的分配和回收过程中都表现出良好的性能,可广泛应用于实际场景中。
os课程设计实验
os课程设计实验一、教学目标本课程的教学目标是使学生掌握操作系统的基本原理和关键技术,能够熟练使用操作系统,并具备一定的操作系统设计和实现能力。
具体来说,知识目标包括了解操作系统的概念、结构和功能,掌握进程管理、内存管理、文件系统、输入/输出系统等基本原理和技术;技能目标包括能够使用操作系统进行日常工作和学习,具备基本的操作系统故障排除和性能优化能力;情感态度价值观目标包括培养学生对操作系统的兴趣和好奇心,培养学生认真负责、团队合作的精神。
二、教学内容根据课程目标,本课程的教学内容主要包括操作系统的概念、结构、功能及其关键技术。
具体包括:第一章操作系统概述,介绍操作系统的定义、发展历程、作用和基本组成;第二章进程管理,介绍进程的概念、状态、控制以及调度算法;第三章内存管理,介绍内存的概念、分配策略和回收算法;第四章文件系统,介绍文件和目录的结构、存储设备的管理以及文件系统的实现;第五章输入/输出系统,介绍输入/输出设备的管理、中断处理和设备驱动程序。
三、教学方法为了达到课程目标,本课程将采用多种教学方法,包括讲授法、讨论法、案例分析法和实验法等。
讲授法用于向学生传授操作系统的理论知识,使学生掌握基本概念和原理;讨论法用于引导学生深入思考操作系统的问题,培养学生的分析问题和解决问题的能力;案例分析法用于使学生了解操作系统的实际应用,提高学生的实践能力;实验法用于训练学生的动手能力,使学生熟练掌握操作系统的使用和维护技巧。
四、教学资源为了支持教学内容和教学方法的实施,我们将选择和准备适当的教学资源。
教材方面,我们选择《操作系统原理与实践》作为主教材,辅助以《操作系统设计与实现》等参考书;多媒体资料方面,我们将收集和制作与操作系统相关的PPT、视频等资料,以便更直观地展示操作系统的原理和实现;实验设备方面,我们将准备计算机实验室,使学生能够通过实际操作来加深对操作系统的理解和掌握。
五、教学评估本课程的评估方式包括平时表现、作业、考试等,旨在全面、客观、公正地反映学生的学习成果。
操作系统 实验二 windows内存管理实验
实验二windows内存管理实验一.问题描述内存管理是操作系统的主要任务之一,地址转换是其中的重要内容,本实验主要研究windows的地址转译过程。
通过这次实验了解windows内存管理策略及基本的数据结构,理解windows的地址过程。
通过任意给出一个虚拟地址,可以从windbg 观察相关数据并找到其物理地址。
二.Windows地址转译过程原理1.Windows内存管理器:Windows的内存管理器主要由Windows执行体中的虚存管理程序负责,并由环境子系统负责与具体API相关的一些用户态特征的实现。
有两个任务:地主转换;变换。
2.Windows内存管理策略:Windows采用页式虚拟存储管理技术管理内存,页面是硬件级别上的最小保护单位。
根据硬件体系结构的不同,页面尺寸被分为两种大页面:4KB小页面:4MB通常的PC机,一般都为小页面。
3、Windows虚拟地址空间布局Windows系统的虚拟地址空间布局,默认情况下,32位的windows 系统中每个用户进程可以占有2GB的私有地址空间,操作系统占有另外的2GB。
如下:4、X86虚拟地址转译X86虚拟地址转译是指进程的虚拟地址空间映射到实际物理页面的过程,Windows系统中地址转译过程如下:关键的数据结构如下:页目录:每个进程都有一个页目录,进程页目录的地址被保存在内核地址块(KPROCESS)中。
在windows中,它被映射到虚拟地址0xC0300000。
由cr3可以知道该进程页目录的位置。
页目录由页表项构成。
页表:进程的页目录指向页表。
每个页表只占一个页面,含有1024个PTE,一个PTE为4字节,包含两个主域:PFN,即为数据所在的物理页面的页面帧编号。
虚拟地址结构:x86系统上,一个32位虚拟地址结构被解释成三个独立的部分:页目录索引,页表索引和字节索引,如下:由于页目录项有1024个,因此页目录索引为10位,一个页表中含有1024个PTE,因此页表索引也为10位;字节索引为12位,正好表示一页内容。
操作系统内存管理实验报告
#include <stdio.h>
#include <malloc.h>
t;
int main(void)
{
char *str; /*为字符串申请分配一块内存*/
if ((str = (char *) malloc(10)) == NULL)
根据练习二改编程序如下:
#include <stdio.h>
#include <malloc.h>
#include <string.h>
int main(void)
{
char *str;
/*为字符串申请分配一块内存*/
if ((str = (char *) malloc(20)) == NULL)
{
同组同学学号:
同组同学姓名:
实验日期:交报告日期:
实验(No. 4)题目:编程与调试:内存管理
实验目的及要求:
实验目的:
操作系统的发展使得系统完成了大部分的内存管理工作,对于程序员而言,这些内存管
理的过程是完全透明不可见的。因此,程序员开发时从不关心系统如何为自己分配内存,
而且永远认为系统可以分配给程序所需的内存。在程序开发时,程序员真正需要做的就
printf("String is %s\n Address is %p\n", str, str);
/*重分配刚才申请到的内存空间,申请增大一倍*/
int main(void)
{
char *str;
/*为字符串申请分配一块内存*/
if ((str = (char *) malloc(10)) == NULL)
操作系统实验-内存管理
操作系统实验-内存管理操作系统实验内存管理在计算机系统中,内存管理是操作系统的核心任务之一。
它负责有效地分配和管理计算机内存资源,以满足各种程序和进程的需求。
通过本次操作系统实验,我们对内存管理有了更深入的理解和认识。
内存是计算机用于存储正在运行的程序和数据的地方。
如果没有有效的内存管理机制,计算机系统将无法高效地运行多个程序,甚至可能会出现内存泄漏、内存不足等严重问题。
在实验中,我们首先接触到的是内存分配策略。
常见的内存分配策略包括连续分配和离散分配。
连续分配是将内存空间视为一个连续的地址空间,程序和数据被依次分配到连续的内存区域。
这种方式简单直观,但容易产生内存碎片,降低内存利用率。
离散分配则将内存分成大小相等或不等的块,根据需求进行分配。
其中分页存储管理和分段存储管理是两种常见的离散分配方式。
分页存储管理将内存空间划分为固定大小的页,程序也被分成相同大小的页,通过页表进行映射。
分段存储管理则根据程序的逻辑结构将其分成不同的段,如代码段、数据段等,每个段有不同的访问权限和长度。
接下来,我们研究了内存回收算法。
当程序不再使用分配的内存时,操作系统需要回收这些内存以便再次分配。
常见的内存回收算法有首次适应算法、最佳适应算法和最坏适应算法。
首次适应算法从内存的起始位置开始查找,找到第一个满足需求的空闲区域进行分配;最佳适应算法则选择大小最接近需求的空闲区域进行分配;最坏适应算法选择最大的空闲区域进行分配。
为了更直观地理解内存管理的过程,我们通过编程实现了一些简单的内存管理算法。
在编程过程中,我们深刻体会到了数据结构和算法的重要性。
例如,使用链表或二叉树等数据结构来表示空闲内存区域,可以提高内存分配和回收的效率。
在实验中,我们还遇到了一些实际的问题和挑战。
比如,如何处理内存碎片的问题。
内存碎片是指内存中存在一些无法被有效利用的小空闲区域。
为了解决这个问题,我们采用了内存紧缩技术,将分散的空闲区域合并成较大的连续区域。
操作系统内存管理实验报告
操作系统内存管理实验报告操作系统内存管理实验报告引言:操作系统是计算机系统中的核心软件,负责管理计算机系统的各种资源,其中内存管理是操作系统的重要功能之一。
内存管理的目标是有效地管理计算机的内存资源,提高计算机系统的性能和可靠性。
本实验旨在通过设计和实现一个简单的内存管理系统,加深对操作系统内存管理原理的理解,并通过实践来加深对操作系统的认识。
一、实验背景计算机内存是计算机系统中的重要组成部分,它用于存储程序和数据。
在操作系统中,内存被划分为多个不同的区域,每个区域有不同的用途和访问权限。
内存管理的主要任务是为进程分配内存空间,并进行合理的管理和调度,以提高系统的性能和资源利用率。
二、实验目的本实验旨在通过设计和实现一个简单的内存管理系统,加深对操作系统内存管理原理的理解,并通过实践来加深对操作系统的认识。
具体目标包括:1. 设计和实现一个简单的内存分配算法,实现内存的动态分配和回收;2. 实现内存的地址映射机制,实现虚拟地址到物理地址的转换;3. 实现内存保护机制,确保进程之间的内存隔离和安全性;4. 实现内存的页面置换算法,提高内存的利用率和性能。
三、实验设计与实现1. 内存分配算法为了实现内存的动态分配和回收,我们设计了一个简单的内存分配算法。
该算法根据进程的内存需求和剩余内存空间的大小,选择合适的内存块进行分配。
当进程结束或释放内存时,将已使用的内存块标记为空闲状态,以便下次分配。
2. 地址映射机制为了实现虚拟地址到物理地址的转换,我们设计了一个地址映射机制。
该机制使用页表来记录虚拟地址与物理地址的映射关系。
当进程访问内存时,操作系统根据页表将虚拟地址转换为物理地址,并进行内存访问。
3. 内存保护机制为了确保进程之间的内存隔离和安全性,我们实现了一个简单的内存保护机制。
该机制通过设置每个进程的访问权限,限制进程对内存的读写操作。
只有获得相应权限的进程才能访问内存,确保进程之间的数据安全和隔离。
操作系统实验之内存管理实验报告
操作系统实验之内存管理实验报告一、实验目的内存管理是操作系统的核心功能之一,本次实验的主要目的是深入理解操作系统中内存管理的基本原理和机制,通过实际编程和模拟操作,掌握内存分配、回收、地址转换等关键技术,提高对操作系统内存管理的认识和实践能力。
二、实验环境本次实验在 Windows 操作系统下进行,使用 Visual Studio 作为编程环境,编程语言为 C++。
三、实验原理1、内存分配算法常见的内存分配算法有首次适应算法、最佳适应算法和最坏适应算法等。
首次适应算法从内存的起始位置开始查找,找到第一个满足需求的空闲分区进行分配;最佳适应算法则选择大小最接近需求的空闲分区;最坏适应算法选择最大的空闲分区进行分配。
2、内存回收算法当进程结束释放内存时,需要将其占用的内存区域回收至空闲分区链表。
回收过程中需要考虑相邻空闲分区的合并,以减少内存碎片。
3、地址转换在虚拟内存环境下,需要通过页表将逻辑地址转换为物理地址,以实现进程对内存的正确访问。
四、实验内容1、实现简单的内存分配和回收功能设计一个内存管理模块,能够根据指定的分配算法为进程分配内存,并在进程结束时回收内存。
通过模拟多个进程的内存请求和释放,观察内存的使用情况和变化。
2、实现地址转换功能构建一个简单的页式存储管理模型,模拟页表的建立和地址转换过程。
给定逻辑地址,能够正确计算出对应的物理地址。
五、实验步骤1、内存分配和回收功能实现定义内存分区的数据结构,包括起始地址、大小、使用状态等信息。
实现首次适应算法、最佳适应算法和最坏适应算法的函数。
创建空闲分区链表,初始化为整个内存空间。
模拟进程的内存请求,调用相应的分配算法进行内存分配,并更新空闲分区链表。
模拟进程结束,回收内存,处理相邻空闲分区的合并。
2、地址转换功能实现定义页表的数据结构,包括页号、页框号等信息。
给定页面大小和逻辑地址,计算页号和页内偏移。
通过页表查找页框号,结合页内偏移计算出物理地址。
内存管理实验报告
操作系统课程设计报告题目:动态分区内存管理班级:计算机1303班学号: 2120131138姓名:徐叶指导教师:代仕芳日期: 2015.11.5一、实验目的及要求本实验要求用高级语言编写模拟内存的动态分区分配和回收算法(不考虑紧凑),以便加深理解并实现首次适应算法(FF)、循环首次适应算法(NF)、最佳适应算法(BF),最坏适应算法(WF)的具体实现。
二、实验内容本实验主要针对操作系统中内存管理相关理论进行实验,要求实验者编写一个程序,该程序管理一块虚拟内存,实现内存分配和回收功能。
1)设计内存分配的数据结构(空闲分区表/空闲分区链),模拟管理64M 的内存块;2)设计内存分配函数;3)设计内存回收函数;4)实现动态分配和回收操作;5)可动态显示每个内存块信息动态分区分配是要根据进程的实际需求,动态地分配内存空间,涉及到分区分配所用的数据结构、分区分配算法和分区的分配回收。
程序主要分为四个模块:(1)首次适应算法(FF)在首次适应算法中,是从已建立好的数组中顺序查找,直至找到第一个大小能满足要求的空闲分区为止,然后再按照作业大小,从该分区中划出一块内存空间分配给请求者,余下的空间令开辟一块新的地址,大小为原来的大小减去作业大小,若查找结束都不能找到一个满足要求的分区,则此次内存分配失败。
(2)循环首次适应算法(NF)该算法是由首次适应算法演变而成,在为进程分配内存空间时,不再是每次都从第一个空间开始查找,而是从上次找到的空闲分区的下一个空闲分区开始查找,直至找到第一个能满足要求的空闲分区,从中划出一块与请求大小相等的内存空间分配给作业,为实现本算法,设置一个全局变量f,来控制循环查找,当f%N==0时,f=0;若查找结束都不能找到一个满足要求的分区,则此次内存分配失败。
(3)最佳适应算法(BF)最坏适应分配算法是每次为作业分配内存时,扫描整个数组,总是把能满足条件的,又是最小的空闲分区分配给作业。
操作系统实验报告三存储器管理实验
操作系统实验报告三存储器管理实验操作系统实验报告三:存储器管理实验一、实验目的本次存储器管理实验的主要目的是深入理解操作系统中存储器管理的基本原理和方法,通过实际操作和观察,掌握内存分配与回收的算法,以及页面置换算法的工作过程和性能特点,从而提高对操作系统资源管理的认识和实践能力。
二、实验环境本次实验使用的操作系统为 Windows 10,编程语言为 C++,开发工具为 Visual Studio 2019。
三、实验内容1、内存分配与回收算法实现首次适应算法(First Fit)最佳适应算法(Best Fit)最坏适应算法(Worst Fit)2、页面置换算法模拟先进先出页面置换算法(FIFO)最近最久未使用页面置换算法(LRU)时钟页面置换算法(Clock)四、实验原理1、内存分配与回收算法首次适应算法:从内存的起始位置开始,依次查找空闲分区,将第一个能够满足需求的空闲分区分配给进程。
最佳适应算法:在所有空闲分区中,选择能够满足需求且大小最小的空闲分区进行分配。
最坏适应算法:选择空闲分区中最大的分区进行分配。
2、页面置换算法先进先出页面置换算法:选择最早进入内存的页面进行置换。
最近最久未使用页面置换算法:选择最近最长时间未被访问的页面进行置换。
时钟页面置换算法:给每个页面设置一个访问位,在页面置换时,从指针指向的页面开始扫描,选择第一个访问位为0 的页面进行置换。
五、实验步骤1、内存分配与回收算法实现定义内存分区结构体,包括分区起始地址、大小、是否已分配等信息。
实现首次适应算法、最佳适应算法和最坏适应算法的函数。
编写测试程序,创建多个进程,并使用不同的算法为其分配内存,观察内存分配情况和空闲分区的变化。
2、页面置换算法模拟定义页面结构体,包括页面号、访问位等信息。
实现先进先出页面置换算法、最近最久未使用页面置换算法和时钟页面置换算法的函数。
编写测试程序,模拟页面的调入和调出过程,计算不同算法下的缺页率,比较算法的性能。
计算机操作系统内存分配实验报告
一、实验目的熟悉主存的分配与回收。
理解在不同的存储管理方式下.如何实现主存空间的分配与回收。
掌握动态分区分配方式中的数据结构和分配算法及动态分区存储管理方式及其实现过程。
二、实验内容和要求主存的分配和回收的实现是与主存储器的管理方式有关的。
所谓分配.就是解决多道作业或多进程如何共享主存空间的问题。
所谓回收.就是当作业运行完成时将作业或进程所占的主存空间归还给系统。
可变分区管理是指在处理作业过程中建立分区.使分区大小正好适合作业的需求.并且分区个数是可以调整的。
当要装入一个作业时.根据作业需要的主存量查看是否有足够的空闲空间.若有.则按需要量分割一个分区分配给该作业;若无.则作业不能装入.作业等待。
随着作业的装入、完成.主存空间被分成许多大大小小的分区.有的分区被作业占用.而有的分区是空闲的。
实验要求使用可变分区存储管理方式.分区分配中所用的数据结构采用空闲分区表和空闲分区链来进行.分区分配中所用的算法采用首次适应算法、最佳适应算法、最差适应算法三种算法来实现主存的分配与回收。
同时.要求设计一个实用友好的用户界面.并显示分配与回收的过程。
同时要求设计一个实用友好的用户界面,并显示分配与回收的过程。
三、实验主要仪器设备和材料实验环境硬件环境:PC或兼容机软件环境:VC++ 6.0四、实验原理及设计分析某系统采用可变分区存储管理.在系统运行当然开始.假设初始状态下.可用的内存空间为640KB.存储器区被分为操作系统分区(40KB)和可给用户的空间区(600KB)。
(作业1 申请130KB、作业2 申请60KB、作业3 申请100KB 、作业2 释放 60KB 、作业4 申请 200KB、作业3释放100KB、作业1 释放130KB 、作业5申请140KB 、作业6申请60KB 、作业7申请50KB)当作业1进入内存后.分给作业1(130KB).随着作业1、2、3的进入.分别分配60KB、100KB.经过一段时间的运行后.作业2运行完毕.释放所占内存。
操作系统内存分配实验报告
操作系统实验报告内存分配学生学号:学生姓名:专业年级:(一)实验目的设计编写首次适应算法实现内存分配,每次从低位开始对内存进行检验分配。
(二)设计思想程序分配内存时每次从最低位开始检验是否有满足分配条件的空闲空间,有则把该进程分配到链表的最后(若在中间有足够空闲空间且与两者差大于最小分配的空间大小则分配到该空闲空间的后面,然后把原空闲空间减去已分配的大小);每次释放空间先检查所释放空间前后是否有空闲空间,有则将空间合并。
(三)主要数据结构及变量说明空间链表数据类型space:struct space{struct space *former; int address;int num; int size; int state; struct space *next;},记录内存空间相关属性;最小分配空间int size_min=10;定义空间链表为S:typedef struct space S;S的指针mem:S *mem;;数据类型struct space *former:链表头结点;数据类型struct space *next:链表尾节点;m存放系统内存空间总大小的值。
(四)流程图(五)运行结果(六)附录(代码):#include<stdio.h>#include<stdlib.h>#include <iostream.h>struct space{struct space *former;int address;int num;int size;int state;struct space *next;};typedef struct space S;S *mem;int size_min=10;int m;void init(){mem=new S;mem->size=m;mem->former=0;mem->next=0;}void alloc(S *ptr,S *assign){if(ptr->next==NULL){if(ptr->size>=assign->size){ptr->size=ptr->size-assign->size;assign->state=1;ptr->next=assign;assign->former=ptr;}else{printf("没有足够的内存空间为进程%d分配\n",assign->num);delete assign;}}else{S *previous,*current;previous=ptr;current=previous->next;while(current!=NULL){if(current->size>=assign->size&¤t->state==0){break;}previous=current;current=current->next;}if(current==NULL){if(ptr->size>=assign->size){assign->address =m-(ptr->size);ptr->size=ptr->size-assign->size;assign->state=1;assign->former=previous;previous->next=assign;}else{printf("没有足够的内存空间为进程%d分配\n",assign->num);}}else{if((current->size-assign->size)<=size_min){current->num=assign->num;current->state=1;delete assign;}else{current->size=current->size-assign->size;assign->state=1;assign->address=current->address;current->address=assign->address+assign->size;current->former=assign;assign->next=current;assign->former=previous;previous->next=assign;}}}}void printgroup(S *ptr){S *temp;temp=ptr->next;printf("内存链的状态为:\n");while(temp!=NULL){if(temp->state==0){printf(" 起始地址为:%d",temp->address);printf(" 空闲空间大小为:%d",temp->size);printf(" 内存空闲\n");}else{printf("运行的进程:%d",temp->num);printf(" 起始地址为:%d",temp->address);printf(" 分配空间大小为:%d",temp->size);printf(" 内存已分配\n");}temp=temp->next;}}void free(S *ptr,int i){S *previous,*current;previous=ptr; current=previous->next;while(current!=NULL){if(current->state==1&¤t->num==i){break;}previous=current;current=current->next;}if(current==NULL){printf("内存中没有任何进程!!!\n");}else if(current->next==NULL){if(previous->state==0){previous->size=previous->size+current->size;previous->next=NULL;}else{current->state=0;}printf("进程%d释放%d的空间\n",current->num,current->size);printgroup(mem);}else{if(previous->state==0&&(current->next)->state==0){previous->size=previous->size+current->size+(current->next)->s ize;if((current->next)->next==NULL){previous->next=NULL;}else{((current->next)->next)->former=previous;previous->next=(current->next)->next;}}else if(previous->state==0){previous->size=previous->size+current->size;(current->next)->former=previous;previous->next=current->next;}else if((current->next)->state==0){current->size=current->size+(current->next)->size;current->state=0;if((current->next)->next==NULL){previous->next=NULL;}else{((current->next)->next)->former=current;current->next=(current->next)->next;}}else{current->state=0;}printf("进程%d释放%d的空间\n",current->num,current->size);printgroup(mem);}}void Creat(int i,int temp){printf("输入进程名和大小:\n");scanf("%d",&i);scanf("%d",&temp);space *fenpei;fenpei=(S *)malloc(sizeof(space));fenpei->former=NULL;fenpei->address=0;fenpei->size=temp;fenpei->num=i;fenpei->state=0;fenpei->next=NULL;alloc(mem,fenpei);printgroup(mem);}void main(void){int i;int j,k;printf("请输入内存大小:");scanf("%d",&m);init();while(1){printf("**************************\n");printf("申请内存输入数字1\n");printf("释放内存输入数字2\n");printf("中止进程输入数字0\n");printf("**************************\n");scanf("%d",&i);if(i==1){Creat(j,k);}if(i==2){printf("输入进程名:\n");scanf("%d",&j);free(mem,j);}if(i==0){break;}}}。
操作系统实验十
操作系统实验十第一点:操作系统的概念与历史操作系统(Operating System,简称OS)是管理计算机硬件与软件资源的系统软件,是计算机系统的核心与基石。
它负责调度、管理计算机的进程、内存、文件系统、输入输出设备等资源,为用户与计算机硬件之间提供接口与交互。
操作系统的概念最早可以追溯到20世纪50年代。
当时,计算机科学家们开始研究如何使计算机更加高效、易用。
1956年,约翰·范·诺伊曼(John von Neumann)提出了“存储程序计算机”的概念,这为后来的操作系统奠定了基础。
随后,一系列操作系统应运而生,如IBM的OS/360、UNIVAC的UNIVAC I等。
进入20世纪60年代,分时操作系统(Time-Sharing Operating System)的出现,使得多用户可以同时使用计算机资源。
其中,最有代表性的是麻省理工学院的Multics操作系统。
它采用了虚拟内存技术,使得每个用户都可以拥有独立的运行环境。
到了20世纪70年代,个人计算机(PC)的兴起,推动了操作系统的发展。
微软公司推出了MS-DOS操作系统,它基于数字设备公司的86-DOS,成为PC领域的主流操作系统。
随后,微软又推出了Windows操作系统,进一步降低了计算机使用的门槛。
20世纪80年代至90年代,操作系统市场竞争激烈。
除了微软的Windows,还有苹果的Mac OS、太阳微系统的Solaris、IBM的OS/2等。
然而,微软凭借Windows的强大生态优势,逐渐成为了操作系统的霸主。
进入21世纪,操作系统的发展呈现出多元化、个性化的趋势。
除了传统的桌面操作系统,智能手机、平板电脑等移动设备也拥有了各自的操作系统,如iOS、Android等。
此外,云计算、物联网等新兴领域也推动了操作系统的发展,如谷歌的Android Things、亚马逊的Amazon Linux等。
如今,操作系统已经成为了计算机系统中不可或缺的部分。
操作系统内存管理实验指导书
实验二内存管理实验一、实验目的1.掌握基本的主存分配和回收算法,了解Windows 2000/XP的虚拟内存机制。
2.学习使用Windows 2000/XP的与内存相关的API函数。
3.掌握请求分页存储管理方式。
二、实验内容及要求1.实验内容使用Windows 2000/XP 的API 函数,创建两个线程,一个用于模拟内存的分配活动,一个用于跟踪并记录内存分配过程中的内存变化情况,要求这两个线程使用信号量进行同步。
每次内存分配按照相应的测试数据的要求进行操作。
每个测试数据单元描述一次内存分配操作,测试数据有程序随机自动产生,并把产生的测试数据保存在一个文件中。
模拟内存分配活动的线程可以从测试数据文件中读出要进行的内存操作。
每个内存操作包括以下内容:1)时间:操作等待时间,即等待相应时间后执行内存分配操作(要求随机产生);2)块数:操作的内存页数(要求随机产生);3)操作类型:可以是保留(reserve)、提交(commit)、释放(release)、回收(decommit)、加锁(lock)、解锁(unlock);保留:在虚拟地址空间分配,不分配物理空间提交:在物理地址空间分配回收:释放物理空间,但保留虚拟空间释放:释放物理空间和虚拟空间加锁:常驻内存,即防止操作系统把对应的内存空间换出到外存可以将这些操作编号,存放于文件中。
4)大小:指块的大小;5)访问权限:共五种PAGE_READONLY、PAGE_READWRITE、PAGE_EXCUTE、PAGE_EXECUTE_READ 和PAGE_ EXECUTE_READWRITE。
可以将这些权限编号,存放于文件中。
运行结果显示要求:每次内存分配操作给出一组此次分配的相关信息,包括操作类型、权限类型、分配的起始地址和大小等;每次内存分配操作之后给出一组关于系统和内存的当前状态的信息。
2.实验要求●学习并理解请求分页存储管理方式;●学习了解虚拟存储技术的技术特点;●熟悉实验环境,掌握相关API的使用方法;●设计程序,实现以页为单位的虚拟内存分配方法;●不限制所使用的程序设计语言;●查阅有关资料;●提交实验报告。
操作系统实验 内存管理
操作系统实验报告计算机学院(院、系)网络工程专业082 班组课学号20 姓名区德智实验日期教师评定实验四内存管理一、实验目的通过实验使学生了解可变式分区管理使用的主要数据结构,分配、回收的主要技术,了解最优分配、最坏分配、最先分配等分配算法。
基本能达到下列具体的目标:1、掌握初步进程在内存中的映像所需要的内存需求。
2、内存的最先分配算法首先实现,再逐步完成最优和最坏的分配算法。
二、实验内容1、在进程管理的基础上实现内存分配。
2、运用java实现整体的布局与分配内存时的动态图画显示。
三、实验步骤1.构建一个Process的对象类,每分配一次内存就实例化一个对象。
这对象包含分配内存的名字,内存大小(byte),绘画的起点像素,绘画的终点像素。
主要代码:public class Process {private String name;private int size;private int beginPx;private int endPx;public int getBeginPx() {return beginPx;}public void setBeginPx(int beginPx) {this.beginPx = beginPx;}public int getEndPx() {return endPx;}public void setEndPx(int endPx) {this.endPx = endPx;}public String getName() {return name;}public void setName(String name) { = name;}public int getSize() {return size;}public void setSize(int size) {this.size = size;}}2.根据用户输入而分配内存的大小,若输入的大小大于目前可分配内存的大小则拒绝分配操作,否则增加一个新进程入链表中,并在已分配表中增加进程的名字,更新剩余内存大小。
内存管理实验报告
内存管理实验报告西安邮电大学(计算机学院)课内实验报告实验名称:内存管理专业名称:软件工程班级:学生姓名:学号(8位):指导教师:实验日期:2018年12月04日一.实验目的及实验环境1、实验环境Linux centos7系统gcc编译器 gdb调试2、实验目的(1)掌握内存分配FF,BF,WF策略及实现的思路;(2)掌握内存回收过程及实现思路;(3)参考本程序思路,实现内存的申请、释放的管理程序,调试运行,总结程序设计中出现的问题并找出原因,写出实验报告。
二.实验内容(1)掌握内存分配FF,BF,WF策略及实现的思路;(2)掌握内存回收过程及实现思路;(3)参考本程序思路,实现内存的申请、释放的管理程序,调试运行,总结程序设计中出现的问题并找出原因,写出实验报告。
三.方案设计----------------------------------------------------------Memory management experiment1 - Set memory size (default=1024)2 - Select memory allocation algorithm3 - New process4 - kill a process5 - Display memory usage0 - Exit----------------------------------------------------------一、首次适应算法(First Fit):该算法从空闲分区链首开始查找,直至找到一个能满足其大小要求的空闲分区为止。
然后再按照作业的大小,从该分区中划出一块内存分配给请求者,余下的空闲分区仍留在空闲分区链中。
特点:该算法倾向于使用内存中低地址部分的空闲区,在高地址部分的空闲区很少被利用,从而保留了高地址部分的大空闲区。
显然为以后到达的大作业分配大的内存空间创造了条件。
缺点:低地址部分不断被划分,留下许多难以利用、很小的空闲区,而每次查找又都从低地址部分开始,会增加查找的开销。
操作系统实验之内存管理实验报告
int size; int start_addr; struct Free_Block *next; } Free_Block; Free_Block *free_block;
定义已分配的内存空间的结构体,用来保存已经被进程占用了内存空间的情
该模块完成在内存空间中申请一块空间供进程使用的功能,通过输入进程大 小系统先查看内存空间中是否有足够的空间供其进行申请,若无,显示分配失败 相应信息,否则在空闲内存分区块中选择最先的一块进行分配,若内存空间不足 则继续向下查找,空闲内存分区的顺序通过三种算法给出。分配内存时,要指定 进程的首地址和大小,并对内存空闲分区的大小做相应的修改。 2.4 进程终止模块
四、开发工具及主要源代码
1、开发工具
sublimeText3 文本编辑器,采用 g++编译。
2、主要源码
这里只给出最先适应算法的源码,由于三种算法均为对链表进行排序,只是 排序依据的属性不同,结构上几乎相似,在此就不做赘述 /*最先适应算法,按地址的大小由小到达排序*/
void rFirst_Fit() {
current_min_addr = temp->next->start_addr; p = temp; } temp = temp->next; } if (p->next != head->next) { temp = p->next; p->next = p->next->next; temp->next = head->next;
不足之处在于,本次实验中没有实现最坏适应法,分析可能是在在排序的 过程中链表的指针出现了错误,在开始调试阶段只对单一算法进行了调试从而 忽略了这个问题的存在,直到编写本报告的时候才发现种问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
pb[f]=p[n];
time[f]=0;
sum++;
f=-1;
}
}
for(m=0;m<i && pb[m]!=-1;m++)
//物理块中现有页面停留时间+1
time[m]++;
}
r=1-(float)sum/320;
printf("\t\t%6.4 f ",r);
}
void LRU() //最近最少使用算法
{
//随机产生一条指令
s=rand()%320+0;
//顺序执行一条指令
a[n]=s+1;
//执行前地址指令M`
s=rand()%(a[n]+1);
a[n+1]=s+1;
s=rand()%(319-a[n+1])+(a[n+1]+1);
a[n+2]=s;
}
for (n=0;n<320;n++)
//得到指令想对的页数
if(pb[m]==-1)
{
f=m;
break;
}
if (g!=-1)
{
time[g]=0;
g=-1;
}
else
{
if (f==-1)
{
max=time[0];
for (m=0;m<i;m++)
if (time[m]>max)
{
k=m;
max=time[m];
}
pb[k]=p[n];
time[k]=0;
40分
说明:
评阅教师:
日期:年月日
实验内容
1.目的和要求
存储管理的主要功能之一是合理地分配空间。请求页式管理是一种常用的虚拟存储管理技术。
本实验的目的是通过请求页式存储管理中页面置换算法模拟设计,了解虚拟存储技术的特点,掌握请求页式管理的页面置换算法。
2.实验内容
1.过随机数产生一个指令序列,共320条指令。其地址按下述原则生成:
xx
xx
《操作系统》实验报告
专业班级
xx
实验地点
xx
学生学号
xx
指导教师
xx
学生姓名
xx
实验时间
xx
实验项目
内存管理
实验类别
操作性()验证性()设计性(√)综合性()其它()
实验目的及要求
实验目的:
存储管理的主要功能之一是合理地分配空间。本实验的目的是通过请求页式存储管理中页面置换算法模拟设计,了解虚拟存储技术的特点,掌握请求页式管理的页面置换算法。
①50%的指令是顺序执行的;
②25%的指令是均匀分布在前地址部分;
③25%的指令是均匀分布在后地址部分;
2.指令序列变换成页地址流
3.计算并输出下述各种算法在不同内存容量下的命中率。
实验的代码如下:
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
//应对出现页面使用次数同样少的情况
if (time[m]==min)
t++;
if (t>1)
//使用次数同样少,将次数相同的页面按照LRU进行页面置换
{
max_lru=time_lru[k];
for (m=0;m<i &&time[m]==min;m++)
if (time_lru[m]>max_lru)
{
int time[32];
int max;
initialization();
for(m=0;m<i;m++)
time[m]=m+1;
for(n=0;n<320;n++)
{
k=0;
for (m=0;m<i;m++)
if (pb[m]==p[n])
{
g=m;
break;
}
for(m=0;m<i;m++)
{
k=m;
max_lru=time_lru[m];
}
}
pb[k]=p[n];
time_lru[k]=0;
sum++;
}
}
else
{
pb[f]=p[n];
time_lru[f]=0;
sum++;
f=-1;
}
}
for(m=0;m<i && pb[m]!=-1;m++)
time_lru[m]++;
}
r=1-(float)sum/320;
g=-1;
else
{ //找到最先进入内存的页面
if (f==-1)
{
max=time[0];
for(m=0;m<i;m++)
if(time[m]>max)
{
max=time[m];
k=m;
}
pb[k]=p[n];
//该物理块中页面停留时间置零
time[k]=0;
//缺页数+1
sum++;
}
else
//计算一定时间间隔内物理块中页面使用次数
for (h=n-1;h>=n-51;h--)
if (pb[m]==p[h])
time[m]++;
min=time[0];
for (m=0;m<i;m++)
if (time[m]<min)
{
min=time[m];
k=m;
}
for (m=0;m<i;m++)
实验要求:
1、过随机数产生一个指令序列,共320条指令。
2、指令序列变换成页地址流
3、计算并输出下述各种算法在不同内存容量下的命中率。
成绩评定表
类别
评分标准
分值
得分
合计
上机表现
积极出勤、遵守纪律
主动完成实验设计任务
30分
需求设计
比较规范、基本正确
功能达到实验要求
30分
实验报告
及时递交、填写规范
内容完整、体现收获
//在未到达”一定时间”的要求时,先采用LRU进行页面置数
for (m=0;m<i;m++)
if (time_lru[m]>max_lru)
{
k=m;
max_lru=time_lru[m];
}
pb[k]=p[n];
time_lru[k]=0;
sum++;
}
else
{
for (m=0;m<i;m++)
//S表示产生的随机数,i表示五路快数
int s,i;
int m,n,h;
int k,g,f;
int sum;
float r;
//page页数
int p[320];
//执行的指令
int a[320];
//physical block用户内存容量(物理块)
int pb[32];
void initialization();
time[m]=m+1;
for(n=0;n<320;n++)
{
k=0;
for(m=0;m<i;m++)
//表示内存中已有调入的页面
if(pb[m]==p[n])
{
g=m;
break;
}
for(m=0;m<i;m++)
//用户内存中空的物理块
if(pb[m]==-1)
{
f=m;
break;
}
if(g!=-1)
initialization();
int time_lru[32],time[32],min,max_lru,t;
for (m=0;m<i;m++)
{
time[m]=0;
time_lru[m]=m+1;
}
for (n=0;n<320;n++)
{
k=0;
t=1;
for (m=0;m<i;m++)
if (pb[m]==p[n])
sum++;
}
else
{
pb[f]=p[n];
time[f]=0;
sum++;
f=-1;
}
}
for (m=0;m<i && pb[m]!=-1;m++)
time[m]++;
}
r=1-(float)sum/320;
printf("\t\t%6.4f",r);
}
voidOPT() //最少访问页面算法
{
void FIFO();
void LRU();
voidOPT();
void line();
void start();
void end();
void main()
{
start();
//以计算机当前时间作为随机种子
srand((int) time (NULL));