八年级数学下册19.2.1正比例函数第2课时正比例函数的图象和性质作业课件人教版.ppt

合集下载

八年级数学下册第19章一次函数19.2一次函数19.2.2一次函数19.2.2.2一次函数的图象与性质课件新人教版

八年级数学下册第19章一次函数19.2一次函数19.2.2一次函数19.2.2.2一次函数的图象与性质课件新人教版
初中数学(人教版)
八年级 下册
第十九章 一次函数
知识点一 正比例函数的定义
定义
举例
正比例 一般地,形如y=kx(k是常数,k≠0)的函数,叫做 函数 正比例函数,其中k叫做比例系数
如y=-3x,y= 12 x均为正比例函数,比例系数 分别为-3, 12
知识 详解
(1)如果两个变量的比值是一个常数,那么这两个变量之间的关系就是正比例函数关系. (2)正比例函数y=kx(k是常数,k≠0)必须满足两个条件:①比例系数k≠0;②自变量x的次数 是1
3
选项中符合条件的数只有2.故选B.
2.(2016浙江丽水中考)在平面直角坐标系中,点M,N在同一个正比例函 数图象上的是 ( ) A.M(2,-3),N(-4,6) B.M(-2,3),N(4,6) C.M(-2,-3),N(4,-6) D.M(2,3),N(-4,6)
答案 A 设过点M的正比例函数图象对应的解析式为y=kx(k≠0).
x
⑤y=-1+x,即y=x-1,也不能化为y=kx(k≠0)的形式.只有②是正比例函数. 故选B. 答案 B 解题归纳 (1)判断一个函数是不是正比例函数,就是判断该函数能否 化成y=kx(k≠0)的形式;(2)若一个函数是正比例函数,则必有k为常数,k ≠0且x的次数为1,关于自变量x的代数式必为单项式.
2
2
分析 先确定函数自变量的取值范围,然后依次列表、描点、连线,即 可得到函数图象,再进行比较.
解析 列表:
x

-4
-2
0
2
4

y= 1 x 2

-2
-1
0
1
2

y=-1 x

初中数学 人教版八年级数学下册19.2.1 正比例函数 课件

初中数学 人教版八年级数学下册19.2.1   正比例函数  课件

y=3x
x
1 23
2.画函数 y = 3 x 的图象
2
解:选取两点(0,0) , (1, 3 )
y
2
4
过这两点画直线,
3
2
就是函数y= 3 x 的图象
2
1
x
-2 -1 0 1 2 3 4
-1
-2
-3 -4
y=
3 2
x
-5
1. 正比例函数y=(m-1)x的图象经过一、三象限, 则m的取值范围是( B ) A. m=1 B. m>1 C. m<1 D. m≥1
y
y=2x
5
4
3
2
1
-5 -4 -3 -2 -1 0 1 2 3 4 5
x
-1
-2
-3
-4
-5
y 2x
观察
y y=2x
45
3 2 1
-5 -4 -3 -2 -1 0 1 2 3 4 5
x
-1
-2
-3
-4
-5
y 2x
比较上面两个函数的图象的相同点与不同点,考虑 两个函数的变化规律.
结论:两图象都是经过原点的 直线 ,函数 y 2x
5
知识点一:正比例函数的定义
新知探究
(1)京沪高铁列车全程运行时间约需 1 318÷300≈4.4 (h).
(2)京沪高铁列车的行程y是运行时间t的函数,函数解析 式为y=300t(0≤t≤4.4) (3)京沪高铁列车从北京南站出发2.5 h的行程,是当t=2. 5时函数 y=300t的值,即
y=300×2.5=750 (km). 这时列车尚未到达距始发站1 100 km的南京南站.
16

课件1:19.2.1正比例函数(2)

课件1:19.2.1正比例函数(2)

问题2:这种规律对其他正比例函数适用吗? 具有一般性吗?
请同学们在同一坐标系内画出
y 1 x 、y 1 x 进行验证。
2
2
总结
一般地正比例函数的y=kx(k是常数,k≠0)的图 象是一条经过 原点 的直线,我们称它为直线 y=kx.当k>0时,直线y=kx经过第_一__、__三__象限, 从左向右上升,即随着x的增大而__增__大____;当 k<0时,直线y=kx经过第_二__、__四___象限,从左向 右下降,即随着x的增大反而__减__小___.
A.y1>y2 B.y1<y2 C.y1=y2 D.以上都有可能
第 十 九 章


次 函
ห้องสมุดไป่ตู้

问题1:经过原点与点(1,3)的直线是哪 个函数的图象?若经过原点与点(1,-4) 呢?你发现什么?
问题2:画正比例函数的图象时,怎样画最 简单?为什么?
试一试:用你认为最简单的方法画出下列正 比例函数的图象:
(1)y=3x
(2) y=-5x
五、课堂总结,发挥潜能 1.正比例函数y=kx图象的画法:过_原__点___与点 (1,k) 的直线即所求图象. 2.正比例函数的性质.
5、若k=2,则直线y=(k-1)x比例系数k-1 > 0(>或 <)从左到右 上升 (上升或下降)
6,若k=-2,则y=(k-1)x的比例系数k-1 < 0(>或<), 直线y=kx经过第_二__、__四__象限,从左到右 下降 (上 升或下降),即y随x的增大而 减小 (增大或减小)
思考探索
例3:已知正比例函数y=(k-1)x(k是常数,k≠0)
(1)直线y=(k-1)x经过三、一象限,求k的取值范围。 (2)直线y=(k-1)x从左到右上升,求k的取值范围。 (3)直线y=(k-1)x经过二、四象限,求k的取值范围。 (4)直线y=(k-1)x随着x的增大而减小,求k的取值范围。

19.2.1正比例函数(第2课时)

19.2.1正比例函数(第2课时)
数学
· 八年级(下)
19.2.1 正比例函数
第2课时
1.什么是正比例函数?请举几个实例。
一般地,形如 y=kx(k是常数, k≠0)的函数,叫做正比例函数 , 其中k叫做比例系数.
2.画函数图象的一般步骤是什么? 描点法:① 列表 ② 描点 ③ 连线
用描点法画正比例函数 y =2x 的图象 练习 在同一坐标系中用描点法画出正比例函数 1 y y = x 的图象. y=2x 3
y =k2 x y =k1 x
5. 函数y=-3x的图象过第二、四 象限,经过点
(0, 0 )与点(1,-3 ),y随x的增大而 减小 .
一、三 象限,经过点 6. 函数y= 3 x 的图象过第 2 3 (0, 0 )与点(1, 2 ),y随x的增大而 增大 .
7. 正比例函数y=(m-1)x的图象经过一、 三象限, 则m的取值范围( B )
O
A
x
O C
练习
练习3 对于正比例函数y =kx,当x 增 大时,y 随x 的增大而增大,则k的取值范 围 ( C ). A.k<0 B.k≤0 C.k>0 D.k≥0
练习
练习4 比较大小: (1)k1 < k2;(2)k3 < k4; (3)比较k1, k2, k3, k4大小,并用不等号连接. y y =k4 x 4 k1<k2 <k3 <k4 y =k3 x 2 -4 -2 O -2 -4 2 4 x
观察
5 4 3 2 1 -5 -4 -3 -2 -1 0 1 -2 -3 -4 -5
y
y=2x
1 2 3 4 5
x
y 2 x
比较上面两个函数的图象的相同点与不同点, 考虑两个函数的变化规律.
结论:两图象都是经过原点的 直线 ,函数 y 2 x

人教版八下数学19.2.1 课时2正比例函数的图像和性质教案+学案

人教版八下数学19.2.1 课时2正比例函数的图像和性质教案+学案

人教版八年级下册数学第19章一次函数19.2一次函数19.2.1正比例函数课时2正比例函数的图像和性质教案【教学目标】知识与技能目标1.能够画出正比例函数的图象.2.根据正比例函数的解析式y=kx(k是常数,k≠0)和图象探索并理解其性质.3.根据两点确定一条直线,可以利用两点(两点法)画正比例函数的图象.过程与方法目标在用描点法画正比例函数图象过程中发现正比例函数性质.情感、态度与价值观目标学生在探究合作中交流,体验知识的形成过程,感知数形结合思想.【教学重点】正比例函数图象的画法和性质的理解.【教学难点】利用正比例函数图象与性质灵活解题.【教学准备】教师准备教学中出示的例题;学生准备坐标纸、学习用具.【教学过程设计】一、情境导入导入一:当今网络已经越来越普及,可以用电脑上网,手机上网等,我们班级有位同学经常上网,他的打字速度非常快,达到每分钟可以输入两百个汉字,真是高手!如果他输入的汉字个数用y(单位:百个)来表示,那么y与输入时间x(单位:分钟)的函数关系式是什么?这个函数是我们前面学习的正比例函数吗?用描点法,你能画出这个函数的图象吗?[设计意图]以学生身边感兴趣的问题导入新课,能更好地激发学生学习的积极性.导入二:1.在下列函数中,哪些是正比例函数?并指出正比例系数分别是多少?①y=x,②y=3x2,③y=2x,④y=2x-4,⑤y=,⑥y=-x ,⑦y=-2x.2.画函数图象需要经历哪些步骤?3.你能依据这些步骤画出以上正比例函数的图象吗?[设计意图]通过设计一组正比例函数,引导学生利用上一节知识,即函数的图象的画法来画正比例函数的图象,体会数形结合思想的应用.二、新知构建1.画正比例函数的图象[过渡语]你能用描点法画正比例函数的图象吗?思路一画出下列正比例函数的图象,并进行比较,寻找两个函数图象的相同点与不同点,考虑两个函数的变化规律.(1)y=2x;(2)y=-2x.学生通过列表、描点、连线,在坐标纸上画出所给函数的图象.教师根据学生画出的图象进行有针对性的讲解.解:(1)列表:函数y=2x中自变量x可以是任意实数.列表表示几组对应值:x-3 -2 -1 0 1 2 3y-6 -4 -2 0 2 4 6描点,连线,画出图象,如图所示:(2)列表:y=-2x的自变量取值范围可以是全体实数,列表表示几组对应值:x-3 -2 -1 0 1 2 3y 6 4 2 0 -2 -4 -6描点,连线,画出图象,如图所示.练习:在同一坐标系中,画出下列函数的图象,并对它们进行比较.(1)y=x;(2)y=-x.[设计意图]利用描点法正确地画出两个函数图象,让学生体会数形结合思想.思路二1.正比例函数的图象问题画出下列正比例函数的图象:①y=2x;②y=-2x;③y=x;④y=-x.学生通过列表、描点、连线,在坐标纸上画出所给函数的图象,并观察规律.教师引导学生画图,注意函数图象的三个关键步骤:列表、描点、连线,边巡视边指出学生画图中出现的问题,最后展示正确图象(如图所示),让学生进行对比修改.[设计意图]通过活动,了解正比例函数图象特点及函数变化规律,让学生自己动手、动口、动脑,经历发现规律的整个过程,从而提高各方面能力及学习兴趣.2.正比例函数的性质思路一提问:观察上面的图象,发现函数图象有什么特点?师生共同归纳函数y=2x和y=-2x的图象特点.两个函数图象的共同点:都是经过原点的直线.不同点:函数y=2x的图象从左向右呈上升状态,经过第一、三象限,即随着x的增大y也增大.函数y=-2x的图象从左向右呈下降状态,经过第二、四象限,即随x 增大y反而减小.学生根据自己所画的图象,以小组形式类似地归纳y=x和y=-x的图象特点:比较两个函数图象可以看出:两个函数图象都是经过原点的直线.函数y=x的图象从左向右上升,经过第一、三象限,即随x的增大y也增大;函数y=-x的图象从左向右下降,经过第二、四象限,即随x的增大y反而减小.总结归纳正比例函数解析式与图象特征之间的规律:正比例函数y=kx.(1)图象:正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点的直线.(2)性质:当k>0时,图象经过第一、三象限,y随x的增大而增大;当k<0时,图象经过第二、四象限,y随x的增大而减小.提问:画正比例函数的图象时,怎样画最简单?为什么?正比例函数y=kx(k是常数,k≠0)的图象是经过原点的一条直线,由于两点确定一条直线,因此画正比例函数图象时我们只需描点(0,0),点(1,k),两点连线即可.说明:正是由于正比例函数y=kx(k是常数,k≠0)的图象是一条直线,我们可以称它为直线y=kx.[设计意图]利用描点法正确地画出两个函数图象,在教师的引导下完成函数变化规律的探究过程,并能准确地表达出,从而加深对规律的理解与认识.思路二问题:观察所画的四个函数图象,填写你发现的规律:①四个函数图象都是经过的直线.②函数y= 2x的图象经过第象限,从左向右(呈什么趋势),即y 随x的增大而;③函数y=-2x的图象经过第象限,从左向右,即y随x的增大而;④函数y=x的图象经过第象限,从左向右,即y随x的增大而;⑤函数y=-x的图象经过第象限,从左向右,即y随x的增大而.学生观察图象并回答,教师纠正学生回答中不正确的地方,并适当点拨讲解:①原点;②一、三;上升;增大;③二、四;下降;减小;④一、三;上升;增大;⑤二、四;下降;减小.师生共同归纳总结:正比例函数y=kx(k≠0)的性质:(1)图象是经过原点的一条直线.(2)当k>0时,图象经过第一、三象限,从左向右上升,y随x的增大而增大(递增).(3)当k<0时,图象经过第二、四象限,从左向右下降,y随x的增大而减小(递减).思考:画正比例函数的图象时,怎样画最简单?为什么?正比例函数y=kx(k是常数,k≠0)的图象是经过原点的一条直线,由于两点确定一条直线,因此画正比例函数图象时我们只需描点(0,0),点(1,k),两点连线即可.说明:正是由于正比例函数y=kx(k是常数,k≠0)的图象是一条直线,我们可以称它为直线y=kx.[设计意图]引导学生正确画图、积极探索、总结规律、准确表述.[知识拓展](1)正比例函数y=kx可以说成y与x成正比例,要求函数关系式,只需通过x,y的一组对应值求出k,从而确定关系式.(2)正比例函数的图象是过原点的直线,当k>0时,直线从左到右呈上升趋势,经过第一、三象限;当k<0时,直线从左到右呈下降趋势,经过第二、四象限.画正比例函数的图象时,只需要选取除原点外的一点,再过原点和选取点画直线即可,选取的点一般为点(1,k).(3)正比例函数的性质可以逆用.如当正比例函数y=kx(k≠0)中y随x的增大而增大时,k>0,反之,k<0;若正比例函数的图象过第一、三象限,则k>0等.3.例题讲解例1(补充)(1)已知一个正比例函数的图象经过点(-1,3),则这个正比例函数的表达式是.(2)函数y=5x-b2+9的图象经过原点,则b=.(3)直线y=(2k-3)x经过第二、四象限,则k的取值范围是.〔解析〕(1)设正比例函数的解析式为y=kx,把点(-1,3)代入解析式求出k的值即可;(2)把原点坐标(0,0)代入函数解析式列方程进行求解;(3)根据正比例函数性质列不等式进行求解.解:(1)设正比例函数的解析式为y=kx,∵正比例函数的图象经过点(-1,3),∴-k=3,∴k=-3,∴这个正比例函数的表达式是y=-3x.(2)∵函数y=5x-b2+9的图象经过原点(0,0),∴-b2+9=0,∴b2=9,∴b=±3.(3)∵直线y=(2k-3)x经过第二、四象限,∴2k-3<0,∴k<.故k的取值范围是k<.[设计意图]通过设计一组填空题,让学生根据正比例函数的解析式和性质列方程或不等式求字母的取值或取值范围.例2(补充)已知点(2,-4)在正比例函数y=kx的图象上.(1)求k的值;(2)若点(-1,m)在函数y=kx的图象上,试求出m的值;(3)若A,y1,B(-2,y2),C(1,y3)都在此函数图象上,试比较y1,y2,y3的大小关系.〔解析〕(1) 把点(2,-4)代入y=kx中列方程进行求解;(2)把点(-1,m)代入(1)中函数解析式列方程进行求解;(3)根据正比例函数性质进行求解.解:(1)∵点(2,-4)在正比例函数y=kx的图象上,∴2k=-4, ∴k=-2.(2)由k=-2可得y=-2x,∵点(-1,m)在函数y=-2x的图象上,∴m=-2×(-1)=2.(3)y=-2x,∵k=-2<0,∴y随x的增大而减小,∵A,y1,B(-2,y2),C(1,y3)都在函数y=-2x的图象上,-2<<1,∴y3<y1<y2.[设计意图]通过设计正比例函数的简单应用,让学生根据正比例函数的解析式和性质进行求解,及时复习正比例函数的性质.例3(教材例1)画出下列正比例函数的图象:(1)y=2x, y=x;(2)y=-1.5x, y=-4x.〔解析〕根据正比例函数的图象是一条直线,两点确定一条直线来作图.解:(1)列表,得:x0 1y=2x0 2y=x0描点,连线,即为函数y=2x, y=x的图象(如下图).(2)列表,得:x0 1y=-1.5x0 -1.5y=-4x0 -4描点,连线,即为函数y=-1.5x, y=-4x的图象(如下图).[设计意图]通过设计正比例函数图象的简单画图,让学生知道利用两点确定一条直线来作图,体验数形结合思想的应用.三、教学小结师生一起总结正比例函数的图象和性质:(1)正比例函数的图象是经过坐标原点的一条直线.(2)作y=kx的图象时,应先选取两点,通常选点(0,0)与点(1,k);然后在坐标平面内描点(0,0)与点(1,k);最后过点(0,0)与点(1,k)画一条直线.(3)当k>0时,直线y=kx经过第一、三象限,从左向右上升,即:随着x的增大y也增大;当k<0时,直线y=kx经过第二、四象限,从左向右下降,即:随着x的增大y反而减小..【板书设计】19.2一次函数19.2.1正比例函数课时2正比例函数的图像和性质1.画正比例函数的图象2.正比例函数的性质3.例题讲解例1 例2 例3【课堂检测】1.下列函数解析式中,不是正比例函数的是()A.xy=-2B.y+8x=0C.3x=4yD.y=-x解析:根据正比例函数的定义:一般地,两个变量x,y之间的解析式可以表示成形如y=kx(k为常数,且k≠0)的形式,那么y就叫做x的正比例函数.不是正比例函数的是A.故选A.2.函数y=(1-k)x中,如果y随着x增大而减小,那么常数k的取值范围是()A.k<1B.k>1C.k≤1D.k≥1解析:∵函数y=(1-k)x中,y随着x的增大而减小,∴1-k<0,解得k>1.故选B.3.我国是一个严重缺水的国家,大家应倍加珍惜水资源,节约用水.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05 mL.小红同学在洗手后,没有把水龙头拧紧,当小红离开x h后水龙头滴了y mL水.则y关于x的函数解析式为.解析:因为水龙头每秒会滴下2滴水,每滴水约0.05 mL,所以当小红离开x h后水龙头的滴水量y=3600×2×0.05x=360x.故填y=360x.4.直线y=x经过(0,),(,2),且过第象限,y随x的增大而.解析:由y=x可知当y=2时,x=3,故直线y=x经过(0,0),(3,2).由k=>0可知直线y=x 过第一、三象限,y随x的增大而增大.答案:03一、三增大5.已知函数y=(k+3)x|k|-4是正比例函数,且y随x的增大而减小,那么k=. 解析:∵函数y=(k+3)x|k|-4是正比例函数,且y随x的增大而减小,∴∴k=-5.故填-5.6.已知某种小汽车的耗油量是每100 km耗油15升.所使用的93汽油今日涨价到5元/升.(1)写出汽车行驶途中所耗油费y(元)与行程x(km)之间的函数关系式;(2)在平面直角坐标系内描出大致的函数图象;(3)计算娄底到长沙220 km所需油费是多少?解:(1)y=5×x=0.75x.(2)列表,得:x0 1y=0.75x0 0.75描点,连线,得到函数y=0.75x的图象(如下图).(3)当x=220时,y=0.75×220=165(元).【教学反思】成功之处:在本节课通过实际问题的引入,激发学生的学习兴趣,再通过设计一组问题,让学生观察、对比、归纳出正比例函数定义,通过例题来巩固新知识,利用一组由浅入深、由易到难的题,逐题递进,落实本节课的教学重点.在教学形式上采用学生口述、互评等多种方法,激发学生思维,营造良好的课堂气氛.不足之处:由于课堂的容量较大,学生思考问题的时间显得相对不足,学困生就显得很吃力.再教设计:教学设计时可以进行分层设计,一组基础题让学困生完成,另一组难的让基础好的学生完成..人教版八年级下册数学第19章平行四边形19.2一次函数19.2.1正比例函数课时2正比例函数的图像和性质学案【学习目标】1.理解正比例函数的图象的特点,会利用两点(法)画正比例函数的图象.2.掌握正比例函数的性质.3.能结合正比例函数的图象和性质解答有关问题.【学习重点】正比例函数的图象和性质.【学习难点】利用正比例函数的图象和性质解答有关问题.【自主学习】一、知识链接1.已知正比例函数y=3x,当x=0时,y= ;当x=1时,y= .2.画函数图象的步骤有:、、.二、新知预习1.画出下列正比例函数的图象:(1)y=2x,13y x=;(2)y=-1.5x,y=-4x.2.函数y=2x,13y x=的图象的共同特点是__________________________;函数y=2x,13y x=的图象的共同特点是____________________________.3.自主归纳:(1)函数y=kx (k是常数,k≠0)的图象是一条经过的;(2)k>0时,函数y=kx (k是常数,k≠0)的图象经过第象限;k<0时,函数y=kx (k是常数,k≠0)的图象经过第象限;(3)k>0时,函数值y随自变量x 的增大而;k<0时,函数值y随自变量x 的增大而.三、自学自测1.函数y=-3x的图象是经过点(0,__)和(1,___)的一条______,图象经过第___、____象限,从左到右呈_____趋势,即y随x的增大而______.2.在平面直角坐标系中,正比例函数y =kx(k<0)的图象的大致位置只可能是().四、我在自学过程中产生的疑惑【构建新知】一、新知梳理知识点1:正比例函数的图象问题1:正比例函数的图象什么?画正比例函数的图象只需要确定几个点?【典例探究】例1用你认为最简单的方法画出下列函数的图象:(1)-3y x=;(2)3.2 y x =方法总结:画正比例函数图象时我们只需描点(0,0)和点(1,k),连线即可. 例2已知正比例函数y=(k+1)x.(1)若函数图象经过第一、三象限,则k的取值范围是________. (2)若函数图象经过点(2,4),则k_____.知识点2:正比例函数的性质问题2:在函数y=x,y=3x,12y x=-和-4y x=中,随着x的增大,y的值分别如何变化?要点归纳:在正比例函数y=kx中:当k>0时,y的值随着x值的增大而________;当k<0时,y的值随着x值的增大而________.例3已知正比例函数y=mx的图象经过点(m,4),且y的值随着x值的增大三、归纳总结正比例函数y=kx(k≠0)图象正比例函数的图象是一条过原点的直线.k>0 k<0图象是自左向右上升的,经过第一、三象限图象是自左向右下降的,经过第二、四象限|k|越大,图象越陡(即越靠近y轴)性质y随x的增大而增大y随x的增大而减小【学习检测】1.下列图象哪个可能是函数y=-x的图象()2.正比例函数y=2x的图象所过的象限是()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限A(解析:∵正比例函数y=2x中,k=2>0,∴正比例函数y=2x的图象经过第一、三象限.)3.对于正比例函数y =(k-2)x,当x 增大时,y 随x 的增大而增大,则k的取值范围()A.k<2B.k≤2 C.k>2D.k≥24.已知正比例函数y=(k-1)的图象经过第二、四象限,则k的值是()A.±3B.±2C.2D.-2D(解析:由正比例函数y=(k-1)的图象经过第二、四象限,可得故k=-2.)5.正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m等于()A.2B.-2C.4D.-4B(解析:∵正比例函数y =mx 的图象经过点A (m ,4),∴m 2=4,∴m =±2.又∵y 的值随x 值的增大而减小,∴m <0,∴m =-2.故选B .)6.函数y=-7x 的图象经过第_________象限,经过点_______与点_______,y 随x 的增大而_______.7.已知正比例函数y =kx (k ≠0),点(2,-3)在函数图象上,则y 随x 的增大而 .(填增大或减小)减小(解析:∵点(2,-3)在正比例函数y =kx (k ≠0)的图象上,∴2k =-3,解得k =-,∴正比例函数解析式是y =-x ,∵k =-<0,∴y 随x 的增大而减小.)8.点(x 1,y 1)与点(x 2,y 2)是正比例函数y =x 的图象上两点,且x 1<x 2,则y 1 y 2.(填“>”“=”或“<”号)<(解析:由k =>0可知y 随x 的增大而增大,故当x 1<x 2时,y 1<y 2.故填<.) 9.已知正比例函数y=(2m+4)x.(1)当m_______,函数图象经过第一、三象限; (2)当m_______,y 随x 的增大而减小; (3)当m_______,函数图象经过点(2,10).10.如图分别是函数x k y 1=,x k y 2=,x k y 3=,x k y 4=的图象. (1)k 1 k 2,k 3 k 4(填“>”或“<”或“=”); (2)用不等号将k 1, k2, k 3, k 4及0依次连接起来.11.已知函数y =(|a |-3)x 2+2ax +a +3是关于x 的正比例函数,求正比例函数的解析式,并画出函数图象.解:∵函数y =(|a |-3)x 2+2ax +a +3是关于x 的正比例函数,∴|a |-3=0,∴a =±3,当a =3时,y=6x+6(舍);当a=-3时,y=-6x.∴正比例函数的解析式为y=-6x.列表,得:x0 -1y0 6描点,连线即可得到函数y=-6x的图象,如图所示.12.已知y与x成正比例,且当x=-2时y=-4.(1)写出y与x的函数关系式;(2)用两点法画出函数图象;(3)设点(a,-2)在这个函数图象上,求a的值;(4)如果x的取值范围是0≤x≤5,求y的取值范围.解:(1)设y与x的函数关系式为y=kx,∵当x=-2时y=-4,∴-2k=-4,∴k=2,∴y与x的函数关系式为y=2x.(2)列表,得:x0 1y=2x0 2描点,连线得到函数y=2x的图象,如图所示.(3)∵点(a,-2)在这个函数图象上,∴2a=-2,∴a=-1.(4)如果x的取值范围是0≤x≤5,那么y的取值范围为0≤y≤10.13.正比例函数y=2x的图象如图所示,点A的坐标为(2,0),函数y=2x的图象上是否存在一点P,使△OAP的面积为4,如果存在,求出点P的坐标,如果不存在,请说明理由.解:存在.理由如下:因为点A的坐标为(2,0),所以OA=2,设点P的坐标为(n,m),因为△OAP的面积为4,所以×OA×|m|=4,即×2×|m|=4,所以m=±4,当m=4时,把x=n, y=m=4代入y=2x,得4=2n,所以n=2,此时点P的坐标为(2,4),当m=-4时,把x=n, y=m=-4代入y=2x,得-4=2n,所以n=-2,此时点P的坐标为(-2,-4).综上所述,点P的坐标为(2,4)或(-2,-4).。

人教版八年级数学下册19.2.1.1正比例函数的概念-课件PPT

人教版八年级数学下册19.2.1.1正比例函数的概念-课件PPT

思考
的结构特征
①k≠0
为什么强调k是常数,k≠0呢?
②x的次数是1
试一试
1.判断下列函数解析式是否是正比例函数?
如果是,指出其比例系数是多少?
(1) y 3x; 是,3
(3)
y
x 2
;
是,
1 2
(5)y π x; 是,π
(2) y 2x 1; 不是 (4) y 2 ; 不是
x (6) y 3x. 是, 3
八年级 数学
课件全新制作
19.2 一次函数
19.2.1 正比例函数 19.2.1.1 正比例函数的概念
目录页
新课导入
讲授新课
当堂练习
课堂小结
新课导入
✓ 教学目标 ✓ 教学重点
学习目标
1.理解正比例函数的概念; 2.会求正比例函数的解析式,能利用正比例函数 解决简单的实际问题.(重点、难点)
新课导入
试一试
2.回答下列问题:
(1)若y=(m-1)x是正比例函数,m取值范围是m≠1 ; (2)当n =1 时,y=2xn是正比例函数; (3)当k =0 时,y=3x+k是正比例函数.
典例精析
例1 已知函数y=(m-1)xm2 是正比例函数,求m的值.
解:∵函数 y (m 1)xm2 是正比例函数,
l 2,π r m 7.8 V h 0.5 n T -2 t
这些函数解析式都 是常数与自变量的 乘积的形式! 函数=常数×自变量
y= k x
知识要点
一般地,形如y=kx(k是常数,k≠0)的函数,
叫做正比例函数,其中k叫做比例系数.
正比例函数一般 形式
比例系数
y=kx(k≠0的常数)

《正比例函数的图像和性质》 人教版 八年级下册 (示范课课件)

《正比例函数的图像和性质》 人教版 八年级下册 (示范课课件)
用数形结合的思想方法,通过画图观察,概括 正比 例函数的图象特征及性质.
y =2x
6
4
y= 1 x
2
3
-5
O
-2
5
x
三.类比学习
当k<0 时,正比例函数的图象特征及 性质又怎样呢?
请各小组画出函数y =-3x 和y =-1.5x 的 图象,进行小组合作研究.
总结提升
y=kx (k是常数,k≠0)的图象是一条经过 原点的直线
函数 大致图象 经过的象限 从左 y随x的 向右 增大而
y=kx k>0
第三、一象限 上升 增大
y=kx k<0
第二、四象限 下降 减小
现在,我们有画正比例函数图象的简便 画法了吗?
四.正比例函数的性质
正比例函数的图象都是经过原点的一条直线 (1)当k>0时,函数y=kx的图象经过三、一象限
从左到右上升,即函数y随x的增大而增大 (2)当k<0时,函数y=kx的图象经过二、四象限,
点(0, 0 )与点( 1,-3 ), y随x的增大 而 减小 。 3.下列图象哪个可能是函数y=-1.2x的图象( B)
A
B
C
D
你一定行!
4.请用两点画出直线 y 4x 的图象。
5.若点 (-1,m),(2,n)都在直线y=-4x上, 试比较m,n的大小
你一定行!
五、知识回顾 谈谈本节课你的收获。
六、分层作业
必做题:P120第一、二题。 选做题:若点 (-1,a),(2,b)都在 直线y=kx上,试比较a,b的大小
课件说明
本课是在上一节课学习正比例函数概念的基础上,进 一步研究其图象及其性质.
学习目标: 1.会画正比例函数的图象; 2.能根据正比例函数的图象和表达式 y =k(k≠0)

人教版八年级数学下册课件 19.2.2 正比例函数的图象

人教版八年级数学下册课件 19.2.2  正比例函数的图象
第十九章 一次函数
19.2 一次函数
第2课时 正比例函数的 图象和性质
1 课堂讲解 正比例函数的图像
正比例函数的性质
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
如图所示,这是一次比赛两个运动员的比赛情况示 意图,根据图象可知:这是一次多少距离的赛跑?谁先到 达终点?花了多少时间? 你能解答这个问题吗?这就是我 们今天要探究的内容.
(来自《点拨》)
知2-练
1
P1(x1,y1),P2(x2,y2)是正比例函数y=

1 2
x
的图
象上的两点,则下列判断正确的是( )
A.y1>y2 B.y1<y2 C.当x1<x2时,y1>y2 D.当x1<x2时,y1<y2,
(来自《点拨》)
知2-练
2 (2015·陕西)设正比例函数y=mx的图象经过点A(m,
x … -3 -2 -1 0 1 2 3 … y … 4.5 3 1.5 0 -1.5 -3 -4.5 …
知1-讲
如图,在直角坐标系中描出 以表中的值为坐标的点.将这 些点连接起来,得到一条经 过原点和第二、第四象限的 直线,它就是函数y=-1.5x 的图象.
用同样的方法,可以得到函数 y=-4x的图象(如 图). 它也是一条经过原点和第二、第四象限的直线.
右上升,即随着x的增大y也增大; (3)当k<0时,直线y=kx经过第二、第四象限,从左向
右下降,即随着x的增大y反而减小.
知2-讲
例2 〈珠海〉已知函数y=3x的图象经过点A(-1,y1),点 B(-2,y2),则y1__>____y2(填“>”“<”或“=”).
导引:方法一:把点A、点B的坐标分别代入函数

人教初中数学八下 19.2.1 正比例函数课件 【经典初中数学课件汇编】

人教初中数学八下 19.2.1 正比例函数课件 【经典初中数学课件汇编】
h=0.5n (4)冷冻一个0℃物体,使它每分钟下降2℃,物体的温度T (单位:℃)随冷冻时间t(单位:分)的变化而变化.
T=-2t
【观察思考】
认真观察以上出现的四个函数解析式,分别说出哪
些是常数、自变量和函数. 函数解析式 常数 自变量 函数
这些函数有 什么共同点?
(1)L =2πr 2π
r
L
(2)m =7.8V 7.8 (3)h =0.5n 0.5
V
m
这些函数都是
常数与自变量
n
h
的乘积的形式!
【定义】
正比例函数的定义: 一般地,形如 y=kx(k是常数,k≠0)的函数,叫
做正比例函数,其中k叫做比例系数. 你能举出一些正比例函数的例子吗?
【跟踪训练】
下列函数是否是正比例函数?比例系数是多少?
(1 ) y 3 x
(2 ) y
2 x
(3 ) y
篮球的总价y(元)与个数x(个)成正比例, 当x=4(个)时,y=100(元)。 (1)求正比例函数关系式及自变量的取值范围; (2)求当x=10(个)时,函数y的值; (3)求当y=500(元)时,自变量x的值。
解(1)设所求的正比例函数的解析式为y=kx, 把x =4,y =100代入,得 100=4k。
3
2
1
0
x
-3 -2 -1 1 2 3
-1
-2
-3
【跟踪训练】
请你画出 y 2x 的图象.
【解析】
比较两个函数的相同点与不同点.
比 较 归 纳
两图象都是经过原点的 直线 ,函数 y=2x 的图象从左向 右 上升 ,即函数值y随x的增大而 增大 ,经过第 一、三 象 限;函数 y=-2x 的图象从左向右 下降 ,即函数值y随x

初中人教版数学八年级下册:19.2.1 第2课时 正比例函数的图象和性质 习题课件(含答案)

初中人教版数学八年级下册:19.2.1   第2课时 正比例函数的图象和性质  习题课件(含答案)

k<0
大 致 图 象
k>0
k<0
大 图象是自左向右_上__升__ 图象是自左向右_下__降_
致 的,经过第 一、三 象 的,经过第 二、四 象
图 限.
限.

|k|越大,图象越陡(即越靠近y轴).
性 质 y随x的增大而 增大 .
y随x的增大减而小 .
例 已知正比例函数 y=(m+2)x.求: (1)m 为何值时,函数图象经过第一、三象限; 解:(1)由题可知 m+2>0,解得 m>-2.
(2)m 为何值时,y 随 x 的增大而减小; (3)m 为何值时,点(1,3)在该函数的图象上. (2)由题可知 m+2<0,解得 m<-2. (3)∵点(1,3)在正比例函数 y=(m+2)x 的 图象上, ∴m+2=3.解得 m=1.
方法点拨:正比例函数 y=kx(k≠0)中,k 的符号决定直线上升或下降,在利用正比例 函数的性质解决问题时,常结合方程或不等 式求解.
y=-2x(答案不唯一)
.
4.在正比例函数 y=(k-2)x 中,y 随 x 的增大而
增大,则 k 的取值范围是 k>2 .
5.已知正比例函数 y=kx 的图象经过点 M(-2,4). (1)求 y 的值随 x 值的 变化情况;
(1)∵正比例函数 y=kx 的图象经过点 M(-2,4), ∴4=-2k. 解得 k=-2<0. ∴y 随 x 的增大而减小.
(2)画出这个函数的图象. (2)如图所示.
知识要点 正比例函数的象和性质
正比例函数y=kx(k≠0) 正比例函数y=kx(k≠0)的图象是一 形状 条经过 原点 的直线,我们称它为
直线y=kx .
正比例函数y=kx(k≠0) 根据两点确定一条直线,画y=kx 画法 (k≠0)的图象时,一般选(0,0 )和(1,k)两点比较简便.

八年级数学下册第19章一次函数 一次函数第2课时正比例函数的图象和性质说课稿新版新人教版

八年级数学下册第19章一次函数 一次函数第2课时正比例函数的图象和性质说课稿新版新人教版

正比例函数的图象与性质一、教材分析1、地位与作用本节课是在学好了正比例函数解析式后,对函数内容的进一步研究,是在平面内的点与有序数对的对应关系基础上建立起来的,是函数与图象第一次完美结合,它的研究方法具有一般性和代表性,为学习其它函数图象奠定了基础,起着承上启下的重要作用。

2、教学重点:探索并掌握正比例函数图象的性质。

3、教学难点:发现与总结正比例函数图象的性质。

【设计意图】只有让学生在动手操作观察思考中体会,学生才能真正理解它的本质,将所学知识内化为自己的东西。

一、教学目标1、知识与技能认识正比例函数图象是一条直线,学会画正比例函数图象,理解性质,培养学生观察、分析、归纳的逻辑思维能力。

2、过程与方法让学生经历正比例函数图象的性质的过程,提高学生的探究、分析、归纳能力,领悟数形结合的思想。

3、情感态度与价值观培养学生主动探究的良好学习习惯,发展学生的团结协作意识,体验数学知识来源于生活又服务于生活这一道理,从而提高学生的学习兴趣。

二、教法分析采用“创设情境——探究归纳——知识应用”的方法及小组合作的方式,给学生提供充分探究和交流的时间与空间,让学生经历操作、观察、思考、交流、猜想、验证过程获得知识,形成技能。

另外在教学中采用多媒体教学手段,增进教学的直观性,趣味性,提高教学效率。

三、学法指导充分发挥学生的主体地位,关注学生的动手实践的经历,关注学生的自主探究过程,关注学生的合作交流,使学生不断积累活动经验,在活动中获得数学的“思想、方法和能力”,增强学生学习数学的兴趣和自信心。

四、教学过程设计(一)创设情境导入新课当今网络已经越来越普及,可以用电脑上网,手机上网,MP3上网等等。

我们年级有位同学经常上网,他的打字速度非常快,达到每分钟可以输入两百个汉字,真是高手!如果他输入的汉字个数用y(单位:百个)来表示,那么y与输入时间x(单位:分钟)的函数关系式是什么?设计意图:以学生身边感兴趣的问题导入新课,能更好的激发学生学习的积极性。

正比例函数(2)课件 2022—2023学年人教版数学八年级下册

正比例函数(2)课件  2022—2023学年人教版数学八年级下册

-2
-1
0
-1
2
3
1
3
0
1
1
3
2
2
3
3

1

新知探究
如图,在直角坐标系中描出表中
y
1
y= x
3
2
1
-2 -1
O
1 2
x
x 和 y 的值对应坐标的点,将这
些点连接起来,得到一条经过原
点和第三、第一象限的直线.它
就是函数
1
y= x
3
的函数图象.
新知探究
例1
画出下列正比例函数的图象.
(3)y=-1.5x
(4)y=-4x
(3)y=-1.5x 中自变量 x 的取值范围是全体实数,选
取 y 与 x 的几组对应值.
x

-3
-2
-1
0
1
2
3

y

4.5
3
1.5
0
-1.5
-3
-4.5

新知探究
y
如图,在直角坐标系中描出表中
y=-1.5x 9
x 和 y 的值对应坐标的点,将这
4
些点连接起来,得到一条经过原
1
点和第二、第四象限的直线,它
(1)m为何值时,函数图象经过第一、三象限?
(2)m为何值时,y随x的增大而减小?
(3)m为何值时,点(1,3)在该函数图象上?
解:(1)∵函数图象经过第一、三象限,(3)∵点(1,3)在该函数图象
上,
∴2m+4>0,解得m>-2;
∴2m+4=3,
(2)∵y随x的增大而减小,

人教版八年级下册第十九章19.2.1正比例函数性质和图像(共25张PPT)

人教版八年级下册第十九章19.2.1正比例函数性质和图像(共25张PPT)
x增大时,y的值也增大; y随x的增大而增大 当k<0时,直线y=kx经过二,四象限,图象从左到右 下降 x增大时,y的值反而减小。 y随x的增大而减小 3x y = y y 2
y = 3x
6
6 3
3
0 1 2
x
-4 -2 0
x
正比例函数 y kx k 0 k 0 时, 图像从左向右逐渐上升 y随 x 的增大而增大
例1(1)画出正比例函数 y
(2)画出正比例函数
2 x的图象 y 2x的图象
x 图象 例 1( 2 1)画出正比例函数的 )画出正比例函数 y y 的图象 2 x2 x 列 … -2 -1 0 1 1 22 … y 2 x 2 x … -4 表 y 4 -2 2 0 -2 2 -4 4 …
比较两个函数的图象,有什么相同点与不同点? 相同点: y 2 x y 2 x 直线 y 0, 0 点的_____ 都是过_____
y kxk 0 的图像 是一条过原点的直线,称为直线 y kx
正比例函数
结 论(正比例函数图象的变化规律)
k 0 时,图像过第一、三象限 k 0 时,图像过第二、四象限
达成共识


k 0 时, 图像从左向右逐渐下降 y随 x 的增大而减小
y 0
y kx
k 0
x
y kx
y 0 x
k 0
函数图像的变化规律和函数值的 变化规律合起来就是正比例函数的 性质. 正比例函数有哪些性质呢?
归纳:正比例函数y=kx(k≠0)图像是经过 原点(0,0)和点(1,k)的一条直线
y
y kx
y kx
y x
k 0

【人教版】八年级数学下册课件-19.2.1 正比例函数

【人教版】八年级数学下册课件-19.2.1 正比例函数

描点(在直角坐标系中描出
y
表格中数对对应的点);
y=-1.5x
连表线格(连中的接点直很角多坐,标可系以中选的
3 2
点),如取图几.个有代表性的作图。
1
用同样的方法,我们可以 得到y=-4x的图象,如图.
-2 -1 O 1 2 x -1 -2
状元成才路
y=-1.5x
x … -3 -2 -1 0 1 2 3 …
根据题意画图,如下,当k>0时,A( 6,6),
此 A得’k时=(S-6k△,A.3因O6B),=此此12k=×时±6kS△×A.36O=B=12,12 ×解(得-k=6k6
3
k
.当k<0时,
2
)×6=12,解
2
2
状元成才路
错因分析:解题时忽略了k值的正负 情况,导致漏解.在解答此类型的题目时, 要根据题目条件画出图形,分类讨论.
因为两点确定一条直线,所以可用两点法画 正比例函数y=kx(k是常数,k≠0)的图象.一般地, 过 原 点 与 点 (1,k)(k≠0)的 直 线 , 即 正 比 例 函 数 y=kx(k是常数,k≠0)的图象.
状元成才路
知识点 3 正比例函数解析式的确定
例3 已知正比例函数y=kx经过点(-1,2), 求这个正比例函数的解析式.
状元成才路
19.2 一次函数
19.2.1 正比例函数
R·八年级数学下册
状元成才路
新课导入
两个变量x,y成正比例, 且 比 例 系 数 是 k(k ≠ 0) , 你 能 写出y与x的关系式吗?
状元成才路
学习目标
(1) 知 道 什 么 样 的 函 数 是 正 比 例 函 数 , 能 根 据正比例函数的定义确定字母系数的值.

人教版八年级下册19.2.1正比例函数第2课时正比例函数的图象和性质课件

人教版八年级下册19.2.1正比例函数第2课时正比例函数的图象和性质课件

∴ y与∵x之当间x=函8时数,关y系=6式是∴:7yk==676 (∴x-1k ) 76
当x=4时,y=
6 7
×(4-1)= 18
7
当x=-3时,y=
6 7
×(-3-1)=
24 7
的图象?
y=-2x
y
2
y1x 2
5
4 -2小却更陡,说明
3 2 1
是k的绝对值越大, 函数图像越陡!
-5 -4 -3 -2 -1 0 1 2 3 4 5
x
-1
-2
-3
-4
-5
练一练
1. 正比例函数y=(m-1)x的图象经过一、三象限, 则m的取值范围是( B ) A. m=1 B. m>1 C. m<1 D. m≥1
当k >0时,直线y=kx经过第一、三象限,从左向右上升, 即随着x的增大y也增大;
当k <0时,直线y=kx经过第二、四象限,从左向右下降, 即随着x的增大y反而减小. 我们称它为直线y=kx.
随堂练习 画出正比例函数 y 2x , y 1 x
的图象?
y
2
这两个正比例函 比较上面两个函数的图象的相同点与不同点,考虑
的图象从左向右下降,经过第二、四象限.
么影响? ∴ y与x之间函数关系式是:y= (x-1)
当k>0时,图象(除原点外)在一,三象限, 就是函数y= x 的图象
2 1
K代表一次函数的斜率即倾斜程度,k的值越大函数图像越陡!
则m的取值范围是( )
-5 -4 x增大时,y的值也增大;
-3 -2 -1 0
x
-1
-2
-3
-4
-5
y 2x
y y=2x
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:(1)a<12 (2)a>12 (3)y=-2x,图象略
8.设正比例函数 y=mx 的图象经过点 A(m,4),且 y 的值随 x 值的
增大而减小,则 m=( B )
A.2 B.-2 C.±2 D.-4 9.(新乡期末)已知正比例函数 y=(3m+1)x 的图象上有两点 A(x1,
y1),B(x2,y2),当 x1<x2 时,有 y1>y2,那么 m 的取值范围是( A )
第十九章 一次函数
19.2.1 正比例函数
第2课时 正比例函数的图象和性质
知识点:正比例函数的图象与性质
1.当k>0时,正比例函数y=kx的图象大致是( A )
2.(2019·陕西)若正比例函数 y=-2x 的图象经过点 O(a-1,4),
则 a 的值为( A )
A.-1 B.0 C.1 D.2
A.m<-13
B.m>-13
C.m<0 D.m>0
10.(眉山中考)若函数y=(m-1)x|m|是正比例函数,则该函数的图象经过 第 ____二__、__四__象限.
11.如图,点B,C分别在直线y=2x和直线y=kx上,点A,D分别是x轴上 的两点,已知四边形ABCD是正方形,求k的值.
3.(习题 3 变式)关于函数 y=12 x,下列结论正确的是( C )
A.函数图象经过点(0,0)和(1,2) B.函数图象经过第二、四象限 C.y 随 x 的增大而增大 D.不论 x 为何值,总有 y>0
4.已知正比例函数y=(m+2)x经过第二、四象限,则m____<__-__2__,y 随x的增大而___减__小__.
ห้องสมุดไป่ตู้
5.若点(-3,m)和点(4,n)都在函数y=-5x的图象上,则m,n的大小 关系是_____m__>__n_.
6.如图,三个正比例函数的图象分别对应解析式:①y=ax;②y=bx; ③y=cx,将a,b,c从小到大排列并用“<”连接为______a_<__c_<_.b
7.已知正比例函数y=(1-2a)x. (1)a为何值时,函数图象经过第一、三象限? (2)a为何值时,y随x的增大而减小? (3)若函数图象经过(-1,2),求此函数的解析式并作出图象.
相关文档
最新文档