广东中考数学三角形和四边形专题复习

合集下载

中考数学三角形与四边形复习题及答案

中考数学三角形与四边形复习题及答案

第二部分空间与图形第四章三角形与四边形第1讲线、角、相交线和平行线一级训练1.(2011年安徽芜湖)一个角的补角是36°35′,这个角是________.2.如图4-1-12,已知线段AB=10 cm,AD=2 cm,D为线段AC的中点,那么线段CB=________cm.图4-1-123.(2012年湖南株洲)如图4-1-13,已知直线a∥b,直线c与a,b分别交于点A,B,且∠1=120°,则∠2=()图4-1-13A.60°B.120°C.30°D.150°4.(2011年四川南充)如图4-1-14,直线DE经过点A,DE∥BC,∠B=60°,下列结论成立的是()图4-1-14A.∠C=60°B.∠DAB=60°C.∠EAC=60°D.∠BAC=60°5.下列命题中,正确的是()A.若a·b>0,则a>0,b>0 B.若a·b<0,则a<0,b<0C.若a·b=0,则a=0且b=0 D.若a·b=0,则a=0或b=06.(2012年湖北孝感)已知∠α是锐角,∠α与∠β互补,∠α与∠r互余,则∠β-∠r的值等于()A.45°B.60°C.90°D.180°7.(2011年浙江丽水)如图4-1-15,有一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°图4-1-158.如图4-1-16,下列条件中,不能判断l1∥l2的是()图4-1-16A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°9.(2011年湖北孝感)如图4-1-17,直线AB,CD相交于点O,OT⊥AB于点O,CE∥AB交CD于点C.若∠ECO=30°,则∠DOT=()图4-1-17A.30°B.45° C. 60° D. 120°10.(2012年湖南怀化)如图4-1-18,已知AB∥CD,AE平分∠CAB,且交CD于点D,若∠C=110°,则∠EAB=()A.30°B.35°C.40°D.45°图4-1-1811.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行所在的直线;③从A地到B地架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路变直,就能缩短路程.其中可用公理“两点之间,线段最短”来解决的现象有()A.①②B.①③C.②④D.③④12.如图4-1-19,一束光线垂直照射在水平地面,在地面上放一个平面镜,欲使这束光线经过平面镜反射后成水平光线,则平面镜与地面所成锐角的度数为()图4-1-19A.45°B.60°C.75°D.80°二级训练13.(2012年四川广元)一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度()A.先向左转130°,再向左转50°B.先向左转50°,再向右转50°C.先向左转50°,再向右转40°D.先向左转50°,再向左转40°14.如图4-1-20,在△ABC中,∠C=90°.若BD∥AE,∠DBC=20°,则∠CAE的度数是()A.40°B.60°C.70°D.80°图4-1-2015.如图4-1-21,把一张长方形纸片沿EF折叠后,点D,C分别落在点D′,C′的位置.若∠EFB=65°,则∠AED′=()图4-1-21A.70°B.65°C.50°D.25°w16.观察下图4-1-22,寻找对顶角(不含平角):(1)(2)(3)图4-1-22(1)如图4-1-22(1),图中共有______对对顶角;(2)如图4-1-22(2),图中共有______对对顶角;(3)如图4-1-22(3),图中共有______对对顶角;(4)研究(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n条直线相交于一点,则可形成______对对顶角;(5)若有2 008条直线相交于一点,则可形成______对对顶角.三级训练17.如图4-1-23,∠AOB=90°,∠BOC=30°,射线OM平分∠AOC,ON平分∠BOC.图4-1-23(1)求∠MON的度数;(2)如果(1)中,∠AOB=α,其他条件不变,求∠MON的度数;(3)如果(1)中,∠BOC=β(β为锐角),其他条件不变,求∠MON的度数;(4)从(1)、(2)、(3)的结果中,你能看出什么规律?第2讲三角形第1课时三角形一级训练1.已知在△ABC中,若∠A=70°-∠B,则∠C=()A.35°B.70°C.110°D.140°2.如图4-2-14,在△ABC中,∠A=70°,∠B=60°,点D在BC的延长线上,则∠ACD=()A.100°B.120°C.130°D.150°图4-2-143.已知如图4-2-15的两个三角形全等,则α的度数是()图4-2-15A.72°B.60°C.58°D.50°4.(2011年湖南怀化)如图4-2-16,∠A,∠1,∠2的大小关系是()图4-2-16A. ∠A>∠1>∠2B. ∠2>∠1>∠AC. ∠A>∠2>∠1D. ∠2>∠A>∠15.(2011年江西)如图4-2-17,下列条件中,不能证明△ABD≌△ACD的是()图4-2-17A.BD=DC,AB=AC B.∠ADB=∠ADC,∠BAD=∠CADC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC6.(2011年上海)下列命题中,是真命题的是()A.周长相等的锐角三角形都全等B.周长相等的直角三角形都全等C.周长相等的钝角三角形都全等D.周长相等的等腰直角三角形都全等7.(2012年山东德州)不一定在三角形内部的线段是()A.三角形的角平分线B.三角形的中线C.三角形的高D.三角形的中位线8.(2012年山东济宁)用直尺和圆规作一个角的平分线的示意图如图4-2-18,则能说明∠AOC=∠BOC的依据是()A.SSS B.ASAC.AAS D.角平分线上的点到角两边距离相等图4-2-189.(2011年安徽芜湖)如图4-2-19,已知在△ABC中,∠ABC=45°,F是高AD和BE 的交点,CD=4,则线段DF的长度为()图4-2-19A.2 2B.4C.3 2D.4 210.以三条线段3,4,x-5为边组成三角形,则x的取值范围为________.11.若△ABC的周长为a,点D,E,F分别是△ABC三边的中点,则△DEF的周长为__________.12.(2011年江西)如图4-2-20,两块完全相同的含30°的直角三角形叠放在一起,且∠DAB=30°.有以下四个结论:①AF⊥BC;②△ADG≌△ACF; ③O为BC的中点;④AG∶DE =3∶4.其中正确结论的序号是__________.图4-2-20二级训练13.(2011年山东威海)在△ABC中,AB>AC,点D,E分别是边AB,AC的中点,点F 在边BC上,连接DE,DF,EF,则添加下列哪一个条件后,仍无法判定△BFD与△EDF全等?()A.EF∥AB B.BF=CF C.∠A=∠DFE D.∠B=∠DEF14.(2011年浙江)如图4-2-21,点D,E分别在AC,AB上.(1)已知BD=CE,CD=BE,求证:AB=AC;(2)分别将“BD=CE”记为①,“CD=BE”记为②,“AB=AC”记为③.添加条件①、③,以②为结论构成命题1,添加条件②、③,以①为结论构成命题2.命题1是________命题,命题2是_________命题(选择“真”或“假”填入空格).图4-2-2115.(2012年湖北随州)如图4-2-22,在△ABC中,AB=AC,点D是BC的中点,点E 在AD上.求证:(1)△ABD≌△ACD;(2)BE=CE.图4-2-22三级训练16.(2011年湖南衡阳)如图4-2-23,在△ABC 中,∠B =90°,AB =3,AC =5,将△ABC 折叠,使点C 与点A 重合,折痕为DE ,则△ABE 的周长为________.图4-2-2317.如图4-2-24,两根旗杆间相距12 m ,某人从点B 沿BA 走向点A ,一定时间后他到达点M ,此时他仰望旗杆的顶点C 和D ,两次视线的夹角为90°,且CM =DM ,已知旗杆AC 的高为3 m ,该人的运动速度为1 m/s ,求这个人运动了多长时间?图4-2-24第二部分 空间与图形 第四章 三角形与四边形第1讲 线、角、相交线和平行线 【分层训练】 1.143°25′ 2.B 3.B 4.B 5.D 6.C 7.B 8.B 9.C 10.B 11.D 12.A 解析:如图D9,过点O 作OD ⊥OC ,根据平面镜反射定律,可得∠AOD =∠BOD .又∵AO 垂直于水平面,OB 平行于水平面,∴∠AOB =90°.∴∠AOD =∠BOD =45°.又∵OD ⊥OC ,∴∠BOC =90°-∠BOD =45°.由于OB 平行于水平面,可得∠1=∠BOC =45°.图D911.D 13.B14.C 解析:由题意,可得∠EAB +∠DBA =180°,又由∠C =90°,可得∠CAB +∠CBA =90°,于是∠CAE +∠DBC =90°.故∠CAE =90°-∠DBC =70°.15.C 解析:∠D ′EF =∠DEF =∠EFB =65°,于是∠AED ′=180°-∠D ′ED =50°. 16.(1)2 (2)6 (3)12 (4)n (n -1) (5)4 030 056解析:(1)如图4-1-22(1),图中共有1×2=2对对顶角; (2)如图4-1-22(2),图中共有2×3=6对对顶角; (3)如图4-1-22(3),图中共有3×4=12对对顶角;(4)研究(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n 条直线相交于一点,则可形成(n -1)n 对对顶角;(5)若有2 008条直线相交于一点,则可形成(2 008-1)×2 008=4 030 056对对顶角.17.解:(1)∠MON =∠COM -∠CON =12∠AOC -12∠BOC =12×120°-12×30°=45°.(2)∠MON =∠COM -∠CON =12∠AOC -12∠BOC =12(α+30°)-12×30°=12α.(3)∠MON =∠COM -∠CON =12∠AOC -12∠BOC =12(90°+β)-12β=45°.(4)∠MON 的大小等于∠AOB 的一半,与∠BOC 的大小无关. 第2讲 三角形 第1课时 三角形 【分层训练】1.C 2.C 3.D 4.B 5.D 6.D 7.C 8.A 9.B10.6<x <12 解析:由题意,可得1<x -5<7,解得6<x <12. 11.a 2 解析:由题意,可得△DEF 的三边为△ABC 的中位线,故其周长为a 2. 12.①②③④ 13.C 14.(1)证明:连接BC ,∵ BD =CE ,CD =BE ,BC =CB , ∴ △DBC ≌△ECB (SSS). ∴ ∠DBC =∠ECB . ∴ AB =AC . (2)真 假15.证明:(1)∵D 是BC 的中点, ∴BD =CD .在△ABD 和△ACD 中, ⎩⎪⎨⎪⎧BD =CD ,AB =AC ,AD =AD (公共边),∴△ABD ≌△ACD (SSS).(2)由(1),可知:△ABD ≌△ACD , ∴∠BAD =∠CAD ,即∠BAE =∠CAE . 在△ABE 和△ACE 中, ⎩⎪⎨⎪⎧AB =AC ,∠BAE =∠CAE , AE =AE ,∴△ABE ≌△ACE (SAS).∴BE =CE (全等三角形的对应边相等).16.7 解析:因为将△ABC 折叠,使点C 与点A 重合,折痕为DE ,所以EC =AE ,故△ABE 的周长为AB +BE +AE =AB +BE +EC =AB +BC =3+4=7.17.解:∵∠CMD =90°, ∴∠CMA +∠DMB =90°. 又∵∠CAM =90°,∴∠CMA +∠ACM =90°. ∴∠ACM =∠DMB . 又∵CM =MD ,∴Rt △ACM ≌Rt △BMD . ∴AC =BM =3.∴他到达点M 时,运动时间为3÷1=3(s). 答:这人运动了3 s.。

中考数学冲刺专题训练(附答案):三角形与四边形

中考数学冲刺专题训练(附答案):三角形与四边形

精品基础教育教学资料,仅供参考,需要可下载使用!中考数学冲刺专题训练(附答案):三角形与四边形一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.一个等腰三角形的底边长是6,腰长是一元二次方程28150x x -+=的一根,则此三角形的周长是( ) A .16 B .12C .14D .12或16【答案】A 【解析】解方程28150x x -+=,得:3x =或5x =,若腰长为3,则三角形的三边为3、3、6,显然不能构成三角形; 若腰长为5,则三角形三边长为5、5、6,此时三角形的周长为16, 故选:A .2.如图,在△ABC 中,BE 是∠ABC 的平分线,CE 是外角∠ACM 的平分线,BE 与CE 相交于点E ,若∠A =60°,则∠BEC 是( )A .15°B .30°C .45°D .60°【答案】B 【解析】∵BE 是∠ABC 的平分线, ∴∠EBM=12∠ABC , ∵CE 是外角∠ACM 的平分线, ∴∠ECM=12∠ACM , 则∠BEC=∠ECM-∠EBM=12×(∠ACM-∠ABC )=12∠A=30°, 故选:B .3.如图,在△ABC 中,∠C =90°,AC =12,AB 的垂直平分线EF 交AC 于点D ,连接BD ,若cos ∠BDC =57,则BC 的长是( )A .10B .8C .3D .6【答案】D 【解析】∵∠C =90°,cos ∠BDC =57, 设CD =5x ,BD =7x , ∴BC =6x ,∵AB 的垂直平分线EF 交AC 于点D , ∴AD =BD =7x , ∴AC =12x , ∵AC =12, ∴x =1, ∴BC =6; 故选D.4.一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为( ) A .8 B .12C .16D .32【答案】C 【解析】 如图所示:四边形ABCD 是菱形,12AO CO AC ∴==, 12DC BO BD ==,AC BD ⊥, 面积为28,∴12282AC BD OD AO ⋅=⋅=① 菱形的边长为6,2236OD OA ∴+=②,由①②两式可得:222()2362864OD AO OD OA OD AO +=++⋅=+=,8OD AO ∴+=,2()16OD AO ∴+=,即该菱形的两条对角线的长度之和为16, 故选C .5.如图,点B 、F 、C 、E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是( )A .AB =DE B .AC =DF C .∠A =∠D D .BF =EC【答案】C 【解析】解:选项A 、添加AB=DE 可用AAS 进行判定,故本选项错误; 选项B 、添加AC=DF 可用AAS 进行判定,故本选项错误; 选项C 、添加∠A=∠D 不能判定△ABC ≌△DEF ,故本选项正确;选项D 、添加BF=EC 可得出BC=EF ,然后可用ASA 进行判定,故本选项错误. 故选C .6.如图,ABCD 中,对角线AC 、BD 相交于点O ,OE BD ⊥交AD 于点E ,连接BE ,若ABCD 的周长为28,则ABE ∆的周长为( )A .28B .24C .21D .14【答案】D 【解析】∵四边形ABCD 是平行四边形, ∴OB OD =,AB CD =,AD BC =, ∵平行四边形的周长为28, ∴14AB AD += ∵OE BD ⊥,∴OE 是线段BD 的中垂线, ∴BE ED =,∴ABE ∆的周长14AB BE AE AB AD =++=+=, 故选:D .7.如图,在ABCD 中,将ADC ∆沿AC 折叠后,点D 恰好落在DC 的延长线上的点E 处.若=60B ︒∠,=3AB ,则ADE ∆的周长为( )A .12B .15C .18D .21【答案】C 【解析】由折叠可得,90ACD ACE ︒∠=∠=,90BAC ︒∴∠=,又60B ︒∠=,30ACB ︒∴∠=,26BC AB ∴==,6AD ∴=,由折叠可得,60E D B ︒∠=∠=∠=,60DAE ︒∴∠=,ADE ∴∆是等边三角形, ADE ∴∆的周长为6318⨯=,故选:C .8.如图,在正方形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠EAF =45°,AE 、AF 分别交BD 于M 、N ,连按EN 、EF 、有以下结论:①AN =EN ,②当AE =AF 时,BEEC=2﹣2,③BE+DF =EF ,④存在点E 、F ,使得NF >DF ,其中正确的个数是( )A .1B .2C .3D .4【答案】B 【解析】 ①如图1,∵四边形ABCD 是正方形,∴∠EBM =∠ADM =∠FDN =∠ABD =45°,∵∠MAN=∠EBM=45°,∠AMN=∠BME,∴△AMN∽△BME,∴AM MN BM EM=,∵∠AMB=∠EMN,∴△AMB∽△NME,∴∠AEN=∠ABD=45°∴∠NAE=∠AEN=45°,∴△AEN是等腰直角三角形,∴AN=EN,故①正确;②在△ABE和△ADF中,∵AB ADABE ADF90 AE AF︒=⎧⎪∠=∠=⎨⎪=⎩,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=CD,∴CE=CF,假设正方形边长为1,设CE=x,则BE=1﹣x,如图2,连接AC,交EF于H,∵AE=AF,CE=CF,∴AC是EF的垂直平分线,∴AC⊥EF,OE=OF,Rt △CEF 中,OC =12EF =22x , △EAF 中,∠EAO =∠FAO =22.5°=∠BAE =22.5°, ∴OE =BE , ∵AE =AE ,∴Rt △ABE ≌Rt △AOE (HL ), ∴AO =AB =1, ∴AC =2=AO+OC ,∴1+22x =2, x =2﹣2,∴BE EC =1(22)22---=(21)(22)2-+=22; 故②不正确; ③如图3,∴将△ADF 绕点A 顺时针旋转90°得到△ABH ,则AF =AH ,∠DAF =∠BAH , ∵∠EAF =45°=∠DAF+∠BAE =∠HAE , ∵∠ABE =∠ABH =90°, ∴H 、B 、E 三点共线, 在△AEF 和△AEH 中,AE AE FAE HAE AF AH =⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△AEH (SAS ), ∴EF =EH =BE+BH =BE+DF , 故③正确;④△ADN 中,∠FND =∠ADN+∠NAD >45°, ∠FDN =45°, ∴DF >FN ,故存在点E 、F ,使得NF >DF , 故④不正确; 故选B .二、填空题(本大题共4个小题,每小题6分,共24分)9.如图,在△ABC 中,以点B 为圆心,以BA 长为半径画弧交边BC 与点D ,连结AD ,若∠B =40°,∠C =36°,则∠DAC 的度数是____________.【答案】34° 【解析】由作图过程可知BD=BA , ∵∠B=40°, ∴∠BDA=∠BAD=12(180°-∠B)=70°, ∴∠DAC=∠BDA-∠C=70°-36°=34°. 故答案为34°. 10.如图,在矩形ABCD 中,1AB =,BC a =,点E 在边BC 上,且35BE α=.连接AE ,将ABE ∆沿AE 折叠,若点B 的对应点B '落在矩形ABCD 的边上,则 a 的值为________.【答案】53或53【解析】 分两种情况:①当点B '落在AD 边上时,如图1. 四边形ABCD 是矩形,90BAD B ︒∴∠=∠=,将ABE ∆沿AE 折叠,点B 的对应点B '落在AD 边上,1452BAE B AE BAD '︒∴∠=∠=∠=,AB BE ∴=,315a ∴=, 53a ∴=;②当点B '落在CD 边上时,如图2. ∵四边形ABCD 是矩形,90BAD B C D ︒∴∠=∠=∠=∠=,AD BC a ==.将ABE ∆沿AE 折叠,点B 的对应点B '落在CD 边上,90B AB E '︒∴∠=∠=,1AB AB '==,35EB EB a '==,2221DB B A AD a ''∴=-=-,3255EC BC BE a a =-=-=. 在ADB '∆与B CE '∆中,90A 90B AD EBC B DD C ︒︒⎧∠=∠=-∠'''⎨∠=∠=⎩, ADB B CE ''∴∆⋃∆,DB AB CE B E'''∴=,即2112355a a a -=,解得153a =,20a =(舍去). 综上,所求a 的值为53或53. 故答案为53或53. 11.如图,正方形ABCD 的边长为4,点E 是CD 的中点,AF 平分BAE ∠交BC 于点F ,将ADE ∆绕点A 顺时针旋转90°得ABG ∆,则CF 的长为_____.【答案】6-25 【解析】作FM AD M FN AG N ⊥⊥于,于 ,如图,易得四边形CFMD 为矩形,则4FM =∵正方形ABCD的边长为4,点是的中点,2DE ∴=,∴224225AE =+=∵△ADE 绕点A 顺时针旋转90°得△ABG ,∴252349090AG AE BG DE GAE ABG D ∠∠∠︒∠∠︒==,==,=,=,== 而90ABC ∠︒= , ∴点G 在CB 的延长线上,∵AF 平分∠BAE 交BC 于点F ,∴∠1=∠2,∴∠2+∠4=∠1+∠3,即F A 平分∠GAD , ∴FN =FM =4, ∵11••22AB GF FN AG =, ∴425254GF ⨯==, ∴4225625CF CG GF +=-=﹣=﹣ . 故答案为6-25.12.如图,在平面直角坐标系中,OA =1,以OA 为一边,在第一象限作菱形OAA 1B ,并使∠AOB =60°,再以对角线OA 1为一边,在如图所示的一侧作相同形状的菱形OA 1A 2B 1,再依次作菱形OA 2A 3B 2,OA 3A 4B 3,……,则过点B 2018,B 2019,A 2019的圆的圆心坐标为_____.【答案】(-32018,3)2019) 【解析】过A 1作A 1C ⊥x 轴于C ,∵四边形OAA1B是菱形,∴OA=AA1=1,∠A1AC=∠AOB=60°,∴A1C=32,AC=12,∴OC=OA+AC=32,在Rt△OA1C中,OA1=2213OC AC+=,∵∠OA2C=∠B1A2O=30°,∠A3A2O=120°,∴∠A3A2B1=90°,∴∠A2B1A3=60°,∴B1A3=23,A2A3=3,∴OA3=OB1+B1A3=33=(3)3∴菱形OA2A3B2的边长=3=(3)2,设B1A3的中点为O1,连接O1A2,O1B2,于是求得,O1A2=O1B2=O1B133)1,∴过点B1,B2,A2的圆的圆心坐标为O1(0,23,∵菱形OA3A4B3的边长为333,∴OA4=934,设B2A4的中点为O2,连接O2A3,O2B3,同理可得,O2A3=O2B3=O2B2=3=(3)2,∴过点B2,B3,A3的圆的圆心坐标为O2(﹣3,33),…以此类推,菱形OA2019A2020B2019的边长为(3)2019,OA2020=(3)2020,设B2018A2020的中点为O2018,连接O2018A2019,O2018B2019,求得,O2018A2019=O2018B2019=O2018B2018=(3)2018,∴点O2018是过点B2018,B2019,A2019的圆的圆心,∵2018÷12=168…2,∴点O2018在射线OB2上,则点O2018的坐标为(﹣(3)2018,(3)2019),即过点B2018,B2019,A2019的圆的圆心坐标为:(﹣(3)2018,(3)2019),故答案为:(﹣(3)2018,(3)2019).三、解答题(本大题共3个小题,每小题12分,共36分.解答应写出文字说明、证明过程或演算步骤)13.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F、H在菱形ABCD的对角线BD上.=;(1)求证:BG DEFH=,求菱形ABCD的周长。

2021年广东省广州市九年级中考数学 三轮冲刺复习:三角形(含答案)

2021年广东省广州市九年级中考数学  三轮冲刺复习:三角形(含答案)

2021广州中考三轮冲刺复习:三角形一、选择题1. 下面是小强用三根火柴组成的图形,其中符合三角形概念的是()2. 在一个三角形中,有一个角是55°,则另外的两个角可能是()A.95°,20°B.45°,80°C.55°,60°D.90°,20°3. 如图,在△ABC中,表示AB边上的高的图形是()4. 已知等腰三角形的腰和底的长分别是一元二次方程x2-6x+8=0的根,则该三角形的周长为()A. 8B. 10C. 8或10D. 125. 如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E,若∠E=35°,则∠BAC的度数为()A. 40°B. 45°C. 60°D. 70°6. 在△ABC中,若∠B=3∠A,∠C=2∠B,则∠B的度数为()A.18°B.36°C.54°D.90°7. (2019•荆门)将一副直角三角板按如图所示的位置摆放,使得它们的直角边互相垂直,则1的度数是A.95︒B.100︒C.105︒D.110︒8. 如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC交BC于点D,DE∥AB交AC 于点E,则∠ADE的度数是()A.54°B.50°C.45°D.40°二、填空题9. 如图,已知AB,CD相交于点O,且∠A=38°,∠B=58°,∠C=44°,则∠D=________°.10. 若正多边形的一个外角是60°,则这个正多边形的内角和是________.11. 如图,已知∠A=54°,∠B=31°,∠C=21°,则∠1=________°.12. 如图,在△ABC中,∠ABC,∠ACB的平分线相交于点O,OD⊥OC交BC于点D.若∠A =80°,则∠BOD=________°.13. 在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是________.14. 模拟某人为机器人编制了一段程序(如图),如果机器人以2 cm/s的速度在平地上按照程序中的步骤行走,那么该机器人从开始到停止所需的时间为________s.15. 如图,在△ABC中,BO平分∠ABC,CO平分∠ACB.若∠A=70°,则∠BOC=________°.16. 如图,若该图案是由8个形状和大小相同的梯形拼成的,则∠1=________°.三、解答题17. 如图,佳佳和音音住在同一小区(A点),每天一块去学校(B点)上学.一天,佳佳要先去文具店(C点)买练习本再去学校,音音要先去书店(D点)买书再去学校(B,D,C三点在同一条直线上).这天两人从家到学校谁走的路程远?为什么?18. 如图,已知BE 、CF 分别为ABC ∆中B ∠、C ∠的平分线,AM BE ⊥于M ,AN CF ⊥于N ,求证:MN BC ∥.19. 某单位修建正多边形花台,已知正多边形花台的一个外角的度数比一个内角度数的15多12°.(1)求出这个正多边形的一个内角的度数; (2)求这个正多边形的边数.20. 如图,CE是△ABC 的外角∠ACD 的平分线,且CE 交BA 的延长线于点E ,∠B =25°,∠E=30°,求∠BAC 的度数.21. 如图,在△ABC中,BD 是角平分线,CE 是AB 边上的高,且∠ACB=60°,∠ADB=97°,求∠A 和∠ACE 的度数.NMEFCBA22. 观察与转化思想如图是五角星形,求∠A+∠B+∠C+∠D+∠E的度数.23. 已知:如图1-Z-20,在四边形ABCD中,∠D=90°,∠ABC=∠BCD,点E在直线BC上,点F在直线CD上,且∠AEB=∠CEF.(1)如图①,若AE平分∠BAD,求证:EF⊥AE;(2)如图②,若AE平分四边形ABCD的外角,其余条件不变,则(1)中的结论是否仍然成立?说明理由.24. 如图①所示,在△ABC中,∠1=∠2,∠C>∠B,E为AD上一点,且EF⊥BC于点F.(1)试探索∠DEF与∠B,∠C之间的数量关系;(2)如图②所示,当点E在AD的延长线上时,其余条件都不变,你在(1)中探索得到的结论是否还成立?2021广州中考三轮冲刺复习:三角形-答案一、选择题1. 【答案】C2. 【答案】B[解析] ∵在一个三角形中,有一个角是55°,∴另外的两个角的和为125°,各选项中只有B选项中的两个角的和为125°.故选B.3. 【答案】D4. 【答案】B【解析】解一元二次方程x2-6x+8=0,得x1=2,x2=4.当三角形三边为2,2,4时,∵2+2=4,∴不符合三边关系,应舍去;当三角形三边为2,4,4时,∵2+4>4,符合三边关系,∴三角形的周长为10,故选B.5. 【答案】A【解析】由AE∥BD,可得∠DBC=∠E=35°,由BD平分∠ABC可得∠ABC=2∠DBC=70°,由AB=AC可得∠ABC=∠C=70°,由三角形内角和定理可得∠BAC=180°-70°-70°=40°.6. 【答案】C[解析] ∵在△ABC中,∠B=3∠A,∠C=2∠B,∴∠C=6∠A.设∠A=x,则∠B=3x,∠C=6x.由三角形内角和定理可得x+3x+6x=180°,解得x=18°,∴∠B=3x=54°.7. 【答案】C【解析】如图,由题意得,2454903060∠=︒∠=︒︒=︒,-,∴3245∠=∠=︒, 由三角形的外角性质可知,134105∠=∠+∠=︒,故选C .8. 【答案】D[解析] 由三角形内角和定理可知∠BAC =180°-∠B -∠C =180°-46°-54°=80°.因为AD 平分∠BAC , 所以∠BAD =12∠BAC =40°. 因为DE ∥AB ,所以∠ADE =∠BAD =40°.二、填空题9. 【答案】64[解析] 由三角形内角和定理可知∠A +∠D +∠AOD =180°,∠B +∠C +∠BOC=180°.∵∠AOD =∠BOC , ∴∠A +∠D =∠B +∠C. ∴∠D =64°.10. 【答案】720°[解析] 该正多边形的边数为360°÷60°=6.该正多边形的内角和为(6-2)×180°=720°.11. 【答案】106[解析] 由三角形的外角性质可知,∠CDB =∠A +∠C =75°,∴∠1=∠CDB +∠B =106°.12. 【答案】4013. 【答案】4∶3【解析】如解图,过D 作DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,∵AD 是∠BAC 的平分线,∴DE =DF(角平分线上的点到角两边的距离相等),设DE =DF =h ,则S △ABD S △ACD=12AB·h 12AC·h =43.14. 【答案】16[解析] 由题意得,该机器人所经过的路径是一个正多边形,多边形的边数为36045=8, 则所走的路程是4×8=32(cm), 故所用的时间是32÷2=16(s).15. 【答案】125[解析] ∵BO 平分∠ABC ,CO 平分∠ACB ,∴∠ABO =∠CBO ,∠BCO =∠ACO.∴∠CBO +∠BCO =12(∠ABC +∠ACB)=12(180°-∠A)=12(180°-70°)=55°. ∴在△BOC 中,∠BOC =180°-55°=125°.16. 【答案】67.5三、解答题17. 【答案】解:佳佳从家到学校走的路程远.理由:佳佳从家到学校走的路程是AC+CD+BD ,音音从家到学校走的路程是AD+BD.∵在△ACD 中,AC+CD>AD ,∴AC+CD+BD>AD+BD ,即佳佳从家到学校走的路程远.18. 【答案】延长AM 、AN 交BC 于点Q 、R .由等腰三角形三线合一可得AM QM =、AN RN =再由三角形中位线可得MN BC ∥.19. 【答案】解:(1)设这个多边形的一个内角的度数是x °,则与其相邻的外角度数是15x °+12°.由题意,得x+1x+12=180,解得x=140.5即这个正多边形的一个内角的度数是140°.=9.(2)这个正多边形的每一个外角的度数为180°-140°=40°,所以这个正多边形的边数是36040 20. 【答案】解:∵∠B=25°,∠E=30°,∴∠ECD=∠B+∠E=55°.∵CE是∠ACD的平分线,∴∠ACE=∠ECD=55°.∴∠BAC=∠ACE+∠E=85°.21. 【答案】解:∵∠ADB=∠DBC+∠ACB,∴∠DBC=∠ADB-∠ACB=97°-60°=37°.∵BD是△ABC的角平分线,∴∠ABC=74°.∴∠A=180°-∠ABC-∠ACB=46°.∵CE是AB边上的高,∴∠AEC=90°.∴∠ACE=90°-∠A=44°.22. 【答案】解:如图,∵∠1是△CEG的外角,∴∠1=∠C+∠E.同理可得∠AFB=∠B+∠D.∵在△AFG中,∠A+∠1+∠AFG=180°,∴∠A+∠B+∠C+∠D+∠E=180°.23. 【答案】解:(1)证明:∵∠BAE=180°-∠ABC-∠AEB,∠EFC=180°-∠BCD-∠CEF,且∠ABC=∠BCD,∠AEB=∠CEF,∴∠BAE=∠EFC.∵AE平分∠BAD,∴∠BAE=∠DAE.∴∠EFC=∠DAE.∵∠EFC+∠EFD=180°,∴∠DAE+∠EFD=180°.∴∠AEF+∠D=360°-(∠DAE+∠EFD)=180°.又∵∠D=90°,∴∠AEF=90°.∴EF⊥AE.(2)EF⊥AE仍成立.理由如下:如图.∵∠1=∠ABC-∠AEB,∠F=∠BCD-∠CEF,且∠ABC=∠BCD,∠AEB=∠CEF,∴∠1=∠F.∵AE平分四边形ABCD的外角,∴∠1=∠2.∴∠F=∠2.∵∠2+∠EAD=180°,∴∠F+∠EAD=180°.∴∠AEF+∠D=360°-(∠F+∠EAD)=180°.又∵∠D=90°,∴∠AEF=90°.∴EF⊥AE.24. 【答案】解:(1)∵∠1=∠2,∴∠1=12∠BAC.又∵∠BAC =180°-(∠B +∠C),∴∠1=12[180°-(∠B +∠C)]=90°-12(∠B +∠C).∴∠EDF =∠B +∠1=∠B +90°-12(∠B +∠C)=90°+12(∠B -∠C).∵EF ⊥BC ,∴∠EFD =90°.∴∠DEF =90°-∠EDF =90°-[90°+12(∠B -∠C)]=12(∠C -∠B).(2)当点E 在AD 的延长线上时,其余条件都不变,在(1)中探索得到的结论仍成立.。

2023中考数学复习:三角形、四边形图形变换

2023中考数学复习:三角形、四边形图形变换
此时∠BA'C=90°.
当A'在BC的上方时,如图4,
又∵AB=A'B,AE⊥AA'于E,
∴∠ABF=∠A'BF.
又∵BF=BF,∴△ABF≌△A'BF(SAS),
∴∠BA'F=∠BAF=90°.
例题 1
1
2
返回类型清单
∴C,A',F在一条直线上.
1
1
∵S△BCF= BC·AB= A'B·CF,∴CF=BC=8.
∠BAC=30°+90°=120°,
∴∠D=180°-(∠ABD+∠BAD)=60°.
例题 1
1
2
返回类型清单
(3)当△A1B1C绕点C逆时针旋转过程中,
①请直接写出S△ABA 的最大值;

(3)解:①由题意,AC=2,AB=2 3,CA1=1,当点A1落在AC的延长线时,△ABA1
1
的面积最大,最大值为 ×2 3×(2+1)=3 3.
2
2
当A'在BC的下方时,如图5,
连接AF,A'F,则AF=A'F,
∵A'B=6,BC=8,∴A'C=2 .
过A'作A'P⊥CD,垂足落在DC的延长线上,
∵∠BCA'+∠A'CP=90°,∠A'CP+∠CA'P=90°,
例题 1
1
2
返回类型清单
∴∠BCA'=∠CA'P.
∵∠BA'C=∠A'PC,∴△A'BC∽△PCA',
形;
(2)把握运动中的特殊位置,临界位置,分段、分情况进行讨论;

广东中考数学第15讲 三角形与多边形

广东中考数学第15讲 三角形与多边形

导航
考点2三角形的中位线定理(5年1考) 中考典例
5.(2021·衢州)如图,在△ABC中,AB=4, AC=5,BC=6,点D,E,F分别是AB,BC, CA的中点,连结DE,EF,则四边形ADEF的周长为( B )
A.6
B.9
C.12 D.15
解析:∵点D,E,F分别是AB,BC,CA的中点,
∴DE=1AC=2.5,AF=1AC=2.5,EF=1AB=2,AD=1AB=2,
2
2
2
2
∴四边形ADEF的周长=AD+DE+EF+AF=9,故选:B.
导航
6.(2020·株洲)如图所示,点D、E分别是
△ABC的边AB、AC的中点,连接BE,过
点C作CF∥BE,交DE的延长线于点F,
3
若EF=3,则DE的长为 2 .
A.50 cm
B.45 cm
C.30 cm
D.15cm
2
6.如图,在△ABC中,点D,E分别是边AB,
BC的中点,若DE的长是3,则AC的长为
6.
导航
考点解读 本考点是广东中考的高频考点,难度较低,命题形式一般为选 择题或填空题.解答本考点的有关题目,关键在于掌握三角形 的中位线定理,并加以灵活运用.注意以下要点:三角形的中位 线平行于第三边并且等于第三边的一半.
115° .
导航
考点解读 本考点是广东中考的高频考点,难度简单,命题形式一般为选 择题或填空题.解答本考点的有关题目,关键在于掌握三角形 的有关概念,注意以下要点: 1.三角形的三边关系,即任意两边之和大于第三边,任意两边 之差小于第三边,解题时其实可以选定三边后,给三边大小排 序,只要较短的两边之和大于最长的边即可. 2.应用三角形的外角性质解题时,要特别注意“不相邻”的理解. 三角形的外角和其相邻的内角是邻补角的关系;其性质都是 针对与其不相邻的内角的.

中考数学中的三角形与四边形性质总结

中考数学中的三角形与四边形性质总结

中考数学中的三角形与四边形性质总结在中考数学中,三角形和四边形是重要的几何概念。

它们具有不同的性质和特点,理解和掌握它们的性质对于解题和应用几何知识都非常重要。

下面将对中考数学中的三角形和四边形的性质进行总结。

一、三角形的性质总结1. 三角的角度性质:- 三角形的内角和等于180度,即三个内角的和为180度。

- 直角三角形的两个锐角之和为90度。

2. 三角形的边长性质:- 三角形的任意两边之和大于第三边。

- 等边三角形的三条边相等,等腰三角形的两边相等。

- 在一般三角形中,较长边对应较大的角,较短边对应较小的角。

3. 三角形的相似性质:- 两个三角形的对应角相等,则这两个三角形相似。

- 两个三角形的对应边成比例,则这两个三角形相似。

二、四边形的性质总结1. 平行四边形的性质:- 对角线互相平分,即对角线的交点是对角线的中点。

- 对边相等,即平行四边形的对边长度相等。

- 对角线等分平行四边形的内角。

2. 矩形的性质:- 二对相对边平行。

- 二对相对边相等。

- 二对相对角相等,且为直角。

3. 菱形的性质:- 对角线互相垂直且互相平分。

- 对边相等。

4. 正方形的性质:- 矩形的所有性质都满足。

- 对角线相等且垂直。

总结:通过以上对三角形和四边形的性质总结,我们可以发现几何知识中的基本规律和特点。

掌握三角形和四边形的性质对于应用和解题非常重要。

在解决各种与三角形和四边形相关的问题时,我们可以利用这些性质来推导和证明,帮助我们更好地理解和解决问题。

在数学中,几何是一个重要的分支,而三角形和四边形是其中重要的基本图形。

了解和掌握三角形和四边形的性质,对于中考数学的学习和考试都是至关重要的。

通过不断练习和巩固,我们可以更加熟练地应用这些性质,解决各种与三角形和四边形相关的问题。

总之,通过对中考数学中的三角形和四边形性质的总结,我们可以更好地理解和应用这些知识,提高数学解题的能力。

在学习中,我们要善于总结和归纳,将所学的知识应用到实际问题中,不断提高自己的数学水平。

广东中考数学复习各地区2022年模拟试题分类(深圳专版)(5)——三角形(含解析)

广东中考数学复习各地区2022年模拟试题分类(深圳专版)(5)——三角形(含解析)

广东中考数学复习各地区2018-2022年模拟试题分类(深圳专版)(5)——三角形一.选择题(共23小题) 1.(2022•福田区校级模拟)如图,在正方形ABCD 中,对角线AC 、BD 相交于点O ,以AD 为边向外作等边△ADE ,AE =√6,连接CE ,交BD 于F ,若点M 为AB 的延长线上一点,连接CM ,连接FM 且FM 平分∠AMC ,下列选项正确的有( ) ①DF =√3−1;②S △AEC =3(1+√3)2;③∠AMC =60°;④CM +AM =√2MF .A .1个B .2个C .3个D .4个2.(2022•龙华区二模)如图,直线a ∥b ∥c ,等边三角形△ABC 的顶点A 、B 、C 分别在直线a 、b 、c 上,边BC 与直线c 所夹的角∠1=25°,则∠2的度数为( )A .25°B .30°C .35°D .45°3.(2022•宝安区二模)如图,在△ABC 中,分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于M 、N 两点,连接MN ,交AB 于点H ,以点H 为圆心,HA 的长为半径作的弧恰好经过点C ,以点B 为圆心,BC 的长为半径作弧交AB 于点D ,连接CD ,若∠A =22°,则∠BDC =( )A .52°B .55°C .56°D .60° 4.(2022•福田区一模)如图,正方形ABCD 中,E 是BC 延长线上一点,在AB 上取一点F ,使点B 关于直线EF 的对称点G 落在AD 上,连接EG 交CD 于点H ,连接BH 交EF 于点M ,连接CM .则下列结论,其中正确的是( ) ①∠1=∠2; ②∠3=∠4; ③GD =√2CM ;④若AG =1,GD =2,则BM =√5.A .①②③④B .①②C .③④D .①②④ 5.(2022•光明区一模)如图,AB ∥CE ,∠A =40°,CE =DE ,则∠C =( )A .40°B .30°C .20°D .15° 6.(2022•南山区模拟)如图,△ABC 中,AB =5,AC =4,以点A 为圆心,任意长为半径作弧,分别交AB 、AC 于D 和E ,再分别以点D 、E 为圆心,大于二分之一DE 为半径作弧,两弧交于点F ,连接AF 并延长交BC 于点G ,GH ⊥AC 于H ,GH =2,则△ABG 的面积为( )A .4B .5C .9D .10 7.(2022•龙岗区模拟)平面直角坐标系中,已知A (1,2)、B (3,0).若在坐标轴上取点C ,使△ABC 为等腰三角形,则满足条件的点C 的个数是( ) A .5 B .6 C .7 D .8 8.(2022•宝安区三模)如图,在三角形ABC 中,AB =AC ,BC =6,三角形DEF 的周长是7,AF ⊥BC 于F ,BE ⊥AC 于E ,且点D 是AB 的中点,则AF =( )A .√5B .√7C .√3D .79.(2022•龙岗区校级模拟)如图,△ABC 中,D 是AB 的中点,E 在AC 上,且∠AED =90°+12∠C ,则BC +2AE 等于( )A .ABB .ACC .32ABD .32AC10.(2022•南山区校级一模)等腰三角形的一边为4,另一边为9,则这个三角形的周长为( )A .17B .22C .13D .17或22 11.(2022•罗湖区一模)由三角函数定义,对于任意锐角A ,有sin A =cos (90°﹣A )及sin 2A +cos 2A =1成立.如图,在△ABC 中,∠A ,∠B 是锐角,BC =a ,AC =b ,AB =c .CD ⊥AB 于D ,DE ∥AC 交BC 于E ,设CD =h ,BE =a ',DE =b ',BD =c ',则下列条件中能判定△ABC 是直角三角形的个数是( ) ①a 2+b 2=c 2;②aa '+bb '=cc ';③sin 2A +sin 2B =1;④1a 2+1a 2=1a 2.A .1个B .2个C .3个D .4个 12.(2022•龙华区二模)如图,已知a ∥b ,将一块等腰直角三角板的两个顶点分别放在直线a 、b 上.若∠1=23°,则∠2的度数为( )A .68°B .112°C .127°D .132° 13.(2022•福田区校级模拟)如图,在△ABC 中,∠B =45°,∠ACB =60°,AB =16,AD ⊥BC ,垂足为D ,∠ACB 的平分线交AD 于点E ,则AE 的长为( )A .83√2 B .4√2C .163√2D .6√214.(2022•罗湖区一模)在联欢会上,甲、乙、丙3人分别站在不在同一直线上的三点A 、B 、C 上,他们在玩抢凳子的游戏,要在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,凳子应放的最恰当的位置是△ABC 的( ) A .三条高的交点 B .重心 C .内心 D .外心 15.(2022•福田区校级模拟)下列性质中,直角三角形具有而等腰三角形不一定具有的是( ) A .两边之和大于第三边 B .内角和等于180°C .有两个锐角的和等于90°D .有一个角的平分线垂直于这个角的对边 16.(2022•南山区校级二模)如图,等腰△ABC 中,AB =AC =10,BC =6,直线EF 垂直平分AB 交AC 于D ,连接BD ,则△BCD 的周长等于( )A .13B .14C .15D .16 17.(2022•龙岗区校级二模)等腰三角形的两边分别为1和2,则其周长为( ) A .4 B .5 C .4或5 D .无法确定 18.(2022•盐田区二模)如图,直线AB ∥CD ,直线EF 分别交AB ,CD 于E ,F 两点,EG 平分∠AEF .若∠1=29°,则∠2=()A.29°B.58°C.61°D.60°19.(2022•福田区一模)如图,已知a∥b,点A在直线a上,点B,C在直线b上,若∠1=125°,∠2=50°,则∠3为()A.55°B.65°C.70°D.75°20.(2022•坪山区一模)如图,AB∥CD,∠1=58°,FG平分∠EFD,则∠FGB的度数等于()A.97°B.116°C.122°D.151°21.(2022•福田区校级模拟)如图,直线AB∥CD,直线EF分别交AB、CD于E、F两点,EG平分∠AEF,如果∠1=32°,那么∠2的度数是()A.64°B.68°C.58°D.60°22.(2022•福田区一模)如图,已知a∥b,点A在直线a上,点B、C在直线b上,∠1=120°,∠2=50°,则∠3为()A.70°B.60°C.45°D.30°23.(2022•宝安区二模)如图,将一副直角三角板按图中所示的位置摆放,两条斜边互相平行,则∠1=()A.75°B.70°C.65°D.60°二.填空题(共8小题)24.(2022•龙岗区校级模拟)如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,M为AB边的中点,连结ME、MD、ED,设AB=10,∠DBE=30°,则△EDM的面积为.25.(2022•龙岗区一模)如图,在△ABC中,∠BAC的平分线AD和边BC的垂直平分线ED相交于点D,过点D作DF垂直于AC交AC的延长线于点F,若AB=8,AC=4,则CF的长为.26.(2022•宝安区校级一模)如图,在等腰Rt△OAA1中,∠OAA1=90°,OA=1,以OA1为直角边作等腰Rt△OA1A2,以OA2为直角边作等腰Rt△OA2A3,…则OA8的长度为.27.(2022•龙岗区模拟)如图△ABC中,AB=AC,∠BAC=120°,∠DAE=60°,BD=5,CE=8,则DE的长为.28.(2022•深圳三模)如图,在△ABC中,AB=AC.M、N分别是AB、AC的中点,D、E为BC上的点,连接DN、EM.若AB=5cm,BC=6cm,DE=3cm,则图中阴影部分的面积为cm2.29.(2022•福田区校级模拟)如图,△ABC中,AB=AC=8,D为BC上一点,BD=3,∠ADE=∠B=30°,则AE的长为.30.(2022•龙岗区校级模拟)如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE.设△ADF 的面积为S1,△CEF的面积为S2,若S△ABC=6,则S1﹣S2=.31.(2022•深圳模拟)如图,△ABC的顶点均在坐标轴上AE⊥BC于点E,交y轴于点D,已知点B,C的坐标分别为B(0,6),C(2,0).若AD=BC,则△AOD的面积为.三.解答题(共5小题)32.(2022•宝安区二模)如图1,在平面直角坐标系中,等边△ABC的边BC在x轴上,A(0,3),B(−√3,0),点M(m,0)为x轴上的一个动点,连接AM,将AM绕点A逆时针旋转60°得到AN.(1)当M点在B点的左方时,连接CN,求证:△BAM≌△CAN;(2)如图2,当M点在边BC上时,过点N作ND∥AC交x轴于点D,连接MN,若S四边形ACDN=43S△MND,试求D点的坐标;(3)如图3,是否存在点M,使得点N恰好在抛物线y=﹣2x2+4√3x+3上,如果存在,请求出m的值,如果不存在,请说明理由.33.(2022•龙岗区模拟)四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ADE≌△CBF;(2)若AC与BD相交于点O,求证:AO=CO.34.(2022•龙岗区模拟)如图,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,求证:AC =AE+CD.35.(2022•宁波一模)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.36.(2022•南山区一模)如图,在Rt△ABC中,∠C=90°,∠A=30°.点D是AB中点,点E为边AC 上一点,连接CD,DE,以DE为边在DE的左侧作等边三角形DEF,连接BF.(1)△BCD的形状为;(2)随着点E位置的变化,∠DBF的度数是否变化?并结合图说明你的理由;(3)当点F落在边AC上时,若AC=6,请直接写出DE的长.广东中考数学复习各地区2022-2022年模拟试题分类(深圳专版)(5)——三角形参考答案与试题解析一.选择题(共23小题)1.【答案】C【解答】解:如图,过点F作FG⊥CD于G,作∠HFC=∠DCE,交CD于H,连接OE交AD于P,连接AF,在AM上截取MQ=MC,连接FQ,∵四边形ABCD是正方形,△ADE是等边三角形,∴AD=CD,AE=AD=√6,∠ADE=60°,∠ADC=90°,∠ADB=∠CDB=45°,∴∠EDC=150°,DE=DC=√6,∴∠DEC=∠DCE=15°,∴∠HFC=∠DCE=15°,∴HC=HF,∠FHG=30°,∵FG⊥CD,∠BDC=45°,∠FHG=30°,∴DG=GF,GH=√3GF,HF=2GF=HC,∴DF=√2GF,∵CD=DG+HG+HC=(3+√3)GF=√6,∴GF=√6−√22,∴DF=√2GF=√3−1,故①正确;∵DE=AE,DO=AO,∴EO垂直平分AD,∴EP⊥AD,又∵△AED是等边三角形,AD=DE=√6,∴AP=√62,EP=√3AP=3√22,∵DO=AO,∠AOD=90°,OP⊥AD,AD=√6,∴OP=√6 2,∴EO=OP+EP=3√2+√62,∵S△AEC=S△AEO+S△EOC=12×3√2+√62×√6=3(√3+1)2,故②正确;∵FM平分∠AMC,∴∠CMF=∠AMF,又∵CM=QM,FM=FM,∴△CMF≌△QMF(SAS),∴∠MCF=∠FQM,FC=FQ,∵AD=CD,∠ADB=∠CDB,DF=DF,∴△ADF≌△CDF(SAS),∴AF=CF,∠DCF=∠DAF=15°,∴∠F AQ=75°,F A=FQ=FC,∴∠FQA=F AQ=75°,∴∠FQM=∠FCM=105°,∴∠DCM=120°,∵DC∥AB,∴∠AMC+∠DCM=180°,∴∠AMC=60°,故③正确;如图,过点C作CN⊥MF于N,设BM=a,∵∠CBM=90°,∠CMB=60°,∴CM=2BM=2a,CB=√3a=AB,∴AM=√3a+a,∴AM+CM=(√3+3)a,∵∠CMF=12∠CMA=30°,∴∠CFM=180°﹣105°﹣30°=45°,∵CN⊥FM,∠CMN=30°,∠CFM=45°,∴CN=12CM=a,MN=√3a,FN=CN=a,∴MF=√3a+a,∴AM+CM=√3MF,故④错误,故选:C.2.【答案】C【解答】解:∵b∥c,∴∠3=∠1=25°,∵△ABC是等边三角形,∴∠ABC=60°,∴∠4=∠ABC﹣∠3=60°﹣25°=35°,∵a∥b,∴∠2=∠4=35°,故选:C.3.【答案】C【解答】解:连接CH,由题意得,直线MN是线段AB的垂直平分线,∴AH=BH,∵CH=AH,∴CH=12AB,∴∠ACB=90°,∵∠A=22°,∴∠ACH=∠A=22°,∴∠BCH=∠B=68°,∵BC=BD,∴∠BDC=∠BCD=12(180°﹣68°)=56°,故选:C.4.【答案】A【解答】解:如图1中,过点B作BK⊥GH于K.∵B,G关于EF对称,∴EB=EG,∴∠EBG=∠EGB,∵四边形ABCD是正方形,∴AB=BC,∠A=∠ABC=∠BCD=90°,AD∥BC,∴∠AGB=∠EBG,∴∠AGB=∠BGK,∵∠A=∠BKG=90°,BG=BG,∴△BAG≌△BKG(AAS),∴BK=BA=BC,∠ABG=∠KBG,∵∠BKH=∠BCH=90°,BH=BH,∴Rt△BHK≌Rt△BHC(HL),∴∠1=∠2,∠HBK=∠HBC,故①正确,∴∠GBH=∠GBK+∠HBK=12∠ABC=45°,过点M作MQ⊥GH于Q,MP⊥CD于P,MR⊥BC于R.∵∠1=∠2,∴MQ=MP,∵∠MEQ=∠MER,∴MQ=MR,∴MP=MR,∴∠4=∠MCP=12∠BCD=45°,∴∠GBH=∠4,故②正确,如图2中,过点M作MW⊥AD于W,交BC于T.∵B,G关于EF对称,∴BM=MG,∵CB=CD,∠4=∠MCD,CM=CM,∴△MCB≌△MCD(SAS),∴BM=DM,∴MG=MD,∵MW⊥DG,∴WG=WD,∵∠BTM=∠MWG=∠BMG=90°,∴∠BMT+∠GMW=90°,∵∠GMW+∠MGW=90°,∴∠BMT=∠MGW,∵MB=MG,∴△BTM≌△MWG(AAS),∴MT=WG,∵MC=√2TM,DG=2WG,∴DG=√2CM,故③正确,∵AG=1,DG=2,∴AD=AB=TM=3,EM=WD=TM=1,BT=AW=2,∴BM=√aa2+aa2=√22+12=√5,故④正确,故选:A.5.【答案】C【解答】解:∵AB∥CE,∴∠AEC=∠A=40°,∵CE=DE,∴∠C=∠D,∴∠AEC=∠C+∠D=2∠C,∴∠C=12∠AEC=12×40°=20°.故选:C.6.【答案】B【解答】解:作GM⊥AB于M,如图,由作法得AG平分∠BAC,而GH⊥AC,GM⊥AB,∴GM=GH=2,∴S△ABG=12×5×2=5.故选:B.7.【答案】C【解答】解:∵点A、B的坐标分别为(1,2)、B(3,0).∴AB=2√2,①若AC=AB,以A为圆心,AB为半径画弧与坐标轴有3个交点(B点除外),即(﹣1,0)、(0,2+√7)、(0,2−√7),即满足△ABC是等腰三角形的C点有3个;②若BC=AB,以B为圆心,BA为半径画弧与坐标轴有2个交点,即满足△ABC是等腰三角形的C点有2个;③若CA=CB,作AB的垂直平分线与坐标轴有2个交点,即满足△ABC是等腰三角形的C点有2个.综上所述:点C在坐标轴上,△ABC是等腰三角形,符合条件的点C共有7个.故选:C.8.【答案】B【解答】解:∵AF⊥BC,BE⊥AC,D是AB的中点,∴DE=DF=12AB,∵AB=AC,AF⊥BC,∴点F是BC的中点,∴BF=FC=3,∵BE⊥AC,∴EF=12BC=3,∴△DEF的周长=DE+DF+EF=AB+3=7,∴AB=4,由勾股定理知AF=√aa2−aa2=√7,故选:B.9.【答案】B【解答】解:如图,过点B作BF∥DE交AC于点F.则∠BFC=∠DEF.又∵点D是AB的中点,∴EF=AE.∵∠DEF=∠BFC=180°﹣∠AED=180°﹣(90°+12∠C)=90°−12∠C,∴∠FBC=∠BFC,∴BC=FC,∴BC+2AE=AC.故选:B.10.【答案】B【解答】解:当腰长为4时,则三角形的三边长为:4、4、9;∵4+4<9,∴不能构成三角形;因此这个等腰三角形的腰长为9,则其周长=9+9+4=22.故选:B.11.【答案】D【解答】解:∵a2+b2=c2,∴∠ACB=90°,∴△ABC 是直角三角形,故①正确,∵DE ∥AC ,∴△DEB ∽△ACB , ∴aa aa =aa aa =aa aa , ∴a′a =a′a =a′a ,不妨设a′a =a′a =a′a =k , 则a ′=ak ,b ′=bk ,c ′=ck ,∵aa '+bb '=cc ',∴a 2k +b 2k =c 2k ,∴a 2+b 2=c 2,∴△ABC 是直角三角形,故②正确, ∵sin 2A +sin 2B =1,sin 2A +cos 2A =1,∴sin 2B =cos 2A ,∴sin B =cos A ,∵sin A =cos (90°﹣A ),∴90°﹣∠B =∠A ,∴∠A +∠B =90°,∴△ABC 是直角三角形,故③正确,∵1a 2+1a 2=1a 2, ∴a 2a 2+a 2a 2=1,∴sin 2B +sin 2A =1,∴△ABC 是直角三角形,故④正确.故选:D .12.【答案】B【解答】解:如图,∵a ∥b ,∴∠1=∠3=23°,∵∠4=45°,∠2=∠5,∴∠2=180°﹣∠3﹣∠5=112°,故选:B .13.【答案】C【解答】解:在Rt △ABD 中,∵∠ADB =90°,AB =16,∠B =45°,∴BA =DA =8√2,在Rt △ADC 中,∵∠ADC =90°,∠ACD =60°,AD =8√2,∴CD =8√63,∵CE 平分∠ACD ,∴∠ECD =30°,∴DE =CD •tan30°=8√23, ∴AE =AD ﹣DE =8√2−8√23=16√23,故选:C .14.【答案】D【解答】解:∵三角形的三条垂直平分线的交点到中间的凳子的距离相等,∴凳子应放在△ABC 的三条垂直平分线的交点最适当.15.【答案】C【解答】解:A、两边之和大于第三边,不符合题意;B、对于任意一个三角形都有内角和等于180°,不符合题意;C、只有直角三角形才有两个锐角的和等于90°,符合题意;D、等腰三角形顶角的平分线垂直于顶角的对边,而直角三角形(等腰直角三角形除外)没有任何一个角的平分线垂直于这个角的对边,不符合题意.故选:C.16.【答案】D【解答】解:∵MN是线段AB的垂直平分线,∴AD=BD,∵AB=AC=10,∴BD+CD=AD+CD=AC=10,∴△BCD的周长=AC+BC=10+6=16.故选:D.17.【答案】B【解答】解:由题意可知,三角形为等腰三角形,又由三边关系得出三角形第三边只能是2,所以周长是5.若另一边是1的话,则1+1=2不成立.故选:B.18.【答案】B【解答】解:∵AB∥CD,∴∠1=∠AEG.∵EG平分∠AEF,∴∠AEF=2∠AEG,∴∠AEF=2∠1=58°.∵AB∥CD,∴∠2=58°.故选:B.19.【答案】D【解答】解:∵a∥b,∠1=125°,∴∠ACD=125°,∵∠2=50°,∴∠3=125°﹣50°=75°.故选:D.20.【答案】D【解答】解:∵AB∥CD,∠1=58°,∴∠EFD=∠1=58°,∵FG平分∠EFD,∴∠GFD=12∠EFD=12×58°=29°,∵AB∥CD,∴∠FGB=180°﹣∠GFD=151°.故选:D.21.【答案】A【解答】解:∵AB∥CD,∴∠1=∠AEG.∵EG平分∠AEF,∴∠AEF=2∠AEG,∴∠AEF=2∠1=64°.∴∠2=64°.22.【答案】A【解答】解:∵a ∥b ,∠1=120°,∴∠ACD =120°,∵∠2=50°,∴∠3=120°﹣50°=70°,故选:A .23.【答案】A【解答】解:如图,∵AB ∥DE ,∴∠ABC =∠D =45°,又∵∠A =30°,∴∠1=∠A +∠ABC =75°,故选:A .二.填空题(共8小题)24.【答案】见试题解答内容【解答】解:∵在△ABC 中,AD ⊥BC ,垂足为点D ,BE ⊥AC ,垂足为点E ,∴△ABE ,△ADB 是直角三角形,∴EM ,DM 分别是它们斜边上的中线,∴EM =DM =12AB =5,∵ME =12AB =MA ,∴∠MAE =∠MEA , ∴∠BME =2∠MAE , 同理,MD =12AB =MA ,∴∠MAD =∠MDA ,∴∠BMD =2∠MAD ,∴∠EMD =∠BME ﹣∠BMD =2∠MAE ﹣2∠MAD =2∠DAC =60°,∴△EDM 是边长为5的等边三角形,∴S △EDM =√34×52=25√34. 故答案为:25√34.25.【答案】见试题解答内容【解答】解:连接CD ,DB ,过点D 作DM ⊥AB 于点M ,∵AD 平分∠F AB ,∴∠F AD =∠DAM ,在△AFD 和△AMD 中,{∠aaa =∠aaaaaaa =aaaa aa =aa ,∴△AFD ≌△AMD (AAS )∴AF =AM ,FD =DM ,∵DE 垂直平分BC∴CD =BD ,在Rt △CDF 和Rt △BDM 中,{aa =aa aa =aa , ∴Rt △CDF ≌Rt △BDM (HL )∴BM =CF ,∵AB =AM +BM =AF +MB =AC +CF +MB =AC +2CF ,∴8=4+2CF ,解得,CF =2,故答案为:2.26.【答案】见试题解答内容【解答】解:∵△OAA 1为等腰直角三角形,OA =1,∴AA 1=OA =1,OA 1=√2OA =√2;∵△OA 1A 2为等腰直角三角形,∴A 1A 2=OA 1=√2,OA 2=√2OA 1=2;∵△OA 2A 3为等腰直角三角形,∴A 2A 3=OA 2=2,OA 3=√2OA 2=2√2;∵△OA 3A 4为等腰直角三角形,∴A 3A 4=OA 3=2√2,OA 4=√2OA 3=4.∵△OA 4A 5为等腰直角三角形,∴A 4A 5=OA 4=4,OA 5=√2OA 4=4√2.∵△OA 5A 6为等腰直角三角形,∴A 5A 6=OA 5=4√2,OA 6=√2OA 5=8.∴OA 8的长度为√28=16.故答案为:16.27.【答案】见试题解答内容【解答】解:∵AB =AC ,∴可把△AEC 绕点A 顺时针旋转120°得到△AE ′B ,∴BE ′=EC =8,AE ′=AE ,∠E ′AB =∠EAC ,∵∠BAC =120°,∠DAE =60°,∴∠BAD +∠EAC =60°,∴∠E ′AD =∠E ′AB +∠BAD =60°,在△E ′AD 和△EAD 中{aa ′=aa aa′aa =aaaa aa =aa,∴△E ′AD ≌△EAD (SAS ),∴E ′D =ED ,过E ′作EF ⊥BD 于点F ,∵AB =AC ,∠BAC =120°,∴∠ABC =∠C =∠E ′BA =30°,∴∠E′BF=60°,∴∠BE′F=30°,∴BF=12BE′=4,E′F=4√3,∵BD=5,∴FD=BD﹣BF=1,在Rt△E′FD中,由勾股定理可得E′D=√(4√3)2+12=7,∴DE=7.故答案为7.28.【答案】见试题解答内容【解答】解:连接MN,作AF⊥BC于F,∵M、N分别是AB、AC的中点,∴MN=12BC=3,MN∥BC,∴AF⊥MN,∵AB=AC,AF⊥BC,∴FC=12BC=3,在Rt△AFC中,AF=√aa2−aa2=4,图中阴影部分的三个三角形的底长都是3cm,高的和为4cm,∴图中阴影部分的面积=12×3×4=6(cm2),故答案为:6.29.【答案】见试题解答内容【解答】解:如下图所示∵AB=AC∠B=∠C=30°=∠ADE而∠ADB=∠DAE+∠C∠DEC=∠DAE+∠ADE∴∠ADB=∠DEC又由∠B=∠C∴△ABD∽△DCE∴aa aa =aa aa又∵AB =8,∠B =30°∴AM =4,BM =CM =4√3∴CD =8√3−3于是有3aa =8√3−3 ∴CE =3√3−98于是AE =AC ﹣CE =8﹣3√3+98=738−3√3 故答案为738−3√3.30.【答案】见试题解答内容【解答】解:∵BE =CE ,∴BE =12BC ,∵S △ABC =6, ∴S △ABE =12S △ABC =12×6=3.∵AD =2BD ,S △ABC =6, ∴S △BCD =13S △ABC =13×6=2,∵S △ABE ﹣S △BCD =(S △ADF +S 四边形BEFD )﹣(S △CEF +S 四边形BEFD )=S △ADF ﹣S △CEF ,即S △ADF ﹣S △CEF =S △ABE ﹣S △BCD =3﹣2=1.故答案为:131.【答案】见试题解答内容【解答】解:∵AE ⊥BC ,∴∠AEC =90°,∵∠EAC +∠ACE =90°,∠DAO +∠ADO =90°,∴∠ADO =∠ACE ,在△ADO 和△BCO 中{∠aaa =∠aaaaaaa =aaaa aa =aa,∴△ADO ≌△BCO (AAS ),∴OD =OC =2,OA =OB =6,∴△AOD 的面积=12×2×6=6. 故答案为6.三.解答题(共5小题)32.【答案】见试题解答内容【解答】解:(1)证明:∵△ABC 是等边三角形,∴∠BAC =60°,AB =AC ,∵将AM 绕点A 逆时针旋转60°得到AN ,∴AM =AN ,∠MAN =60°=∠BAC ,即∠CAN +∠BAN =∠MAB +∠BAN ,∴∠CAN =∠MAB ,∴△BAM ≌△CAN (SAS );(2)如图1,连接CN ,由(1)可知△BAM ≌△CAN ,∴∠B =∠ACN =60°,∵DN ∥AC ,∴∠NDC =∠ACB =60°,∴∠NCD =60°,∴△CDN 是等边三角形,∴CN =DN ,∠CND =60°,∵AM =AN ,∠MAN =60°,∴△AMN 是等边三角形,∴AN =MN ,∠ANM =60°,∴∠ANC =∠MND ,∴△ANC ≌△MND (SAS ),∴S △ACN =S △MND ,∵S 四边形ACDN =43S △MND =S △ACN +S △CDN , ∴13a △aaa =a △aaa ,∴CD =13aa =13AB ,∵A (0,3),B (−√3,0),∴OA =3,OB =√3,∴AB =√aa 2+aa 2=2√3,∴CD =2√33,∴OD =OC +CD =√3+2√33=5√33, ∴D (5√33,0);(3)如图2,过点C 作CE ∥AB 交y 轴于点E ,由(1),(2)可知点N 在直线CE 上,CE 与抛物线交于点N 1,N 2,∴∠ABC =∠OCE =60°,OC =OB =√3, ∴OE =3,∴E (0,﹣3),设直线CE 的解析式为y =kx +b , ∴{√3a +a =0a =−3,解得:{a =√3a =−3, ∴直线CE 的解析式为y =√3x ﹣3, ∴{a =−2a 2+4√3a +3a =√3a −3, 解得:{a 1=2√3a 1=3,{a 2=−√32a 2−92, ∴N 1(2√3,3),N 2(−√32,−92), 若AM 绕点A 逆时针旋转60°得到AN 1时,M (m ,0), ∴AM =AN 1=2√3,∵AB =2√3,AN 1∥x 轴,∴点M 与点C 重合,即m =√3,若AM 绕点A 逆时针旋转60°得到AN 2时,M (m ,0), ∵C (0,√3),∴CN 2=(√3+|√32)2+(0+92)2=3√3, 由(1)可知BM 2=CN 2=3√3, ∴OM 2=OB +BM 2=√3+3√3=4√3, ∴m =﹣4√3.综合以上可得,m =√3或﹣4√3.33.【答案】见试题解答内容【解答】证明:(1)∵BE =DF , ∴BE ﹣EF =DF ﹣EF ,即BF =DE ,∵AE ⊥BD ,CF ⊥BD ,∴∠AED =∠CFB =90°,在Rt △ADE 与Rt △CBF 中,{aa =aa aa =aa , ∴Rt △ADE ≌Rt △CBF ;(2)如图,连接AC 交BD 于O ,∵Rt △ADE ≌Rt △CBF ,∴∠ADE =∠CBF ,∴AD ∥BC ,∴四边形ABCD 是平行四边形,∴AO =CO .34.【答案】见试题解答内容 【解答】证明:在AC 上取AF =AE ,连接OF ,∵AD 平分∠BAC 、∴∠EAO =∠F AO ,在△AEO 与△AFO 中,{aa =aa aaaa =aaaa aa =aa∴△AEO ≌△AFO (SAS ),∴∠AOE =∠AOF ;∵AD 、CE 分别平分∠BAC 、∠ACB ,∴∠ECA +∠DAC =12∠ACB +12∠BAC =12(∠ACB +∠BAC )=12(180°﹣∠B )=60°则∠AOC =180°﹣∠ECA ﹣∠DAC =120°;∴∠AOC =∠DOE =120°,∠AOE =∠COD =∠AOF =60°, 则∠COF =60°,∴∠COD =∠COF ,∴在△FOC 与△DOC 中,{∠aaa =∠aaa aa =aa aaaa =aaaa,∴△FOC ≌△DOC (ASA ),∴DC =FC ,∵AC =AF +FC ,∴AC =AE +CD .35.【答案】见试题解答内容 【解答】(1)证明:∵AD 平分∠CAB ,DE ⊥AB ,∠C =90°, ∴CD =ED ,∠DEA =∠C =90°,∵在Rt △ACD 和Rt △AED 中{aa =aaaa =aa , ∴Rt △ACD ≌Rt △AED (HL );(2)∵DC =DE =1,DE ⊥AB ,∴∠DEB =90°,∵∠B =30°,∴BD =2DE =236.【答案】见试题解答内容【解答】解:(1)∵在Rt △ABC 中,∠C =90°,∠A =30°, ∴AB =2BC ,∠CBD =60°.∵点D 是AB 中点,∴BD =BC ,∴△BCD 为等边三角形.故答案为:等边三角形.(2)∠DBF 的度数不变,理由如下:∵∠ACB =90°,点D 是AB 中点,∴CD =12AB =AD , ∴∠ECD =30°.∵△BDC 为等边三角形,∴BD =DC ,∠BDC =60°.又∵△DEF 为等边三角形,∴DF =DE ,∠FDE =60°,∴∠BDF +∠FDC =∠EDC +∠FDC =60°,∴∠BDF =∠CDE .在△BDF 和△CDE 中,{aa =aaaaaa =aaaa aa =aa ,∴△BDF ≌△CDE (SAS ),∴∠DBF =∠DCE =30°,即∠DBF 的度数不变.(3)∵△DEF 为等边三角形,∴∠DEF =∠DFE =60°.∵∠A =∠ECD =30°,∴∠ADE =∠CDF =30°,∴△CDF 、△ADE 为等腰三角形,∴CF =DF =EF =DE =AE ,∴DE =AE =13AC =2.。

2024年中考数学压轴题型(广东专用)专题04特殊平行四边形中全等相似与最值问题(学生版)

2024年中考数学压轴题型(广东专用)专题04特殊平行四边形中全等相似与最值问题(学生版)

专题04特殊平行四边形中全等相似与最值问题通用的解题思路:一、四边形与全等相似1.三角形与全等之六大全等模型:(1)一线三等角模型锐角一线三等角(2)手拉手模型(3)半角模型(4)倍长中线模型模型(6)雨伞等模型(5)平行线中等模型2.三角形与相似之四大相似模型:(1)A字模型(3)手拉手模型(2)8字模型(4)一线三等角模型B 二、四边形线段最值问题囹 1 C B D 02B (1)将军饮马模型两定一动模型一定两动模型两线段相减的最大值模型(三点共线)• B(2)费马点模型:将边以A 为顶点逆时针旋转60。

,得到AQE,连接P0则^APQ 为等边三角形,PA=PQ O1. (2023-r 东深圳•中考真题)(1)如图,在矩形ABCD 中,E 为AD 边上一点,连接BE,①若= 过C 作CFLBE 交BE 于点、F ,求证:AABE^AFCB ;②若S 矩形倔8 = 2。

时,则BECF=(2)如图,在菱形ABCD 中,cosA = |,过。

作CE1AB 交A8的延长线于点E,过E 作EF _LAD 交AD 于点、F ,若S 菱形*d =24时,求EF BC 的值.(3)如图,在平行四边形ABCD 中,匕4 = 60。

,AB = 6, AD=5,点E 在CD 上,且CE = 2,点F 为BC 上一点,连接时,过E 作EGLEF 交平行四边形ABCD 的边于点G,若EF ・EG = 70时,请直接写出AG 的长.D,E E a C C A B AB备用图2.(2022广东广州•中考真题)如图,在菱形ABCQ中,0BAD=120°,AB=6,连接8Q.⑴求BQ的长;⑵点E为线段BQ上一动点(不与点B,。

重合),点E在边AQ上,且BE二也DF,①当CE±AB时,求四边形的面积;②当四边形的面积取得最小值时,CE+右CT的值是否也最小?如果是,求CE+也CF的最小值;如果不是,请说明理由.题型一特殊平行四边形中全等相似计算1.(2024-P东汕头•一模)(1)如图1,在矩形ABCD中,E为AD边上一点,连接8E,①若BE=BC,过。

中考数学几何压轴题(有关三角形、四边形)的综合专题(含答案解析)

中考数学几何压轴题(有关三角形、四边形)的综合专题(含答案解析)

中考数学几何压轴题(有关三角形、四边形)的综合专题1、如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G,(1)求证:CF=BG;(2)延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB=CP+CF;(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=3,BG=6,求AC的长.2、[问题背景]如图1所示,在△ABC中,AB=BC,∠ABC=90°,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.[问题初探]如果点D在线段BC上运动,通过观察、交流,小明形成了以下的解题思路:过点E作EF⊥BC 交直线BC于F,如图2所示,通过证明△DEF≌△,可推证△CEF是三角形,从而求得∠DCE=.[继续探究]如果点D在线段CB的延长线上运动,如图3所示,求出∠DCE的度数.[拓展延伸]连接BE,当点D在直线BC上运动时,若AB=,请直接写出BE的最小值.3、(2019秋•锦江区校级期末)在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线.(1)如图1,求证:AD=2DC.(2)如图2,作∠CBD的角平分线交线段CD于点M,若CM=1,求△DBM的面积;(3)如图3,过点D作DE⊥AB于点E,点N是线段AC上一点(不与C、D重合),以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G,试探究线段ND,DG与AD之间的数量关系,并说明理由.4、(2019•镇平县三模)如图1,已知直角三角形ABC,∠ACB=90°,∠BAC=30°,点D是AC边上一点,过D作DE⊥AB于点E,连接BD,点F是BD中点,连接EF,CF.(1)发现问题:线段EF,CF之间的数量关系为;∠EFC的度数为;(2)拓展与探究:若将△AED绕点A按顺时针方向旋转α角(0°<α<30°),如图2所示,(1)中的结论还成立吗?请说明理由;(3)拓展与运用:如图3所示,若△AED绕点A旋转的过程中,当点D落到AB边上时,AB边上另有一点G,AD=DG=GB,BC=3,连接EG,请直接写出EG的长度.5、(2017春•西城区校级期末)如图1,在等腰△ABC中,AB=AC,∠BAC=a,点P是线段AB的中点,点E是线段CB延长线上一点,且PE=PC,将线段PC绕点P顺时针旋转α得到PD,连接BD.(1)如图2,若α=60°,其他条件不变,先补全图形,然后探究线段BD和BC之间的数量关系,并说明理由.(2)如图3,若α=90°,其他条件不变,探究线段BP、BD和BC之间的等量关系,并说明理由.6、【发现问题】如图1,已知△ABC,以点A为直角顶点、AB为腰向△ABC外作等腰直角△ABE.请你以A为直角顶点、AC为腰,向△ABC外作等腰直角△ACD(不写作法,保留作图痕迹).连接BD、CE.那么BD与CE的数量关系是BD=CE.【拓展探究】如图2,已知△ABC,以AB、AC为边向外作正方形AEFB和正方形ACGD,连接BD、CE,试判断BD与CE之间的数量关系,并说明理由.【解决问题】如图3,有一个四边形场地ABCD,∠ADC=60°,BC=15,AB=8,AD=CD,求BD的最大值.7、(1)如图1,点C为线段AB外一个动点,已知AB=a,AC=b.当点C位于BA的延长线上时,线段BC取得最大值,则最大值为(用含a,b的式子表示);(2)如图2,点C为线段AB外一个动点,若AB=10,AC=3,分别以AC,BC为边,作等边三角形ACD和等边三角形BCE,连接AE,DB.①求证:AE=DB;②请直接写出线段AE的最大值;(3)如图3,AB=6,点M为线段AB外一个动点,且AM=2,MB=MN,∠BMN=90°,请直接写出线段AN的最大值.8、【初步探索】(1)如图1:在四边形ABC中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF =BE+FD,探究图中∠BAE、∠F AD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;【拓展延伸】(3)如图3,已知在四边形ABCD中,∠ABC+∠ADC=180°AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.9、(2018•大东区一模)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P逆时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=45°,AC=,请直接写出BQ的长.10、模型发现:同学们知道,三角形的两边之和大于第三边,即如图1,在△ABC中,AB+AC>BC.对于图1,若把点C看作是线段AB外一动点,且AB=c,AC=b,则线段BC的长会因为点C的位置的不同而发生变化.因为AB、AC的长度固定,所以当∠BAC越大时,BC边越长.特别的,当点C位于时,线段BC的长取得最大值,且最大值为(用含b,c的式子表示)(直接填空).模型应用:点C为线段AB外一动点,且AB=3,AC=2,如图2所示,分别以AC,BC为边,作等边三角形ACD 和等边三角形BCE,连接BD,AE.(1)求证:BD=AE.(2)线段AE长的最大值为.模型拓展:如图3,在平面直角坐标系中,点A是y轴正半轴上的一动点,点B是x轴正半轴上的一动点,且AB =8.若AC⊥AB,AC=3,试求OC长的最大值.11、已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC =3MC,请直接写出的值.12、已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求的值.13、已知,△ABC中,AB=AC,∠BAC=90°,E为边AC任意一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,F也为AC上一点,且满足AE=CF,过A作AD⊥BE交BE于点H,交BC于点D,连接DF交BE于点G,连接AG;①若AG平分∠CAD,求证:AH=AC;②如图3,当G落在△ABC外时,若将△EFG沿EF边翻折,点G刚好落在AB边上点P,直接写出AG与EF的数量关系.14、如图所示,Rt△ABC中,∠ACB=90°,E为AC中点,作ED⊥AC交AB于D,连接CD;(1)如图1,求证:AB=2CD;(2)如图2,作CF⊥AB交AB于F,点G为CF上一点,点H为DE延长线上一点,分别连接AH、GH,若∠AHG=2∠B,求证:AH=GH;(3)如图3,在(2)的条件下,连接DG,且有DE=BF,∠EDG=90°,若AC=6,求AH的长度.15、【问题情境】一节数学课后,老师布置了一道课后练习题:如图:已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,点E、F分别在A和BC上,∠1=∠2,FG⊥AB于点G,求证:△CDE≌△EGF.(1)阅读理解,完成解答本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写这道练习题的证明过程;(2)特殊位置,证明结论若CE平分∠ACD,其余条件不变,求证:AE=BF;(3)知识迁移,探究发现如图,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,若点E是DB的中点,点F在直线CB上且满足EC=EF,请直接写出AE与BF的数量关系.(不必写解答过程)16、在正方形ABCD和等腰直角△BGF中,∠BGF=90°,P是DF的中点,连接PG、PC.(1)如图1,当点G在BC边上时,延长GP交DC于点E.求证:PG=PC;(2)如图2,当点F在AB的延长线上时,(1)中的结论是否成立?请证明你的结论;(3)如图3,若四边形ABCD为菱形,且∠ABC=60°,△BGF为等边三角形,点F在CB的延长线上时,线段PC、PG又有怎样的数量关系,请直接写出你的结论,并画出论证过程中需要添加的辅助线.17、在△ABC中,∠BAC=60°,点D、E分别在边AC、AB上,AD=AE,连接CE、BD相交于点F,且∠BEC=∠ADF,连接AF.(1)如图1,连接ED,求证:∠ABD=∠CED;(2)如图2,求证:EF+FD=AF;(3)如图3,取BC的中点G,连接AG交BD于点H,若∠GAC=3∠ABD,BH=7,求△ABH的面积.18、点D,E分别在△ABC的边AC,BD上,BD,CE交于点F,连接AF,∠F AE=∠F AD,FE=FD.(1)如图1,若∠AEF=∠ADF,求证:AE=AD;(2)如图2,若∠AEF≠∠ADF,FB平分∠ABC,求∠BAC的度数;(3)在(2)的条件下,如图3,点G在BE上,∠CFG=∠AFB若AG=6,△ABC的周长为20,求BC长.中考数学几何压轴题(有关三角形、四边形)的综合专题参考答案1、如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G,(1)求证:CF=BG;(2)延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB=CP+CF;(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=3,BG=6,求AC的长.证明:(1)如图1,∵∠ACB=90°,AC=BC,∴∠A=45°,∵CG平分∠ACB,∴∠ACG=∠BCG=45°,∴∠A=∠BCG,在△BCG和△CAF中,∵,∴△BCG≌△CAF(ASA),∴CF=BG;(2)如图2,∵PC∥AG,∴∠PCA=∠CAG,∵AC=BC,∠ACG=∠BCG,CG=CG,∴△ACG≌△BCG,∴∠CAG=∠CBE,∵∠PCG=∠PCA+∠ACG=∠CAG+45°=∠CBE+45°,∠PGC=∠GCB+∠CBE=∠CBE+45°,∴∠PCG=∠PGC,∴PC=PG,∵PB=BG+PG,BG=CF,∴PB=CF+CP;(3)解法一:如图3,过E作EM⊥AG,交AG于M,∵S△AEG=AG•EM=3,由(2)得:△ACG≌△BCG,∴BG=AG=6,∴×6×EM=3,EM=,设∠FCH=x°,则∠GAC=2x°,∴∠ACF=∠EBC=∠GAC=2x°,∵∠ACH=45°,∴2x+x=45,x=15,∴∠ACF=∠GAC=30°,在Rt△AEM中,AE=2EM=2,AM==3,∴M是AG的中点,∴AE=EG=2,∴BE=BG+EG=6+2,在Rt△ECB中,∠EBC=30°,∴CE=BE=3+,∴AC=AE+EC=2+3+=3+3.解法二:同理得:∠CAG=30°,AG=BG=6,如图4,过G作GM⊥AC于M,在Rt△AGM中,GM=3,AM===3,∵∠ACG=45°,∠MGC=90°,∴GM=CM=3,∴AC=AM+CM=3+3.2、[问题背景]如图1所示,在△ABC中,AB=BC,∠ABC=90°,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.[问题初探]如果点D在线段BC上运动,通过观察、交流,小明形成了以下的解题思路:过点E作EF⊥BC 交直线BC于F,如图2所示,通过证明△DEF≌△ADB,可推证△CEF是等腰直角三角形,从而求得∠DCE=135°.[继续探究]如果点D在线段CB的延长线上运动,如图3所示,求出∠DCE的度数.[拓展延伸]连接BE,当点D在直线BC上运动时,若AB=,请直接写出BE的最小值.解:[问题初探]如图2,过点E作EF⊥BC交直线BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEG是等腰直角三角形,∴∠ECF=45°,∴∠DCE=135°,故答案为:ADB,等腰直角,135;[继续探究]如图3,过点E作EF⊥BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEG是等腰直角三角形,∴∠ECF=45°,∴∠DCE=45°;[拓展延伸]如图4,在△ABC中,∠ABC=90°,AB=BC=,∴∠ACB=45°当点D在射线BC上时,由[问题初探]知,∠BCM=135°,∴∠ACM=∠BCM﹣∠ACB=90°,当点D在线段CB的延长线上时,由[继续探究]知,∠BCE=45°,∴∠ACN=∠ACB+∠BCM=90°,∴点E是过点C垂直于AC的直线上的点,∴当BE⊥MN时,BE最小,∵∠BCE=45°,∴∠CBE=45°=∠BCE,∴BE=CE,∴BE最小=BC=,即:BE的最小值为.3、在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线.(1)如图1,求证:AD=2DC.(2)如图2,作∠CBD的角平分线交线段CD于点M,若CM=1,求△DBM的面积;(3)如图3,过点D作DE⊥AB于点E,点N是线段AC上一点(不与C、D重合),以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G,试探究线段ND,DG与AD之间的数量关系,并说明理由.证明:(1)如图1,过点D作DE⊥AB,∵BD是△ABC的角平分线,DE⊥AB,∠ACB=90°,∴DC=DE,∵∠A=30°,DE⊥AB,∴AD=2DE,∴AD=2DC;(2)如图2,过点M作ME∥BD,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=30°,∵BM平分∠CBD,∴∠CBM=15°=∠DBM,∵ME∥BD,∴∠MEC=∠CBD=30°,∠EMB=∠DBM=∠MBE,∴ME=BE,∵∠MEC=30°,∠C=90°∴CE=MC=,ME=2MC=2=BE,∴BC=+2,∵∠CBD=30°,∠C=90°,∴BC=CD,∴CD=1+,∴DM=,∴△DBM的面积=××(+2)=1+;(3)若点N在CD上时,AD=DG+DN,理由如下:如图3所示:延长ED使得DW=DN,连接NW,∵∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于点E,∴∠ADE=∠BDE=60°,AD=BD,∵DN=DW,且∠WDN=60°∴△WDN是等边三角形,∴NW=DN,∠W=∠WND=∠BNG=∠BDN=60°,∴∠WNG=∠BND,在△WGN和△DBN中,∴△WGN≌△DBN(SAS),∴BD=WG=DG+DN,∴AD=DG+DN.(3)若点N在AD上时,AD=DG﹣DN,理由如下:如图4,延长BD至H,使得DH=DN,连接HN,由(1)得DA=DB,∠A=30°.∵DE⊥AB于点E.∴∠2=∠3=60°.∴∠4=∠5=60°.∴△NDH是等边三角形.∴NH=ND,∠H=∠6=60°.∴∠H=∠2.∵∠BNG=60°,∴∠BNG+∠7=∠6+∠7.即∠DNG=∠HNB.在△DNG和△HNB中,∴△DNG≌△HNB(ASA).∴DG=HB.∵HB=HD+DB=ND+AD,∴DG=ND+AD.∴AD=DG﹣ND.4、如图1,已知直角三角形ABC,∠ACB=90°,∠BAC=30°,点D是AC边上一点,过D作DE⊥AB于点E,连接BD,点F是BD中点,连接EF,CF.(1)发现问题:线段EF,CF之间的数量关系为EF=CF;∠EFC的度数为120°;(2)拓展与探究:若将△AED绕点A按顺时针方向旋转α角(0°<α<30°),如图2所示,(1)中的结论还成立吗?请说明理由;(3)拓展与运用:如图3所示,若△AED绕点A旋转的过程中,当点D落到AB边上时,AB边上另有一点G,AD=DG=GB,BC=3,连接EG,请直接写出EG的长度.解:(1)如图1中,∵DE⊥AB,∴∠BED=90°,∵∠BCD=90°,BF=DF,∴FE=FB=FD=CF,∴∠FBE=∠FEB,∠FBC=∠FCB,∴∠EFC=∠EFD+∠CFD=∠FBE+∠FEB+∠FBC+∠FCB=2(∠FBE+∠FBC)=2∠ABC=120°,故答案为:EF=CF,120°.(2)结论成立.理由:如图2中,取AB的中点M,AD的中点N,连接MC,MF,ED,EN,FN.∵BM=MA,BF=FD,∴MF∥AD,MF=AD,∵AN=ND,∴MF=AN,MF∥AN,∴四边形MFNA是平行四边形,∴NF=AM,∠FMA=∠ANF,在Rt△ADE中,∵AN=ND,∠AED=90°,∴EN=AD=AN=ND,同理CM=AB=AM=MB,在△AEN和△ACM中,∠AEN=∠EAN,∠MCA=∠MAC,∵∠MAC=∠EAN,∴∠AMC=∠ANE,又∵∠FMA=∠ANF,∴∠ENF=∠FMC,在△MFC和△NEF中,,∴△MFC≌△NEF(SAS),∴FE=FC,∠NFE=∠MCF,∵NF∥AB,∴∠NFD=∠ABD,∵∠ACB=90°,∠BAC=30°,∴∠ABC=60°,△BMC是等边三角形,∠MCB=60°∴∠EFC=∠EFN+∠NFD+∠DFC=∠MCF+∠ABD+∠FBC+∠FCB=∠ABC+∠MCB=60°+60°=120°.(3)如图3中,作EH⊥AB于H.在Rt△ABC中,∵∠BAC=30°,BC=3,∴AB=2BC=6,在Rt△AED中,∠DAE=30°,AD=2,∴DE=AD=1,在Rt△DEH中,∵∠EDH=60°,DE=1,∴EH=ED•sin60°=,DH=ED•cos60°=,在Rt△EHG中,EG==.5、如图1,在等腰△ABC中,AB=AC,∠BAC=a,点P是线段AB的中点,点E是线段CB延长线上一点,且PE=PC,将线段PC绕点P顺时针旋转α得到PD,连接BD.(1)如图2,若α=60°,其他条件不变,先补全图形,然后探究线段BD和BC之间的数量关系,并说明理由.(2)如图3,若α=90°,其他条件不变,探究线段BP、BD和BC之间的等量关系,并说明理由.解:(1)BC=2BD,理由:如图2,连接CD,由旋转可得,CP=DP,∠CPD=60°,∴△CDP是等边三角形,∴∠CDP=60°=∠PCD,又∵P是AB的中点,AB=AC,∠A=60°,∴等边三角形ABC中,∠PCB=30°,CP⊥AB,∴∠BCD=30°,即BC平分∠PCD,∴BC垂直平分PD,∴∠BDC=∠BPC=90°,∴Rt△BCD中,BC=2BD.(2)如图3,取BC中点F,连接PF,∵∠A=90°,AB=AC,∴△ABC是等腰直角三角形,∵P是AB的中点,F是BC的中点,∴PF是△ABC的中位线,∴PF∥AC,∴∠PFB=∠ACB=45°,∠BPF=∠A=90°,∴△BPF是等腰直角三角形,∴BF=BP,BP=PF,∵∠DPC=∠BPF=90°,∴∠BPD=∠FPC,又∵PD=PC,∴△BDP≌△FCP,∴BD=CF,∵BC=BF+FC,∴BC=BD+BP.6、【发现问题】如图1,已知△ABC,以点A为直角顶点、AB为腰向△ABC外作等腰直角△ABE.请你以A为直角顶点、AC为腰,向△ABC外作等腰直角△ACD(不写作法,保留作图痕迹).连接BD、CE.那么BD与CE的数量关系是BD=CE.【拓展探究】如图2,已知△ABC,以AB、AC为边向外作正方形AEFB和正方形ACGD,连接BD、CE,试判断BD与CE之间的数量关系,并说明理由.【解决问题】如图3,有一个四边形场地ABCD,∠ADC=60°,BC=15,AB=8,AD=CD,求BD的最大值.【发现问题】解:延长CA到M,作∠MAC的平分线AN,在AN上截取AD=AC,连接CD,即可得到等腰直角△ACD;连接BD、CE,如图1所示:∵△ABE与△ACD都是等腰直角三角形,∴AB=AE,AD=AC,∠BAE=∠CAD=90°,∴∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE,【拓展探究】解:BD=CE;理由如下:∵四边形AEFB与四边形ACGD都是正方形,∴AB=AE,AD=AC,∠BAE=∠CAD=90°,∴∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE;【解决问题】解:以AB为边向外作等边三角形ABE,连接CE,如图3所示:则∠BAE=60°,BE=AB=AE=8,∵AD=CD,∠ADC=60°,∴△ACD是等边三角形,∴∠CAD=60°,AC=AD,∴∠CAD+∠BAC=∠BAE+∠BAC,即∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE;当C、B、E三点共线时,CE最大=BC+BE=15+8=23,∴BD的最大值为23.7、如图1,点C为线段AB外一个动点,已知AB=a,AC=b.当点C位于BA的延长线上时,线段BC取得最大值,则最大值为a+b(用含a,b的式子表示);(2)如图2,点C为线段AB外一个动点,若AB=10,AC=3,分别以AC,BC为边,作等边三角形ACD和等边三角形BCE,连接AE,DB.①求证:AE=DB;②请直接写出线段AE的最大值;(3)如图3,AB=6,点M为线段AB外一个动点,且AM=2,MB=MN,∠BMN=90°,请直接写出线段AN的最大值.(1)解:∵点C为线段AB外一动点,且AC=b,AB=a,∴当点C位于BA的延长线上时,线段BC的长取得最大值,且最大值为AC+AB=a+b,(2)①证明:如图2中,∵△ACD与△BCE是等边三角形,∴CD=AC,CB=CE,∠ACD=∠BCE=60°,∴∠DCB=∠ACE,在△CAD与△EAB中,,∴△CAD≌△EAB(SAS),∴AE=BD.②∵线段AE长的最大值=线段BD的最大值,由(1)知,当线段BD的长取得最大值时,点D在BA的延长线上,∴最大值为AD+AB=3+10=13;(3)如图3中,连接BN,∵将△AMN绕着点M顺时针旋转90°得到△PBM,连接AP,则△APM是等腰直角三角形,∴MA=MP=2,BP=AN,∴P A=2,∵AB=6,∴线段AN长的最大值=线段BP长的最大值,∴当P在线段BA的延长线时,线段BP取得最大值最大值=AB+AP=6+2.8、【初步探索】(1)如图1:在四边形ABC中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF =BE+FD,探究图中∠BAE、∠F AD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是∠BAE+∠F AD=∠EAF;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;【拓展延伸】(3)如图3,已知在四边形ABCD中,∠ABC+∠ADC=180°AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.解:(1)∠BAE+∠F AD=∠EAF.理由:如图1,延长FD到点G,使DG=BE,连接AG,根据SAS可判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再根据SSS可判定△AEF≌△AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF.故答案为:∠BAE+∠F AD=∠EAF;(2)仍成立,理由:如图2,延长FD到点G,使DG=BE,连接AG,∵∠B+∠ADF=180°,∠ADG+∠ADF=180°,∴∠B=∠ADG,又∵AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;(3)∠EAF=180°﹣∠DAB.证明:如图3,在DC延长线上取一点G,使得DG=BE,连接AG,∵∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,∴∠ADC=∠ABE,又∵AB=AD,∴△ADG≌△ABE(SAS),∴AG=AE,∠DAG=∠BAE,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠F AE=∠F AG,∵∠F AE+∠F AG+∠GAE=360°,∴2∠F AE+(∠GAB+∠BAE)=360°,∴2∠F AE+(∠GAB+∠DAG)=360°,即2∠F AE+∠DAB=360°,∴∠EAF=180°﹣∠DAB.9、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P逆时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=45°,AC=,请直接写出BQ的长.解:(1)CP=BQ,理由:如图1,连接OQ,由旋转知,PQ=OP,∠OPQ=60°⊅∴△POQ是等边三角形,∴OP=OQ,∠POQ=60°,在Rt△ABC中,O是AB中点,∴OC=OA=OB,∴∠BOC=2∠A=60°=∠POQ,∴∠COP=∠BOQ,在△COP和△BOQ中,,∴△COP≌△BOQ(SAS),∴CP=BQ,(2)CP=BQ,理由:如图2,连接OQ,由旋转知,PQ=OP,∠OPQ=60°∴△POQ是等边三角形,∴OP=OQ,∠POQ=60°,在Rt△ABC中,O是AB中点,∴OC=OA=OB,∴∠BOC=2∠A=60°=∠POQ,∴∠COP=∠BOQ,在△COP和△BOQ中,,∴△COP≌△BOQ(SAS),∴CP=BQ,(3)如图3,在Rt△ABC中,∠A=30°,AC=,∴BC=AC•tan∠A=,过点O作OH⊥BC,∴∠OHB=90°=∠BCA,∴OH∥AB,∵O是AB中点,∴CH=BC=,OH=AC=,∵∠BPQ=45°,∠OHP=90°,∴∠BPQ=∠PQH,∴PH=OH=,∴CP=PH﹣CH=﹣=,连接BQ,同(1)的方法得,BQ=CP=.10、模型发现:同学们知道,三角形的两边之和大于第三边,即如图1,在△ABC中,AB+AC>BC.对于图1,若把点C看作是线段AB外一动点,且AB=c,AC=b,则线段BC的长会因为点C的位置的不同而发生变化.因为AB、AC的长度固定,所以当∠BAC越大时,BC边越长.特别的,当点C位于线段BA的延长线上时,线段BC的长取得最大值,且最大值为b+c(用含b,c的式子表示)(直接填空)模型应用:点C为线段AB外一动点,且AB=3,AC=2,如图2所示,分别以AC,BC为边,作等边三角形ACD 和等边三角形BCE,连接BD,AE.(1)求证:BD=AE.(2)线段AE长的最大值为5.模型拓展:如图3,在平面直角坐标系中,点A是y轴正半轴上的一动点,点B是x轴正半轴上的一动点,且AB =8.若AC⊥AB,AC=3,试求OC长的最大值.解:当点C位于线段BA的延长线上时,线段BC的长取得最大值,最大值为b+c,故答案为:线段BA的延长线上;b+c;模型应用:(1)证明:∵△ACD、△BCE都是等边三角形,∴CD=CA=AD,CB=CE,∠ACD=60°,∠BCE=60°,∴∠DCB=∠ACE,在△DCB和△ACE中,,∴△DCB≌△ACE(SAS)∴BD=AE;(2)当点D位于线段BA的延长线上时,线段BD的长取得最大值,最大值为AB+AD=AB+AC=3+2=5,∵AE=BD,∴线段AE长的最大值为5,模型拓展:取AB的中点G,连接OG、CG,在Rt△AOB中,G为AB的中点,∴OG=AB=4,在Rt△CAG中,CG===5,当点O、G、C在同一条直线上时,OC最大,最大值为4+5=9.11、已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC =3MC,请直接写出的值.(1)证明:如图1中,∵BE⊥AD于E,∴∠AEF=∠BCF=90°,∵∠AFE=∠CFB,∴∠DAC=∠CBF,∵BC=CA,∴△BCF≌△ACD,∴BF=AD.(2)结论:BD=2CF.理由:如图2中,作EH⊥AC于H.∵∠AHE=∠ACD=∠DAE=90°,∴∠DAC+∠ADC=90°,∠DAC+∠EAH=90°,∴∠DAC=∠AEH,∵AD=AE,∴△ACD≌△EHA,∴CD=AH,EH=AC=BC,∵CB=CA,∴BD=CH,∵∠EHF=∠BCF=90°,∠EFH=∠BFC,EH=BC,∴△EHF≌△BCF,∴FH=CF,∴BD=CH=2CF.(3)如图3中,同法可证BD=2CM.∵AC=3CM,设CM=a,则AC=CB=3a,BD=2a,∴==.12、已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求的值.(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,连接AK.∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,∴∠CFB=∠2+∠4+∠BAC,∵∠BFE=∠BAC=2∠EFC,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB=AC,∴△ABK≌CAF,∴∠3=∠4,S△ABK=S△AFC,∵∠1+∠3=∠2+∠3=∠CFE=∠AKB,∠BAC=2∠CEF,∴∠KAF=∠1+∠3=∠AKF,∴AF=FK=BK,∴S△ABK=S△AFK,∴=2.13、已知,△ABC中,AB=AC,∠BAC=90°,E为边AC任意一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,F也为AC上一点,且满足AE=CF,过A作AD⊥BE交BE于点H,交BC于点D,连接DF交BE于点G,连接AG;①若AG平分∠CAD,求证:AH=AC;②如图3,当G落在△ABC外时,若将△EFG沿EF边翻折,点G刚好落在AB边上点P,直接写出AG与EF的数量关系.(1)解:如图1中,在AB上取一点M,使得BM=ME,连接ME.在Rt△ABE中,∵OB=OE,∴BE=2OA=2,∵MB=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,设AE=x,则ME=BM=2x,AM=x,∵AB2+AE2=BE2,∴(2x+x)2+x2=22,∴x=(负根已经舍弃),∴AB=AC=(2+)•,∴BC=AB=+1.方法二:作EH⊥BC于H,求出BH,CH即可解决问题.(2)证明:如图2中,作CP⊥AC,交AD的延长线于P,GM⊥AC于M.∵BE⊥AP,∴∠AHB=90°,∴∠ABH+∠BAH=90°,∵∠BAH+∠P AC=90°,∴∠ABE=∠P AC,在△ABE和△CAP中,,∴△ABE≌△CAP,∴AE=CP=CF,∠AEB=∠P,在△DCF和△DCP中,,∴△DCF≌△DCP,∴∠DFC=∠P,∴∠GFE=∠GEF,∴GE=GF,∵GM⊥EF,∴FM=ME,∵AE=CF,∴AF=CE,∴AM=CM,在△GAH和△GAM中,,∴△AGH≌△AGM,∴AH=AM=CM=AC(3)解:结论:AG=EF.理由:如图3中,作CM⊥AC交AD的延长线于M,连接PG交AC于点O.由(2)可知△ACM≌△BAE,△CDF≌△CDM,∴∠AEB=∠M=∠GEF,∠M=∠CFD=∠GFE,AE=CM=CF,∴∠GEF=∠GFE,∴GE=GF,∵△EFP是由△EFG翻折得到,∴EG=EP=GF=PF,∴四边形EGFP是菱形,∴PG⊥AC,OE=OF,∵AE=CF,∴AO=OC,∵AB∥OP,∴BP=PC,∵PF∥BE,∴EF=CF=AE,∵PB=PC,AO=OC,∴PO=OG=AB,∴AB=PG,AB∥PG,∴四边形ABPG是平行四边形,∴AG∥BC,∴∠GAO=∠ACB=45°,设EO=OF=a,则OA=OG=3a,AG=3a,∴==,∴AG=EF14、如图所示,Rt△ABC中,∠ACB=90°,E为AC中点,作ED⊥AC交AB于D,连接CD;(1)如图1,求证:AB=2CD;(2)如图2,作CF⊥AB交AB于F,点G为CF上一点,点H为DE延长线上一点,分别连接AH、GH,若∠AHG=2∠B,求证:AH=GH;(3)如图3,在(2)的条件下,连接DG,且有DE=BF,∠EDG=90°,若AC=6,求AH的长度.解:(1)∵E为AC中点,作ED⊥AC交AB于D,∴AD=CD,∵∠ACB=90°,∴BC∥DE,∴AD=BD,∴CD=BD,∴AB=2CD;(2)如图2,连接CH,∵点E是AC的中点,∴AE=CE,∵DE⊥AC,∴CH=AH,∴∠ACH=∠CAH,∵∠ACB=90°,∴∠B+∠BAC=90°,∵CF⊥AB,∴∠BAC+∠ACF=90°,∴∠ACF=∠B,∴∠HCG=∠ACH+∠ACF=∠CAH+∠B,∠AHG=2∠B∴在四边形AHGF中,∠AFG+∠FGH+∠AHG+∠F AH=360°,∴∠FGH=360°﹣(∠AFG+∠AHG+∠F AH)=360°﹣(90°+2∠B+∠CAH+∠BAC)=360°﹣(90°+2∠B+∠CAH+90°﹣∠B)=360°﹣(180°+∠B+∠CAH)=180°﹣(∠B+∠CAH),∵∠CGH=180°﹣∠FGH=∠B+∠CAH=∠HCG,∴CH=GH,∵CH=AH,∴AH=GH;(3)如图3,由(1)知,DE∥BC,∴∠B=∠ADE,在△BFC和△DEA中,,∴△BFC≌△DEA,∴BC=AD,∵AD=BD=CD,∴BC=BD=CD,∴△BCD是等边三角形,∴∠B=60°,在Rt△ABC中,AC=6,∴BC=2,AB=4,∵CF⊥BD,∴DF=,CF=3,∵∠BAC=30°,∴∠ADE=60°,∵∠EDG=90°,∠FDG=30°,在Rt△DFG中,DF=,∴FG=1,DG=2,∴CG=CF﹣FG=2过点H作HN⊥CF,由(2)知,CH=GH,∴NG=CG=1,∴FN=NG+FG=2,过点H作HM⊥AB,∴∠FMH=∠NFM=∠HNF=90°,∴四边形NFMH是矩形,∴HM=FN=2,在Rt△DMH中,∠ADE=60°,HM=2,∴DH=,在Rt△HDG中,根据勾股定理得,HG==.15、【问题情境】一节数学课后,老师布置了一道课后练习题:如图:已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,点E、F分别在A和BC上,∠1=∠2,FG⊥AB于点G,求证:△CDE≌△EGF.(1)阅读理解,完成解答本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写这道练习题的证明过程;(2)特殊位置,证明结论若CE平分∠ACD,其余条件不变,求证:AE=BF;(3)知识迁移,探究发现如图,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,若点E是DB的中点,点F在直线CB上且满足EC=EF,请直接写出AE与BF的数量关系.(不必写解答过程)(1)证明:∵AC=BC,∠ACB=90°,∴∠A=∠B=45°,∵CD⊥AB,∴∠CDB=90°,∴∠DCB=45°,∵∠ECF=∠DCB+∠1=45°+∠1,∠EFC=∠B+∠2=45°+∠2,∠1=∠2,∴∠ECF=∠EFC,∴CE=EF,∵CD⊥AB,FG⊥AB,∴∠CDE=∠EGF=90°,在△CDE和△EGF中,,∴△CDE≌△EGF(AAS);(2)证明:由(1)得:CE=EF,∠A=∠B,∵CE平分∠ACD,∴∠ACE=∠1,∵∠1=∠2,∴∠ACE=∠2,在△ACE和△BEF中,,∴△ACE≌△BEF(AAS),∴AE=BF;(3)AE=BF,作EH⊥BC与H,如图3所示:设DE=x,根据题意得:BE=DE=x,AD=BD=2x,CD=AD=2x,AE=3x,根据勾股定理得:BC=AC=2x,∵∠ABC=45°,EH⊥BC,∴BH=x,∴CH=BC﹣BH=x,∵EC=EF,∴FH=CH=x,∴BF=x﹣x=x,∴=,∴AE=.16、在正方形ABCD和等腰直角△BGF中,∠BGF=90°,P是DF的中点,连接PG、PC.(1)如图1,当点G在BC边上时,延长GP交DC于点E.求证:PG=PC;(2)如图2,当点F在AB的延长线上时,(1)中的结论是否成立?请证明你的结论;(3)如图3,若四边形ABCD为菱形,且∠ABC=60°,△BGF为等边三角形,点F在CB的延长线。

中考数学中的三角形与四边形面积计算技巧总结

中考数学中的三角形与四边形面积计算技巧总结

中考数学中的三角形与四边形面积计算技巧总结在中考数学考试中,求解三角形与四边形的面积是一个常见的题型。

正确运用计算技巧可以快速准确地得出结果。

本文将总结中考数学中常用的三角形与四边形面积计算技巧,帮助同学们提高解题效率。

一、三角形面积计算技巧1. 直角三角形面积计算直角三角形是最简单的三角形,其面积计算公式为:面积 = 底边长度 ×高其中,底边是直角边,高是与底边垂直的边。

在解题时,可以利用勾股定理求得直角三角形的底边与高,从而计算出面积。

2. 一般三角形面积计算对于一般的三角形,我们可以利用海伦公式计算面积。

海伦公式的表达式为:面积= √[s × (s - a) × (s - b) × (s - c)]其中,s是三角形的半周长,等于三边长之和的一半;a、b、c分别是三角形的边长。

二、四边形面积计算技巧1. 矩形面积计算矩形是一种特殊的四边形,其面积计算公式为:面积 = 长 ×宽矩形的特点是四个角都是直角,且相对的两边长度相等。

在考试中遇到矩形的面积计算问题时,只需知道其长和宽即可直接计算出结果。

2. 平行四边形面积计算平行四边形也是一种常见的四边形,其面积计算公式为:面积 = 底边长度 ×高平行四边形的特点是两对边平行且相等,且相对的两个角也相等。

在计算平行四边形面积时,只需知道底边的长度以及与底边平行的高的长度即可。

3. 梯形面积计算梯形是一种具有两对平行边的四边形,其面积计算公式为:面积 = (上底 + 下底) ×高的一半梯形的关键是知道上底、下底和高的长度,通过将梯形划分为两个三角形和一个矩形,可以利用三角形和矩形的面积计算公式得出最终结果。

4. 菱形面积计算菱形是一种具有四个边相等的四边形,其面积计算公式为:面积 = 对角线1长度 ×对角线2长度的一半在计算菱形面积时,只需知道两条对角线的长度即可。

总结:在中考数学中,掌握三角形与四边形的面积计算技巧对解题非常重要。

2024年广东省中考数学总复习专题14:三角形及其全等

2024年广东省中考数学总复习专题14:三角形及其全等

2024年广东省中考数学总复习专题14三角形及其全等一、三角形的基础知识1.三角形的概念:由三条线段首尾顺次相接组成的图形,叫做三角形.2.三角形的三边关系1)三角形三边关系定理:三角形的两边之和大于第三边.推论:三角形的两边之差小于第三边.2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形;②当已知两边时,可确定第三边的范围;③证明线段不等关系.3.三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°.推论:①直角三角形的两个锐角互余;②三角形的一个外角等于和它不相邻的两个内角的和;③三角形的一个外角大于任何一个和它不相邻的内角.4.三角形中的重要线段1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线.2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线.3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高).4)连接三角形两边中点的线段叫做三角形的中位线,三角形的中位线平行于第三边,且等于第三边的一半.二、全等三角形1.三角形全等的判定定理:1)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”);2)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”);3)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”);4)角角边定理:有两角和它们所对的任意一边对应相等的两个三角形全等(可简写成“角角边”或“AAS”);5)对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”).2.全等三角形的性质:第1页(共9页)。

2024年中考数学三角形与四边形专题

2024年中考数学三角形与四边形专题

2024年中考数学三角形与四边形专题在中考数学中,三角形与四边形是非常重要的知识点,也是考试中经常出现的题型。

今天,咱们就来好好梳理一下这部分内容。

三角形,是最基础也是最常见的几何图形之一。

它具有稳定性,这一特性在生活中有着广泛的应用,比如自行车的车架、塔吊的支架等等。

三角形的内角和为 180 度,这是一个非常关键的性质。

我们可以通过这个性质来求解三角形中未知角的度数。

比如,已知一个三角形的两个内角分别为 50 度和 70 度,那么第三个角就是 180 50 70 = 60 度。

三角形的三边关系也很重要。

任意两边之和大于第三边,任意两边之差小于第三边。

这一关系可以用来判断三条线段能否组成一个三角形。

比如,有三条线段,长度分别为 3、4、8,因为 3 + 4 < 8,所以这三条线段不能组成三角形。

等腰三角形和等边三角形也是常见的类型。

等腰三角形的两腰相等,两个底角也相等。

等边三角形则更为特殊,它的三条边都相等,三个角都是 60 度。

直角三角形在三角形中也有着特殊的地位。

它满足勾股定理,即两条直角边的平方和等于斜边的平方。

比如,一个直角三角形的两条直角边分别为 3 和 4,那么斜边的长度就是√(3²+ 4²) = 5。

三角形的全等和相似也是中考的重点。

全等三角形的对应边和对应角都相等,判定全等三角形有“SSS”(边边边)、“SAS”(边角边)、“ASA”(角边角)、“AAS”(角角边)和“HL”(斜边、直角边)等方法。

相似三角形的对应边成比例,对应角相等,判定相似三角形的方法有“两角对应相等”“两边对应成比例且夹角相等”“三边对应成比例”。

说完三角形,咱们再来说说四边形。

四边形包括平行四边形、矩形、菱形、正方形等。

平行四边形的两组对边分别平行且相等,对角线互相平分。

矩形是特殊的平行四边形,它的四个角都是直角,对角线相等。

菱形也是特殊的平行四边形,它的四条边都相等,对角线互相垂直且平分每组对角。

中考数学专题复习:几何综合题

中考数学专题复习:几何综合题

【考点总结】四、全等三角形的性质与判定
1.概念:能够完全重合的两个三角形叫做全等三角形. 2.性质:全等三角形的对应边、对应角分别相等. 3.判定:(1)有三边对应相等的两个三角形全等,简记为(SSS); (2)有两边和它们的夹角对应相等的两个三角形全等,简记为(SAS); (3)有两角和它们的夹边对应相等的两个三角形全等,简记为(ASA); (4)有两角和其中一角的对边对应相等的两个三角形全等,简记为(AAS); (5)有斜边和一条直角边对应相等的两个直角三角形全等,简记为(HL).
三角形专题
1,掌握三角形相关基础知识(2课时)
目标
2,掌握三角形有关模型的全等或相似证明(3课时) 3,完成三角形有关模型的全等或相似证明(3课时)
三角形
模型
手拉手模型
三垂直模型
相似模型
三角形有关的知识
【考点总结】一、三角形中的重要线段 1.三角形的高线:从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做 三角形的高线,简称高. 特性:三角形的三条高线相交于一点. 2.三角形的中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.特性:三角 形的三条中线交于一点. 3.三角形的中位线:连接三角形两边中点的线段叫做三角形的中位线. 定理:三角形的中位线平行于第三边,且等于它的一半 4.三角形的角平分线:三角形一个角的平分线和这个角的对边相交,这个角的顶点和交点之间的线 段叫做三角形的角平分线. 特性:三角形的三条角平分线交于一点,这点叫做三角形的内心. 性质:角平分线上的点到角的两边的距离相等.
小组合作
1.在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.
(1)如图1,点M,N分别在AD,AB上,且∠BMN=90°,当∠AMN=30°,AB=2时,求线段

广东省2022年中考数学总复习指导课件:第2部分 专题4 第2讲 三角形或四边形的计算与证明

广东省2022年中考数学总复习指导课件:第2部分 专题4 第2讲 三角形或四边形的计算与证明
∴△BED≌△CFD(AAS),∴DE=DF. (2)解:∵∠BDE=40°,∴∠B=50°,∵∠B=∠C,∴∠C=50°. ∴∠BAC=180°-∠B-∠C=80°.
30
第一部分 专题四 中档解答题——提分练
返回导航
3.(2020 海珠区一模)如图,已知△ABC 中, AB=BC=10,tan∠ABC=34.
【思路点拨】(1)根据SAS可证明△AHB≌△AGC; (2)①证明△AEH≌△AFG(SAS),可得∠AFG=∠AEH=45°,从而 根据两角的和可得结论;②分两种情况:(i)AQ=QG时,(ii)当AG=QG 时,分别根据等腰三角形的性质可得结论. (1)证明:由旋转得AH=AG,∠HAG=90°. ∵∠BAC=90°,∴∠BAH=∠CAG. ∵AB=AC,∴△ABH≌△ACG(SAS).
第一部分 专题四 中档解答题——提分练
返回导航
26
返回导航
1.(2020孝感)如图,在□ABCD中,点E在AB的延长线上,点F在
CD的延长线上,满足BE=DF.连接EF,分别与BC,AD交于点G, H.求证:EG=FH.
27
第一部分 专题四 中档解答题——提分练
返回导航
证明:∵四边形 ABCD 是平行四边形,∴AB∥CD,∠ABC=∠CDA. ∴∠EBG=∠FDH,∠E=∠F.
25
第一部分 专题四 中档解答题——提分练
解:(1)∵四边形 ABCD 是平行四边形, ∴AB∥CD,AO=CO,∴∠FCO=∠EAO. ∵∠AOE=∠COF,∴△AOE≌△COF(ASA), ∴OE=OF=32,∴EF=2OE=3. (2)四边形 AECF 是菱形,理由如下: ∵△AOE≌△COF,∴AE=CF. ∵AE∥CF,∴四边形 AECF 是平行四边形. ∵EF⊥AC,∴四边形 AECF 是菱形.

广东省各市中考数学分类解析 专题10:四边形

广东省各市中考数学分类解析 专题10:四边形

广东中考数学试题分类解析汇编专题10:四边形一、选择题1. (广东佛山3分)依次连接任意四边形各边的中点,得到一个特殊图形(可认为是一般四边形的性质),则这个图形一定是【】A.平行四边形B.矩形C.菱形D.梯形【答案】 A。

【考点】三角形中位线定理,平行四边形的判定。

【分析】根据题意画出图形,如右图所示:连接AC,∵四边形ABCD各边中点是E、F、G、H,∴HG∥AC,HG=12AC,EF∥AC,EF=12AC。

∴EF=GH,EF∥GH。

∴四边形EFGH是平行四边形。

由于四边形EFGH是平行四边形,它就不可能是梯形;同时由于是任意四边形,所以AC=BD或AC⊥BD不一定成立,从而得不到矩形或菱形的判断。

故选A。

2.(广东广州3分)如图,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于点E,且EC=3,则梯形ABCD的周长是【】A.26B.25C.21D.20【答案】C。

【考点】等腰梯形的性质,平行四边形的判定和性质。

【分析】∵BC∥AD,DE∥AB,∴四边形ABED是平行四边形。

∴BE=AD=5。

∵EC=3,∴BC=BE+EC=8。

∵四边形ABCD是等腰梯形,∴AB=DC=4。

∴梯形ABCD的周长为:AB+BC+CD+AD=4+8+4+5=21。

故选C。

3. (广东广州3分)在平面中,下列命题为真命题的是【】A.四边相等的四边形是正方形B.对角线相等的四边形是菱形C.四个角相等的四边形是矩形D.对角线互相垂直的四边形是平行四边形【答案】C。

【考点】命题与定理,正方形的判定,菱形的判定,矩形的判定,平行四边形的判定。

【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案,不是真命题的可以举出反例排除:A、四边相等的四边形不一定是正方形,例如菱形,故此选项错误;B、对角线相等的四边形不是菱形,例如矩形,等腰梯形,故此选项错误;C、四个角相等的四边形是矩形,故此选项正确;D、对角线互相垂直的四边形不一定是平行四边形,如铮形(如图),故此选项错误。

中考数学专题复习《三角形和四边形中的中点问题》课件

中考数学专题复习《三角形和四边形中的中点问题》课件

A
解:如图,延长BM交AC于点E,
∵AM为∠BAC的平分线,BM⊥AM, ∴∠BAM=∠EAM,∠AMB=∠AME=90°.
E
M
又∵AM=AM,
B
D
C
∴△ABM≌△AEM(ASA).
∵D为△ABC中BC边的中点,
∴BM=ME,AB=AE=12. ∴CE=AC-AE=18-12=6.
∴DM是△BCE的中位线.
练一练
4.如图,∠ACB=90°,D为AB的中点,连接DC,并延长DC交AF于点E,
过点B作BF//DE,与AE的延长线交于点F,若BF长为 x ,AB长为 y ,
EC=2.求 y关于 x 的函数表达式.并说明理由.
F
解:y关于x的函数表达式为y=x-4.
理由如下:
∵D为AB的中点,BF//DE,
1.如图,在等腰三角形ABC中,点D 是底边BC的中点,若连接AD.
2.已知Rt△ABC中,∠C=90°, D为AB的中点.
结论:AD⊥BC;∠BAD=∠CAD.
结论:CD=AD =BD = 1 AB. 2
练一练
5. 如图,已知D为△ABC中BC边的中点,AB=12,AC=18,BM⊥AM
于点M.连接DM,若AM为∠BAC的平分线,求MD的长.
三角形和四边形中的中点问题
练一练
1.如图,在矩形ABCD中,BD=12,E,F分别是AB,BC的中点,则 EF的长为 6 .
【变式】如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,N是BC边上一
点,M为AB边上的动点,点D,E分别为CN,MN的中点,则DE的最小值
是( D )
A.2.5
C D
N
B.12

2020年广东省中考数学基础过关:三角形和多边形 课件(共35张PPT)

2020年广东省中考数学基础过关:三角形和多边形 课件(共35张PPT)

180°n-2 n
3当n为奇数时,正n边形是轴对称图形;当n为偶数时,既是轴对称图形,又是
中心对称图形
知识过关
知识点 1 三角形的三边关系(7年未考)
1.已知三角形的三边长为5,x, 8,那么x的取 值范围是__3_<_x_<__1_3__.
2.(2019毕节)在下列长度的三条线段中,不能 组成三角形的是( C )
1内角和定理:nn≥3边形的内角和等于⑥_(n_-__2_)_×__1_8_0_°
2外角和定理:nn≥3边形的外角和等于⑦___3_6_0_°____
3经过nn≥3边形的一个顶点可以作n-3条对角线, 它们将n边形分成n-2个
三角形,n边形的所有对角线条数为nn2-3条
2.正多边形的性质
1正n边形的各边相等,各角相等,每一个内角的度数为 2正n边形有n条对称轴
考情分析 2018年第8题,2017年第9题均涉及 三角形内角和;2015年第4题涉及三角形内、 外角关系.
4.在△ABC中,若∠A=30°,∠B=50°, 则∠C=____1_00_°____.
5.(2019孝感)如图1,直线l1∥l2,直线l3与l1, l2分别交于点A,C,BC⊥l3交l1于点B,若∠1 =70°,则∠2的度数为( B )
6.(2019广东)一个多边形的内角和是1 080°,这个多边形的边数是_____8_____.
7.(2014广东)一个等腰三角形的两边长分别是 3和7,则它的周长是( A )
A.17 B.15
C.13 D.13或17
8.下列语句错误的是( C ) A.三角形的垂心是三角形三条高的交点 B.三角形的重心是三角形三条中线的交点 C.三角形的垂心是三角形三条垂直平分线的

广东省数学中考一轮复习第四章三角形第15讲 三角形的基本概念和性质课件

广东省数学中考一轮复习第四章三角形第15讲 三角形的基本概念和性质课件


题19,4分

三角形的中位线 题6,3分
题7,3分
19(2),
3分
三角形的内心
题24(3), 2分
◇链接教材◇人教版:八上第十一章P2-P17,八下第十八章P47-
P49
北师版:七下第四章P81-P91,八上第七章P178-P183,八下第六章
P150-P152
课前预习
1.(202X柳州)若长度分别为3,4,a的三条线段能组成一个三角 形,则整数a的值可以是 5(答案不唯一) (写出一个即可). 2.(202X梧州)在△ABC中,∠A=20°,∠B=4∠C,则∠C等于 (A) A.32° B.36° C.40° D.128°
3.(202X湖北)如图,在△ABC中,∠C=90°,点D在AC上,
DE∥AB,若∠CDE=160°,则∠B的度数为( D )
A.40°
B.50°
C.60°
D.70°
第3题图
4.(202X宿迁)如图,在△ABC中,∠A=70°,∠C=30°,BD平
分∠ABC交AC于点D,DE∥AB,交BC于点E,则∠BDE的度数
A.①②③④ B.①②④
C.①②③

第6题图
7.(202X梧州)如图,在Rt△ABC中,点D,E,F分别是边AB,AC,
BC的中点,AC=8,BC=6,则四边形CEDF的面积是( B )
A.6
B.12
C.24
D.48
第7题图
8.(202X济宁)如图,在△ABC中,点D为△ABC的内心, ∠A=60°,CD=2,BD=4,则△DBC的面积是( B )
|a-6|+ b-8=0,则这个三角形的最大边 c 的取值范围是
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题六解答题突破——三角形和四边形
【例1】已知,如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.
(1)求证:△ACE≌△BCD;
(2)求证:2CD2=AD2+DB2.
1.如图,E是▱ABCD的边CD的中点,延长AE交BC的延长线于点F.
(1)求证:△ADE≌△FCE;
(2)若∠BAF=90°,BC=5,EF=3,求CD的长.
2.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.
(1)求证:BM=MN;
(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.
3.如图,在▱ABCD中,BC=4,AB=2,点E、F分别是BC、AD的中点.
(1)求证:△ABE≌△CDF;
(2)当四边形AECF为菱形时,求AC的长.
4.如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC 上,顶点E,H分别在AB,AC上,已知BC=40 cm,AD=30 cm.
(1)求证:△AEH∽△ABC;
(2)求这个正方形的边长与面积.
【例2】如图,在四边形ABCD中,BD垂直平分AC,垂足为F,E为四边形ABCD 外一点,且∠ADE=∠BAD,AE⊥AC.
(1)求证:四边形ABDE是平行四边形;
(2)如果DA平分∠BDE,AB=5,AD=6,求AC的长.
1.已知:如图,在▱ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF 分别交BA的延长线、DC的延长线于点G,H,交BD于点O.
(1)求证:△ABE≌△CDF;
(2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.
2.如图,在▱ABCD中,∠BAD的平分线交CD于点E,交BC的延长线于点F,连接BE,∠F=45°.
(1)求证:四边形ABCD是矩形;
(2)若AB=14,DE=8,求sin∠AEB的值.
3.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在射线DE上,并且EF=AC.
(1)求证:AF=CE;
(2)当∠B的大小满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论;
4.如图,已知四边形ABCD和四边形DEFG为正方形,点E在线段DC上,点A,D,G 在同一直线上,且AD=3,DE=1,连接AC,CG,AE,并延长AE交CG于点H.
(1)求证:∠DAE=∠DCG.
(2)求线段AH的长.
(3)求sin∠EAC的值;
课后作业:1.如图,在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB的中点,连结DE.
(1)证明DE∥CB;
(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.
2、如图,已知四边形ABDE是平行四边形,C为边BD延长线上一点,连结AC、CE,使AB=AC.(1)求证:△BAD≌△AEC;
(2)若∠B=30°,∠ADC=45°,BD=10,求平行四边形ABDE的面积.
3、如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.
求证:
(1)△AFD≌△CEB;
(2)四边形ABCD是平行四边形.
4、已知:如图,在矩形ABCD中,M,N分别是边AD、BC的中点,E,F分别是线段BM,CM 的中点.
(1)求证:△ABM≌△DCM;
(2)判断四边形MENF是什么特殊四边形,并证明你的结论;
(3)当AD:AB= 时,四边形MENF是正方形(只写结论,不需证明)
5、如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.
(1)求证:四边形AEBD是矩形;
(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.。

相关文档
最新文档