Simulink建模和仿真

合集下载

Simulink的控制系统建模与仿真

Simulink的控制系统建模与仿真

变量延迟模块
Variable Transport Delay
与可变时间延迟模块相似。 7
非连续模块组(Discontinuities)
8
非连续模块组的模块及功能介绍
名称
饱和模块 Saturation
死区模块 Dead Zone 动态死区模块 Dead Zone Dynamic 磁滞回环模块 Backlash 滞环继电模块
离散零极点增益模块 Discrete Zero-Pole
离散状态空间模块 Discrete State-Space
一阶保持器模块 First-Order Hold
零阶保持器模块 Zero-Older Hold
实现数字滤波器的数学模型。
实现零极点增益形式脉冲传递函数模型 。 实现离散状态空间模型。
实现一阶保持器。
脉冲信号输出。
斜坡信号输出。
正弦波信号输出。
阶跃信号输出。
随机数输出。
连续仿真时钟;在每一仿真步输 出当前仿真时间。 离散仿真时钟;在指定的采样间 隔内输出仿真时间。
16
信宿模块组(Sinks)
17
信宿模块组的模块及功能介绍
名称
输出端口模块 Out1
示波器模块 Scope
X-Y示波器模块 XY Graph
4
输出端口模块 ut1
示波器模块 Scope
求和模块 Sum
饱和模块 Saturation
积分模块 Integrator
子系统模块 Subsystems
单位延迟模块 Unit Delay
标准输出端口;生成子系统或作为模型的 输出端口。 显示实时信号。
实现代数求和;与ADD模块功能相同。
实现饱和特性;可设置线性段宽度。

第五章 Simulink系统建模与仿真

第五章 Simulink系统建模与仿真
第五章 Simulink建模与仿真
本章重点
Simulink基本结构 Simulink模块 系统模型及仿真
一、Simulink简介
Simulink 是MATLAB 的工具箱之一,提供交互式动态系统
建模、仿真和分析的图形环境
可以针对控制系统、信号处理及通信系统等进行系统的建 模、仿真、分析等工作 可以处理的系统包括:线性、非线性系统;离散、连续及 混合系统;单任务、多任务离散事件系统。
从模块库中选择合适的功能子模块并移至编辑窗口中,按 设计要求设置好各模块的参数,再将这些模块连接成系统 Simulink的仿真过程就是给系统加入合适的输入信号模块 和输出检测模块,运行系统,修改参数及观察输出结果等
过程
二、Simulink的基本结构
Simulink窗口的打开
命令窗口:simulink 工具栏图标:
三、Simulink模型创建
7、信号线的标志
信号线注释:双击需要添加注释的信号线,在弹出的文本编辑 框中输入信号线的注释内容
信号线上附加说明:(1) 粗线表示向量信号:选中菜单Forma t|Wide nonscalar lines 即可以把图中传递向量信号的信号线用粗 线标出;(2)显示数据类型及信号维数:选择菜单Format|Port data types 及Format|Signaldimensions,即可在信号线上显示前 一个输出的数据类型及输入/输出信号的维数;(3) 信号线彩 色显示:选择菜单Format|Sample Time Color,SIMULINK 将用 不同颜色显示采样频率不同的模块和信号线,默认红色表示最 高采样频率,黑色表示连续信号流经的模块及线。
同一窗口内的模块复制: (1)按住鼠标右键,拖动鼠标到目标

第3章 Simulink建模与仿真

第3章  Simulink建模与仿真

将仿真数据写入 mat 文件 将仿真数据写入. mat文件 将仿真数据输出到 将仿真数据输出到 Matlab 工作空间 MATLAB 工作空间 使用 Matlab 使用MATLAB 图形显示数据 图形显示数据
图3.10 系统输出模块库及其功能
第3章 Simulink建模与仿真
模块功能说明:
模块功能说明: 有限带宽白噪声
求取输入信号的数学函数值 对输入信号进行内插运算
求取输入信号的数学函数值 对输入信号进行内插运算 输入信号的一维线性内插
输入信号的一维线性内插
输入信号的二维线性内插 输入信号的二维线性内插 输入信号的 n 维线性内插 输入信号的n维线性内插
M函数(对输入进行运算输出结果) M 函数,对输入进行运算输出结果 多项式求值
第3章 Simulink建模与仿真
模块功能说明: 模块功能说明 : 连续信号的数值微分 连续信号的数值微分 输入信号的连续时间积分 输入信号的连续时间积分 单步积分延迟,输出为前一个输入 单步积分延迟,输出为前一个输入 线性连续系统的状态空间描述 线性连续系统的状态空间描述
线性连续系统的传递函数描述 线性连续系统的传递函数描述 对输入信号进行固定时间延迟 对输入信号进行固定时间延迟 对输入信号进行可变时间延迟 对输入信号进行可变时间延迟 线性连续系统的零极点模型 线性连续系统的零极点模型
合并输入信号块控制信息 信号组合器信号组合器 信号探测器信号探测器 信号维数改变器 选择或重组信号 信号线属性修改 输入信号宽度
信号维数改变器 选择或重组信号 信号线属性修改 输入信号宽度
第3章 Simulink建模与仿真
模块功能说明: 对信号进行分配
Target模块库:主要提供各种用来进行独立可执行代码 或嵌入式代码生成,以实现高效实时仿真的模块。它 们和RTW、TLC有着密切的联系。 (6) Stateflow库:对使用状态图所表达的有限状态 机模型进行建模仿真和代码生成。有限状态机用来描 述基于事件的控制逻辑,也可用于描述响应型系统。

Simulink建模与仿真

Simulink建模与仿真

《通信系统仿真》实验报告姓名杨利刚班级A0811 实验室203 组号28 学号28 实验日期实验名称实验三Simulink建模与仿真实验成绩教师签字一、实验目的1、了解simulink的相关知识2、掌握Matlab/simulink提供的基本模块库和常用的模块3、掌握simulink建模仿真的基本方法二、实验原理Simulink是MATLAB中的一种可视化仿真工具,是一种基于MATLAB的框图设计环境,是实现动态系统建模、仿真和分析的一个软件包,被广泛应用于线性系统、非线性系统、数字控制及数字信号处理的建模和仿真中。

Simulink可以用连续采样时间、离散采样时间或两种混合的采样时间进行建模。

它也支持多速率系统,也就是系统中的不同部分具有不同的采样速率,并且提供了交互式图形化环境和可定制模块库来对其进行设计、仿真、执行和测试。

Simulink基本库是系统建模中最常用的模块库,原则上一切模型都是可以由基本库中的模块来构建,为了方便专业用户使用,Simulink还提供了大量的专业模块库,如为通信系统和信号处理而提供的CDMA参考库、通信模块库和DSP模块库等,但是,建议初学者不宜过多使用这些专业库,而应当从所建摸的系统原理入手,利用基本模块来构建系统,以深入理解系统运行情况。

Simulink的常用库模块有12个:(1)连续时间线性系统库;(2)非连续系统库;(3)离散系统库;(4)查表操作模块;(5)数学函数库;(6)模型检查和建模辅助工具;(7)端口和子系统;(8)信号路由库;(9)信号属性转换库;(10)信号源库;(11)信宿和仿真显示仪器库;(12)用户自定义函数库。

Simulink的建模主要是子系统的建模,子系统建模完成后,再对其进行封装,即完成了一个基本模型的建立。

三、实验内容1、现有对RLC充放电电路进行仿真的模型。

请参照仿真模型,进行Simulink的建模仿真,相关参数按照例题中的参数设置。

MatlabSimulink系统建模和仿真

MatlabSimulink系统建模和仿真

图:电容的充电、放电过程的仿真结果。在充电仿真中,输出信号 为系统的零状态响应。在放电过程仿真中,输出信号为系统的零输 入响应。 如果要仿真系统输入信号为任意函数的情况,只需要修改仿 真程序中的输入信号设臵即可。
“实例2.3”单摆运动过程的建模和仿真。 (1)单摆的数学模型 设单摆摆线的固定长度为l ,摆线的质量忽略不计,摆锤质 量为m ,重力加速度为g ,设系统的初始时刻为t=0 ,在任 意 t 0 时刻摆锤的线速度为v(t) ,角速度为 w(t ) ,角位移 为 (t ) 。以单摆的固定位臵为坐标原点建立直角坐标系, 水平方向为x 轴方向。如下图所示。
图:电容的充电电路以及等价系统
(1)数学分析
首先根据网络拓扑和元件伏安特性建立该电路方程组
dy (t ) i (t ) C dt
dy (t ) 1 1 x(t ) y (t ) dt RC RC
y(t ) x(t ) Ri (t )
并化简得
该方程也称为系统的状态方程。在方程中,变量y 代表电 容两端的电压,是电容储能的函数。本例中它既是系统的 状态变量,又是系统的输出变量。
7.1 Matlab编程仿真的方法
7.1.1 概述 通过编程的形式建立计算机仿真模型是最基本的 计算机建模方法。Matlab编程仿真过程就是用编 写脚本文件或函数文件来描述数学模型,并实现 计算机数值求解的过程。 我们把外界对系统产生作用的物理量称为输入 信号或激励,把由于系统内部储存的能量称为系 统的状态,而将系统对外界的作用物理量称为系 统的输出信号或响应。
图:模拟真实示波器显示的调幅仿真波形,仿真中考虑了输 入信号与示波器扫描不同步,载波相位噪声以及加性信道噪 声的影响
7.1.3 连续动态系统的Matlab编程仿真 7.1.3.1 几个实例

simulink建模与仿真流程

simulink建模与仿真流程

simulink建模与仿真流程我们需要在Simulink中创建一个新的模型。

打开Simulink软件后,选择“File”菜单中的“New”选项,然后选择“Model”来创建一个新的模型。

接着,我们可以在模型中添加各种组件,如信号源、传感器、执行器等,以及各种数学运算、逻辑运算和控制算法等。

在建模过程中,我们需要定义模型的输入和输出。

在Simulink中,可以使用信号源模块来定义模型的输入信号,如阶跃信号、正弦信号等。

而模型的输出信号可以通过添加显示模块来实现,如示波器模块、作用域模块等。

接下来,我们需要配置模型的参数。

在Simulink中,可以通过双击组件来打开其参数设置对话框,然后根据需求进行参数配置。

例如,对于控制系统模型,我们可以设置控制器的增益、采样时间等参数。

完成模型的配置后,我们可以进行仿真运行。

在Simulink中,可以选择“Simulation”菜单中的“Run”选项来运行仿真。

在仿真过程中,Simulink会根据模型的输入和参数进行计算,并生成相应的输出结果。

我们可以通过示波器模块来实时显示模型的输出信号,以便进行结果分析和调试。

在仿真过程中,我们可以通过修改模型的参数来进行参数调优。

例如,可以改变控制器的增益值,然后重新运行仿真,观察输出结果的变化。

通过不断调整参数,我们可以优化模型的性能,使其达到设计要求。

除了单一模型的仿真,Simulink还支持多模型的联合仿真。

通过将多个模型进行连接,可以实现系统级的仿真。

例如,我们可以将控制系统模型和物理系统模型进行连接,以实现对整个控制系统的仿真。

在仿真完成后,我们可以对仿真结果进行分析和评估。

Simulink提供了丰富的分析工具,如频谱分析、时域分析和稳定性分析等。

通过对仿真结果的分析,我们可以评估模型的性能,并进行进一步的改进和优化。

Simulink建模与仿真流程包括创建模型、添加组件、定义输入输出、配置参数、运行仿真、参数调优、联合仿真和结果分析等步骤。

MATLAB使用Simulink 进行建模与仿真方法

MATLAB使用Simulink 进行建模与仿真方法

方法/步骤
第一步:我们打开MATLAB软件,然后 在命令窗口中输入simulink或点击左 上角的【新建】,然后选择 【simulink Model】,如下图所示。
方法/步骤
第二步:此时将进入如下图所示的 Simulink界面,我们点击工具栏中的 【Library Browser】,如下图所示。
方法/步骤
第五步:基本的仿真模型需要信号发 生装置,我们可以选择如下图所示的 各种信号发生器,如正弦波信号发生 器,我们将其拖动到仿真模型框图。
方法/步骤
第六步:有了信号发生装置,作为一 个合理的仿真模型则必有信号接收与 显示装置,如下图所示,我们可以选 择Scope进行波形显示。
方法/步骤
第七步:我们选择好基本的输入输出 装置后,如下图所示,我们在仿真模 型框图中布局好装置位置并进行连线。
方法/步骤
第八步:仿真模型连线完毕后,检查 无误后我们就可以按下【Run】按钮, 运行我们的仿真程序了,如下图所示, 我们可以在显示器件中观察仿真结果, 并进行模型调整与修改。
注意事项
Simulink是 MATLAB很强大的系统建模、仿真和分析功能组件,上述方法、步骤只介绍了使用 Simulink搭建最基础的输入输出模型。
参考资料:Matlab/Simulink通信系统建模与仿真实例分析
《Matlab/Simulink通信系统建模与仿真实例分析》是2008年清华大学出版的一本图书,作者是 邵玉斌。
参考资料:基于matlab/simulink的通信系统建模与仿真(十三五)
《基于matlab/simulink的通信系统建模与仿真(十三五)》是2017年10月北京航空航天大学出 版社出版的图书,作者张瑾,周原,姚巧鸽,赵静。本书以MATLAB R2016a为平台,通过大量的 MATLAB、Simulink仿真实例,加深读者对通信系统原理的理解。

如何使用MATLABSimulink进行动态系统建模与仿真

如何使用MATLABSimulink进行动态系统建模与仿真

如何使用MATLABSimulink进行动态系统建模与仿真如何使用MATLAB Simulink进行动态系统建模与仿真一、引言MATLAB Simulink是一款强大的动态系统建模和仿真工具,广泛应用于各个领域的工程设计和研究中。

本文将介绍如何使用MATLAB Simulink进行动态系统建模与仿真的方法和步骤。

二、系统建模1. 模型构建在MATLAB Simulink中,可以通过拖拽模块的方式来构建系统模型。

首先,将系统的元件和子系统模块从库中拖拽到模型窗口中,然后连接这些模块,形成一个完整的系统模型。

2. 参数设置对于系统模型的各个组件,可以设置对应的参数和初始条件。

通过双击模块可以打开参数设置对话框,可以设置参数的数值、初始条件以及其他相关属性。

3. 信号连接在模型中,各个模块之间可以通过信号连接来传递信息。

在拖拽模块连接的同时,可以进行信号的名称设置,以便于后续仿真结果的分析和显示。

三、系统仿真1. 仿真参数设置在进行系统仿真之前,需要设置仿真的起止时间、步长等参数。

通过点击仿真器界面上的参数设置按钮,可以进行相关参数的设置。

2. 仿真运行在设置好仿真参数后,可以点击仿真器界面上的运行按钮来开始仿真过程。

仿真器将根据设置的参数对系统模型进行仿真计算,并输出仿真结果。

3. 仿真结果分析仿真结束后,可以通过查看仿真器界面上的仿真结果来分析系统的动态特性。

Simulink提供了丰富的结果显示和分析工具,可以对仿真结果进行绘图、数据处理等操作,以便于对系统模型的性能进行评估。

四、参数优化与系统设计1. 参数优化方法MATLAB Simulink还提供了多种参数优化算法,可以通过这些算法对系统模型进行优化。

可以通过设置优化目标和参数范围,以及定义参数约束条件等,来进行参数优化计算。

2. 系统设计方法Simulink还支持用于控制系统、信号处理系统和通信系统等领域的特定设计工具。

通过这些工具,可以对系统模型进行控制器设计、滤波器设计等操作,以满足系统性能要求。

第三章 matlab的simulink建模与仿真

第三章 matlab的simulink建模与仿真

3、其它子系统
可配置子系统,代表用 户定义库中的任意模块, 只能在用户定义库中使用。 函数调用子系统。
for循环
3)在一个仿真时间步长内,simulink可以多次进出一 个子系统。 原子子系统:
1)子系统作为一个“实际”的模块,需顺序连续执行。
2)子系统作为整体进行仿真。
3)子系统中的模块在子系统中被排序执行。
建立原子子系统:
1)先建立一空的原子子系统。
2)先建立子系统,再强制转换成原子子系统。
Edit/block parameters
在enabled subsystem
triggered subsystem
enabled and triggered subsystem中。
1)早期simulink版本中,enable和triggered信号需要从 signal&system中调用。
2)simulink后期版本中,在上述模块中含这两个信号。 3)一个系统中不能含多个enable和triggered信号。 4)其它子系统可看成某种形式的条件执行子系统。
3.4创建simulink模型(简单入门)
一、启用simulink并建立系统模型 启动simulink: (1)用命令方式:simulink (2)
二、simulink模块库简介 1、simulink公共模块库 Continuous(连续系统)
连续信号数值积分 输入信号连续时间积分
单步积分延迟,输出为前一输入
动态模型:描述系统动态变化过程
静态模型:平衡状态下系统特性值之间的关系
二、计算机仿真
1、仿真的概念
以相似性原理、控制理论、信息技术及相关领域 的有关知识为基础,以计算机和各种专用物理设备为工 具,借助系统模型对真实系统进行实验研究的一门综合 性技术。 2、仿真分类 实物仿真:建造实体模型 数学模型:将数学语言编制成计算机程序 半实体模型:数学物理仿真

simulink建模与仿真

simulink建模与仿真

1. 假设从实际应用领域(力学、电学、生态或社会)中,抽象出有初始状态为0的二阶微分方程x"+0.2x'+0.4x=0.2u (t), u(t)是单位阶跃函数。

用积分器直接构造求解微分方程的模型exm1.mdl。

步骤如下:(1)改写微分方程。

把原方程改写为:x"=0.2u(t)-0.2x'-0.4x(2)利用Simulink模块库中的标准模块构作模型。

(3)仿真操作。

(4)保存在MATLAB工作空间中的数据。

u(t):阶跃信号——信号源模块库(Source)Clock:当前时间——信号源模块库(Source)Gain:常数增益——数学运算模块库(Math)Add:求和——数学运算模块库(Math)Integrator:积分——连续系统模块库(Continuous)Scope:示波器——输出模块库(Sinks)To Workspace:输出到工作空间——输出模块库(Sinks)2. 建立二阶系统222)(n n nS S S G ωςωω++=的脉冲响应模型,设ωn=10Hz ,观察当0<ζ<1、ζ=0、ζ=1及ζ>1时系统的响应。

Pulse Generator :脉冲发生器——信号源模块库(Source )Transfer Fun :传递函数——连续系统模块库(Continuous )Scope :示波器——输出模块库(Sinks )ζ=0.2 ζ=0ζ=1 ζ=53.皮球以15米/秒的速度从10米高的地方落下,建立显示球弹跳轨迹的模型。

Gravity:常数——信号源模块库(Source)IC Elasticity:信号的初始值——信号与系统模块库(Signal&Systems)Gain:常数增益——数学运算模块库(Math)Velocity:积分——连续系统模块库(Continuous)Position:有上下边界的有限积分——连续系统模块库(Continuous)Scope:示波器——输出模块库(Sinks)4. 利用使能原理构成一个正弦半波整流器。

实验5_SIMULINK建模与仿真实验

实验5_SIMULINK建模与仿真实验

课外实验 SIMULINK 建模与仿真实验 实验目的1、 掌握用SIMULINK 创建和编辑仿真模型的方法2、 掌握用SIMUINK 进行离散时间系统建模仿真的方法3、 熟悉用SIMUINK 进行连续时间系统建模仿真的方法4、 掌握SIMULINK 中子系统的创建、装帧及控制执行方法5、 掌握S 函数模块的创建和使用方法6、 熟悉用MA TLAB 指令运行SIMULINK 模型的方法实验内容1、 启动SIMULINK (使用simulink 命令),浏览Simulink Libarory Browser ,熟悉Simulink 提供的各种模块,参照下图建立仿真模型,求解以下微分方程的数值解: 2)0(',1)0(,300,cos )(sin d d d d 22==≤≤=⋅-+--y y x x e x y x x y e x y x x 实验过程中,注意练习模块的选定、复制、移动、删除、调整大小、旋转、改名、隐藏模块名、模块加阴影、模块参数设置,信号线的产生、移动、删除、分支、折曲、宽度显示、色彩、插入模块、标识,模型注释、仿真配置等。

2、 加法器是数字系统中最基本的逻辑器件,它可用于二进制的减法运算、乘法运算,BCD 码的加、减法,码组变换,数码比较等。

查阅加法器及相关资料,完成以下实验:(1)利用Simulink 中的Logical Operator 等模块建立一个全加器逻辑电路仿真模型;(2)将所设计的全加器另存为一个新文件(以防止后续操作破坏原文件),将其封装(简装)成一个子系统;(3)对简装的全加器进一步进行装帧(精装);(4)利用精装的全加器设计一个加法器应用系统仿真模型,设计的应用模型中,尽可能用到Enabled Subsystem 、Trigged Subsystem 和Trigged and Enabled Subsystem 等条件执行子系统。

3、 自编S 函数实现全加器功能,将上一实验第(4)步设计的应用系统中的全加器用S 函数模块替换,通过实验检验S 函数模块的功能是否正确。

第五讲 基于MATLAB-Simulink的建模与仿真

第五讲  基于MATLAB-Simulink的建模与仿真
MATLAB的功能包括:数值分析,数值和符号计算, 工程和科学绘图,通讯和控制系统的设计与仿真,数字图 像与信号处理,财务与金融工程等。
MATLAB软件简介?
MATLAB软件的典型应用领域:
❖科学研究; ❖工程技术应用研究 ❖CAI(Computer Aided Instruct) ❖数学实验(Mathematical Experiment) ❖数学建模(Mathematical Modeling)
模型 Transfer-Fcn:线性传递函数模型 Zero-Pole:以零极点表示的传递
函数模型 Memory:存储上一时刻的状态值 Transport Delay:输入信号延时 一个给定时间再输出 Variable Transport Delay:输入 信号延时一个可变时间再输出
✓ 离散模块(Discrete)
For循环不能用For循环内重新赋值循环变
量n来终止。
在For循环中循环控制量的范围可以是任
何有效的MATLAB矩阵。比如
data=[11 9 45 6; 7 16 -1 5];
for n=data
x=n(1)-n(2)
end 这时程序的输出有四个数值,分别是矩阵
data的两列相减的结果
x = 4 x = -7
x = 46 x = 1
For循环可按需要嵌套,即For循环体内的命 令组中可以出现另一个For循环体,这体现了 For循环体也是命令组。比如 for n=1:5
for m=5:-1:1
A(n,m)=n^2+m^2; End
end
MATLAB软件简介?
While-end循环以不定的次数求一组语句的值。 Whil-end 循环的一般形式是: while expression(控制表达式) {commands} end 只要在控制表达式(expression)里的所有元 素为真,就执行While和end语句之间的命令 串({commands})。

Simulink建模与仿真

Simulink建模与仿真
⑤ 决定所有无显示设定采样时间的模块的采样时间; ⑥ 分配和初始化用于存储每个模块的状态和输入当前值的存储空间。
3.2.2、仿真运行原理
Simulink仿真包括两个阶段;初始化阶段和模型执行阶段
(1) 模块初始化
在初始化阶段主要完成以下工作: ① 模型参数传给Matlab进行估值,得到的数值结果将作为模型 的实际参数; ② 展开模型的各个层次,每一个非条件执行的子系统被它所包 含的模块所代替;
上 页 下7 页
综上所述,Simulink就是一种开放性的,用来模拟线性或非线 性的以及连续或离散的或者两者混合的动态系统的强有力的系 统级仿真工具。
上 页 下3 页
Simulink的特点:
(1)丰富的可扩充的预定义模块库 ; (2)交互式的图形编辑器来组合和管理直观的模块图 ; (3)以设计功能的层次性来分割模型,实现对复杂设计的管理; (4)通过Model Explorer 导航、创建、配置、搜索模型中的任
上 页 下6 页
Simulink模型并不一定要包含全部的三种元素,在实际应用 中通常可以缺少其中的一个或两个。
例如,若要模拟一个系统偏离平衡位置后的恢复行为,就可 以建立一个没有输入而只有系统模块加一个显示模块的模型。
在某种情况下,也可以建立一个只有源模块和显示模块的系 统。若需要一个由几个函数复合的特殊信号,则可以使用源模块 生成信号并将其送入Matlab工作间或文件中。
Simulink 仿真基础
1 Simulink的概述 2 基本操作 3 基本模块 4 建模方法 5 系统仿真举例
1
3.1 Simulink的概述
Simulink已经成为动态系统建模和仿真领域中应用最为广泛的软件之 一。Simulink可以很方便地创建和维护一个完整的模块,评估不同的 算法和结构,并验证系统的性能。由于Simulink是采用模块组合方式 来建模,从而可以使得用户能够快速、准确地创建动态系统的计算机 仿真模型,特别是对复杂的不确定非线性系统,更为方便。

simulink建模及动态仿真的一些实验步骤

simulink建模及动态仿真的一些实验步骤

simulink建模及动态仿真的一些实验步骤Simulink是MATLAB中的一种可视化仿真工具,可以用于动态系统建模、仿真和分析。

以下是一些Simulink建模及动态仿真的实验步骤:启动Simulink:首先,需要打开MATLAB,然后在MATLAB 的命令窗口中输入“simulink”命令,或者点击工具栏中的Simulink 图标来启动Simulink。

新建模型:在Simulink的启动界面中,可以选择“Blank Model”来新建一个空白的模型。

也可以选择其他预设的模型模板来开始建模。

构建系统模型:在新建的模型窗口中,可以通过从Simulink 的模块库中拖拽模块到模型窗口中来构建系统模型。

模块库中包含了各种类型的模块,如源模块、接收模块、处理模块等。

将这些模块按照系统的结构和功能连接起来,形成一个完整的系统模型。

设置模块参数:对于模型中的每个模块,都可以双击打开其参数设置对话框,设置其参数和初始条件。

这些参数和初始条件将决定模块在仿真中的行为。

设置仿真参数:在模型窗口的工具栏中,可以点击“Simulation”->“Model Configuration Parameters”来打开仿真参数设置对话框。

在这个对话框中,可以设置仿真的起始和结束时间、仿真步长、求解器类型等参数。

开始仿真:完成以上步骤后,可以点击模型窗口工具栏中的“Run”按钮来开始仿真。

在仿真过程中,可以实时观察模型中各个模块的状态和输出。

分析结果:仿真结束后,可以使用Simulink提供的各种分析工具来分析仿真结果。

例如,可以使用示波器模块来显示仿真过程中某个模块的输出波形,也可以使用MATLAB的工作空间来查看和处理仿真数据。

以上步骤是一个基本的Simulink建模和动态仿真的过程。

在实际使用中,可能还需要根据具体的需求和系统特点进行一些额外的设置和调整。

了解MATLABSimulink进行系统建模与仿真

了解MATLABSimulink进行系统建模与仿真

了解MATLABSimulink进行系统建模与仿真MATLAB Simulink是一款功能强大的工具,专门用于系统建模和仿真。

它可以帮助工程师和科研人员设计复杂的系统、开展仿真分析,并支持快速原型设计和自动生成可执行代码。

本文将详细介绍MATLAB Simulink的基本概念、系统建模与仿真流程,以及其在各个领域中的应用。

第一章:MATLAB Simulink简介MATLAB Simulink是MathWorks公司开发的一款图形化建模和仿真环境。

它包含了一系列模块,可以通过简单地拖拽和连接来模拟和分析复杂的系统。

Simulink中的模块代表不同的系统组件,例如传感器、执行器、控制器等。

用户可以通过连接这些模块来构建整个系统,并通过仿真运行模型以评估系统的性能。

第二章:系统建模基础系统建模是使用Simulink进行系统设计的关键步骤。

在建模之前,需要明确系统的输入、输出和所涉及的物理量。

Simulink提供了广泛的模块库,包括数学运算、信号处理、控制等,这些模块可以方便地应用到系统中。

用户可以选择合适的模块,并通过线连接它们来形成系统结构。

此外,Simulink还支持用户自定义模块,以满足特定的需求。

第三章:MATLAB与Simulink的联合应用MATLAB和Simulink是密切相关的工具,它们可以互相配合使用。

MATLAB提供了强大的数学计算和数据分析功能,可以用于生成仿真所需的输入信号,以及分析仿真结果。

同时,Simulink也可以调用MATLAB代码,用户可以在模型中插入MATLAB函数块,以实现更复杂的计算和控制逻辑。

第四章:系统仿真与验证系统仿真是利用Simulink来验证系统设计的重要步骤。

通过设置仿真参数和初始条件,用户可以运行模型来模拟系统的行为。

仿真可以包括不同的输入场景和工况,以验证系统在不同条件下的性能和稳定性。

Simulink提供了丰富的仿真分析工具,例如波形显示器、频谱分析等,可以帮助用户分析仿真结果并进行必要的调整。

基于matlab simulink的控制系统仿真及应用

基于matlab simulink的控制系统仿真及应用

基于matlab simulink的控制系统仿真及应用Simulink是MATLAB的一个附加组件,它提供了一种可视化建模和仿真环境,主要用于控制系统、信号处理、通信系统等领域的建模和仿真。

以下是一个简单的基于Simulink的控制系统仿真的步骤:
1. 模型建立:首先,你需要使用Simulink库中的模块来构建你的控制系统模型。

这些模块包括输入、输出、控制算法等。

你可以直接从库中拖放模块到你的模型中,然后通过连接线将它们连接起来。

2. 参数设置:在连接模块后,你需要为每个模块设置适当的参数。

例如,对于传递函数模块,你需要输入分子和分母的系数。

3. 仿真设置:在完成模型和参数设置后,你需要设置仿真参数,例如仿真时间、步长等。

4. 运行仿真:最后,你可以运行仿真并查看结果。

Simulink提供了多种方式来查看结果,包括图形和表格。

在Simulink中,你可以使用许多内建的工具和函数来分析和优化你的控制系统。

例如,你可以使用MATLAB的控制系统工具箱中的函数来分析系统的稳定性、频率响应等。

总的来说,Simulink是一个强大的工具,可以用于设计和分析各种控制系统。

通过学习和掌握这个工具,你可以更有效地进行控制系统设计和仿真。

基于MATLABSimulink的控制系统建模与仿真实践

基于MATLABSimulink的控制系统建模与仿真实践

基于MATLABSimulink的控制系统建模与仿真实践控制系统是现代工程领域中一个至关重要的研究方向,它涉及到对系统的建模、分析和设计,以实现对系统行为的控制和调节。

MATLAB Simulink作为一款强大的工程仿真软件,在控制系统领域有着广泛的应用。

本文将介绍基于MATLAB Simulink的控制系统建模与仿真实践,包括建立系统模型、进行仿真分析以及设计控制算法等内容。

1. 控制系统建模在进行控制系统设计之前,首先需要建立系统的数学模型。

MATLAB Simulink提供了丰富的建模工具,可以方便快捷地搭建系统模型。

在建模过程中,可以利用各种传感器、执行器、控制器等组件来描述系统的结构和功能。

通过连接这些组件,并设置其参数和初始条件,可以构建出一个完整的系统模型。

2. 系统仿真分析建立好系统模型后,接下来就是进行仿真分析。

MATLABSimulink提供了强大的仿真功能,可以对系统进行各种不同条件下的仿真实验。

通过改变输入信号、调节参数值等操作,可以观察系统在不同工况下的响应情况,从而深入理解系统的动态特性和性能指标。

3. 控制算法设计在对系统进行仿真分析的基础上,可以针对系统的性能要求设计相应的控制算法。

MATLAB Simulink支持各种常见的控制算法设计方法,如PID控制、状态空间法、频域设计等。

通过在Simulink中搭建控制算法,并与系统模型进行联合仿真,可以验证算法的有效性和稳定性。

4. 系统优化与调试除了基本的控制算法设计外,MATLAB Simulink还提供了优化工具和调试功能,帮助工程师进一步改进系统性能。

通过优化算法对系统参数进行调整,可以使系统响应更加迅速、稳定;而通过调试功能可以检测和排除系统中可能存在的问题,确保系统正常运行。

5. 实例演示为了更好地说明基于MATLAB Simulink的控制系统建模与仿真实践,接下来将通过一个简单的倒立摆控制系统实例进行演示。

matlabsimulink动力学建模与仿真

matlabsimulink动力学建模与仿真

matlabsimulink动力学建模与仿真
Matlab Simulink是一种功能强大的动力学建模和仿真软件。


可以帮助工程师和科研人员以直观的方式创建和分析各种系统的数学
模型。

使用Matlab Simulink,我们可以轻松地建立复杂的动力学系统模型,例如机械系统、电力系统、控制系统等。

Matlab Simulink提供了丰富的图形化建模功能,用户可以使用
预定义的模块和组件来组装模型。

这些模块包括各种传感器、执行器、控制器等,用户只需拖拽和连接这些模块即可快速搭建所需的系统模型。

用户还可以通过自定义模块来增加系统的特定功能。

在模型建立完成后,Matlab Simulink提供了各种仿真和分析工具,可以帮助用户验证和优化系统设计。

用户可以设置仿真参数,例
如仿真时间、信号输入等,然后运行仿真以观察系统的动态行为。


过仿真结果,用户可以评估系统的性能指标,并进行参数调整和优化。

此外,Matlab Simulink还支持与MATLAB的深度集成,用户可以在仿
真过程中使用MATLAB的强大数学和数据处理功能。

总之,Matlab Simulink是一个强大的动力学建模和仿真工具,
它可以帮助工程师和科研人员快速建立和分析各种系统模型。

通过使
用Matlab Simulink,我们可以更好地理解和预测系统的行为,从而提供有效的解决方案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
XY graph
向工作间定义的变量写数据到
Matlab图形窗口显示信号的二维图
第七章
Simulink建模和仿真
7.2 基本模块
表7.2.3 Discrete库





Discrete filter Discrete state-space Discrete transfer fcn Discrete zero-pol First-order hold Unit delay Zero-order hold
7.1 Simulink的概述和基本操作
③ 模型中的模块按更新的次序进行排序。排序算法产生一个列表 以确保具有代数环的模块在产生它的驱动输入的模块被更新后才 更新。当然,这一步要先检测出模型中存在的代数环。 ④ 决定模型中有无显示设定的信号属性,例如名称、数据类型、 数值类型以及大小等,并且检查每个模块是否能够接受连接到它 输入端的信号。Simulink使用属性传递的过程来确定未被设定的 属性,这个过程将源信号的属性传递到它所驱动的模块的输入信 号; ⑤ 决定所有无显示设定采样时间的模块的采样时间; ⑥ 分配和初始化用于存储每个模块的状态和输入当前值的存储空 间。 完成这些工作后就可以进行仿真了。 2) 模型执行 一般模型是使用数值积分来进行仿真的。所运用的仿真解法器 (仿真算法)依赖于模型提供它的连续状态微分能力。计算微分 可以分两步进行:
正弦波信号
产生一个阶跃信号 产生均匀分布的随机信号
第七章
Simulink建模和仿真
表7.2.2 Sinks库
7.2 基本模块
模 块

说 明
Display
Scope Stop simulation To file
显示输入信号的值
显示信号的波形 当输入信号为0时结束仿真 向文件中写数据
To workspace
源模块 系统模块 显示模块
图7.1.1 Simulink模型元素关联图
第七章Simulink建模和仿真

7.1 Simulink的概述和基本操作
Simulink模型并不一定要包含全部的三种元素,在实际应用 中通常可以缺少其中的一个或两个。例如,若要模拟一个系 统偏离平衡位臵后的恢复行为,就可以建立一个没有输入而 只有系统模块加一个显示模块的模型。在某种情况下,也可 以建立一个只有源模块和显示模块的系统。若需要一个由几 个函数复合的特殊信号,则可以使用源模块生成信号并将其 送入Matlab工作间或文件中。
第七章Simulink建模和仿真

7.1 Simulink的概述和基本操作




注意:不要把模块保存到模块文件的次序与仿真过程模块被更新 的次序相混淆。Simulink在模块初始化时以将模块排好正确的次 序。 为了建立有效的更新次序,Simulink根据输入和输出的关系将模 块分类。其中,当前输出依赖于当前输入的模块称为直接馈入模 块,所有其他的模块都称为非虚拟模块。直接馈入模块的例子有 Gain、Product和Sum模块;非直接馈入模块的例子有Integrator 模块(它的输出只依赖于它的状态),Constant模块(没有输入)和 Memory模块(它的输出只依赖于前一个模块的输入)。 基于上述分类,Simulink使用下面两个基本规则对模块进行排序: ① 每个模块必须在它驱动的所有模块更新之前被更新。这条规 则确保了模块被更新时输入有效。 ② 若非直接馈入模块在直接馈入模块之前更新,则它们的更新 次序可以是任意的。这条规则允许Simulink在排序过程中忽略非 虚拟模块。 另外一个约束模块更新次序的因素是用户给模块设定优先级, Simulink在低优先级模块之前更新高优先级模块。

第七章

Simulink建模和仿真
7.1 Simulink的概述和基本操作


近几年来,在学术界和工业领域,Simulink已经成为动态系 统建模和仿真领域中应用最为广泛的软件之一。Simulink可 以很方便地创建和维护一个完整地模块,评估不同地算法和 结构,并验证系统的性能。由于Simulink是采用模块组合方 式来建模,从而可以使得用户能够快速、准确地创建动态系 统的计算机仿真模型,特别是对复杂的不确定非线性系统, 更为方便。 Simulink模型可以用来模拟线性和非线性、连续和离散或者 两者的混合系统,也就是说它可以用来模拟几乎所有可能遇 到动态系统。另外Simulink还提供一套图形动画的处理方法, 使用户可以方便的观察到仿真的整个过程。 Simulink没有单独的语言,但是它提供了S函数规则。所谓 的S函数可以是一个M函数文件、FORTRAN程序、C或C++语言 程序等,通过特殊的语法规则使之能够被Simulink模型或模 块调用。S函数使Simulink更加充实、完备,具有更强的处 理能力。
第七章
Simulink建模和仿真
7.2
基本模块



由于大多数物理系统都可以用微分方程组和代数方程组来描 述,Simulink也采用的是本教材第四章介绍的面向结构图的 数字仿真原理。但其功能块的类型、数值解法、功能快的描 述、以及建模方式和方法远远超出CSS仿真程序包,其界面 也更加友好。 Simulink 4把功能块分成9类,分别放臵在9个库中,如图 7.2.1所示:源模块库(Sources)、输出显示库(Sinks)、离 散模块库(Discrete)、连续模块库(Continuous)、非线性模 块库(Nonlinear)、数学函数库(Math)、通用函数及列表库 (Functions and Tables)、信号处理及系统类模块库 (Signal and Systems)和子系统模块库(Subsystems)。 表7.2.1到表7.2.8列出了个库包含的主要模块及简单说明。 图7.2.2到图7.2.10列出了各库包含的主要模块种类图形。
第七章
Simulink建模和仿真
模 块 名 Clock Constant
7.2
说 明
基本模块
表7.2.1 Source库
显示或者提供仿真时间 产生一个常数值信号
Digital clock From file
From work space Pulse generator Ramp Random number
第七章
Simulink建模和仿真
7.1 Simulink的概述和基本操作



同Matlab一样,Simulink也不是封闭的,他允许用户可 以很方便的定制自己的模块和模块库。同时Simulink也 同样有比较完整的帮助系统,使用户可以随时找到对应 模块的说明,便于应用。 综上所述,Simulink就是一种开放性的,用来模拟线性 或非线性的以及连续或离散的或者两者混合的动态系统 的强有力的系统级仿真工具。 目前,随着软件的升级换代,在软硬件的接口方面有了 长足的进步,使用Simulink可以很方便地进行实时的信 号控制和处理、信息通信以及DSP的处理。世界上许多 知名的大公司已经使用Simulink作为他们产品设计和仿真

7.1 Simulink的概述和基本操作



② 按排列好的次序更新模型中模块的状态,Simulink计算 一个模块的离散状态的方法时调用模块的离散状态更新函数。 而对于连续状态,则对连续状态的微分(在模块可调用的函 数里,有一个用于计算连续微分的函数)进行数值积分来获 得当前的连续状态。 ③ 检查模块连续状态的不连续点。Simulink使用过零检测 来检测连续状态的不连续点。 ④ 计算下一个仿真时间步的时间。这是通过调用模块获得 下一个采样时间函数来完成的。 (3) 定模块更新次序 在仿真中,Simulink更新状态和输出都要根据事先确定的模 块更新次序,而更新次序对方针结果的有效性来说非常关键。 特别当模块的输出是当前输入值的函数时,这个模块必须在 驱动它的模块被更新之后才能被更新,否则,模块的输出将 没有意义。
产生数字采样时间信号 从文件读取数据输入
从工作间定义的矩阵读入数据 产生脉冲信号 产生“斜坡”信号 产生正态分布的随机信号
Digital pulse generator 产生数字脉冲信号
Repeating sequence
Signal generator
产生周期序列信号
信号发生器
Sine wave
Step Uniform random number
第七章 Simulink建模和仿真 7.1 Simulink的概述和基本操作 7.1.2 基本操作 一、模型基本结构 一个典型的Simulink模型包括如下三种类型的元素: ① 信号源模块 ② 被模拟的系统模块 ③ 输出显示模块 如图7.1.1所示说明了这三种元素之间的典型关系。系统 模块作为中心模块是Simulink仿真建模所要解决的主要部分; 信号源为系统的输入,它包括常数信号源函数信号发生器 (如正弦和阶跃函数波等)和用户自己在Matlab中创建的自 定义信号或Matlab工作间中三种。输出模块主要在Sinks库 中。
二、仿真运行原理
Simulink仿真包括两个阶段;初始化阶段和模型执行阶段 (1) 模块初始化 在初始化阶段主要完成以下工作: ① 模型参数传给Matlab进行估值,得到的数值结果将作为模 型的实际参数; ② 展开模型的各个层次,每一个非条件执行的子系统被它所 包含的模块所代替;
第七章Simulink建模和仿真

第七章

Simulink建模和仿真
Matlab具有友好的工作平台和编程环境、简单易学的编程语言、 强大的科学计算和数据处理能力、出色的图形和图像处理功能、 能适应多领域应用的工具葙、适应多种语言的程序接口、模块化 的设计和系统级的仿真功能等,诸多的优点和特点。

支持Matlab仿真是Simulink工具箱,Simulink一般可以附在 Matlab上同时安装,也有独立版本来单独使用。但大多数用户都 是附在Matlab上,以便能更好地发挥Matlab在科学计算上的优势, 进一步扩展Simulink的使用领域和功能。 本章详细地向用户介绍Simulink地建模方法、使用操作、以及使 用Simulink进行系统级的仿真和设计原理。使读者通过本章地学 习,不但可以进一步掌握计算机仿真的基本概念和理论,也可以 初步学会使用Simulink去真正地运用仿真技术解决科研和工程中 地实际问题。
相关文档
最新文档