20152016学年高二物理暑假作业 生活中的圆周运动

合集下载

高中物理生活中的圆周运动试题(有答案和解析).docx

高中物理生活中的圆周运动试题(有答案和解析).docx

高中物理生活中的圆周运动试题( 有答案和解析 )一、高中物理精讲专题测试生活中的圆周运动1.光滑水平面AB 与竖直面内的圆形导轨在 B 点连接,导轨半径R= 0.5 m,一个质量m= 2 kg 的小球在 A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能 Ep= 49 J,如图所示.放手后小球向右运动脱离弹簧,沿圆形轨道向上运动恰能通过最高点C, g 取 10 m/s 2.求:(1)小球脱离弹簧时的速度大小;(2)小球从 B 到 C 克服阻力做的功;(3)小球离开 C 点后落回水平面时的动能大小.【答案】(1)7m / s( 2)24J( 3)25J【解析】【分析】【详解】(1)根据机械能守恒定律E p=1mv12 ?①212Ep=7m/s ②v =m(2)由动能定理得- mg·2R- W f=1mv221mv12③22小球恰能通过最高点,故mg m v22④R由②③④得W f=24 J(3)根据动能定理:mg 2R E k 1mv22 2解得: E k25J故本题答案是:( 1)7m / s( 2)24J( 3)25J【点睛】(1)在小球脱离弹簧的过程中只有弹簧弹力做功,根据弹力做功与弹性势能变化的关系和动能定理可以求出小球的脱离弹簧时的速度v;(2)小球从 B 到 C 的过程中只有重力和阻力做功,根据小球恰好能通过最高点的条件得到小球在最高点时的速度 ,从而根据动能定理求解从 B 至 C 过程中小球克服阻力做的功 ;(3)小球离开 C 点后做平抛运动 ,只有重力做功,根据动能定理求小球落地时的动能大小2.图示为一过山车的简易模型,它由水平轨道和在竖直平面内的光滑圆形轨道组成,BC 分别是圆形轨道的最低点和最高点,其半径R=1m,一质量 m=1kg 的小物块(视为质点)从左側水平轨道上的 A 点以大小 v0= 12m/ s 的初速度出发,通过竖直平面的圆形轨道后,停在右侧水平轨道上的 D 点.已知 A、B 两点间的距离 L1= 5. 75m,物块与水平轨道写的动摩擦因数0. 2,取 g= 10m/ s2,圆形轨道间不相互重叠,求:(1)物块经过 B 点时的速度大小 v B;(2)物块到达 C 点时的速度大小 v C;(3) BD 两点之间的距离 L2,以及整个过程中因摩擦产生的总热量Q【答案】 (1)11m / s (2)9m / s(3)72J【解析】【分析】【详解】(1)物块从 A 到 B 运动过程中,根据动能定理得:mgL11mv B21mv02 22解得: v B11m / s(2)物块从 B 到 C 运动过程中,根据机械能守恒得:1mv B21mv C2mg·2R 22解得: v C9m / s(3)物块从 B 到 D 运动过程中,根据动能定理得:mgL201mv B2 2解得: L230.25m对整个过程,由能量守恒定律有:Q 1mv020 2解得: Q=72J【点睛】选取研究过程,运用动能定理解题.动能定理的优点在于适用任何运动包括曲线运动.知道小滑块能通过圆形轨道的含义以及要使小滑块不能脱离轨道的含义.3.如图所示,竖直平面内的光滑的正上方, AD 为与水平方向成3/4 的圆周轨道半径为R, A 点与圆心O 等高, B 点在 O θ =45°角的斜面, AD 长为 72 R.一个质量为m 的小球(视为质点)在 A 点正上方 h 处由静止释放,自由下落至 A 点后进入圆形轨道,并能沿圆形轨道到达 B 点,且到达 B 处时小球对圆轨道的压力大小为mg,重力加速度为g,求:(1)小球到 B 点时的速度大小vB(2)小球第一次落到斜面上 C 点时的速度大小v(3)改变 h,为了保证小球通过 B 点后落到斜面上,h 应满足的条件【答案】 (1) 2gR (2)10gR (3) 3R h 3R2【解析】【分析】【详解】(1)小球经过 B 点时,由牛顿第二定律及向心力公式,有2mg mg mv BR解得v B2gR(2)设小球离开 B 点做平抛运动,经时间t ,下落高度y,落到 C 点,则y 1gt 2 2y cot v B t两式联立,得2v B24gRy4Rg g对小球下落由机械能守恒定律,有1mv B2mgy 1 mv222解得vv22gy2gR8gR 10gRB(3)设小球恰好能通过 B 点,过 B 点时速度为 v1,由牛顿第二定律及向心力公式,有mg m v12R又mg (h R)1mv122得h 3 R2可以证明小球经过 B 点后一定能落到斜面上设小球恰好落到 D 点,小球通过 B 点时速度为 v2,飞行时间为 t ,(72R2R)sin 1 gt22(72R2R)cos v2t解得v2 2 gR又mg (h R)1mv222可得h3R故 h 应满足的条件为 3 R h 3R2【点睛】小球的运动过程可以分为三部分,第一段是自由落体运动,第二段是圆周运动,此时机械能守恒,第三段是平抛运动,分析清楚各部分的运动特点,采用相应的规律求解即可.4.如图所示,长为3l 的不可伸长的轻绳,穿过一长为l 的竖直轻质细管,两端分别拴着质量为m、2m的小球 A 和小物块B,开始时 B 静止在细管正下方的水平地面上。

物理生活中的圆周运动练习题含答案

物理生活中的圆周运动练习题含答案
则从C点至挡板最高点过程中水平方向:x'=v′Bt'
竖直方向:y′= ﹣d=
又:x'=
解得:d=0.8m
9.过山车是游乐场中常见的设施.下图是一种过山车的简易模型,它由水平轨道和在竖直平面内的三个圆形轨道组成,B、C、D分别是三个圆形轨道的最低点,B、C间距与C、D间距相等,半径 、 .一个质量为 kg的小球(视为质点),从轨道的左侧A点以 的初速度沿轨道向右运动,A、B间距 m.小球与水平轨道间的动摩擦因数 ,圆形轨道是光滑的.假设水平轨道足够长,圆形轨道间不相互重叠,如果小球恰能通过第二圆形轨道.如果要使小球不能脱离轨道,试求在第三个圆形轨道的设计中,半径 应满足的条件.(重力加速度取 ,计算结果保留小数点后一位数字.)
()小滑块在e点对圆环轨道压力的大小;
(3)小滑块与斜轨之间的动摩擦因数.(计算结果可以保留根号)
【答案】(1) ;(2)F′=6mg;(3)
【解析】
【分析】
【详解】
(1)小滑块从a点飞出后做平拋运动:
水平方向:
竖直方向:
解得:
小滑块在a点飞出的动能
(2)设小滑块在e点时速度为 ,由机械能守恒定律得:
由牛顿第三定律可得,小物块运动到B点时对圆轨道B点的压力大小为:N′=N=160N
(2)因为小物块恰能通过D点,所以在D点小物块所受的重力等于向心力,即:
可得:vD=2m/s
设小物块落地点距B点之间的距离为x,下落时间为t,根据平抛运动的规律有:
x=vDt,
2R= gt2
解得:x=0.8m
则小物块离开D点后落到地面上的点与D点之间的距离
点睛:此题是水平转盘的圆周运动问题,解决本题的关键正确地确定研究对象,搞清向心力的来源,结合临界条件,通过牛顿第二定律进行求解.

高中物理生活中的圆周运动解题技巧及练习题(含答案)及解析.docx

高中物理生活中的圆周运动解题技巧及练习题(含答案)及解析.docx

高中物理生活中的圆周运动解题技巧及练习题( 含答案 ) 及解析一、高中物理精讲专题测试生活中的圆周运动1.图示为一过山车的简易模型,它由水平轨道和在竖直平面内的光滑圆形轨道组成,BC 分别是圆形轨道的最低点和最高点,其半径R=1m,一质量 m=1kg 的小物块(视为质点)从左側水平轨道上的 A 点以大小 v0= 12m/ s 的初速度出发,通过竖直平面的圆形轨道后,停在右侧水平轨道上的 D 点.已知 A、B 两点间的距离 L1= 5. 75m,物块与水平轨道写的动摩擦因数0. 2,取 g= 10m/ s2,圆形轨道间不相互重叠,求:(1)物块经过 B 点时的速度大小 v B;(2)物块到达 C 点时的速度大小 v C;(3) BD 两点之间的距离 L2,以及整个过程中因摩擦产生的总热量Q【答案】 (1)11m / s (2)9m / s(3) 72J【解析】【分析】【详解】(1)物块从 A 到 B 运动过程中,根据动能定理得:mgL11mv B21mv02 22解得: v B11m / s(2)物块从 B 到 C 运动过程中,根据机械能守恒得:1mv B21mv C2mg·2R 22解得: v C9m / s(3)物块从 B 到 D 运动过程中,根据动能定理得:mgL201mv B2 2解得: L230.25m对整个过程,由能量守恒定律有:Q 1mv020 2解得: Q=72J【点睛】选取研究过程,运用动能定理解题.动能定理的优点在于适用任何运动包括曲线运动.知道小滑块能通过圆形轨道的含义以及要使小滑块不能脱离轨道的含义.2.如图所示,竖直平面内有一光滑的直角细杆MON ,其中 ON 水平, OM 竖直,两个小物块 A 和 B 分别套在 OM 和 ON 杆上,连接 AB 的轻绳长为 L=0.5m ,.现将直角杆 MON 绕过2OM 的轴 O 1O 2 缓慢地转动起来.已知A 的质量为 m 1=2kg ,重力加速度 g 取 10m/s 。

高中物理生活中的圆周运动试题(有答案和解析)

高中物理生活中的圆周运动试题(有答案和解析)

高中物理生活中的圆周运动试题(有答案和解析)一、高中物理精讲专题测试生活中的圆周运动1.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大? (3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g sv H L=-201[1]42()s T mg H L L =+- 【解析】 【分析】 【详解】(1)由万有引力等于向心力可知22Mm v G m R R =2MmGmg R= 可得2v g R=则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t =解得0024g s v H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星=解得:201142()s T mg H L L ⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g 0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.2.如图所示,带有14光滑圆弧的小车A 的半径为R ,静止在光滑水平面上.滑块C 置于木板B 的右端,A 、B 、C 的质量均为m ,A 、B 底面厚度相同.现B 、C 以相同的速度向右匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高处.则:(已知重力加速度为g ) (1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【答案】(1)023v gR =(2)123gRv =253gR v =【解析】本题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为v 0,AB 相碰过程中动量守恒,设碰后AB 总体速度u ,由02mv mu =,解得02v u =C 滑到最高点的过程: 023mv mu mu +='222011123222mv mu mu mgR +⋅=+'⋅ 解得023v gR =(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有01222mv mu mv mv +=+22220121111222222mv mu mv mv +⋅=+⋅ 解得:123gRv =253gR v =3.如图所示,光滑轨道CDEF 是一“过山车”的简化模型,最低点D 处入、出口不重合,E 点是半径为0.32R m =的竖直圆轨道的最高点,DF 部分水平,末端F 点与其右侧的水平传送带平滑连接,传送带以速率v=1m/s 逆时针匀速转动,水平部分长度L=1m .物块B 静止在水平面的最右端F 处.质量为1A m kg =的物块A 从轨道上某点由静止释放,恰好通过竖直圆轨道最高点E ,然后与B 发生碰撞并粘在一起.若B 的质量是A 的k 倍,A B 、与传送带的动摩擦因数都为0.2μ=,物块均可视为质点,物块A 与物块B 的碰撞时间极短,取210/g m s =.求:(1)当3k =时物块A B 、碰撞过程中产生的内能; (2)当k=3时物块A B 、在传送带上向右滑行的最远距离;(3)讨论k 在不同数值范围时,A B 、碰撞后传送带对它们所做的功W 的表达式.【答案】(1)6J (2)0.25m (3)①()21W k J =-+②()221521k k W k +-=+【解析】(1)设物块A 在E 的速度为0v ,由牛顿第二定律得:20A A v m g m R=①,设碰撞前A 的速度为1v .由机械能守恒定律得:220111222A A A m gR m v m v +=②, 联立并代入数据解得:14/v m s =③;设碰撞后A 、B 速度为2v ,且设向右为正方向,由动量守恒定律得()122A A m v m m v =+④;解得:21141/13A AB m v v m s m m ==⨯=++⑤;由能量转化与守恒定律可得:()22121122A AB Q m v m m v =-+⑥,代入数据解得Q=6J ⑦; (2)设物块AB 在传送带上向右滑行的最远距离为s ,由动能定理得:()()2212A B A B m m gs m m v μ-+=-+⑧,代入数据解得0.25s m =⑨; (3)由④式可知:214/1A A B m v v m s m m k==++⑩;(i )如果A 、B 能从传送带右侧离开,必须满足()()2212A B A B m m v m m gL μ+>+,解得:k <1,传送带对它们所做的功为:()()21J A B W m m gL k μ=-+=-+;(ii )(I )当2v v ≤时有:3k ≥,即AB 返回到传送带左端时速度仍为2v ; 由动能定理可知,这个过程传送带对AB 所做的功为:W=0J ,(II )当0k ≤<3时,AB 沿传送带向右减速到速度为零,再向左加速, 当速度与传送带速度相等时与传送带一起匀速运动到传送带的左侧. 在这个过程中传送带对AB 所做的功为()()2221122A B A B W m m v m m v =+-+, 解得()221521k k W k +-=+; 【点睛】本题考查了动量守恒定律的应用,分析清楚物体的运动过程是解题的前提与关键,应用牛顿第二定律、动量守恒定律、动能定理即可解题;解题时注意讨论,否则会漏解.A 恰好通过最高点E ,由牛顿第二定律求出A 通过E 时的速度,由机械能守恒定律求出A 与B 碰撞前的速度,A 、B 碰撞过程系统动量守恒,应用动量守恒定律与能量守恒定律求出碰撞过程产生的内能,应用动能定理求出向右滑行的最大距离.根据A 、B 速度与传送带速度间的关系分析AB 的运动过程,根据运动过程应用动能定理求出传送带所做的功.4.如图所示,一半径r =0.2 m 的1/4光滑圆弧形槽底端B 与水平传送带相接,传送带的运行速度为v 0=4 m/s ,长为L =1.25 m ,滑块与传送带间的动摩擦因数μ=0.2,DEF 为固定于竖直平面内的一段内壁光滑的中空方形细管,EF 段被弯成以O 为圆心、半径R =0.25 m 的一小段圆弧,管的D 端弯成与水平传带C 端平滑相接,O 点位于地面,OF 连线竖直.一质量为M =0.2 kg 的物块a 从圆弧顶端A 点无初速滑下,滑到传送带上后做匀加速运动,过后滑块被传送带送入管DEF ,已知a 物块可视为质点,a 横截面略小于管中空部分的横截面,重力加速度g 取10 m/s 2.求:(1)滑块a 到达底端B 时的速度大小v B ; (2)滑块a 刚到达管顶F 点时对管壁的压力. 【答案】(1)2/B v m s = (2) 1.2N F N = 【解析】试题分析:(1)设滑块到达B 点的速度为v B ,由机械能守恒定律,有21g 2B M r Mv = 解得:v B =2m/s(2)滑块在传送带上做匀加速运动,受到传送带对它的滑动摩擦力, 由牛顿第二定律μMg =Ma滑块对地位移为L ,末速度为v C ,设滑块在传送带上一直加速 由速度位移关系式2Al=v C 2-v B 2得v C =3m/s<4m/s ,可知滑块与传送带未达共速 ,滑块从C 至F ,由机械能守恒定律,有221122C F Mv MgR Mv =+ 得v F =2m/s在F 处由牛顿第二定律2g FN v M F M R+=得F N =1.2N 由牛顿第三定律得管上壁受压力为1.2N, 压力方向竖直向上 考点:机械能守恒定律;牛顿第二定律【名师点睛】物块下滑和上滑时机械能守恒,物块在传送带上运动时,受摩擦力作用,根据运动学公式分析滑块通过传送带时的速度,注意物块在传送带上的速度分析.5.如图所示,轨道ABCD 的AB 段为一半径R =0.2 m 的光滑1/4圆形轨道,BC 段为高为h =5 m 的竖直轨道,CD 段为水平轨道.一质量为0.2 kg 的小球从A 点由静止开始下滑,到达B 点时速度的大小为2 m /s ,离开B 点做平抛运动(g =10 m /s 2),求:(1)小球离开B 点后,在CD 轨道上的落地点到C 点的水平距离; (2)小球到达B 点时对圆形轨道的压力大小;(3)如果在BCD 轨道上放置一个倾角θ=45°的斜面(如图中虚线所示),那么小球离开B 点后能否落到斜面上?如果能,求它第一次落在斜面上的位置距离B 点有多远.如果不能,请说明理由.【答案】(1)2 m (2)6 N (3)能落到斜面上,第一次落在斜面上的位置距离B 点1.13 m 【解析】①.小球离开B 点后做平抛运动,212h gt =B x v t =解得:2m x =所以小球在CD 轨道上的落地点到C 的水平距离为2m ②.在圆弧轨道的最低点B ,设轨道对其支持力为N由牛二定律可知:2Bv N mg m R-=代入数据,解得3N N =故球到达B 点时对圆形轨道的压力为3N ③.由①可知,小球必然能落到斜面上根据斜面的特点可知,小球平抛运动落到斜面的过程中,其下落竖直位移和水平位移相等212B v t gt ⋅''=,解得:0.4s t '= 则它第一次落在斜面上的位置距B 点的距离为20.82m B S v t ='=.6.一个同学设计了一种玩具的模型如图所示,该模型由足够长的倾斜直轨道AB 与水平直轨道BC 平滑连接于B 点,水平直轨道与圆弧形轨道相切于C 点,圆弧形轨道的半径为R 、直径CD 竖直,BC =4R 。

高中物理生活中的圆周运动试题(有答案和解析)及解析

高中物理生活中的圆周运动试题(有答案和解析)及解析

高中物理生活中的圆周运动试题(有答案和解析)及解析一、高中物理精讲专题测试生活中的圆周运动1.如图,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道PA 在A 点相切.BC 为圆弧轨道的直径.O 为圆心,OA 和OB 之间的夹角为α,sinα=35,一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求:(1)水平恒力的大小和小球到达C 点时速度的大小; (2)小球到达A 点时动量的大小; (3)小球从C 点落至水平轨道所用的时间. 【答案】(15gR(223m gR (3355R g 【解析】试题分析 本题考查小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力.解析(1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F .由力的合成法则有tan F mgα=① 2220()F mg F =+②设小球到达C 点时的速度大小为v ,由牛顿第二定律得2v F m R=③由①②③式和题给数据得034F mg =④5gRv =(2)设小球到达A 点的速度大小为1v ,作CD PA ⊥,交PA 于D 点,由几何关系得 sin DA R α=⑥(1cos CD R α=+)⑦由动能定理有22011122mg CD F DA mv mv -⋅-⋅=-⑧由④⑤⑥⑦⑧式和题给数据得,小球在A 点的动量大小为 1232m gR p mv ==⑨ (3)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g .设小球在竖直方向的初速度为v ⊥,从C 点落至水平轨道上所用时间为t .由运动学公式有212v t gt CD ⊥+=⑩ sin v v α⊥=由⑤⑦⑩式和题给数据得355R t g=点睛 小球在竖直面内的圆周运动是常见经典模型,此题将小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动有机结合,经典创新.2.如图所示,在竖直平面内有一绝缘“⊂”型杆放在水平向右的匀强电场中,其中AB 、CD 水平且足够长,光滑半圆半径为R ,质量为m 、电量为+q 的带电小球穿在杆上,从距B 点x=5.75R 处以某初速v 0开始向左运动.已知小球运动中电量不变,小球与AB 、CD 间动摩擦因数分别为μ1=0.25、μ2=0.80,电场力Eq=3mg/4,重力加速度为g ,sin37°=0.6,cos37°=0.8.求:(1)若小球初速度v 0gR B 点时受到的支持力为多大; (2)小球初速度v 0满足什么条件可以运动过C 点;(3)若小球初速度gR x=4R ,则小球在杆上静止时通过的路程为多大.【答案】(1)5.5mg (2)04v gR >3)()44R π+ 【解析】 【分析】 【详解】(1)加速到B 点:221011-22mgx qEx mv mv μ-=- 在B 点:2v N mg m R-=解得N=5.5mg(2)在物理最高点F :tan qE mgα=解得α=370;过F 点的临界条件:v F =0从开始到F 点:2101-(sin )(cos )02mgx qE x R mg R R mv μαα-+-+=- 解得04v gR =可见要过C 点的条件为:04v gR >(3)由于x=4R<5.75R ,从开始到F 点克服摩擦力、克服电场力做功均小于(2)问,到F 点时速度不为零,假设过C 点后前进x 1速度变为零,在CD 杆上由于电场力小于摩擦力,小球速度减为零后不会返回,则:2121101--(-)202mgx mgx qE x x mg R mv μμ--⋅=-1s x R x π=++解得:(44)s R π=+3.水平面上有一竖直放置长H =1.3m 的杆PO ,一长L =0.9m 的轻细绳两端系在杆上P 、Q 两点,PQ 间距离为d =0.3m ,一质量为m =1.0kg 的小环套在绳上。

高二物理生活中的圆周运动

高二物理生活中的圆周运动

运用向心力公式的解题步骤:
• (1)明确研究对象,确定它在哪个平面 内做圆周运动,找到圆心和半径。
• (2)确定研究对象在某个位置所处的状 态,进行具体的受力分析,分析哪些力提 供了向心力。
• (3)建立以向心方向为正方向的坐标, 据向心力共式列方程。
• (4)解方程,对结果进行必要的讨论。
; 北京英语培训https://
课பைடு நூலகம்小结
• 物体除受到各个作用力外,还受 一个向心力吗?
• 用向心力公式求解有关问题时的 解题步骤如何?
• 对于火车转弯时,向心力由什么 提供?
• 汽车通过凹形或凸形拱桥时对桥
5.8生活中的圆周运动
教学重点
• 1、掌握匀速圆周运动的向心力公式及与圆 周运动有关的几个公式
• 2、能用上述公式解决有关圆周运动的实例
一关于向心力的来源
• a:向心力是按效果命名的力; • b:任何一个力或几个力的合力只要它的
作用效果是使物体产生向心加速度,它就 是物体所受的向心力; • c:不能认为做匀速圆周运动的物体除了 受到另外物体的作用外,还要另外受到向 心力。

会认为它是宝石而为之雀跃。知识告诉我们这是玻璃,因此知识剥夺了我们的快乐。 ? 我常常在幼儿园的栅栏外伫立,因此引起阿姨们的怀疑,以为我是人贩子或暗恋哪位小阿姨。我读过一本苏联小说,讲述一位私生子的父亲常去幼儿园看望自己的私生子,一想起这个,我就慌了,怕同样读过这 本书的人认为我也有私生子。 ? 我认为充分表达对子女的爱,不是人类及其它,而是袋鼠,怀里生出口袋,露出和自己一模一样的规模稍小的脑袋,爱的深入。有人把孩子架上肩膀行走,仿佛那孩子是他头顶盛开的一朵鲜花,让人感动。 种子 ? 没有什么比种植更吸引人。聂鲁达的诗说:“…… 农夫,口袋里装着一颗颗种子,

人教版物理必修2暑假作业:(7)生活中的圆周运动

人教版物理必修2暑假作业:(7)生活中的圆周运动

人教版物理必修2暑假作业(7)生活中的圆周运动一、单选题1.如图所示,一质量为m 的汽车保持恒定的速率运动,若通过凸形路面最高处时对路面的压力为1F ,通过凹形路面最低处时对路面的压力为2F ,则( )A. 1 F mg =B. 1F mg >C. 2F mg =D. 2F mg >2.如图所示,小球在竖直放置的光滑圆形管道内做圆周运动,内侧壁半径为R ,小球半径为r ,则下列说法正确的是( )A.小球通过最高点时的最小速度min v =B.小球通过最高点时的最小速度min vC.小球在水平线ab 以下的管道中运动时,内侧管壁对小球一定无作用力D.小球在水平线ab 以上的管道中运动时,外侧管壁对小球一定有作用力3.如图所示为航天员王亚平在太空讲课时,正要把一个飘在空中的水滴含入口中的画面,对于飘在飞船中的水滴下列说法正确的有( )A.水滴完全不受重力作用B.水滴处于完全失重状态C.水滴处于平衡状态D.水滴和飞船具有相同的加速度4.如图所示,照片中的汽车在水平路面上做匀速圆周运动,已知汽车的转弯半径为50m,假设汽车受到的最大静摩擦力等于车重的0.8倍, g取10m/s2,则运动的汽车( )A.所受的合力为零B.只受重力和地面的支持力作用C.最大速度不能超过20m/sD.所需的向心力由重力和支持力的合力提供5.近年来我国高速铁路发展迅速,一带一路战略开启了高铁发展的新时代,现已知两轨间宽度为L,内外轨高度差是h,重力加速度为g,如果机车要进入半径为R的弯道,该弯道的设计速度最为适宜的是( )A.B.C.D.6.两个质量相同的小球a、b用长度不等的细线拴在天花板上的同一点并在空中同一水平面内做匀速圆周运动,如图所示则a、b两小球具有相同的( )A.向心力B.角速度C.线速度D.向心加速度7.如图所示,质量为m的小球用长为l的细线悬挂于O点。

现将小球拉到细线与竖直方向夹角为60°的位置由静止释放,不计空气阻力,重力加速度为g,小球过最低点时,小球的速度、对细线的拉力大小分别为( )mgmgmgmg8.如图所示,两个小球a和b用轻杆连接,并一起在水平面内做匀速圆周运动,下列说法中正确的是( )A.a球的线速度比b球的线速度小B.a球的角速度比b球的角速度小C.a球的周期比b球的周期小D.a球的转速比b球的转速大9.如图,两个质量均为m的小木块a和b可视为质点放在水平圆盘上,a与转轴OO'的距离为l,b与转轴的距离为2l木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g若圆盘从静止开始绕轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是( )A.a一定比b先开始滑动B.a、b所受的摩擦力始终相等C. ω=b 开始滑动的临界角速度D.当ω=,a 所受摩擦力的大小为3kmg 二、多选题10.如图甲所示,轻杆一端固定在O 点,另一端固定一小球,现让小球在竖直平面内做半径为R 的圆周运动.小球运动到最高点时,受到的弹力为F,速度大小为v,其F-v 2图象如乙图所示.则( )A.小球的质量为aR/bB.当地的重力加速度大小为R/bC.v 2=c 时,小球对杆的弹力方向向下D.v 2=2b 时,小球受到的弹力与重力大小相等11.如图所示,水平转台上有一个质量为m 的物块,用长为L 的细绳将物块连接在转轴上,细线与竖直转轴的夹角为θ角,此时绳中张力为零,物块与转台间动摩擦因数为()tan μμθ<,最大静摩擦力等于滑动摩擦力,物块随转台由静止开始缓慢加速转动,则( )A.物块离开转台之前所受摩擦力始终指向转轴B.当转台角速度ω>,物块将离开转台C.当转台对物块做的功为2sin 2cos mgL θθ时,物块对转台的压力恰好为零D.当转台的角速度ω=,随着角速度的增加,细线将会对物块做正功 三、填空题12.自行车比赛中,在水平弯道上匀速转弯时,人和车应向弯道的__________侧倾斜,人和车这时受到__________、__________、__________三个力的作用,这三个力的合力提供人和车做匀速圆周运动的__________。

(完整word版)人教版物理必修二:5-7《生活中的圆周运动》课后练习(含答案)

(完整word版)人教版物理必修二:5-7《生活中的圆周运动》课后练习(含答案)

课后巩固提高限时:45分钟总分:100分一、选择题(1~3为单选,4~6为多选。

每小题8分,共48分。

)1.如图所示,在盛满水的试管中装有一个小蜡块,小蜡块所受浮力略大于重力,当用手握住A端让试管在竖直平面内左右快速摆动时,关于蜡块的运动,以下说法正确的是( )A.与试管保持相对静止B.向B端运动,可以到达B端C.向A端运动,可以到达A端D.无法确定2.图中杂技演员在表演水流星节目时,盛水的杯子在竖直平面内做圆周运动,当杯子经过最高点时,里面的水也不会流出来,这是因为( )A.水处于失重状态,不受重力的作用B.水受的合力为零C.水受的合力提供向心力,使水做圆周运动D.杯子特殊,杯底对水有吸引力3.如图所示,汽车车厢顶部悬挂一个轻质弹簧,弹簧下端拴一个质量为m的小球.当汽车以某一速率在水平地面上匀速行驶时,弹簧长度为L1,当汽车以大小相同的速度匀速通过一个桥面为圆弧形的凸形桥的最高点时,弹簧长度为L2,下列选项中正确的是( )A.L1=L2B.L1>L2C.L1<L2D.前三种情况均有可能4.如图所示,小物体位于半径为R的半球顶端,若给小物体以水平初速度v0时,小物体对球顶恰无压力,则( )A.物体立即离开球面做平抛运动B.物体落地时水平位移为2RC.物体的初速度v0=gRD.物体着地时速度方向与地面成45°角5.如图所示,在光滑水平面上,钉有两个钉子A和B,一根长细绳的一端系一个小球,另一端固定在钉子A上,开始时小球与钉子A、B均在一条直线上(图示位置),且细绳的一大部分沿俯视顺时针方向缠绕在两钉子上,现使小球以初速度v0在水平面上沿俯视逆时针方向做圆周运动,使两钉子之间缠绕的绳子逐渐释放,在绳子完全被释放后与释放前相比,下列说法正确的是( )A.小球的线速度变大B.小球的角速度变大C.小球的加速度变小D.细绳对小球的拉力变小6.摩天轮顺时针匀速转动时,重为G的游客经过图中a、b、c、d四处时,座椅对其竖直方向的支持力大小分别为F Na、F Nb、F Nc、F Nd,则( )A.F Na<GB.F Nb>GC.F Nc>GD.F Nd<G二、非选择题(共52分)7.(8分)图中圆弧轨道AB是在竖直平面内的1/4圆周,在B点,轨道的切线是水平的.一质点自A点由静止释放,不计质点与轨道间的摩擦和空气阻力,则在质点刚要到达B点时的加速度大小为__________,则滑过B 点时的加速度大小为__________.(提示:质点刚要到达B点时的速度大小为2gR,R为圆弧轨道半径) 8.(8分)汽车顶棚上拴着一根细绳,细绳下端悬挂一小物体,当汽车在水平地面上以10 m/s的速度匀速向右转弯时,细绳偏离竖直方向30°,则汽车转弯半径为__________.(g取10 m/s2)答案1.C 试管快速摆动,试管里浸在水中的蜡块随试管一起做角速度较大的圆周运动(尽管蜡块不是做完整的圆周运动,且运动的方向也不断变化,但并不影响问题的实质),向心力由蜡块上、下两侧水的压力之差提供,因为蜡块的密度小于水的密度,水失重,因此,蜡块做向心运动.只要手左右摇动的速度足够大,蜡块就能一直运动到手握的A端,故C选项是正确的.2.C 水处于失重状态,仍然受到重力作用,这时水受的合力提供向心力,使水做圆周运动.3.B 小球随汽车一起做圆周运动,小球的向心力是由重力和弹簧弹力的合力提供的,所以只有弹力减小才能使小球获得指向圆心的合力,小球才能做圆周运动.弹力减小,弹簧的形变量减小,故L1>L2,选项B正确.4.ABC 无压力意味mg =m v 2R ,v 0=gR ,物体以v 0为初速度做平抛运动,A 、C 正确;平抛运动可得t =2h g=2R g ,那么落地时水平位移s x =v 0t =2R ,B 正确;落地时tanθ=v y v x =gt v 0=2gR gR=2,θ=arctan 2,θ为着地时速度与地面的夹角,D 错误.5.CD 小球以初速度v 0在水平面上沿俯视逆时针方向做圆周运动,小球的线速度不变,选项A 错误;由于v =ωr,两钉子之间缠绕的绳子逐渐释放,r 增大,角速度减小,选项B 错误;由a =vω可知,小球的加速度变小,选项C 正确;由牛顿第二定律可知,细绳对小球的拉力变小,选项D 正确.6.AC 座椅在b 、d 位置时,游客的加速度沿水平方向,竖直方向加速度为零,故有F Nd =G ,F Nb =G ,座椅在a 位置时,G -F Na =ma 向,座椅在c 位置时,F Nc -G =ma 向,故有F Na <G 、F Nc >G ,A 、C 正确,B 、D 错误.7. 2g g解析:刚到达B 点时向心加速度a B =v 2BR,所以a B =2g ,滑过B 点后仅在重力作用下的加速度即重力加速度g. 8.17.3 m解析:此题为火车转弯模型,因此有公式:mgtanθ=m v2R ,∴R =v 2gtanθ=10010×33=103=17.3 (m).9.(10分)如图所示,一匀速转动的圆盘边缘的竖直杆上用轻绳拴一个小球,小球的质量为m ,在长为L 的轻绳的作用下,在水平面内绕轴OO′做匀速圆周运动,已知轻绳与竖直方向夹角为θ,圆盘半径为R ,求:(1)绳的张力F T ;(2)小球做圆周运动的角速度ω.10.(12分)如图所示,长为L的轻杆,两端各连接一个质量都是m的小球,使它们以轻杆中点为轴在竖直平面内做匀速圆周运动,周期T=2πLg,求它们通过竖直位置时杆分别对上下两球的作用力,并说明是拉力还是支持力.11.(14分)一水平放置的圆盘,可以绕中心O点旋转,盘上放一个质量是0.4 kg的铁块(可视为质点),铁块与中间位置用轻质弹簧连接,如图所示.铁块随圆盘一起匀速转动,角速度是10 rad/s时,铁块距中心O点30 cm,这时弹簧的拉力大小为11 N,g取10 m/s2,求:(1)圆盘对铁块的摩擦力大小;(2)在此情况下要使铁块不向外滑动,铁块与圆盘间的动摩擦因数至少为多大.答案9.(1)mgcosθ(2)gtanθR+Lsinθ解析:(1)小球在竖直方向上不运动,受力平衡,得F T cosθ=mg,∴绳的张力F T=mg cosθ.(2)水平方向上,小球做匀速圆周运动的轨道半径为r=R+Lsinθ,向心力F=F T sinθ=mgtanθ,而F=mω2r,∴mgtanθ=mω2(R +Lsinθ), ∴ω=gtanθR +Lsinθ.10.最低点:32mg ,拉力最高点:12mg ,支持力解析:对小球受力分析,得在最低点处F 1-mg =m ⎝ ⎛⎭⎪⎫2πT 2·L2,所以F 1=32mg ,方向向上,为拉力.在最高点处,设球受杆拉力为F 2,F 2+mg =m ⎝ ⎛⎭⎪⎫2πT 2·L2.所以F 2=-12mg ,故知F 2方向向上,为支持力.11.(1)1 N (2)0.25解析:(1)铁块做匀速圆周运动所需要的向心力为 F =mω2r =0.4×0.3×102N =12 N , 弹簧拉力和摩擦力提供向心力F N +F f =12 N , 得F f =12 N -F N =1 N.(2)铁块即将滑动时F f =μmg=1 N , 动摩擦因数至少为μ=F fmg=0.25.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C B A
图-4
D 物 理(生活中的圆周运动)
____月____日 星期________
【能力训练】
1、汽车以一定速率通过拱桥时,下列说法中正确的是 ( )
A .在最高点汽车对桥的压力大于汽车的重力
B .在最高点汽车对桥的压力等于汽车的重力
C .在最高点汽车对桥的压力小于汽车的重力
D .汽车以恒定的速率过桥时,汽车所受的合力为零
2、汽车以某一速率在水平地面上匀速转弯时,地面对车的侧向摩擦力正好达到最大,当汽车的速率增为原来的两倍时,则汽车的转弯半径必须( )
A .减为原来的1/2
B .减为原来的1/4
C .增为原来的2倍
D .增为原来的4倍
3、关于洗衣机脱水桶的有关问题,下列说法正确的是( )
A .如果脱水桶的角速度太小,脱水桶就不能进行脱水
B .脱水桶工作时衣服上的水做离心运动,贴在桶壁上的衣服没有做离心运动
C .脱水桶工作时桶内的衣服也会做离心运动,所以脱水桶停止工作时衣服紧贴在桶壁上
D .只要脱水桶开始旋转,衣服上的水就作离心运动
4、如图-4所示,用一本书托着黑板擦在竖直面内做匀速圆周运动,先后经过A 、B 、C 、D 四点,A 、C 和B 、D 处于过圆心的水平线和竖直线上,设书受到的压力为N ,对黑板擦的
静摩擦力为f ,则 ( )
A .从C 到D ,f 减小,N 增大
B .从D 到A ,f 减小,N 增大
C .在A 、C 两个位置,f 最大,N=mg
D .在B 、D 两个位置,N 有最大值
5、乘坐游乐园的翻滚过山车时,质量为m 的人随车在竖直平面内旋转,下列说法正确的是( )
A .车在最高点时人处于倒坐状态,全靠保险带拉住,没有保险带,人就会掉下来
B .人在最高点时对座位仍可能产生压力
C .人在最低点时对座位的压力等于mg
D .人在最低点时对座位的压力大于mg
6、如图-5所示,OO ′为竖直转动轴,MN 为固定在OO ′上的水平光滑杆。

有两个质量相等的金属球A 、B 套在水平杆上,AC 、BC 为抗拉能力相同的两根细绳,C 端固定在转动轴OO ′上,当细绳拉直时,A 、B 两球转动半径之比恒为2∶1,当转轴转动角速度逐渐增大时,
则( ) A .AC 绳先断,A 球做离心运动 B .BC 绳先断,B 球做离心运动
C .两绳同时断,A 、B 两球同时做离心运动
D .不能确定哪根绳先断 7、有一人荡秋千,秋千的绳子刚好能支持人重的2倍,秋千的绳长为L ,则此人荡秋千时,在 位置时绳子最容易断,此人荡秋千时的最大速率是 .
8、汽车的速度是72km/h 时通过凸形桥最高点,对桥的压力是车重的一半,则圆弧形桥图-5
O C A
B O ′ D
图-7 θ
面的半径为 ;当车速为 时,车对桥面最高点的压力恰好为
零(取g =10m/s 2)。

9、已知质量为m 的飞机,以速率v 沿半径为r 的水平 轨道转弯,如图-6,求机翼的倾角θ和飞机的升力 F 的大小。

10、飞机在竖直平面内作半径为400m 的匀速圆周运动,其速率是150m/s ,飞行员质量
80kg ,g 取10m/s 2,求:
⑴飞机在轨道最低点飞行员头朝上时,座椅对飞行员压力的大小和方向;
⑵飞机在轨道最高点飞行员头朝下时,飞行员对座椅的压力大小和方向。

【素质提高】
11、汽车在弯道上匀速转弯时,乘客知道汽车的速度大小为v ,乘客又发现车厢内悬挂小球的细线横向偏离竖直方向的角度为θ,由此该乘客就估算出了弯道的半径.试问乘客估算的依据和结果.
12、如图-7所示,质量为m 的小球用长为l 的
细线悬于天花板上O 点,并使小球在水平面内做匀速圆周
运动(这种运动物理上称为圆锥摆),细线与竖直方向成θ
角,求细线中的张力F 和小球转动的周期T 。

θ θ
F
mg 图-6
十、生活中的圆周运动
1、C
2、D
3、ABC
4、AC
5、BD
6、A
7、最低点,gL
8、80m,28m/s。

9、θ=arctan v2
rg ,F=
mg2r
v4+r2g2
10、5300N 方向向下,3700N 方向向上
11.小球做圆周运动的向心加速度与汽车转弯的向心加速度相同,v2/g tanθ。

12、mg/cosθ,2πlcosθ/g。

相关文档
最新文档