数列创新三角形2013全国

合集下载

高考文科数学真题及答案全国卷

高考文科数学真题及答案全国卷

2013年高考文科数学真题及答案全国卷1本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。

第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ).A .{1,4}B .{2,3}C .{9,16}D .{1,2} 【答案】A【考点】本题主要考查集合的基本知识。

【解析】∵B ={x |x =n 2,n ∈A }={1,4,9,16}, ∴A ∩B ={1,4}.2.(2013课标全国Ⅰ,文2)212i1i +(-)=( ). A. −1−12i B .11+i 2- C .1+12i D .1−12i【答案】B【考点】本题主要考查复数的基本运算。

【解析】212i 12i 12i i 2i 1i 2i 22++(+)-+===(-)-=11+i 2-. 3.(2013课标全国Ⅰ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ).A .12B .13C .14D .16 【答案】B【考点】本题主要考查列举法解古典概型问题的基本能力。

【解析】由题意知总事件数为6,且分别为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足条件的事件数是2,所以所求的概率为13.4.(2013课标全国Ⅰ,文4)已知双曲线C :2222=1x y a b-(a >0,b >0)则C 的渐近线方程为( ).A . y =±14i B .y =±13i C .12y x =± D .y =±i【答案】C【考点】本题主要考查双曲线的离心率、渐近线方程。

【解析】∵2e =2c a =,即2254c a =.∵c 2=a 2+b 2,∴2214b a =.∴12b a =.∵双曲线的渐近线方程为by x a=±,∴渐近线方程为12y x =±.故选C.5.(2013课标全国Ⅰ,文5)已知命题p :x ∈R,2x <3x ;命题q :x ∈R ,x 3=1-x 2,则下列命题中为真命题的是( ).A .p ∧qB .⌝p ∧qC .p ∧⌝qD .⌝p ∧⌝q 【答案】B【考点】本题主要考查常用逻辑用语等基本知识。

2013年高考数学全国卷1(完整版试题+答案+解析)

2013年高考数学全国卷1(完整版试题+答案+解析)

2013年普通高等学校招生全国统一考试(全国卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页.考试时间120分钟.满分150分.答题前,考生务必用0.5毫米的黑色签字笔将自己的姓名、座号、考号填写在第Ⅰ卷答题卡和第Ⅱ卷答题纸规定的位置. 参考公式:样本数据n x x x ,,21的标准差nx x x x x x s n 22221)()()(-++-+-=其中x 为样本平均数球的面积公式24R S π=第Ⅰ卷(选择题 共60分)注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上. 2.第Ⅰ卷只有选择题一道大题.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数ii++121(i 是虚数单位)的虚部是 A .23 B .21C .3D .1 2.已知R 是实数集,{}11,12+-==⎭⎬⎫⎩⎨⎧<=x y y N x xM ,则=M C N R A .)2,1(B .[]2,0C .∅D .[]2,13.现有10个数,其平均数是4,且这10个数的平方和是200,那么这个数组的标准差是 A .1 B .2 C .3 D .44.设n S 为等比数列{}n a 的前n 项和,0852=-a a ,则=24S S A .5 B .8 C .8- D .15 5.已知函数)62sin()(π-=x x f ,若存在),0(π∈a ,使得)()(a x f a x f -=+恒成立,则a的值是A .6π B .3π C .4π D .2π 6.已知m 、n 表示直线,γβα,,表示平面,给出下列四个命题,其中真命题为 (1)βααβα⊥⊥⊂=则,,,m n n m (2)m n n m ⊥==⊥则,,,γβγαβα (3),,βα⊥⊥m m 则α∥β (4)βαβα⊥⊥⊥⊥则,,,n m n mA .(1)、(2)B .(3)、(4)C .(2)、(3)D .(2)、(4)7.已知平面上不共线的四点C B A O ,,,,若||,23BC AB OC OB OA -=等于A .1B .2C .3D .4 8.已知三角形ABC ∆的三边长成公差为2的等差数列,且最大角的正弦值为23,则这个三角形的周长是A .18B .21C .24D .15 9.函数xx x f 1lg )(-=的零点所在的区间是 A .(]1,0 B .(]10,1 C .(]100,10 D .),100(+∞ 10.过直线y x =上一点P 引圆22670x y x +-+=的切线,则切线长的最小值为A .22 B . 223 C .210 D .211.已知函数b ax x x f 2)(2-+=.若b a ,都是区间[]4,0内的数,则使0)1(>f 成立的概率是A .43 B .41 C .83D .8512.已知双曲线的标准方程为116922=-y x ,F 为其右焦点,21,A A 是实轴的两端点,设P 为双曲线上不同于21,A A 的任意一点,直线P A P A 21,与直线a x =分别交于两点N M ,,若0=⋅FN FM ,则a 的值为A .916 B .59 C .925 D .516题图第13第Ⅱ卷(非选择题 共90分)注意事项:1. 请用0.5毫米的黑色签字笔将每题的答案填写在第Ⅱ卷答题纸的指定位置.书写的答案如需改动,要先划掉原来的答案,然后再写上新答案.2. 不在指定答题位置答题或超出答题区域书写的答案无效.在试题卷上答题无效. 3. 第Ⅱ卷共包括填空题和解答题两道大题. 二、填空题:本大题共4小题,每小题4分,共16分. 13.如图所示的程序框图输出的结果为__________.14. 若一个底面是正三角形的三棱柱的正视图如下图所示,其在一个球面上,则该球的表面积为__________.15.地震的震级R 与地震释放的能量E 的关系为)4.11(lg 32-=E R .2011年3月11日,日本东海岸发生了9.0级特大地震,2008年中国汶川的地震级别为8.0级,那么2011年地震的能量是2008年地震能量的 倍. 16.给出下列命题: ①已知,,a b m都是正数,且bab a >++11,则a b <; ②已知()f x '是()f x 的导函数,若,()0x R f x '∀∈≥,则(1)(2)f f <一定成立; ③命题“x R∃∈,使得2210x x -+<”的否定是真命题; ④“1,1≤≤y x 且”是“2≤+y x ”的充要条件.其中正确命题的序号是 .(把你认为正确命题的序号都填上)第14题图三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知向量),2cos 2sin 3()2cos ,1(y xx b x a +==→→与共线,且有函数)(x f y =.(Ⅰ)若1)(=x f ,求)232cos(x -π的值;(Ⅱ)在ABC ∆中,角C B A ,,,的对边分别是c b a ,,,且满足b c C a 2cos 2=+,求函数)(B f 的取值范围.18.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,公差,50,053=+≠S S d 且1341,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设⎭⎬⎫⎩⎨⎧n n a b 是首项为1,公比为3的等比数列,求数列{}n b 的前n 项和n T .已知四棱锥BCDE A -,其中1====BE AC BC AB ,2=CD ,ABC CD 面⊥,BE∥CD ,F 为AD 的中点. (Ⅰ)求证:EF ∥面ABC ; (Ⅱ)求证:面ACD ADE 面⊥; (III )求四棱锥BCDE A -的体积.20.(本小题满分12分)在某种产品表面进行腐蚀性检验,得到腐蚀深度y 与腐蚀时间x 之间对应的一组数据:现确定的研究方案是:先从这6组数据中选取2组,用剩下的4组数据求线性回归方程,再对被选取的2组数据进行检验.(Ⅰ)求选取的2组数据恰好不相邻的概率;(Ⅱ)若选取的是第2组和第5组数据,根据其它4组数据,求得y 关于x 的线性回归方程26139134ˆ+=x y,规定由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2微米,则认为得到的线性回归方程是可靠的,判断该线性回归方程是否可靠.AB CDEF已知函数1)(2++=x bax x f 在点))1(,1(--f 的切线方程为03=++y x . (Ⅰ)求函数()f x 的解析式;(Ⅱ)设x x g ln )(=,求证:)()(x f x g ≥在),1[+∞∈x 上恒成立.22.(本小题满分14分)实轴长为34的椭圆的中心在原点,其焦点1,2,F F 在x 轴上.抛物线的顶点在原点O ,对称轴为y 轴,两曲线在第一象限内相交于点A ,且12AF AF ⊥,△12AF F 的面积为3. (Ⅰ)求椭圆和抛物线的标准方程;(Ⅱ)过点A 作直线l 分别与抛物线和椭圆交于C B ,,若AB AC 2=,求直线l 的斜率k .参考答案及评分标准一.选择题(本大题共12小题,每小题5分,共60分.)B D B A D B B D BC C B二.填空题(本大题共4小题,每小题4分,共16分.)13.2 14.π31915. 2310 16. ①③三.解答题17.(本小题满分12分) 解:(Ⅰ)∵→a 与→b 共线∴yxx x 2cos 2cos2sin 31=+21)6sin()cos 1(21sin 232cos 2cos 2sin 32++=++=+=πx x x x x x y …………3分∴121)6sin()(=++=πx x f ,即21)6sin(=+πx …………………………………………4分211)6(sin 21)3(cos 2)3(2cos )232cos(22-=-+=--=-=-ππππx x x x…………………………………………6分 (Ⅱ)已知b c C a 2cos 2=+由正弦定理得:CA C A C C A C ABC C A sin cos 2cos sin 2sin cos sin 2)sin(2sin 2sin cos sin 2+=++==+∴21cos =A ,∴在ABC ∆中 ∠3π=A …………………………………………8分 21)6sin()(++=πB B f∵∠3π=A ∴320π<<B ,6566πππ<+<B …………………………………………10分∴1)6sin(21≤+<πB ,23)(1≤<B f ∴函数)(B f 的取值范围为]23,1( …………………………………………12分18.(本小题满分12分) 解:(Ⅰ)依题意得⎪⎩⎪⎨⎧+=+=⨯++⨯+)12()3(5025452233112111d a a d a d a d a …………………………………………2分 解得⎩⎨⎧==231d a , …………………………………………4分 1212)1(23)1(1+=+=-+=-+=∴n a n n d n a a n n 即,.……………………………6分(Ⅱ)13-=n nna b ,113)12(3--⋅+=⋅=n n n n n a b …………………………………………7分 123)12(37353-⋅+++⋅+⋅+=n n n T n n n n n T 3)12(3)12(3735333132⋅++⋅-++⋅+⋅+⋅=- ……………………9分n n n n T 3)12(3232323212+-⋅++⋅+⋅+=--nnn n n 323)12(31)31(3231⋅-=+---⋅+=- ∴nn n T 3⋅= …………………………………………12分19.(本小题满分12分)解:(Ⅰ)取AC 中点G,连结FG 、BG , ∵F,G 分别是AD,AC 的中点∴FG ∥CD,且FG=21DC=1 .∵BE ∥CD ∴FG 与BE 平行且相等∴EF ∥BG . ……………………………2分ABC BG ABC EF 面面⊂⊄,∴EF ∥面ABC ……………………………4分 (Ⅱ)∵△ABC 为等边三角形 ∴BG ⊥AC 又∵DC ⊥面ABC,BG ⊂面ABC ∴DC ⊥BGABCDEF G∴BG 垂直于面ADC 的两条相交直线AC,DC ,∴BG ⊥面ADC . …………………………………………6分 ∵EF ∥BG ∴E F ⊥面ADC∵EF ⊂面ADE ,∴面ADE ⊥面ADC . …………………………………………8分 (Ⅲ)连结EC,该四棱锥分为两个三棱锥E -ABC 和E -ADC .43631232313114331=+=⨯⨯+⨯⨯=+=---ACD E ABC E BCDE A V V V .………………………12分另法:取BC 的中点为O ,连结AO ,则BC AO ⊥,又⊥CD 平面ABC ,∴C CD BC AO CD =⊥ , , ∴⊥AO 平面BCDE ,∴AO 为BCDE A V -的高,43232331,2321)21(,23=⨯⨯=∴=⨯+==-BCDE A BCDE V S AO . 20.(本小题满分12分)解:(Ⅰ)设6组数据的编号分别为1,2,3,4,5,6.设抽到不相邻的两组数据为事件A ,从6组数据中选取2组数据共有15种情况:(1,2)(1,3)(1,4)(1,5)(1,6)(2,3)(2,4)(2,5)(2,6)(3,4)(3,5)(3,6)(4,5)(4,6)(5,6),其中事件A 包含的基本事件有10种. …………………………………………3分所以321510)(==A P .所以选取的2组数据恰好不相邻的概率是32. ………………………6分(Ⅱ) 当10=x 时,;2|1026219|,262192613910134ˆ<-=+⨯=y……………………………………9分 当30=x 时,;2|1626379|,263792613930134ˆ<-=+⨯=y所以,该研究所得到的回归方程是可靠的. …………………………………………12分 21.(本小题满分12分)解:(Ⅰ)将1-=x 代入切线方程得2-=y ∴211)1(-=+-=-ab f ,化简得4-=-a b . …………………………………………2分 222)1(2)()1()(x xb ax x a x f +⋅+-+='12424)(22)1(-===-+=-'bb a b a f . …………………………………………4分解得:2,2-==b a∴122)(2+-=x x x f . …………………………………………6分 (Ⅱ)由已知得122ln 2+-≥x x x 在),1[+∞上恒成立化简得22ln )1(2-≥+x x x即022ln ln 2≥+-+x x x x 在),1[+∞上恒成立 . …………………………………………8分 设22ln ln )(2+-+=x x x x x h ,21ln 2)(-++='xx x x x h ∵1≥x ∴21,0ln 2≥+≥xx x x ,即0)(≥'x h . …………………………………………10分 ∴)(x h 在),1[+∞上单调递增,0)1()(=≥h x h∴)()(x f x g ≥在),1[+∞∈x 上恒成立 . …………………………………………12分22.(本小题满分14分)解(1)设椭圆方程为22221(0)x y a b a b+=>>,12,AF m AF n ==由题意知⎪⎪⎩⎪⎪⎨⎧==+=+6344222mn n m c n m …………………………………………2分解得92=c ,∴39122=-=b .∴椭圆的方程为131222=+y x …………………………………………4分 ∵3=⨯c y A ,∴1=A y ,代入椭圆的方程得22=A x ,将点A 坐标代入得抛物线方程为y x 82=. …………………………………………6分(2)设直线l 的方程为)22(1-=-x k y ,),(),,(2211y x C y x B2013年高考数学全国卷1(完整版试题+答案+解析)- 11 - / 11 由AB AC 2= 得)22(22212-=-x x , 化简得22221=-x x …………………………………………8分 联立直线与抛物线的方程⎪⎩⎪⎨⎧=-=-yx x k y 8)22(12, 得0821682=-+-k kx x ∴k x 8221=+① …………………………………………10分 联立直线与椭圆的方程⎪⎩⎪⎨⎧=+-=-124)22(122y x x k y 得0821632)2168()41(2222=--+-++k k x k k x k ∴22241821622kk k x +-=+② …………………………………………12分 ∴2222418216)228(222221=++---=-kk k k x x 整理得:0)4121)(2416(2=+--k k k ∴42=k ,所以直线l 的斜率为42 . …………………………………………14分。

解三角形、数列2018全国数学高考分类真题[含答案解析]

解三角形、数列2018全国数学高考分类真题[含答案解析]

解三角形、数列2018年全国高考分类真题(含答案)一.选择题(共4小题)1.△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.2.在△ABC中,cos=,BC=1,AC=5,则AB=()A.4 B. C. D.23.已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则()A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4 4.记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12 B.﹣10 C.10 D.12二.填空题(共4小题)5.在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为.6.在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sinB=,c=.7.设{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为.8.记S n为数列{a n}的前n项和.若S n=2a n+1,则S6=.三.解答题(共9小题)9.在△ABC中,a=7,b=8,cosB=﹣.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.10.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(﹣,﹣).(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.11.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B ﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.12.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.13.设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列.(1)设a1=0,b1=1,q=2,若|a n﹣b n|≤b1对n=1,2,3,4均成立,求d的取值范围;(2)若a1=b1>0,m∈N*,q∈(1,],证明:存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,并求d的取值范围(用b1,m,q表示).14.已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1﹣b n)a n}的前n项和为2n2+n.(Ⅰ)求q的值;(Ⅱ)求数列{b n}的通项公式.15.设{a n}是等比数列,公比大于0,其前n项和为S n(n∈N*),{b n}是等差数列.已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)设数列{S n}的前n项和为T n(n∈N*),(i)求T n;(ii)证明=﹣2(n∈N*).16.等比数列{a n}中,a1=1,a5=4a3.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和.若S m=63,求m.17.记S n为等差数列{a n}的前n项和,已知a1=﹣7,S3=﹣15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.解三角形、数列2018年全国高考分类真题(含答案)参考答案与试题解析一.选择题(共4小题)1.△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.【解答】解:∵△ABC的内角A,B,C的对边分别为a,b,c.△ABC的面积为,==,∴S△ABC∴sinC==cosC,∵0<C<π,∴C=.故选:C.2.在△ABC中,cos=,BC=1,AC=5,则AB=()A.4 B. C. D.2【解答】解:在△ABC中,cos=,cosC=2×=﹣,BC=1,AC=5,则AB====4.故选:A.3.已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则()A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4【解答】解:a1,a2,a3,a4成等比数列,由等比数列的性质可知,奇数项符号相同,偶数项符号相同,a1>1,设公比为q,当q>0时,a1+a2+a3+a4>a1+a2+a3,a1+a2+a3+a4=ln(a1+a2+a3),不成立,即:a1>a3,a2>a4,a1<a3,a2<a4,不成立,排除A、D.当q=﹣1时,a1+a2+a3+a4=0,ln(a1+a2+a3)>0,等式不成立,所以q≠﹣1;当q<﹣1时,a1+a2+a3+a4<0,ln(a1+a2+a3)>0,a1+a2+a3+a4=ln(a1+a2+a3)不成立,当q∈(﹣1,0)时,a1>a3>0,a2<a4<0,并且a1+a2+a3+a4=ln(a1+a2+a3),能够成立,故选:B.4.记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12 B.﹣10 C.10 D.12【解答】解:∵S n为等差数列{a n}的前n项和,3S3=S2+S4,a1=2,∴=a1+a1+d+4a1+d,把a1=2,代入得d=﹣3∴a5=2+4×(﹣3)=﹣10.故选:B.二.填空题(共4小题)5.在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为9.【解答】解:由题意得acsin120°=asin60°+csin60°,即ac=a+c,得+=1,得4a+c=(4a+c)(+)=++5≥2+5=4+5=9,当且仅当=,即c=2a时,取等号,故答案为:9.6.在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sinB=,c=3.【解答】解:∵在△ABC中,角A,B,C所对的边分别为a,b,c.a=,b=2,A=60°,∴由正弦定理得:,即=,解得sinB==.由余弦定理得:cos60°=,解得c=3或c=﹣1(舍),∴sinB=,c=3.故答案为:,3.7.设{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为a n=6n﹣3.【解答】解:∵{a n}是等差数列,且a1=3,a2+a5=36,∴,解得a1=3,d=6,∴a n=a1+(n﹣1)d=3+(n﹣1)×6=6n﹣3.∴{a n}的通项公式为a n=6n﹣3.故答案为:a n=6n﹣3.8.记S n为数列{a n}的前n项和.若S n=2a n+1,则S6=﹣63.【解答】解:S n为数列{a n}的前n项和,S n=2a n+1,①当n=1时,a1=2a1+1,解得a1=﹣1,=2a n﹣1+1,②,当n≥2时,S n﹣1由①﹣②可得a n=2a n﹣2a n﹣1,∴a n=2a n﹣1,∴{a n}是以﹣1为首项,以2为公比的等比数列,∴S6==﹣63,故答案为:﹣63三.解答题(共9小题)9.在△ABC中,a=7,b=8,cosB=﹣.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.【解答】解:(Ⅰ)∵a<b,∴A<B,即A是锐角,∵cosB=﹣,∴sinB===,由正弦定理得=得sinA===,则A=.(Ⅱ)由余弦定理得b2=a2+c2﹣2accosB,即64=49+c2+2×7×c×,即c2+2c﹣15=0,得(c﹣3)(c+5)=0,得c=3或c=﹣5(舍),则AC边上的高h=csinA=3×=.10.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(﹣,﹣).(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.【解答】解:(Ⅰ)∵角α的顶点与原点O重合,始边与x轴非负半轴重合,终边过点P(﹣,﹣).∴x=﹣,y=,r=|OP|=,∴sin(α+π)=﹣sinα=;(Ⅱ)由x=﹣,y=,r=|OP|=1,得,,又由sin(α+β)=,得=,则cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=,或cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=.∴cosβ的值为或.11.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B ﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.【解答】解:(Ⅰ)在△ABC中,由正弦定理得,得bsinA=asinB,又bsinA=acos(B﹣).∴asinB=acos(B﹣),即sinB=cos(B﹣)=cosBcos+sinBsin=cosB+,∴tanB=,又B∈(0,π),∴B=.(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由bsinA=acos(B﹣),得sinA=,∵a<c,∴cosA=,∴sin2A=2sinAcosA=,cos2A=2cos2A﹣1=,∴sin(2A﹣B)=sin2AcosB﹣cos2AsinB==.12.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:=,即=,∴sin∠ADB==,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB==.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB=,∵DC=2,∴BC===5.13.设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列.(1)设a1=0,b1=1,q=2,若|a n﹣b n|≤b1对n=1,2,3,4均成立,求d的取值范围;(2)若a1=b1>0,m∈N*,q∈(1,],证明:存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,并求d的取值范围(用b1,m,q表示).【解答】解:(1)由题意可知|a n﹣b n|≤1对任意n=1,2,3,4均成立,∵a1=0,q=2,∴,解得.即≤d≤.证明:(2)∵a n=a1+(n﹣1)d,b n=b1•q n﹣1,若存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,则|b1+(n﹣1)d﹣b1•q n﹣1|≤b1,(n=2,3,…,m+1),即b1≤d≤,(n=2,3,…,m+1),∵q∈(1,],∴则1<q n﹣1≤q m≤2,(n=2,3,…,m+1),∴b1≤0,>0,因此取d=0时,|a n﹣b n|≤b1对n=2,3,…,m+1均成立,下面讨论数列{}的最大值和数列{}的最小值,①当2≤n≤m时,﹣==,当1<q≤时,有q n≤q m≤2,从而n(q n﹣q n﹣1)﹣q n+2>0,因此当2≤n≤m+1时,数列{}单调递增,故数列{}的最大值为.②设f(x)=2x(1﹣x),当x>0时,f′(x)=(ln2﹣1﹣xln2)2x<0,∴f(x)单调递减,从而f(x)<f(0)=1,当2≤n≤m时,=≤(1﹣)=f()<1,因此当2≤n≤m+1时,数列{}单调递递减,故数列{}的最小值为,∴d的取值范围是d∈[,].14.已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1﹣b n)a n}的前n项和为2n2+n.(Ⅰ)求q的值;(Ⅱ)求数列{b n}的通项公式.【解答】解:(Ⅰ)等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项,可得2a4+4=a3+a5=28﹣a4,解得a4=8,由+8+8q=28,可得q=2(舍去),则q的值为2;(Ⅱ)设c n=(b n+1﹣b n)a n=(b n+1﹣b n)2n﹣1,可得n=1时,c1=2+1=3,n≥2时,可得c n=2n2+n﹣2(n﹣1)2﹣(n﹣1)=4n﹣1,上式对n=1也成立,则(b n﹣b n)a n=4n﹣1,+1﹣b n=(4n﹣1)•()n﹣1,即有b n+1可得b n=b1+(b2﹣b1)+(b3﹣b2)+…+(b n﹣b n﹣1)=1+3•()0+7•()1+…+(4n﹣5)•()n﹣2,b n=+3•()+7•()2+…+(4n﹣5)•()n﹣1,相减可得b n=+4[()+()2+…+()n﹣2]﹣(4n﹣5)•()n﹣1=+4•﹣(4n﹣5)•()n﹣1,化简可得b n=15﹣(4n+3)•()n﹣2.15.设{a n}是等比数列,公比大于0,其前n项和为S n(n∈N*),{b n}是等差数列.已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)设数列{S n}的前n项和为T n(n∈N*),(i)求T n;(ii)证明=﹣2(n∈N*).【解答】(Ⅰ)解:设等比数列{a n}的公比为q,由a1=1,a3=a2+2,可得q2﹣q ﹣2=0.∵q>0,可得q=2.故.设等差数列{b n}的公差为d,由a4=b3+b5,得b1+3d=4,由a5=b4+2b6,得3b1+13d=16,∴b1=d=1.故b n=n;(Ⅱ)(i)解:由(Ⅰ),可得,故=;(ii)证明:∵==.∴==﹣2.16.等比数列{a n}中,a1=1,a5=4a3.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和.若S m=63,求m.【解答】解:(1)∵等比数列{a n}中,a1=1,a5=4a3.∴1×q4=4×(1×q2),解得q=±2,当q=2时,a n=2n﹣1,当q=﹣2时,a n=(﹣2)n﹣1,∴{a n}的通项公式为,a n=2n﹣1,或a n=(﹣2)n﹣1.(2)记S n为{a n}的前n项和.当a1=1,q=﹣2时,S n===,由S m=63,得S m==63,m∈N,无解;当a1=1,q=2时,S n===2n﹣1,由S m=63,得S m=2m﹣1=63,m∈N,解得m=6.17.记S n为等差数列{a n}的前n项和,已知a1=﹣7,S3=﹣15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.【解答】解:(1)∵等差数列{a n}中,a1=﹣7,S3=﹣15,∴a1=﹣7,3a1+3d=﹣15,解得a1=﹣7,d=2,∴a n=﹣7+2(n﹣1)=2n﹣9;(2)∵a1=﹣7,d=2,a n=2n﹣9,∴S n===n2﹣8n=(n﹣4)2﹣16,∴当n=4时,前n项的和S n取得最小值为﹣16.。

2013全国高考1卷理科数学试题及答案解析

2013全国高考1卷理科数学试题及答案解析
得: ,直线
切点
直线
坐标原点到 距离的比值为 。
(21)【解析】(1)
例:瓶子里的水渐渐升高了。令 得:
得:
六、看图写话
在 上单调递增
红火——红红火火许多——许许多多来往——来来往往
9、区分以下形近字或音近字:得: 的解析式为
三、词语。且单调递增区间为 ,单调递减区间为
金黄的秋天大大的公园绿色的小伞(2) 得
(8)等轴双曲线 的中心在原点,焦点在 轴上, 与抛物线 的准线交于 两点, ,则 的
实轴长为
(A) (B) (C)4(D)8
(9)已知 ,函数 在 单调递减,则 的取值范围
(A) (B) (C) (D)
(10)已知函数 ,则 的图像大致为
(11)已知三棱锥 的所有顶点都在球 的球面上, 是边长为 的正三角形, 为 的直径,且 ,则此棱锥的体积为
(1)【解析】选
, , , 共10个
(2)【解析】选
甲地由 名教师和 名学生: 种
(3)【解析】选
, , 的共轭复数为 , 的虚部为
(4)【解析】选
是底角为 的等腰三角形
(5)【解析】选
, 或
(6)【解析】选
(7)【解析】选
该几何体是三棱锥,底面是俯视图,高为
此几何体的体积为
(8)【解析】选
设 交 的准线 于
(14)设 满足约束条件 则 的取值范围为__________.
(15)某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件正常工作,则部件正常工作。设三个电子元件的使用寿命(单位:小时)均服从正态分布 ,且各个元件能否正常工作互相独立,那么该部件的使用寿命超过1000小时的概率为_________________.

13年全国各省(市)高考数学真题分类汇编(一)OK

13年全国各省(市)高考数学真题分类汇编(一)OK

2013年全国各省(市)高考真题数学分类汇编(理)与解析(一)三角函数与数列1、(2013年安徽16题)(本小题满分12分) 已知函数()4cos sin (0)4f x x x πϖϖϖ⎛⎫=⋅+> ⎪⎝⎭的最小正周期为π,(Ⅰ)求ϖ的值;(Ⅱ)讨论()f x 在区间[]0,2上的单调性。

(17)(本小题满分12分)设函数22()(1)f x ax a x =-+,其中0a >,区间|()>0I x f x =,(Ⅰ)求I 的长度(注:区间(,)αβ的长度定义为βα-);(Ⅱ)给定常数(0,1)k ∈,当时,求l 长度的最小值。

2、(2013年北京15题)(本小题共13分)在△ABC 中,a =3,b B =2∠A ,(I)求cos A 的值, (II)求c 的值。

3、(2013年福建20题)(本小题满分14分)已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的周期为π,图像的一个对称中心为(,0)4π,将函数()f x 图像 上的所有点的横坐标伸长为原来的2倍(纵坐标不变),在将所得图像向右平移2π个单位长度后得到函数()g x 的图像. (1)求函数()f x 与()g x 的解析式;(2)是否存在0(,)64x ππ∈,使得0000(),(),()()f x g x f x g x 按照某种顺序成等差数列?若存在,请确定0x 的个数;若不存在,说明理由.(3)求实数a 与正整数n ,使得()()()F x f x ag x =+在(0,)n π内恰有2013个零点.本小题主要考查同角三角函数的基本关系;三角恒等变换;三角函数的图像与性质;函数,函数的导数;函数的4、(2013年广东16题)(本小题满分12分)已知函数()12f x x π⎛⎫=- ⎪⎝⎭,x ∈R ,(Ⅰ) 求6f π⎛⎫- ⎪⎝⎭的值;(Ⅱ) 若3cos 5θ=,3,22πθπ⎛⎫∈ ⎪⎝⎭,求23f πθ⎛⎫+ ⎪⎝⎭.5、(2013年广西17题)(本小题满分10分)等差数列{}n a 的前n 项和为232124.=,,,n S S a S S S 已知且成等比数列,求{}n a 的通项式.6、(2013年广西18题)(本小题满分12分)设()(),,,,,.ABC A B C a b c a b c a b c ac ∆++-+=的内角的对边分别为(I )求;B(II )若sin sin C.A C =求7、(2013年河南山西河北14)若数列{n a }的前n 项和为S n =2133n a ,则数列{n a }的通项公式是n a =______.8、(2013年河南山西河北15)设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cosθ=______9、(本小题满分12分)如图,在△ABC 中,∠ABC =90°,AB= 3 ,BC=1,P 为△ABC 内一点,∠BPC =90°(1)若PB=12,求PA ;(2)若∠APB =150°,求tan ∠P BA10、(2013全国新课标2卷)(17)(本小题满分12分)△ABC 在内角A 、B 、C 的对边分别为a ,b ,c ,已知a=bcosC+csinB 。

“新颖”与“创新”齐飞秋水共长天一色——2013年高考数学创新型客观题评析

“新颖”与“创新”齐飞秋水共长天一色——2013年高考数学创新型客观题评析
新课标 强调数学文化 在数学教学 中的重要 作用 , 因
三、 基 于 高 观 点 的 创 新 型 试 题 以高等数学知识为背景 的试题 ,对学生后继学 习有
。 0 9 《 ) 中 ? 毒 i : ’ ?高 中 版
2 0 1 3年 9月
新 颖 试 题
学 谋
很大作用 , 用初等数学知识可 以解决 的这类题 , 着重考 查 学生 综合能力和素质.

基于“ 定 义 新概 念 ” 的 创 新 型 试 题
定 义新概念 的创 新题是指 以学生 已有知识 为基础 ,
并 给出一定容量 的新信息 ,通过 阅读 ,从 中获取有关信
息, 捕 捉解题 资料 , 发 现问题规律 , 找出解决 问题 的方法 , 并应用 于新 问题 的解答.
例1 ( 2 0 1 3 年福建 高考理科第 l 0 题) 设s , 陧 R的两
L 、 二 /
故应填 1 0 0 0 .
点 评 :本题 以 古希 腊 毕 达 哥 拉 斯 学派 的 数 学 家研 究
过 的各 种 多 边 形 数 为设 计 背 景 . 体 现 了“ 立意 鲜明 . 背景
故应选D . 点评 : 本题 以集合 、 函数与 不等式为 背景 . 定 义 了集
可 以推 测 N( n , ) 的表 达 式 , 由此 计 算 Ⅳ( 1 0 , 2 4 ) = 本题 首先 可 以通过 观察 题 目给 出的前 几个 多边 形 数, 分析 寻找其 中的规律 , 然后猜想和归纳出第n 个k 边形 数Ⅳ( n , k ) ( ≥3 ) 的表达式 , 进而计算出Ⅳ( 1 0 , 2 4 ) 的值. 解: 认真观察n : 与n 前面 的系数 , 可知n 。 前 面的系数构 ) .

(2014年高考必备)2013年全国各地高考理科数学:数列

(2014年高考必备)2013年全国各地高考理科数学:数列

2013年全国高考理科数学试题分类汇编4:数列一、选择题1 .(2013年高考上海卷(理))在数列{}n a 中,21nn a =-,若一个7行12列的矩阵的第i 行第j 列的元素,i j i j i j a a a a a =⋅++,(1,2,,7;1,2,,12i j == )则该矩阵元素能取到的不同数值的个数为( )(A)18 (B)28(C)48(D)63【答案】A.2 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知数列{}n a 满足12430,3n n a a a ++==-,则{}n a 的前10项和等于 (A)()10613--- (B)()101139-- (C)()10313-- (D)()1031+3-【答案】C3 .(2013年高考新课标1(理))设n n n A B C ∆的三边长分别为,,n n n a b c ,n n n A B C ∆的面积为n S ,1,2,3,n = ,若11111,2b c b c a >+=,111,,22n n nnn n n n c a b a a a b c +++++===,则( ) A.{S n }为递减数列 B.{S n }为递增数列C.{S 2n -1}为递增数列,{S 2n }为递减数列D.{S 2n -1}为递减数列,{S 2n }为递增数列【答案】B4 .(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))函数=()y f x 的图像如图所示,在区间[],a b 上可找到(2)n n ≥个不同的数12,...,,n x x x 使得1212()()()==,n nf x f x f x x x x 则n 的取值范围是(A){}3,4 (B){}2,3,4 (C) {}3,4,5 (D){}2,3【答案】B5 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知等比数列{}n a 的公比为q,记(1)1(1)2(1)...,n m n m n m n m b a a a -+-+-+=+++*(1)1(1)2(1)...(,),n m n m n m n m c a a a m n N -+-+-+=∙∙∙∈则以下结论一定正确的是( )[来源:学_科_网Z_X_X_K]A.数列{}n b 为等差数列,公差为m qB.数列{}n b 为等比数列,公比为2mq C.数列{}n c 为等比数列,公比为2m q D.数列{}n c 为等比数列,公比为mm q【答案】C6 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))等比数列{}n a 的前n 项和为n S ,已知12310a a S +=,95=a ,则=1a(A)31 (B)31- (C)91(D)91-【答案】C7 .(2013年高考新课标1(理))设等差数列{}n a 的前n 项和为11,2,0,3n m m m S S S S -+=-==,则m =( )A.3B.4C.5D.6【答案】C8 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))下面是关于公差0d>的等差数列()n a 的四个命题:{}1:n p a 数列是递增数列; {}2:n p na 数列是递增数列;3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列; {}4:3n p a nd +数列是递增数列;其中的真命题为(A)12,p p (B)34,p p (C)23,p p (D)14,p p【答案】D9 .(2013年高考江西卷(理))等比数列x,3x+3,6x+6,..的第四项等于A.-24B.0C.12D.24 【答案】A二、填空题10.(2013年高考四川卷(理))在等差数列{}n a 中,218a a -=,且4a 为2a 和3a 的等比中项,求数列{}n a 的首项、公差及前n 项和.【答案】解:设该数列公差为d ,前n 项和为n s .由已知,可得()()()21111228,38a d a d a d a d +=+=++.所以()114,30a d d d a +=-=,解得14,0a d ==,或11,3a d ==,即数列{}n a 的首相为4,公差为0,或首相为1,公差为3.所以数列的前n 项和4n s n =或232n n ns -=11.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))等差数列{}n a 的前n 项和为n S ,已知10150,25S S ==,则n nS 的最小值为________.【答案】49-12.(2013年高考湖北卷(理))古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,,第n 个三角形数为()2111222n n n n +=+.记第n 个k 边形数为(),N n k ()3k ≥,以下列出了部分k 边形数中第n 个数的表达式: 三角形数 ()211,322N n n n =+ 正方形数 ()2,4N n n = 五边形数 ()231,522N n n n =- 六边形数 ()2,62N n n n =-可以推测(),N n k 的表达式,由此计算()10,24N =___________. 选考题【答案】100013.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))在正项等比数列}{n a 中,215=a ,376=+a a ,则满足n n a a a a a a 2121>+++的最大正整数n 的值为_____________.【答案】1214.(2013年高考湖南卷(理))设n S 为数列{}n a 的前n 项和,1(1),,2n nn n S a n N *=--∈则 (1)3a =_____; (2)12100S S S ++⋅⋅⋅+=___________.【答案】116-;10011(1)32- 15.(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))当,1x R x ∈<时,有如下表达式:211.......1n x x x x+++++=- 两边同时积分得:11111222222011.......1ndx xdx x dx x dx dx x+++++=-⎰⎰⎰⎰⎰从而得到如下等式:23111111111()()...()...ln 2.2223212n n +⨯+⨯+⨯++⨯+=+请根据以下材料所蕴含的数学思想方法,计算:122311111111()()...()_____2223212n n n n n n n C C C C +⨯+⨯+⨯++⨯=+ 【答案】113[()1]12n n +-+16.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))已知{}n a 是等差数列,11a =,公差0d ≠,n S 为其前n 项和,若125,,a a a 成等比数列,则8_____S =【答案】6417.(2013年上海市春季高考数学试卷(含答案))若等差数列的前6项和为23,前9项和为57,则数列的前n项和n =S __________.【答案】25766n n - 18.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))在等差数列{}n a 中,已知3810a a +=,则573a a +=_____.【答案】2019.(2013年高考陕西卷(理))观察下列等式:211=22123-=- 2221263+-=2222124310-+-=-照此规律, 第n 个等式可为___)1(2)1-n 1--32-1121-n 222+=+++n n n ()( ____. 【答案】)1(2)1-n 1--32-1121-n 222+=+++n n n ()( 20.(2013年高考新课标1(理))若数列{n a }的前n 项和为S n =2133n a +,则数列{n a }的通项公式是n a =______.【答案】n a =1(2)n --.21.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))如图,互不-相同的点12,,,n A A X和12,,,n B B B 分别在角O 的两条边上,所有n n A B 相互平行,且所有梯形11n n n n A B B A ++的面积均相等.设.n n OA a =若121,2,a a ==则数列{}n a 的通项公式是_________.【答案】*,23N n n a n ∈-=22.(2013年高考北京卷(理))若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =_______;前n 项和S n =___________.【答案】2,122n +- [来源:学_科_网Z_X_X_K]23.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知等比数列{}n a 是递增数列,nS 是{}n a 的前n 项和,若13a a ,是方程2540x x -+=的两个根,则6S =____________.【答案】63 三、解答题24.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))设函数22222()1(,)23nn n x x x f x x x R n N n=-+++++∈∈ ,证明:(Ⅰ)对每个nn N ∈,存在唯一的2[,1]3n x ∈,满足()0n n f x =; (Ⅱ)对任意np N ∈,由(Ⅰ)中n x 构成的数列{}n x 满足10n n p x x n+<-<.【答案】解: (Ⅰ) 224232224321)(0nx x x x x x f n x y x nn n ++++++-=∴=> 是单调递增的时,当是x 的单调递增函数,也是n 的单调递增函数. 011)1(,01)0(=+-≥<-=n n f f 且.010)(],1,0(321>>>≥=∈⇒n n n n x x x x x f x ,且满足存在唯一x x x x x x x x x x x x x f x n n n -⋅++-<--⋅++-=++++++-≤∈-1141114122221)(,).1,0(2122242322 时当]1,32[0)23)(2(1141)(02∈⇒≤--⇒-⋅++-≤=⇒n n n n n n n n x x x x x x x f综上,对每个nn N ∈,存在唯一的2[,1]3n x ∈,满足()0n n f x =;(证毕) (Ⅱ) 由题知04321)(,012242322=++++++-=>>≥+nxx x x x x f x x nn n n n n n n pn n0)()1(4321)(2212242322=+++++++++++-=+++++++++++p n x n x nx x x x x x f pn pn n pn np n p n p n p n p n p n p n 上式相减:22122423222242322)()1(432432p n x n x n x x x x x n x x x x x pn p n n p n n p n p n p n p n p n nnn n n n ++++++++++=++++++++++++++ )()(2212244233222)()1(-4-3-2--p n x n x nx x x x x x x x x x pn pn n pn nnnp n np n np n np n p n n +++++++++=+++++++++ nx x n p n n p n n 1-111<⇒<+-=+. 法二:25.(2013年高考上海卷(理))(3 分+6分+9分)给定常数0c >,定义函数()2|4|||f x x c x c =++-+,数列123,,,a a a 满足*1(),n n a f a n N +=∈.(1)若12a c =--,求2a 及3a ;(2)求证:对任意*1,n n n N a a c +∈-≥,;(3)是否存在1a ,使得12,,,n a a a 成等差数列?若存在,求出所有这样的1a ,若不存在,说明理由.【答案】:(1)因为0c >,1(2)a c =-+,故2111()2|4|||2a f a a c a c ==++-+=,3122()2|4|||10a f a a c a c c ==++-+=+(2)要证明原命题,只需证明()f x x c ≥+对任意x R ∈都成立,()2|4|||f x x c x c x c x c ≥+⇔++-+≥+即只需证明2|4|||+x c x c x c ++≥++若0x c +≤,显然有2|4|||+=0x c x c x c ++≥++成立;若0x c +>,则2|4|||+4x c x c x c x c x c ++≥++⇔++>+显然成立 综上,()f x x c ≥+恒成立,即对任意的*n N ∈,1n n a a c +-≥(3)由(2)知,若{}n a 为等差数列,则公差0d c ≥>,故n 无限增大时,总有0n a > 此时,1()2(4)()8n n n n n a f a a c a c a c +==++-+=++ 即8d c =+故21111()2|4|||8a f a a c a c a c ==++-+=++, 即1112|4|||8a c a c a c ++=++++,当10a c +≥时,等式成立,且2n ≥时,0n a >,此时{}n a 为等差数列,满足题意; 若10a c +<,则11|4|48a c a c ++=⇒=--,此时,230,8,,(2)(8)n a a c a n c ==+=-+ 也满足题意; 综上,满足题意的1a 的取值范围是[,){8}c c -+∞⋃--.26.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分10分.设数列{}122,3,3,34444n a :,-,-,-,-,-,-,,-1-1-1-1k k k k k个(),,(),即当1122k k k k n -+<≤()()()k N +∈时,11k n a k -=(-),记12n n S a a a =++ ()n N +∈,对于l N +∈,定义集合{}l P 1n n n S a n N n l +=∈≤≤是的整数倍,,且 (1)求集合11P 中元素的个数; (2)求集合2000P 中元素的个数.【答案】本题主要考察集合.数列的概念与运算.计数原理等基础知识,考察探究能力及运用数学归纳法分析解决问题能力及推理论证能力. (1)解:由数列{}n a 的定义得:11=a ,22-=a ,23-=a ,34=a ,35=a ,36=a ,47-=a ,48-=a ,49-=a ,410-=a ,511=a ∴11=S ,12-=S ,33-=S ,04=S ,35=S ,66=S ,27=S ,28-=S ,69-=S ,1010-=S ,511-=S∴111a S ∙=,440a S ∙=,551a S ∙=,662a S ∙=,11111a S ∙-= ∴集合11P 中元素的个数为5(2)证明:用数学归纳法先证)12()12(+-=+i i S i i 事实上,① 当1=i 时,3)12(13)12(-=+∙-==+S S i i 故原式成立② 假设当m i =时,等式成立,即)12()12(+∙-=+m m S m m 故原式成立 则:1+=m i ,时,2222)12(}32)(1(}1)1(2)[1()22()12()12()22()12(+-+++-=+-++==++++++m m m m m m S S S m m m m m m)32)(1()352(2++-=++-=m m m m综合①②得:)12()12(+-=+i i S i i 于是)1)(12()12()12()12(22}12(}12)[1(++=+++-=++=+++i i i i i i S S i i i i由上可知:}12(+i i S 是)12(+i 的倍数而)12,,2,1(12}12)(1(+=+=+++i j i a j i i ,所以)12()12()12(++=+++i j S S i i j i i 是)12,,2,1(}12)(1(+=+++i j a j i i 的倍数又)12)(1(}12)[1(++=++i i S i i 不是22+i 的倍数, 而)22,,2,1)(22(}12)(1(+=+-=+++i j i a j i i所以)22()1)(12()22()12)(1()12)(1(+-++=+-=+++++i j i i i j S S i i j i i 不是)22,,2,1(}12)(1(+=+++i j a j i i 的倍数故当)12(+=i i l 时,集合l P 中元素的个数为2i 1-i 231=+++)( 于是当)(1i 2j 1j )12(+≤≤++=i i l 时,集合l P 中元素的个数为j i 2+ 又471312312000++⨯⨯=)(故集合2000P 中元素的个数为100847312=+27.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))在公差为d 的等差数列}{n a 中,已知101=a ,且3215,22,a a a +成等比数列.(1)求n a d ,; (2)若0<d ,求.||||||||321n a a a a ++++【答案】解:(Ⅰ)由已知得到:22221311(22)54(1)50(2)(11)25(5)a a a a d a d d d +=⇒++=+⇒+=+224112122125253404611n n d d d d d d d a n a n==-⎧⎧⇒++=+⇒--=⇒⎨⎨=+=-⎩⎩或; (Ⅱ)由(1)知,当0d<时,11n a n =-,①当111n ≤≤时,123123(1011)(21)0||||||||22n n n n n n n a a a a a a a a a +--≥∴++++=++++==②当12n ≤时,1231231112132123111230||||||||()11(2111)(21)212202()()2222n n n n a a a a a a a a a a a a n n n n a a a a a a a a ≤∴++++=++++-+++---+=++++-++++=⨯-=所以,综上所述:1232(21),(111)2||||||||21220,(12)2n n n n a a a a n n n -⎧≤≤⎪⎪++++=⎨-+⎪≥⎪⎩ ; 28.(2013年高考湖北卷(理))已知等比数列{}n a 满足:2310a a -=,123125a a a =.(I)求数列{}n a 的通项公式; (II)是否存在正整数m ,使得121111ma a a +++≥ ?若存在,求m 的最小值;若不存在,说明理由.【答案】解:(I)由已知条件得:25a =,又2110a q -=,13q ∴=-或,所以数列{}n a 的通项或253n n a -=⨯(II)若1q =-,12111105m a a a +++=- 或,不存在这样的正整数m ; 若3q =,12111919110310mm a a a ⎡⎤⎛⎫+++=-<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,不存在这样的正整数m . 29.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))设等差数列{}na的前n 项和为n S ,且424S S =,221n n a a =+. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列{}n b 前n 项和为n T ,且 12n n na T λ++=(λ为常数).令2n n cb =*()n N ∈.求数列{}nc 的前n 项和n R .【答案】解:(Ⅰ)设等差数列{}n a 的首项为1a ,公差为d ,由424S S =,221n n a a =+得11114684(21)22(1)1a d a d a n a n d +=+⎧⎨+-=+-+⎩,解得,11a =,2d =因此21n a n =-*()n N ∈(Ⅱ)由题意知:12n n nT λ-=-所以2n ≥时,112122n n n n n n n b T T ----=-=-+故,1221221(1)()24n n n n n c b n ---===- *()n N ∈所以01231111110()1()2()3()(1)()44444n n R n -=⨯+⨯+⨯+⨯+⋅⋅⋅+-⨯, 则12311111110()1()2()(2)()(1)()444444n nn R n n -=⨯+⨯+⨯+⋅⋅⋅+-⨯+-⨯两式相减得1231311111()()()()(1)()444444n nn R n -=+++⋅⋅⋅+--⨯ 11()144(1)()414n nn -=--- 整理得1131(4)94n n n R -+=-所以数列数列{}n c 的前n 项和1131(4)94n n n R -+=-30.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分16分.设}{n a 是首项为a ,公差为d 的等差数列)0(≠d ,n S 是其前n 项和.记c n nS b n n +=2,*N n ∈,其中c 为实数.(1)若0=c ,且421b b b ,,成等比数列,证明:k nk S n S 2=(*,N n k ∈);(2)若}{n b 是等差数列,证明:0=c . 【答案】证明:∵}{n a 是首项为a ,公差为d 的等差数列)0(≠d ,n S 是其前n 项和 ∴d n n na S n 2)1(-+= (1)∵0=c ∴d n a n S b n n 21-+== ∵421b b b ,,成等比数列 ∴4122b b b = ∴)23()21(2d a a d a +=+∴041212=-d ad ∴0)21(21=-d a d ∵0≠d ∴d a 21= ∴a d 2= ∴a n a n n na d n n na S n 222)1(2)1(=-+=-+= ∴左边=a k n a nk S nk 222)(== 右边=a k n S n k 222=∴左边=右边∴原式成立(2)∵}{n b 是等差数列∴设公差为1d ,∴11)1(d n b b n -+=带入cn nS b n n +=2得: 11)1(d n b -+cn nS n +=2 ∴)()21()21(11121131b d c n cd n d a d b n d d -=++--+-对+∈N n 恒成立∴⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==+--=-0)(0021021111111b d c cd d a d b d d 由①式得:d d 211= ∵ 0≠d ∴ 01≠d 由③式得:0=c法二:证:(1)若0=c ,则d n a a n )1(-+=,2]2)1[(a d n n S n +-=,22)1(a d n b n +-=. 当421b b b ,,成等比数列,4122b b b =, 即:⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+2322d a a d a ,得:ad d 22=,又0≠d ,故a d 2=. 由此:a n S n 2=,a k n a nk S nk 222)(==,a k n S n k 222=.故:k nk S n S 2=(*,N n k ∈). (2)cn ad n n c n nS b n n ++-=+=22222)1(, cn a d n c a d n c a d n n ++--+-++-=2222)1(22)1(22)1( c n a d n c a d n ++--+-=222)1(22)1(. (※) 若}{n b 是等差数列,则Bn An b n +=型.观察(※)式后一项,分子幂低于分母幂,故有:022)1(2=++-cn ad n c,即022)1(=+-a d n c ,而22)1(a d n +-≠0, 故0=c . 经检验,当0=c 时}{n b 是等差数列.31.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))等差数列{}n a 的前n 项和为n S ,已知232=S a ,且124,,S S S 成等比数列,求{}n a 的通项式.【答案】32.(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))已知首项为32的等比数列{}n a 不是递减数列, 其前n 项和为(*)n S n ∈N , 且S 3 + a 3, S 5 + a 5, S 4 + a 4成等差数列. (Ⅰ) 求数列{}n a 的通项公式;(Ⅱ) 设*()1n n nT S n S ∈=-N , 求数列{}n T 的最大项的值与最小项的值. 【答案】33.(2013年高考江西卷(理))正项数列{a n }的前项和{a n }满足:222(1)()0n n s n n s n n -+--+=(1)求数列{a n }的通项公式a n ;(2)令221(2)n n b n a +=+,数列{b n }的前n 项和为n T .证明:对于任意的*n N ∈,都有564n T < 【答案】(1)解:由222(1)()0n n S n n S n n -+--+=,得2()(1)0n n S n n S ⎡⎤-++=⎣⎦.由于{}n a 是正项数列,所以20,n n S S n n >=+. 于是112,2a S n ==≥时,221(1)(1)2n n n a S S n n n n n -=-=+----=. 综上,数列{}n a 的通项2n a n =.(2)证明:由于2212,(2)n n nn a n b n a +==+. 则222211114(2)16(2)n n b n n n n ⎡⎤+==-⎢⎥++⎣⎦. 222222222111111111111632435(1)(1)(2)n T n n n n ⎡⎤=-+-+-++-+-⎢⎥-++⎣⎦… 222211111151(1)162(1)(2)16264n n ⎡⎤=+--<+=⎢⎥++⎣⎦. 34.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设数列{}n a 的前n 项和为n S .已知11a =,2121233n n S a n n n +=---,*n ∈N . (Ⅰ) 求2a 的值;(Ⅱ) 求数列{}n a 的通项公式;(Ⅲ) 证明:对一切正整数n ,有1211174n a a a +++< . 【答案】.(1) 解: 2121233n n S a n n n +=---,n N *∈. ∴ 当1n =时,112212221233a S a a ==---=- 又11a =,24a ∴=(2)解: 2121233n n S a n n n +=---,n N *∈. ∴ ()()321112122333n n n n n n S na n n n na ++++=---=- ① ∴当2n ≥时,()()()111213n n n n n S n a =-+=-- ②由① — ②,得 ()()112211n n n n S S na n a n n -+-=---+1222n n n a S S -=-()()1211n n n a na n a n n +∴=---+111n n a a n n +∴-=+ ∴数列n a n ⎧⎫⎨⎬⎩⎭是以首项为111a =,公差为1的等差数列. ()()2111,2n n a n n a n n n∴=+⨯-=∴=≥ 当1n =时,上式显然成立. 2*,n a n n N ∴=∈(3)证明:由(2)知,2*,n a n n N =∈①当1n =时,11714a =<,∴原不等式成立. ②当2n =时, 121117144a a +=+<,∴原不等式亦成立. ③当3n ≥时, ()()()()221111,11n n n n n n >-⋅+∴<-⋅+ ()()()2221211111111111121324211n a a a n n n n n ∴+++=+++<+++++⨯⨯-⋅-⋅+ 111111111111111121322423522211n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪--+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 1111111111112132435211n n n n ⎛⎫=+-+-+-++-+- ⎪--+⎝⎭1111171117121214214n n n n ⎛⎫⎛⎫=++--=+--< ⎪ ⎪++⎝⎭⎝⎭ ∴当3n ≥时,,∴原不等式亦成立.综上,对一切正整数n ,有1211174n a a a +++< . 35.(2013年高考北京卷(理))已知{a n }是由非负整数组成的无穷数列,该数列前n 项的最大值记为A n ,第n 项之后各项1n a +,2n a +,的最小值记为B n ,d n =A n -B n .(I)若{a n }为2,1,4,3,2,1,4,3,,是一个周期为4的数列(即对任意n ∈N *,4n n a a +=),写出d 1,d 2,d 3,d 4的值; (II)设d 为非负整数,证明:d n =-d (n =1,2,3)的充分必要条件为{a n }为公差为d 的等差数列;(III)证明:若a 1=2,d n =1(n =1,2,3,),则{a n }的项只能是1或者2,且有无穷多项为1.【答案】(I)12341, 3.d d d d ====(II)(充分性)因为{}n a 是公差为d 的等差数列,且0d ≥,所以12.n a a a ≤≤≤≤ 因此n n A a =,1n n B a +=,1(1,2,3,)n n n d a a d n +=-=-= . (必要性)因为0(1,2,3,)n d d n =-≤= ,所以n n n n A B d B =+≤. 又因为n n a A ≤,1n n a B +≥,所以1n n a a +≤. 于是n n A a =,1n n B a +=. 因此1n n n n n a a B A d d +-=-=-=,即{}n a 是公差为d 的等差数列. (III)因为112,1a d ==,所以112A a ==,1111B A d =-=.故对任意11,1n n a B ≥≥=. 假设{}(2)n a n ≥中存在大于2的项.设m 为满足2n a >的最小正整数,则2m ≥,并且对任意1,2k k m a ≤<≤,. 又因为12a =,所以12m A -=,且2m m A a =>.于是211m m m B A d =->-=,{}1min ,2m m m B a B -=≥. 故111220m m m d A B ---=-≤-=,与11m d -=矛盾.所以对于任意1n ≥,有2n a ≤,即非负整数列{}n a 的各项只能为1或2. 因此对任意1n ≥,12n a a ≤=,所以2n A =. 故211n n n B A d =-=-=. 因此对于任意正整数n ,存在m 满足m n >,且1m a =,即数列{}n a 有无穷多项为1.36.(2013年高考陕西卷(理))设{}n a 是公比为q 的等比数列.(Ⅰ) 导{}n a 的前n 项和公式;(Ⅱ) 设q ≠1, 证明数列{1}n a +不是等比数列.【答案】解:(Ⅰ) 分两种情况讨论. ①.}{111111na a a a S a a q n n =+++== 的常数数列,所以是首项为时,数列当 ②n n n n n n qa qa qa qa qS a a a a S q ++++=⇒++++=≠--1211211 时,当.上面两式错位相减:.)()()()-11123121n n n n n qa a qa qa a qa a qa a a S q -=--+-+-+=- ( qq a q qa a S n n n -1)1(.-111-=-=⇒.③综上,⎪⎩⎪⎨⎧≠--==)1(,1)1()1(,11q q q a q na S n n(Ⅱ) 使用反证法. 设{}n a 是公比q ≠1的等比数列, 假设数列{1}n a +是等比数列.则①当1*+∈∃n a N n ,使得=0成立,则{1}n a +不是等比数列.②当01*≠+∈∀n a N n ,使得成立,则恒为常数=++=++-+11111111n n n n q a q a a a 1,0111111=≠⇒+=+⇒-q a q a q a n n 时当.这与题目条件q ≠1矛盾. ③综上两种情况,假设数列{1}n a +是等比数列均不成立,所以当q ≠1时, 数列{1}n a +不是等比数列.。

2013全国高考新课标数学试卷

2013全国高考新课标数学试卷

7、设等差数列{an}的前 n 项和为 Sn,Sm-1=-2,Sm=0,Sm+1=3,则 m= ( A、3 B、4 C、5 D、6 8、某几何函数的三视图如图所示,则该几何的体积为( A、18+8π B、8+8π C、16+16π D、8+16π )
)
2 2 4 2 4 主视图 侧视图
4
4 2 俯视图
B、 (-∞,1]
12、设△AnBnCn 的三边长分别为 an,bn,cn,△AnBnCn 的面积为 Sn,n=1,2,3,… cn+an bn+an 若 b1>c1,b1+c1=2a1,an+1=an,bn+1= ,cn+1= ,则( ) 2 2 A、{Sn}为递减数列 B、{Sn}为递增数列 C、{S2n-1}为递增数列,{S2n}为递减数列 D、{S2n-1}为递减数列,{S2n}为递增数列
第Ⅰ卷
一、 选择题共 12 小题。每小题 5 分,共 60 分。在每个小题给出的四个选项中,只有一项 是符合题目要求的一项。 1、已知集合 A={x|x2-2x>0} ,B={x|- 5<x< 5},则 ( A、A∩B= B、A∪B=R C、B⊆A D、A⊆B 2、若复数 z 满足 (3-4i)z=|4+3i |,则 z 的虚部为 ( A、-4 4 (B)- 5 (C)4 4 (D) 5 ) )
5、执行右面的程序框图,如果输入的 t∈[-1,3],则输出的 s 属于 A、[-3,4] B、[-5,2] C、[-4,3] D、[-2,5]
开始 输入 t 是 否
出 s 结束 6、如图,有一个水平放置的透明无盖的正方体容器,容器高 8cm,将一个球放在容器口, 再向容器内注水,当球面恰好接触水面时测得水深为 6cm,如果不计容器的厚度,则球的体 积为 ( ) 500π 3 A、 cm 3 866π 3 B、 cm 3 1372π 3 C、 cm 3 2048π 3 D、 cm 3

2013高考全国2数学试卷及解析

2013高考全国2数学试卷及解析

2013年普通高等学校招生全国统一考试(Ⅱ)一.选择题(共12小题)1.已知集合M={x|(x﹣1)2<4,x∈R},N={﹣1,0,1,2,3},则M∩N=()A.{0,1,2}B.{﹣1,0,1,2}C.{﹣1,0,2,3}D.{0,1,2,3}2.设复数z满足(1﹣i)z=2i,则z=()A.﹣1+i B.﹣1﹣i C.1+i D.1﹣i3.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D.4.已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则()A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于l D.α与β相交,且交线平行于l5.已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=()A.﹣4 B.﹣3 C.﹣2 D.﹣16.执行右面的程序框图,如果输入的N=10,那么输出的S=()A.B.C.D.7.一个四面体的顶点在空间直角坐标系O﹣xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为()A.B.C.D.8.设a=log36,b=log510,c=log714,则()A.c>b>a B.b>c>a C.a>c>b D.a>b>c9.已知a>0,实数x,y满足:,若z=2x+y的最小值为1,则a=()A.2 B.1 C.D.10.已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是()A.∃x0∈R,f(x0)=0B.函数y=f(x)的图象是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(﹣∞,x0)单调递减D.若x0是f(x)的极值点,则f′(x0)=011.设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为()A.y2=4x或y2=8x B.y2=2x或y2=8xC.y2=4x或y2=16x D.y2=2x或y2=16x12.已知点A(﹣1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是()A.(0,1)B.C.D.二.填空题(共4小题)13.已知正方形ABCD的边长为2,E为CD的中点,则•=.14.从n个正整数1,2,…,n中任意取出两个不同的数,若取出的两数之和等于5的概率为,则n=.15.设θ为第二象限角,若tan(θ+)=,则sinθ+cosθ=.16.等差数列{a n}的前n项和为S n,已知S10=0,S15=25,则nS n的最小值为.三.解答题(共7小题)17.△ABC在内角A、B、C的对边分别为a,b,c,已知a=bcosC+csinB.(Ⅰ)求B;(Ⅱ)若b=2,求△ABC面积的最大值.18.如图,直棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=AB.(Ⅰ)证明:BC1∥平面A1CD(Ⅱ)求二面角D﹣A1C﹣E的正弦值.19.经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品.以x(单位:t,100≤x≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(Ⅰ)将T表示为x的函数;(Ⅱ)根据直方图估计利润T不少于57000元的概率;(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若x∈[100,110))则取x=105,且x=105的概率等于需求量落入[100,110)的频率,求T的数学期望.20.平面直角坐标系xOy中,过椭圆M:(a>b>0)右焦点的直线x+y﹣=0交M于A,B两点,P为AB的中点,且OP的斜率为.(Ⅰ)求M的方程(Ⅱ)C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形ACBD面积的最大值.21.已知函数f(x)=e x﹣ln(x+m)(Ι)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(Ⅱ)当m≤2时,证明f(x)>0.22.已知动点P、Q都在曲线(β为参数)上,对应参数分别为β=α与β=2α(0<α<2π),M为PQ的中点.(1)求M的轨迹的参数方程;(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.2018年04月22日fago的高中数学组卷参考答案与试题解析一.选择题(共12小题)1.已知集合M={x|(x﹣1)2<4,x∈R},N={﹣1,0,1,2,3},则M∩N=()A.{0,1,2}B.{﹣1,0,1,2}C.{﹣1,0,2,3}D.{0,1,2,3}【分析】求出集合M中不等式的解集,确定出M,找出M与N的公共元素,即可确定出两集合的交集.【解答】解:由(x﹣1)2<4,解得:﹣1<x<3,即M={x|﹣1<x<3},∵N={﹣1,0,1,2,3},∴M∩N={0,1,2}.故选:A.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.设复数z满足(1﹣i)z=2i,则z=()A.﹣1+i B.﹣1﹣i C.1+i D.1﹣i【分析】根据所给的等式两边同时除以1﹣i,得到z的表示式,进行复数的除法运算,分子和分母同乘以分母的共轭复数,整理成最简形式,得到结果.【解答】解:∵复数z满足z(1﹣i)=2i,∴z==﹣1+i故选:A.【点评】本题考查代数形式的除法运算,是一个基础题,这种题目若出现一定是一个送分题目,注意数字的运算.3.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D.【分析】设等比数列{a n}的公比为q,利用已知和等比数列的通项公式即可得到,解出即可.【解答】解:设等比数列{a n}的公比为q,∵S3=a2+10a1,a5=9,∴,解得.∴.故选:C.【点评】熟练掌握等比数列的通项公式是解题的关键.4.已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则()A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于l D.α与β相交,且交线平行于l【分析】由题目给出的已知条件,结合线面平行,线面垂直的判定与性质,可以直接得到正确的结论.【解答】解:由m⊥平面α,直线l满足l⊥m,且l⊄α,所以l∥α,又n⊥平面β,l⊥n,l⊄β,所以l∥β.由直线m,n为异面直线,且m⊥平面α,n⊥平面β,则α与β相交,否则,若α∥β则推出m∥n,与m,n异面矛盾.故α与β相交,且交线平行于l.故选:D.【点评】本题考查了平面与平面之间的位置关系,考查了平面的基本性质及推论,考查了线面平行、线面垂直的判定与性质,考查了学生的空间想象和思维能力,是中档题.5.已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=()A.﹣4 B.﹣3 C.﹣2 D.﹣1【分析】由题意利用二项展开式的通项公式求得展开式中x2的系数为+a•=5,由此解得a的值.【解答】解:已知(1+ax)(1+x)5=(1+ax)(1+x+x2+x3+x4+x5)展开式中x2的系数为+a•=5,解得a=﹣1,故选:D.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.6.执行右面的程序框图,如果输入的N=10,那么输出的S=()A. B.C. D.【分析】从赋值框给出的两个变量的值开始,逐渐分析写出程序运行的每一步,便可得到程序框图表示的算法的功能.【解答】解:框图首先给累加变量S和循环变量i赋值,S=0+1=1,k=1+1=2;判断k>10不成立,执行S=1+,k=2+1=3;判断k>10不成立,执行S=1++,k=3+1=4;判断k>10不成立,执行S=1+++,k=4+1=5;…判断i>10不成立,执行S=,k=10+1=11;判断i>10成立,输出S=.算法结束.故选:B.【点评】本题考查解决程序框图中的循环结构时,常采用写出前几次循环的结果,找规律.7.一个四面体的顶点在空间直角坐标系O﹣xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为()A.B.C.D.【分析】由题意画出几何体的直观图,然后判断以zOx平面为投影面,则得到正视图即可.【解答】解:因为一个四面体的顶点在空间直角坐标系O﹣xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),几何体的直观图如图,是正方体的顶点为顶点的一个正四面体,所以以zOx平面为投影面,则得到正视图为:故选:A.【点评】本题考查几何体的三视图的判断,根据题意画出几何体的直观图是解题的关键,考查空间想象能力.8.设a=log36,b=log510,c=log714,则()A.c>b>a B.b>c>a C.a>c>b D.a>b>c【分析】利用log a(xy)=log a x+log a y(x、y>0),化简a,b,c然后比较log32,log52,log72大小即可.【解答】解:因为a=log36=1+log32,b=log510=1+log52,c=log714=1+log72,因为y=log2x是增函数,所以log27>log25>log23,∵,,所以log32>log52>log72,所以a>b>c,故选:D.【点评】本题主要考查不等式与不等关系,对数函数的单调性的应用,不等式的基本性质的应用,属于基础题.9.已知a>0,实数x,y满足:,若z=2x+y的最小值为1,则a=()A.2 B.1 C.D.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即先确定z的最优解,然后确定a的值即可.【解答】解:作出不等式对应的平面区域,(阴影部分)由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点C时,直线y=﹣2x+z的截距最小,此时z最小.即2x+y=1,由,解得,即C(1,﹣1),∵点C也在直线y=a(x﹣3)上,∴﹣1=﹣2a,解得a=.故选:C.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.10.已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是()A.∃x0∈R,f(x0)=0B.函数y=f(x)的图象是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(﹣∞,x0)单调递减D.若x0是f(x)的极值点,则f′(x0)=0【分析】利用导数的运算法则得出f′(x),分△>0与△≤0讨论,列出表格,即可得出.【解答】解:f′(x)=3x2+2ax+b.(1)当△=4a2﹣12b>0时,f′(x)=0有两解,不妨设为x1<x2,列表如下x(﹣∞,x1)x1(x1,x2)x2(x2,+∞)f′(x)+0﹣0+f(x)单调递增极大值单调递减极小值单调递增由表格可知:①x2是函数f(x)的极小值点,但是f(x)在区间(﹣∞,x2)不具有单调性,故C不正确.②∵+f(x)=+x3+ax2+bx+c=﹣+2c,=,∵+f(x)=,∴点P为对称中心,故B正确.③由表格可知x1,x2分别为极值点,则,故D正确.④∵x→﹣∞时,f(x)→﹣∞;x→+∞,f(x)→+∞,函数f(x)必然穿过x轴,即∃xα∈R,f(xα)=0,故A正确.(2)当△≤0时,,故f(x)在R上单调递增,①此时不存在极值点,故D正确,C不正确;②B同(1)中②正确;③∵x→﹣∞时,f(x)→﹣∞;x→+∞,f(x)→+∞,函数f(x)必然穿过x轴,即∃x0∈R,f(x0)=0,故A正确.综上可知:错误的结论是C.由于该题选择错误的,故选:C.【点评】熟练掌握导数的运算法则、中心得出的定义、单调性与极值的关系等基础知识与方法,考查了分类讨论的思想方法等基本方法.11.设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为()A.y2=4x或y2=8x B.y2=2x或y2=8xC.y2=4x或y2=16x D.y2=2x或y2=16x【分析】根据抛物线方程算出|OF|=,设以MF为直径的圆过点A(0,2),在Rt△AOF 中利用勾股定理算出|AF|=.再由直线AO与以MF为直径的圆相切得到∠OAF=∠AMF,Rt△AMF中利用∠AMF的正弦建立关系式,从而得到关于p的方程,解之得到实数p的值,进而得到抛物线C的方程.【解答】解:∵抛物线C方程为y2=2px(p>0),∴焦点F坐标为(,0),可得|OF|=,∵以MF为直径的圆过点(0,2),∴设A(0,2),可得AF⊥AM,Rt△AOF中,|AF|==,∴sin∠OAF==,∵根据抛物线的定义,得直线AO切以MF为直径的圆于A点,∴∠OAF=∠AMF,可得Rt△AMF中,sin∠AMF==,∵|MF|=5,|AF|=∴=,整理得4+=,解之可得p=2或p=8因此,抛物线C的方程为y2=4x或y2=16x.故选:C.方法二:∵抛物线C方程为y2=2px(p>0),∴焦点F(,0),设M(x,y),由抛物线性质|MF|=x+=5,可得x=5﹣,因为圆心是MF的中点,所以根据中点坐标公式可得,圆心横坐标为=,由已知圆半径也为,据此可知该圆与y轴相切于点(0,2),故圆心纵坐标为2,则M点纵坐标为4,即M(5﹣,4),代入抛物线方程得p2﹣10p+16=0,所以p=2或p=8.所以抛物线C的方程为y2=4x或y2=16x.故选:C.【点评】本题给出抛物线一条长度为5的焦半径MF,以MF为直径的圆交抛物线于点(0,2),求抛物线的方程,着重考查了抛物线的定义与简单几何性质、圆的性质和解直角三角形等知识,属于中档题.12.已知点A(﹣1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是()A.(0,1)B.C.D.【分析】解法一:先求得直线y=ax+b(a>0)与x轴的交点为M(﹣,0),由﹣≤0可得点M在射线OA上.求出直线和BC的交点N的坐标,①若点M和点A重合,求得b=;②若点M在点O和点A之间,求得<b<;③若点M在点A的左侧,求得>b>1﹣.再把以上得到的三个b的范围取并集,可得结果.解法二:考查临界位置时对应的b值,综合可得结论.【解答】解:解法一:由题意可得,三角形ABC的面积为=1,由于直线y=ax+b(a>0)与x轴的交点为M(﹣,0),由直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,可得b>0,故﹣≤0,故点M在射线OA上.设直线y=ax+b和BC的交点为N,则由可得点N的坐标为(,).①若点M和点A重合,则点N为线段BC的中点,故N(,),把A、N两点的坐标代入直线y=ax+b,求得a=b=.②若点M在点O和点A之间,此时b>,点N在点B和点C之间,由题意可得三角形NMB的面积等于,即=,即=,可得a=>0,求得b<,故有<b<.③若点M在点A的左侧,则b<,由点M的横坐标﹣<﹣1,求得b>a.设直线y=ax+b和AC的交点为P,则由求得点P的坐标为(,),此时,由题意可得,三角形CPN的面积等于,即•(1﹣b)•|x N﹣x P|=,即(1﹣b)•|﹣|=,化简可得2(1﹣b)2=|a2﹣1|.由于此时b>a>0,0<a<1,∴2(1﹣b)2=|a2﹣1|=1﹣a2 .两边开方可得(1﹣b)=<1,∴1﹣b<,化简可得b>1﹣,故有1﹣<b<.再把以上得到的三个b的范围取并集,可得b的取值范围应是,故选:B.解法二:当a=0时,直线y=ax+b(a>0)平行于AB边,由题意根据三角形相似且面积比等于相似比的平方可得=,b=1﹣,趋于最小.由于a>0,∴b>1﹣.当a逐渐变大时,b也逐渐变大,当b=时,直线经过点(0,),再根据直线平分△ABC的面积,故a不存在,故b<.综上可得,1﹣<b<,故选:B.【点评】本题主要考查确定直线的要素,点到直线的距离公式以及三角形的面积公式的应用,还考察运算能力以及综合分析能力,分类讨论思想,属于难题.二.填空题(共4小题)13.已知正方形ABCD的边长为2,E为CD的中点,则•=2.【分析】根据两个向量的加减法的法则,以及其几何意义,可得要求的式子为()•(),再根据两个向量垂直的性质,运算求得结果.【解答】解:∵已知正方形ABCD的边长为2,E为CD的中点,则=0,故=()•()=()•()=﹣+﹣=4+0﹣0﹣=2,故答案为2.【点评】本题主要考查两个向量的加减法的法则,以及其几何意义,两个向量垂直的性质,属于中档题.14.从n个正整数1,2,…,n中任意取出两个不同的数,若取出的两数之和等于5的概率为,则n=8.【分析】列出从n个正整数1,2,…,n中任意取出两个不同的数的所有取法种数,求出和等于5的种数,根据取出的两数之和等于5的概率为列式计算n的值.【解答】解:从n个正整数1,2,…,n中任意取出两个不同的数,取出的两数之和等于5的情况有:(1,4),(2,3)共2种情况;从n个正整数1,2,…,n中任意取出两个不同的数的所有不同取法种数为,由古典概型概率计算公式得:从n个正整数1,2,…,n中任意取出两个不同的数,取出的两数之和等于5的概率为p=.所以,即,解得n=8.故答案为8.【点评】本题考查了古典概型及其概率计算公式,考查了组合数公式,解答此题时既可以按有序取,也可以按无序取,问题的实质是一样的.此题是基础题.15.设θ为第二象限角,若tan(θ+)=,则sinθ+cosθ=﹣.【分析】已知等式利用两角和与差的正切函数公式及特殊角的三角函数值化简,求出tanθ的值,再根据θ为第二象限角,利用同角三角函数间的基本关系求出sinθ与cosθ的值,即可求出sinθ+cosθ的值.【解答】解:∵tan(θ+)==,∴tanθ=﹣,而cos2θ==,∵θ为第二象限角,∴cosθ=﹣=﹣,sinθ==,则sinθ+cosθ=﹣=﹣.故答案为:﹣【点评】此题考查了两角和与差的正切函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.16.等差数列{a n}的前n项和为S n,已知S10=0,S15=25,则nS n的最小值为﹣49.【分析】由等差数列的前n项和公式化简已知两等式,联立求出首项a1与公差d的值,结合导数求出nS n的最小值.【解答】解:设等差数列{a n}的首项为a1,公差为d,∵S10=10a1+45d=0,S15=15a1+105d=25,∴a1=﹣3,d=,∴S n=na1+d=n2﹣n,∴nS n=n3﹣n2,令nS n=f(n),∴f′(n)=n2﹣n,∴当n=时,f(n)取得极值,当n<时,f(n)递减;当n>时,f(n)递增;因此只需比较f(6)和f(7)的大小即可.f(6)=﹣48,f(7)=﹣49,故nS n的最小值为﹣49.故答案为:﹣49.【点评】此题考查了等差数列的性质,以及等差数列的前n项和公式,熟练掌握性质及公式是解本题的关键.三.解答题(共7小题)17.△ABC在内角A、B、C的对边分别为a,b,c,已知a=bcosC+csinB.(Ⅰ)求B;(Ⅱ)若b=2,求△ABC面积的最大值.【分析】(Ⅰ)已知等式利用正弦定理化简,再利用两角和与差的正弦函数公式及诱导公式变形,求出tanB的值,由B为三角形的内角,利用特殊角的三角函数值即可求出B的度数;(Ⅱ)利用三角形的面积公式表示出三角形ABC的面积,把sinB的值代入,得到三角形面积最大即为ac最大,利用余弦定理列出关系式,再利用基本不等式求出ac的最大值,即可得到面积的最大值.【解答】解:(Ⅰ)由已知及正弦定理得:sinA=sinBcosC+sinBsinC①,∵sinA=sin(B+C)=sinBcosC+cosBsinC②,∴sinB=cosB,即tanB=1,∵B为三角形的内角,∴B=;(Ⅱ)S=acsinB=ac,△ABC由已知及余弦定理得:4=a2+c2﹣2accos≥2ac﹣2ac×,整理得:ac≤,当且仅当a=c时,等号成立,则△ABC面积的最大值为××=××(2+)=+1.【点评】此题考查了正弦、余弦定理,三角形的面积公式,两角和与差的正弦函数公式,以及基本不等式的运用,熟练掌握定理及公式是解本题的关键.18.如图,直棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=AB.(Ⅰ)证明:BC1∥平面A1CD(Ⅱ)求二面角D﹣A1C﹣E的正弦值.【分析】(Ⅰ)通过证明BC1平行平面A1CD内的直线DF,利用直线与平面平行的判定定理证明BC1∥平面A1CD(Ⅱ)证明DE⊥平面A1DC,作出二面角D﹣A1C﹣E的平面角,然后求解二面角平面角的正弦值即可.【解答】解:(Ⅰ)证明:连结AC1交A1C于点F,则F为AC1的中点,又D是AB中点,连结DF,则BC1∥DF,因为DF⊂平面A1CD,BC1⊄平面A1CD,所以BC1∥平面A1CD.(Ⅱ)因为直棱柱ABC﹣A1B1C1,所以AA1⊥CD,由已知AC=CB,D为AB的中点,所以CD⊥AB,又AA1∩AB=A,于是,CD⊥平面ABB1A1,设AB=2,则AA1=AC=CB=2,得∠ACB=90°,CD=,A1D=,DE=,A1E=3故A1D2+DE2=A1E2,即DE⊥A1D,所以DE⊥平面A1DC,又A1C=2,过D作DF⊥A1C于F,∠DFE为二面角D﹣A1C﹣E的平面角,在△A1DC中,DF==,EF==,所以二面角D﹣A1C﹣E的正弦值.sin∠DFE=.【点评】本题考查直线与平面平行的判定定理的应用,二面角的平面角的求法,考查空间想象能力与计算能力.19.经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品.以x(单位:t,100≤x≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(Ⅰ)将T表示为x的函数;(Ⅱ)根据直方图估计利润T不少于57000元的概率;(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若x∈[100,110))则取x=105,且x=105的概率等于需求量落入[100,110)的频率,求T的数学期望.【分析】(Ⅰ)由题意先分段写出,当x∈[100,130)时,当x∈[130,150)时,和利润值,最后利用分段函数的形式进行综合即可.(Ⅱ)由(I)知,利润T不少于57000元,当且仅当120≤x≤150.再由直方图知需求量X ∈[120,150]的频率为0.7,利用样本估计总体的方法得出下一个销售季度的利润T不少于57000元的概率的估计值.(Ⅲ)利用利润T的数学期望=各组的区间中点值×该区间的频率之和即得.【解答】解:(Ⅰ)由题意得,当x∈[100,130)时,T=500x﹣300(130﹣x)=800x﹣39000,当x∈[130,150)时,T=500×130=65000,∴T=.(Ⅱ)由(Ⅰ)知,利润T不少于57000元,当且仅当120≤x≤150.由直方图知需求量X∈[120,150]的频率为0.7,所以下一个销售季度的利润T不少于57000元的概率的估计值为0.7.(Ⅲ)依题意可得T的分布列如图,T4500053006100065000p0.10.20.30.4所以ET=45000×0.1+53000×0.2+61000×0.3+65000×0.4=59400.【点评】本题考查用样本的频率分布估计总体分布及识图的能力,求解的重点是对题设条件及直方图的理解,了解直方图中每个小矩形的面积的意义,是中档题.20.平面直角坐标系xOy中,过椭圆M :(a>b>0)右焦点的直线x+y ﹣=0交M于A,B两点,P为AB的中点,且OP 的斜率为.(Ⅰ)求M的方程(Ⅱ)C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形ACBD面积的最大值.【分析】(Ⅰ)把右焦点(c,0)代入直线可解得c.设A(x1,y1),B(x2,y2),线段AB的中点P(x0,y0),利用“点差法”即可得到a,b的关系式,再与a2=b2+c2联立即可得到a,b,c.(Ⅱ)由CD⊥AB,可设直线CD的方程为y=x+t,与椭圆的方程联立得到根与系数的关系,即可得到弦长|CD|.把直线x+y﹣=0与椭圆的方程联立得到根与系数的关系,即可得到=即可得到关于t的表达式,利用二次函数的单调性弦长|AB|,利用S四边形ACBD即可得到其最大值.【解答】解:(Ⅰ)把右焦点(c,0)代入直线x+y﹣=0得c+0﹣=0,解得c=.设A(x1,y1),B(x2,y2),线段AB的中点P(x0,y0),则,,相减得,∴,∴,又=,∴,即a2=2b2.联立得,解得,∴M的方程为.(Ⅱ)∵CD⊥AB,∴可设直线CD的方程为y=x+t,联立,消去y得到3x2+4tx+2t2﹣6=0,∵直线CD与椭圆有两个不同的交点,∴△=16t2﹣12(2t2﹣6)=72﹣8t2>0,解﹣3<t<3(*).设C(x3,y3),D(x4,y4),∴,.∴|CD|===.联立得到3x2﹣4x=0,解得x=0或,∴交点为A(0,),B,∴|AB|==.===,∴S四边形ACBD∴当且仅当t=0时,四边形ACBD面积的最大值为,满足(*).∴四边形ACBD面积的最大值为.【点评】本题综合考查了椭圆的定义、标准方程及其性质、“点差法”、中点坐标公式、直线与椭圆相交问题转化为方程联立得到一元二次方程根与系数的关系、弦长公式、四边形的面积计算、二次函数的单调性等基础知识,考查了推理能力、数形结合的思想方法、计算能力、分析问题和解决问题的能力.21.已知函数f(x)=e x﹣ln(x+m)(Ι)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(Ⅱ)当m≤2时,证明f(x)>0.【分析】(Ⅰ)求出原函数的导函数,因为x=0是函数f(x)的极值点,由极值点处的导数等于0求出m的值,代入函数解析式后再由导函数大于0和小于0求出原函数的单调区间;(Ⅱ)证明当m≤2时,f(x)>0,转化为证明当m=2时f(x)>0.求出当m=2时函数的导函数,可知导函数在(﹣2,+∞)上为增函数,并进一步得到导函数在(﹣1,0)上有唯一零点x0,则当x=x0时函数取得最小值,借助于x0是导函数的零点证出f(x0)>0,从而结论得证.【解答】(Ⅰ)解:∵,x=0是f(x)的极值点,∴,解得m=1.所以函数f(x)=e x﹣ln(x+1),其定义域为(﹣1,+∞).∵.设g(x)=e x(x+1)﹣1,则g′(x)=e x(x+1)+e x>0,所以g(x)在(﹣1,+∞)上为增函数,又∵g(0)=0,所以当x>0时,g(x)>0,即f′(x)>0;当﹣1<x<0时,g(x)<0,f′(x)<0.所以f(x)在(﹣1,0)上为减函数;在(0,+∞)上为增函数;(Ⅱ)证明:当m≤2,x∈(﹣m,+∞)时,ln(x+m)≤ln(x+2),故只需证明当m=2时f(x)>0.当m=2时,函数在(﹣2,+∞)上为增函数,且f′(﹣1)<0,f′(0)>0.故f′(x)=0在(﹣2,+∞)上有唯一实数根x0,且x0∈(﹣1,0).当x∈(﹣2,x0)时,f′(x)<0,当x∈(x0,+∞)时,f′(x)>0,从而当x=x0时,f(x)取得最小值.由f′(x0)=0,得,ln(x0+2)=﹣x0.故f(x)≥=>0.综上,当m≤2时,f(x)>0.【点评】本题考查了利用导数研究函数的单调性,利用导数求函数在闭区间上的最值,考查了不等式的证明,考查了函数与方程思想,分类讨论的数学思想,综合考查了学生分析问题和解决问题的能力.熟练函数与导数的基础知识是解决该题的关键,是难题.22.已知动点P、Q都在曲线(β为参数)上,对应参数分别为β=α与β=2α(0<α<2π),M为PQ的中点.(1)求M的轨迹的参数方程;(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.【分析】(1)利用参数方程与中点坐标公式即可得出;(2)利用两点之间的距离公式、三角函数的单调性即可得出.【解答】解:(1)依题意有P(2cosα,2sinα),Q(2cos2α,2sin2α),因此M(cosα+cos2α,sinα+sin2α).M的轨迹的参数方程为为参数,0<α<2π).(2)M点到坐标原点的距离d=(0<α<2π).当α=π时,d=0,故M的轨迹过坐标原点.【点评】本题考查了参数方程与中点坐标公式、两点之间的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.23.【选修4﹣﹣5;不等式选讲】设a,b,c均为正数,且a+b+c=1,证明:(Ⅰ)(Ⅱ).【分析】(Ⅰ)依题意,由a+b+c=1⇒(a+b+c)2=1⇒a2+b2+c2+2ab+2bc+2ca=1,利用基本不等式可得3(ab+bc+ca)≤1,从而得证;(Ⅱ)利用基本不等式可证得:+b≥2a,+c≥2b,+a≥2c,三式累加即可证得结论.【解答】证明:(Ⅰ)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca得:a2+b2+c2≥ab+bc+ca,由题设得(a+b+c)2=1,即a2+b2+c2+2ab+2bc+2ca=1,所以3(ab+bc+ca)≤1,即ab+bc+ca≤.(Ⅱ)因为+b≥2a,+c≥2b,+a≥2c,故+++(a+b+c)≥2(a+b+c),即++≥a+b+c.所以++≥1.【点评】本题考查不等式的证明,突出考查基本不等式与综合法的应用,考查推理论证能力,属于中档题.。

2013年全国卷数学试题及答案(文)

 2013年全国卷数学试题及答案(文)

2013·全国卷(文科数学)1. 设全集U ={1,2,3,4,5},集合A ={1,2},则∁U A =( ) A .{1,2} B .{3,4,5} C .{1,2,3,4,5} D .∅1.B [解析] 所求的集合是由全集中不属于集合A 的元素组成的集合,显然是{3,4,5}.2. 已知α是第二象限角,sin α=513,则cos α=( )A .-1213B .-513 C.513 D.12132.A [解析] cos α=-1-sin 2 α=-1213.3. 已知向量=(λ+1,1),=(λ+2,2),若(+)⊥(-),则λ=( ) A .-4 B .-3 C .-2 D .-13.B [解析] (+)⊥(-)⇔(+)·(-)=0⇔=,所以(λ+1)2+12=(λ+2)2+22,解得λ=-3.4. 不等式|x 2-2|<2的解集是( ) A .(-1,1) B .(-2,2)C .(-1,0)∪(0,1)D .(-2,0)∪(0,2)4.D [解析] |x 2-2|<2等价于-2<x 2-2<2,即0<x 2<4,即0<|x |<2,解得-2<x <0或者0<x <2,故所求的不等式的解集是(-2,0)∪(0,2).5. (x +2)8的展开式中x 6的系数是( ) A .28 B .56 C .112 D .2245.C [解析] 含x 6的项是展开式的第三项,其系数为C 28×22=112.6. 函数f (x )=log 2⎝⎛⎭⎫1+1x (x >0)的反函数f -1(x )=( ) A.12x -1(x >0) B.12x -1(x ≠0) C .2x -1(x ∈) D .2x -1(x >0)6.A [解析] 令y =log 2⎝⎛⎭⎫1+1x ,则y >0,且1+1x =2y ,解得x =12y -1,交换x ,y 得f -1(x )=12x-1(x >0). 7. 已知数列{a n }满足3a n +1+a n =0,a 2=-43,则{a n }的前10项和等于( )A .-6(1-3-10) B.19(1-310)C .3(1-3-10) D .3(1+3-10)7.C [解析] 由3a n +1+a n =0,得a n ≠0(否则a 2=0)且a n +1a n =-13,所以数列{a n }是公比为-13的等比数列,代入a 2可得a 1=4,故S 10=4×⎣⎡⎦⎤1-⎝⎛⎭⎫-13101+13=3×⎣⎡⎦⎤1-⎝⎛⎭⎫1310=3(1-3-10).8. 已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交C 于A ,B 两点,且|AB |=3,则C 的方程为( )A.x 22+y 2=1B.x 23+y 22=1 C.x 24+y 23=1 D.x 25+y 24=1 8.C [解析] 设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),与直线x =1联立得y =±b 2a (c =1),所以2b 2=3a ,即2(a 2-1)=3a ,2a 2-3a -2=0,a >0,解得a =2(负值舍去),所以b 2=3,故所求椭圆方程为x 24+y 23=1.9. 若函数y =sin(ωx +φ)(ω>0)的部分图像如图1-1所示,则ω=( )图1-1A .5B .4C .3D .29.B [解析] 根据对称性可得π4为已知函数的半个周期,所以2πω=2×π4,解得ω=4.10. 已知曲线y =x 4+ax 2+1在点(-1,a +2)处切线的斜率为8,则a =( )A .9B .6C .-9D .-610.D [解析] y ′=4x 3+2ax ,当x =-1时y ′=8,故8=-4-2a ,解得a =-6.11. 已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于( )A.23B.33C.23 D.1311.A [解析] 如图,联结AC ,交BD 于点O .由于BO ⊥OC ,BO ⊥CC 1,可得BO ⊥平面OCC 1,从而平面OCC 1⊥平面BDC 1,过点C 作OC 1的垂线交OC 1于点E ,根据面面垂直的性质定理可得CE ⊥平面BDC 1,∠CDE 即为所求的线面角.设AB =2,则OC =2,OC 1=18=32,所以CE =CC 1·OC OC 1=4 23 2=43,所以sin ∠CDE =CE CD =23.12.、 已知抛物线C :y 2=8x与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若MA →·MB →=0,则k =( )A.12B.22C. 2 D .212.D [解析] 抛物线的焦点坐标为(2,0),设直线l 的方程为x =ty +2,与抛物线方程联立得y 2-8ty -16=0.设A (x 1,y 1),B (x 2,y 2),则y 1y 2=-16,y 1+y 2=8t ,x 1+x 2=t (y 1+y 2)+4=8t 2+4,x 1x 2=t 2y 1y 2+2t (y 1+y 2)+4=-16t 2+16t 2+4=4.MA →·MB →=(x 1+2,y 1-2)·(x 2+2,y 2-2)=x 1x 2+2(x 1+x 2)+4+y 1y 2-2(y 1+y 2)+4 =4+16t 2+8+4-16-16t +4=16t 2-16t +4=4(2t -1)2=0,解得t =12,所以k =1t =2.13. 设f (x )是以2为周期的函数,且当x ∈[1,3)时,f (x )=x -2,则f (-1)=________13.-1 [解析] f (-1)=f (-1+2)=f (1)=1-2=-1. 14.、 从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有____种.(用数字作答)14.60 [解析] 从6人逐次选出1人,2人,3人分别给奖项即可,方法数为C 16C 25C 33=60.15. 若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4,则z =-x +y 的最小值为________.15.0 [解析] 已知不等式组表示区域如图中的三角形ABC 及其内部,目标函数的几何意义是直线y =x +z 在y 轴上的截距,显然在点A 取得最小值,点A (1,1),故z min =-1+1=0.16.、 已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,OK =32,且圆O 与圆K 所在的平面所成的一个二面角为60°,则球O 的表面积等于________.16.16π [解析] 设两圆的公共弦AB 的中点为D ,则KD ⊥DA ,OD ⊥DA ,∠ODK 即为圆O 和圆K 所在平面所成二面角的平面角,所以∠ODK =60°.由于O 为球心,故OK 垂直圆K 所在平面,所以OK ⊥KD .在直角三角形ODK 中,OK OD =sin 60°,即OD =32×23=3,设球的半径为r ,则DO =32r ,所以32r =3,所以r =2,所以球的表面积为4πr 2=16π.17.、 等差数列{a n }中,a 7=4,a 19=2a 9.(1)求{a n }的通项公式;(2)设b n =1na n,求数列{b n }的前n 项和S n .17.解:(1)设等差数列{a n }的公差为d , 则a n =a 1+(n -1)d .因为⎩⎪⎨⎪⎧a 7=4,a 19=2a 9,所以⎩⎪⎨⎪⎧a 1+6d =4,a 1+18d =2(a 1+8d ), 解得a 1=1,d =12.所以{a n }的通项公式为a n =n +12. (2)因为b n =1na n =2n (n +1)=2n -2n +1,所以S n =21-22+22-23+…+2n -2n +1=2n n +1. 18.、 设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,(a +b +c )(a -b +c )=ac . (1)求B ; (2)若sin A sin C =3-14,求C . 18.解:(1)因为(a +b +c )(a -b +c )=ac , 所以a 2+c 2-b 2=-ac .由余弦定理得cos B =a 2+c 2-b 22ac =-12,因此B =120°.(2)由(1)知A +C =60°, 所以cos (A -C )=cos A cos C +sin A sin C=cos A cos C -sin A sin C +2sin A sin C =cos(A +C )+2sin A sin C =12+2×3-14 =32, 故A -C =30°或A -C =-30°, 因此C =15°或C =45°. 19.、 如图1-3所示,四棱锥P —ABCD 中,∠ABC =∠BAD =90°,BC =2AD ,△P AB 和△P AD 都是边长为2的等边三角形.图1-3(1)证明:PB ⊥CD ;(2)求点A 到平面PCD 的距离.19.解:(1)证明:取BC 的中点E ,联结DE ,则四边形ABED 为正方形.过P 作PO ⊥平面ABCD ,垂足为O .联结OA ,OB ,OD ,OE .由△P AB 和△P AD 都是等边三角形知P A =PB =PD ,所以OA =OB =OD ,即点O 为正方形ABED 对角线的交点.故OE ⊥BD ,从而PB ⊥OE .因为O 是BD 的中点,E 是BC 的中点,所以OE ∥CD .因此PB ⊥CD .(2)取PD 的中点F ,联结OF ,则OF ∥PB . 由(1)知,PB ⊥CD ,故OF ⊥CD .又OD =12BD =2,OP =PD 2-OD 2=2,故△POD 为等腰三角形,因此OF ⊥PD . 又PD ∩CD =D ,所以OF ⊥平面PCD .因为AE ∥CD ,CD ⊂平面PCD ,AE ⊄平面PCD ,所以AE ∥平面PCD .因此O 到平面PCD 的距离OF 就是A 到平面PCD 的距离,而OF =12PB =1,所以点A 到平面PCD 的距离为1. 20.、、 甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为12,各局比赛的结果相互独立,第1局甲当裁判.(1)求第4局甲当裁判的概率;(2)求前4局中乙恰好当1次裁判的概率.20.解:(1)记A 1表示事件“第2局结果为甲胜”, A 2表示事件“第3局甲参加比赛时,结果为甲负”, A 表示事件“第4局甲当裁判”. 则A =A 1·A 2,P (A )=P (A 1·A 2)=P (A 1)P (A 2)=14.(2)记B 1表示事件“第1局比赛结果为乙胜”,B 2表示事件“第2局乙参加比赛时,结果为乙胜”, B 3表示事件“第3局乙参加比赛时,结果为乙胜”, B 表示事件“前4局中乙恰好当1次裁判”. 则B =B 1·B 3+B 1·B 2·B 3+B 1·B 2, P (B )=P (B 1·B 3+B 1·B 2·B 3+B 1·B 2) =P (B 1·B 3)+P (B 1·B 2·B 3)+P (B 1·B 2)=P (B 1)P (B 3)+P (B 1)P (B 2)P (B 3)+P (B 1)P (B 2) =14+18+14 =58. 21.、 已知函数f (x )=x 3+3ax 2+3x +1.(1)当a =-2时,讨论f (x )的单调性;(2)若x ∈[2,+∞)时,f (x )≥0,求a 的取值范围.21.解:(1)当a =-2时,f (x )=x 3-3 2x 2+3x +1, f ′(x )=3x 2-6 2x +3.令f ′(x )=0,得x 1=2-1,x 2=2+1.当x ∈(-∞,2-1)时,f ′(x )>0,f (x )在(-∞,2-1)上是增函数; 当x ∈(2-1,2+1)时,f ′(x )<0,f (x )在(2-1,2+1)上是减函数; 当x ∈(2+1,+∞)时,f ′(x )>0,f (x )在(2+1,+∞)上是增函数. (2)由f (2)≥0得a ≥-54.当a ≥-54,x ∈(2,+∞)时,f ′(x )=3(x 2+2ax +1)≥3⎝⎛⎭⎫x 2-52x +1=3⎝⎛⎭⎫x -12(x -2)>0, 所以f (x )在(2,+∞)上是增函数,于是当x ∈[2,+∞)时,f (x )≥f (2)≥0. 综上,a 的取值范围是⎣⎡⎭⎫-54,+∞. 22.、、 已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为3,直线y =2与C 的两个交点间的距离为 6.(1)求a ,b ;(2)设过F 2的直线l 与C 的左、右两支分别交于A ,B 两点,且|AF 1|=|BF 1|,证明:|AF 2|,|AB |,|BF 2|成等比数列.22.解:(1)由题设知ca =3,即a 2+b 2a 2=9,故b 2=8a 2.所以C 的方程为8x 2-y 2=8a 2. 将y =2代入上式,并求得x =±a 2+12.由题设知,2a 2+12=6,解得a 2=1.所以a =1,b =2 2.(2)证明:由(1)知,F 1(-3,0),F 2(3,0),C 的方程为8x 2-y 2=8.①由题意可设l 的方程为y =k (x -3),|k |<22,代入①并化简得(k 2-8)x 2-6k 2x +9k 2+8=0.设A (x 1,y 1),B (x 2,y 2),则x 1≤-1,x 2≥1,x 1+x 2=6k 2k 2-8,x 1x 2=9k 2+8k 2-8.于是|AF 1|=(x 1+3)2+y 21=(x 1+3)2+8x 21-8=-(3x 1+1),|BF 1|=(x 2+3)2+y 22=(x 2+3)2+8x 22-8=3x 2+1.由|AF 1|=|BF 1|得-(3x 1+1)=3x 2+1,即x 1+x 2=-23.故6k 2k 2-8=-23,解得k 2=45,从而x 1x 2=-199.由于|AF 2|=(x 1-3)2+y 21=(x 1-3)2+8x 21-8=1-3x 1,|BF 2|=(x 2-3)2+y 22=(x 2-3)2+8x 22-8=3x 2-1,故|AB |=|AF 2|-|BF 2|=2-3(x 1+x 2)=4, |AF 2|·|BF 2|=3(x 1+x 2)-9x 1x 2-1=16. 因而|AF 2|·|BF 2|=|AB |2,所以|AF 2|,|AB |,|BF 2|成等比数列.。

历年高考数学真题 全国卷 版

历年高考数学真题 全国卷 版

2013年普通高等学校夏季招生全国统一考试数学理工农医类(大纲全国卷)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013大纲全国,理1)设集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ∈A ,b ∈B },则M 中元素的个数为( ).A .3B .4C .5D .6 2.(2013大纲全国,理2)3=( ).A .-8B .8C .-8iD .8i3.(2013大纲全国,理3)已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ=( ).A .-4B .-3C .-2D .-14.(2013大纲全国,理4)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ).A .(-1,1)B .11,2⎛⎫-- ⎪⎝⎭ C .(-1,0) D .1,12⎛⎫ ⎪⎝⎭ 5.(2013大纲全国,理5)函数f (x )=21log 1x ⎛⎫+ ⎪⎝⎭(x >0)的反函数f -1(x )=( ).A .121x -(x >0)B .121x-(x≠0) C .2x -1(x ∈R) D .2x-1(x >0)6.(2013大纲全国,理6)已知数列{a n }满足3a n +1+a n =0,a 2=43-,则{a n }的前10项和等于( ).A .-6(1-3-10)B .19(1-310) C .3(1-3-10)D .3(1+3-10)7.(2013大纲全国,理7)(1+x )8(1+y )4的展开式中x 2y 2的系数是( ).A .56B .84C .112D .1688.(2013大纲全国,理8)椭圆C :22=143x y+的左、右顶点分别为A 1,A 2,点P 在C 上且直线PA 2斜率的取值范围是[-2,-1],那么直线PA 1斜率的取值范围是( ).A .13,24⎡⎤⎢⎥⎣⎦B .33,84⎡⎤⎢⎥⎣⎦C .1,12⎡⎤⎢⎥⎣⎦D .3,14⎡⎤⎢⎥⎣⎦9.(2013大纲全国,理9)若函数f (x )=x 2+ax +1x 在1,2⎛⎫+∞ ⎪⎝⎭是增函数,则a 的取值范围是( ).A .[-1,0]B .[-1,+∞)C .[0,3]D .[3,+∞) 10.(2013大纲全国,理10)已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于( ).A .23B .C .3D .1311.(2013大纲全国,理11)已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若0MA MB ⋅=u u u r u u u r,则k =( ).A .12 B .2 C .212.(2013大纲全国,理12)已知函数f (x )=cos x sin 2x ,下列结论中错误的是( ).A .y =f(x)的图像关于点(π,0)中心对称B .y =f(x)的图像关于直线π=2x 对称C.f(x)的最大值为 D.f(x)既是奇函数,又是周期函数二、填空题:本大题共4小题,每小题5分.13.(2013大纲全国,理13)已知α是第三象限角,sin α=13-,则cot α=__________.14.(2013大纲全国,理14)6个人排成一行,其中甲、乙两人不相邻的不同排法共有__________种.(用数字作答)15.(2013大纲全国,理15)记不等式组0,34,34xx yx y≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域为D.若直线y=a(x+1)与D有公共点,则a的取值范围是__________.16.(2013大纲全国,理16)已知圆O和圆K是球O的大圆和小圆,其公共弦长等于球O的半径,OK=32,且圆O与圆K所在的平面所成的一个二面角为60°,则球O的表面积等于__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(2013大纲全国,理17)(本小题满分10分)等差数列{a n}的前n项和为S n.已知S3=22a,且S1,S2,S4成等比数列,求{a n}的通项公式.18.(2013大纲全国,理18)(本小题满分12分)设△ABC的内角A,B,C的对边分别为a,b,c,(a+b+c)(a-b+c)=ac.(1)求B;(2)若sin A sin C,求C19.(2013大纲全国,理19)(本小题满分12分)如图,四棱锥P-ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB和△PAD 都是等边三角形.(1)证明:PB ⊥CD ;(2)求二面角A -PD -C 的大小.20.(2013大纲全国,理20)(本小题满分12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为12,各局比赛的结果相互独立,第1局甲当裁判. (1)求第4局甲当裁判的概率;(2)X 表示前4局中乙当裁判的次数,求X 的数学期望.21.(2013大纲全国,理21)(本小题满分12分)已知双曲线C :2222=1x y a b-(a>0,b >0)的左、右焦点分别为F 1,F 2,离心率为3,直线y =2与C 的两个(1)求a ,b ;(2)设过F 2的直线l 与C 的左、右两支分别交于A ,B 两点,且|AF 1|=|BF 1|,证明:|AF 2|,|AB |,|BF 2|成等比数列.22.(2013大纲全国,理22)(本小题满分12分)已知函数f (x )=1ln(1+)1x x x xλ(+)-+. (1)若x ≥0时,f (x )≤0,求λ的最小值;(2)设数列{a n }的通项111=1+23n a n+++L ,证明:a 2n -a n +14n>ln 2.2013年普通高等学校夏季招生全国统一考试数学理工农医类(大纲全国卷)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 答案:B解析:由题意知x =a +b ,a ∈A ,b ∈B ,则x 的可能取值为5,6,7,8.因此集合M 共有4个元素.故选B. 2. 答案:A解析:323=13=8-.故选A. 3. 答案:B解析:由(m +n )⊥(m -n )?|m |2-|n |2=0?(λ+1)2+1-[(λ+2)2+4]=0?λ=-3.故选B. 4. 答案:B解析:由题意知-1<2x +1<0,则-1<x <12-.故选B. 5. 答案:A解析:由题意知11+x=2y ?x =121y -(y >0), 因此f -1(x )=121x -(x >0).故选A.6. 答案:C解析:∵3a n +1+a n =0,∴a n +1=13n a -.∴数列{a n }是以13-为公比的等比数列.∵a 2=43-,∴a 1=4.∴S 10=101413113⎡⎤⎛⎫--⎢⎥⎪⎝⎭⎢⎥⎣⎦+=3(1-3-10).故选C. 7. 答案:D解析:因为(1+x )8的展开式中x 2的系数为28C ,(1+y )4的展开式中y 2的系数为24C ,所以x 2y 2的系数为2284C C 168=.故选D.8. 答案:B解析:设P 点坐标为(x 0,y 0),则2200=143x y +,2002PA y k x =-,1002PA y k x =+,于是12220222003334244PA PA x y k k x x -⋅===---. 故12314PA PA k k =-. ∵2PA k ∈[-2,-1],∴133,84PA k ⎡⎤∈⎢⎥⎣⎦.故选B. 9. 答案:D解析:由条件知f ′(x )=2x +a -21x ≥0在1,2⎛⎫+∞ ⎪⎝⎭上恒成立,即212a x x ≥-在1,2⎛⎫+∞ ⎪⎝⎭上恒成立.∵函数212y x x =-在1,2⎛⎫+∞ ⎪⎝⎭上为减函数,∴max 211<23212y -⨯=⎛⎫⎪⎝⎭.∴a ≥3.故选D. 10. 答案:A解析:如下图,连结AC 交BD 于点O ,连结C 1O ,过C 作CH ⊥C 1O 于点H .∵11BD ACBD AA AC AA A ⊥⎫⎪⊥⎬⎪=⎭I 1111BD ACC A CH ACC A ⊥⎫⎬⊂⎭平面平面11=CH BD CH C OBD C O O ⊥⎫⎪⊥⎬⎪⎭I CH ⊥平面C 1BD ,∴∠HDC 为CD 与平面BDC 1所成的角. 设AA 1=2AB =2,则2=2AC OC ,222211293=22222C O OC CC ⎛⎫+=+ ⎪ ⎪⎝⎭由等面积法,得C 1O ·CH =OC ·CC 1,即322222CH ⋅⋅, ∴2=3CH .∴sin ∠HDC =223==13HC DC .故选A.11. 答案:D解析:由题意知抛物线C 的焦点坐标为(2,0),则直线AB 的方程为y =k (x -2),将其代入y 2=8x ,得k 2x 2-4(k 2+2)x +4k 2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2242k k(+),x 1x 2=4.① 由112222y k x y k x =(-)⎧⎨=(-)⎩∵0MA MB ⋅=u u u r u u u r,∴(x 1+2,y 1-2)·(x 2+2,y 2-2)=0. ∴(x 1+2)(x 2+2)+(y 1-2)(y 2-2)=0, 即x 1x 2+2(x 1+x 2)+4+y 1y 2-2(y 1+y 2)+4=0.④ 由①②③④解得k =2.故选D. 12. 答案:C解析:由题意知f (x )=2cos 2x ·sin x =2(1-sin 2x )sin x . 令t =sin x ,t ∈[-1,1], 则g (t )=2(1-t 2)t =2t -2t 3. 令g ′(t )=2-6t 2=0,得=3t ±. 当t =±1时,函数值为0;当t =;当t =. ∴g (t )max,即f (x ).故选C. 二、填空题:本大题共4小题,每小题5分.13.答案:解析:由题意知cos α=3==-.故cot α=cos sin αα. 14.答案:480解析:先排除甲、乙外的4人,方法有44A 种,再将甲、乙插入这4人形成的5个间隔中,有25A 种排法,因此甲、乙不相邻的不同排法有4245A A 480⋅=(种).15.答案:1,42⎡⎤⎢⎥⎣⎦解析:作出题中不等式组表示的可行域如图中阴影部分所示.∵直线y =a (x +1)过定点C (-1,0),由图并结合题意可知12BC k =,k AC =4, ∴要使直线y =a (x +1)与平面区域D 有公共点, 则12≤a ≤4. 16.答案:16π解析:如下图,设MN 为两圆的公共弦,E 为MN 的中点, 则OE ⊥MN ,KE ⊥MN ,结合题意可知∠OEK =60°.又MN =R ,∴△OMN 为正三角形.∴OE R .又OK ⊥EK ,∴32=OE R∴R =2.∴S =4πR 2=16π.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.解:设{a n }的公差为d .由S 3=22a 得3a 2=22a ,故a 2=0或a 2=3. 由S 1,S 2,S 4成等比数列得22S =S 1S 4. 又S 1=a 2-d ,S 2=2a 2-d ,S 4=4a 2+2d , 故(2a 2-d )2=(a 2-d )(4a 2+2d ).若a 2=0,则d 2=-2d 2,所以d =0,此时S n =0,不合题意; 若a 2=3,则(6-d )2=(3-d )(12+2d ),解得d =0或d =2. 因此{a n }的通项公式为a n =3或a n =2n -1. 18.解:(1)因为(a +b +c )(a -b +c )=ac ,所以a 2+c 2-b 2=-ac .由余弦定理得cos B =222122a cb ac +-=-, 因此B =120°.(2)由(1)知A +C =60°,所以cos(A -C )=cos A cos C +sin A sin C =cos A cos C -sin A sin C +2sinA sin C =cos(A +C )+2sin A sin C =11+2242⨯=, 故A -C =30°或A -C =-30°, 因此C =15°或C =45°. 19.(1)证明:取BC 的中点E ,连结DE ,则ABED 为正方形.过P 作PO ⊥平面ABCD ,垂足为O .连结OA ,OB ,OD ,OE .由△PAB 和△PAD 都是等边三角形知PA =PB =PD ,所以OA =OB =OD ,即点O 为正方形ABED 对角线的交点, 故OE ⊥BD ,从而PB ⊥OE .因为O 是BD 的中点,E 是BC 的中点, 所以OE ∥CD .因此PB ⊥CD .(2)解法一:由(1)知CD ⊥PB ,CD ⊥PO ,PB ∩PO =P , 故CD ⊥平面PBD .又PD ⊂平面PBD ,所以CD ⊥PD . 取PD 的中点F ,PC 的中点G ,连结FG , 则FG ∥CD ,FG ⊥PD .连结AF ,由△APD 为等边三角形可得AF ⊥PD . 所以∠AFG 为二面角A -PD -C 的平面角. 连结AG ,EG ,则EG ∥PB . 又PB ⊥AE ,所以EG ⊥AE .设AB =2,则AE =,EG =12PB =1,故AG 3.在△AFG 中,FG =12CD =AF =AG =3,所以cos ∠AFG =2222FG AF AG FG AF +-=⨯⨯因此二面角A -PD -C的大小为π-解法二:由(1)知,OE ,OB ,OP 两两垂直. 以O为坐标原点,OE uuu r的方向为x 轴的正方向建立如图所示的空间直角坐标系O -xyz .设|AB u u u r|=2,则A(,0,0),D (0,,0),C(,,0),P (0,0,.PC uuu r =(,),PD u u u r=(0,,).AP u u u r =,AD u u u r=,0). 设平面PCD 的法向量为n 1=(x ,y ,z ),则n 1·PC uuu r=(x ,y ,z)·(,,)=0,n 1·PD u u u r=(x ,y ,z)·(0,,)=0,可得2x -y -z =0,y +z =0.取y =-1,得x =0,z =1,故n 1=(0,-1,1).设平面PAD 的法向量为n 2=(m ,p ,q ),则n 2·AP u u u r=(m ,p ,q=0,n 2·AD u u u r=(m ,p ,q,0)=0,可得m +q =0,m -p =0.取m =1,得p =1,q =-1,故n 2=(1,1,-1). 于是cos 〈n 1,n 2〉=1212||||3=-·n n n n . 由于〈n 1,n 2〉等于二面角A -PD -C 的平面角,所以二面角A -PD -C 的大小为π-20.解:(1)记A 1表示事件“第2局结果为甲胜”,A 2表示事件“第3局甲参加比赛时,结果为甲负”,A 表示事件“第4局甲当裁判”.则A =A 1·A 2.P (A )=P (A 1·A 2)=P (A 1)P (A 2)=14.(2)X 的可能取值为0,1,2.记A 3表示事件“第3局乙和丙比赛时,结果为乙胜丙”,B 1表示事件“第1局结果为乙胜丙”,B 2表示事件“第2局乙和甲比赛时,结果为乙胜甲”,B 3表示事件“第3局乙参加比赛时,结果为乙负”.则P (X =0)=P (B 1·B 2·A 3)=P (B 1)P (B 2)·P (A 3)=18,P (X =2)=P (1B ·B 3)=P (1B )P (B 3)=14,P (X =1)=1-P (X =0)-P (X =2)=1151848--=,EX =0·P (X=0)+1·P (X =1)+2·P (X =2)=98. 21.(1)解:由题设知ca=3,即222a b a +=9,故b 2=8a 2.所以C 的方程为8x 2-y 2=8a 2.将y =2代入上式,求得x =由题设知,=a 2=1.所以a =1,b =(2)证明:由(1)知,F 1(-3,0),F 2(3,0),C 的方程为8x 2-y 2=8.① 由题意可设l 的方程为y =k (x -3),k (k 2-8)x 2-6k 2x +9k 2+8=0.设A (x 1,y 1),B (x 2,y 2),则x 1≤-1,x 2≥1,x 1+x 2=2268k k -,x 1·x 2=22988k k +-.于是|AF 1|(3x 1+1),|BF 1|3x 2+1.由|AF 1|=|BF 1|得-(3x 1+1)=3x 2+1,即x 1+x 2=23-.故226283k k =--,解得k 2=45,从而x 1·x 2=199-.由于|AF 2|1-3x 1,|BF 2|3x 2-1,故|AB |=|AF 2|-|BF 2|=2-3(x 1+x 2)=4,|AF 2|·|BF 2|=3(x 1+x 2)-9x 1x 2-1=16.因而|AF 2|·|BF 2|=|AB |2,所以|AF 2|,|AB |,|BF 2|成等比数列. 22.(1)解:由已知f (0)=0,f ′(x )=22121x x x λλ(-)-(+),f ′(0)=0.若12λ<,则当0<x <2(1-2λ)时,f ′(x )>0,所以f (x )>0. 若12λ≥,则当x >0时,f ′(x )<0,所以当x >0时,f (x )<0. 综上,λ的最小值是12.(2)证明:令12λ=.由(1)知,当x >0时,f (x )<0,即2ln(1)22x x x x (+)>++. 取1x k=,则211>ln 21k k k k k++(+).于是212111 422(1)n n n k n a a n k k -=⎡⎤-+=+⎢⎥+⎣⎦∑ =2121211ln 21n n k n k nk k k k k --==++>(+)∑∑=ln 2n -ln n =ln 2. 所以21ln 24n n a a n-+>. 2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国新课标卷I)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅰ,理1)已知集合A ={x |x 2-2x >0},B ={x |-5<x <5},则( ).A .A ∩B =B .A ∪B =RC .B ⊆AD .A ⊆B2.(2013课标全国Ⅰ,理2)若复数z 满足(3-4i)z =|4+3i|,则z 的虚部为( ).A .-4B .45-C .4D .453.(2013课标全国Ⅰ,理3)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ).A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样4.(2013课标全国Ⅰ,理4)已知双曲线C :2222=1x y a b-(a >0,b>0)C 的渐近线方程为( ). A .y =14x ±B .y =13x ±C .y =12x± D .y=±x5.(2013课标全国Ⅰ,理5)执行下面的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( ).A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]6.(2013课标全国Ⅰ,理6)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为 6 cm ,如果不计容器的厚度,则球的体积为( ).A .500π3cm3B .866π3cm3 C .1372π3cm3 D .2048π3cm37.(2013课标全国Ⅰ,理7)设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =( ).A .3B .4C .5D .68.(2013课标全国Ⅰ,理8)某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π9.(2013课标全国Ⅰ,理9)设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b .若13a =7b ,则m =( ).A .5B .6C .7D .810.(2013课标全国Ⅰ,理10)已知椭圆E :2222=1x y a b+(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ).A .22=14536x y +B .22=13627x y +C .22=12718x y + D .22=1189x y +11.(2013课标全国Ⅰ,理11)已知函数f (x )=220ln(1)0.x x x x x ⎧-+≤⎨+>⎩,,,若|f (x )|≥ax ,则a 的取值范围是( ).A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0] 12.(2013课标全国Ⅰ,理12)设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n =1,2,3,….若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=2n nc a +,c n +1=2n nb a +,则( ). A .{Sn}为递减数列 B .{Sn}为递增数列 C .{S2n -1}为递增数列,{S2n}为递减数列 D .{S2n -1}为递减数列,{S2n}为递增数列第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.(2013课标全国Ⅰ,理13)已知两个单位向量a,b的夹角为60°,c=ta+(1-t)b.若b·c=0,则t=__________.14.(2013课标全国Ⅰ,理14)若数列{an}的前n项和2133n nS a=+,则{an}的通项公式是an=_______.15.(2013课标全国Ⅰ,理15)设当x=θ时,函数f(x)=sin x-2cos x取得最大值,则cos θ=__________.16.(2013课标全国Ⅰ,理16)若函数f(x)=(1-x2)(x2+ax+b)的图像关于直线x=-2对称,则f(x)的最大值为__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(2013课标全国Ⅰ,理17)(本小题满分12分)如图,在△ABC中,∠ABC=90°,ABBC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=12,求PA;(2)若∠APB=150°,求tan∠PBA.18.(2013课标全国Ⅰ,理18)(本小题满分12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.19.(2013课标全国Ⅰ,理19)(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为1,2且各件产品是否为优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.20.(2013课标全国Ⅰ,理20)(本小题满分12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P 的半径最长时,求|AB|.21.(2013课标全国Ⅰ,理21)(本小题满分12分)设函数f(x)=x2+ax+b,g(x)=e x(cx+d).若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P 处有相同的切线y=4x+2.(1)求a,b,c,d的值;(2)若x≥-2时,f(x)≤kg(x),求k的取值范围.请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.22.(2013课标全国Ⅰ,理22)(本小题满分10分)选修4—1:几何证明选讲如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE 交圆于点E,DB垂直BE交圆于点D.(1)证明:DB=DC;(2)设圆的半径为1,BC延长CE交AB于点F,求△BCF外接圆的半径.23.(2013课标全国Ⅰ,理23)(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C 1的参数方程为45cos ,55sin x t y t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ. (1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).24.(2013课标全国Ⅰ,理24)(本小题满分10分)选修4—5:不等式选讲:已知函数f (x )=|2x -1|+|2x +a |,g (x )=x +3. (1)当a =-2时,求不等式f (x )<g (x )的解集;(2)设a >-1,且当x ∈1,22a ⎡⎫-⎪⎢⎣⎭时,f (x )≤g (x ),求a 的取值范围.2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国卷I 新课标)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 答案:B解析:∵x (x -2)>0,∴x <0或x >2.∴集合A 与B 可用图象表示为: 由图象可以看出A ∪B =R ,故选B. 2. 答案:D解析:∵(3-4i)z =|4+3i|, ∴55(34i)34i 34i (34i)(34i)55z +===+--+. 故z 的虚部为45,选D. 3. 答案:C解析:因为学段层次差异较大,所以在不同学段中抽取宜用分层抽样. 4. 答案:C解析:∵c e a ==22222254c a b e a a +===.∴a 2=4b 2,1=2b a ±.∴渐近线方程为12b y x x a=±±. 5. 答案:A解析:若t ∈[-1,1),则执行s =3t ,故s ∈[-3,3). 若t ∈[1,3],则执行s =4t -t 2,其对称轴为t =2.故当t =2时,s 取得最大值4.当t =1或3时,s 取得最小值3,则s ∈[3,4]. 综上可知,输出的s ∈[-3,4].故选A. 6. 答案:A解析:设球半径为R ,由题可知R ,R -2,正方体棱长一半可构成直角三角形,即△OBA 为直角三角形,如图.BC =2,BA =4,OB =R -2,OA =R ,由R 2=(R -2)2+42,得R =5, 所以球的体积为34500π5π33=(cm 3),故选A. 7. 答案:C解析:∵S m -1=-2,S m =0,S m +1=3,∴a m =S m -S m -1=0-(-2)=2,a m +1=S m +1-S m =3-0=3. ∴d =a m +1-a m =3-2=1. ∵S m =ma 1+12m m (-)×1=0,∴112m a -=-.又∵a m +1=a 1+m ×1=3,∴132m m --+=. ∴m =5.故选C. 8. 答案:A解析:由三视图可知该几何体为半圆柱上放一个长方体,由图中数据可知圆柱底面半径r =2,长为4,在长方体中,长为4,宽为2,高为2,所以几何体的体积为πr 2×4×12+4×2×2=8π+16.故选A. 9. 答案:B解析:由题意可知,a =2C m m ,b =21C m m +,又∵13a =7b ,∴2!21!13=7!!!1!m m m m m m ()(+)⋅⋅(+), 即132171m m +=+.解得m =6.故选B. 10. 答案:D解析:设A (x 1,y 1),B (x 2,y 2),∵A ,B 在椭圆上,∴2211222222221,1,x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩①② ①-②,得1212121222=0x x x x y y y y a b (+)(-)(+)(-)+,即2121221212=y y y y b a x x x x (+)(-)-(+)(-),∵AB 的中点为(1,-1),∴y 1+y 2=-2,x 1+x 2=2,而1212y y x x --=k AB =011=312-(-)-,∴221=2b a . 又∵a 2-b 2=9,∴a 2=18,b 2=9.∴椭圆E 的方程为22=1189x y +.故选D.11. 答案:D解析:由y =|f (x )|的图象知:①当x >0时,y =ax 只有a ≤0时,才能满足|f (x )|≥ax ,可排除B ,C. ②当x ≤0时,y =|f (x )|=|-x 2+2x |=x 2-2x . 故由|f (x )|≥ax 得x 2-2x ≥ax . 当x =0时,不等式为0≥0成立. 当x <0时,不等式等价于x -2≤a . ∵x -2<-2,∴a ≥-2. 综上可知:a ∈[-2,0]. 12. 答案:B第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分. 13.答案:2解析:∵c =t a +(1-t )b ,∴b ·c =t a ·b +(1-t )|b |2.又∵|a |=|b |=1,且a 与b 夹角为60°,b ⊥c , ∴0=t |a ||b |cos 60°+(1-t ), 0=12t +1-t . ∴t =2.14.答案:(-2)n -1 解析:∵2133n n S a =+,① ∴当n ≥2时,112133n n S a --=+.② ①-②,得12233n n n a a a -=-, 即1nn a a -=-2. ∵a 1=S 1=12133a +, ∴a 1=1.∴{a n }是以1为首项,-2为公比的等比数列,a n =(-2)n -1. 15.答案:5-解析:f (x )=sin x -2cos xx x ⎫⎪⎭,令cos α,sin α=则f (x )α+x ),当x =2k π+π2-α(k ∈Z )时,sin(α+x )有最大值1,f (x ) 即θ=2k π+π2-α(k ∈Z ),所以cos θ=πcos 2π+2k α⎛⎫- ⎪⎝⎭=πcos 2α⎛⎫- ⎪⎝⎭=sin α=5=-. 16.答案:16解析:∵函数f (x )的图像关于直线x =-2对称, ∴f (x )满足f (0)=f (-4),f (-1)=f (-3),即15164,0893,b a b a b =-(-+)⎧⎨=-(-+)⎩解得8,15.a b =⎧⎨=⎩∴f (x )=-x 4-8x 3-14x 2+8x +15. 由f ′(x )=-4x 3-24x 2-28x +8=0, 得x1=-2x 2=-2,x 3=-2易知,f (x )在(-∞,-2上为增函数,在(-2,-2)上为减函数,在(-2,-2)上为增函数,在(-2 ∴f (-2)=[1-(-22][(-22+8(-2+15]=(-8--=80-64=16.f (-2)=[1-(-2)2][(-2)2+8×(-2)+15]=-3(4-16+15) =-9.f(-2)=[1-(-22][(-22+8(-2+15]=(-8++=80-64=16. 故f (x )的最大值为16.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.解:(1)由已知得∠PBC =60°,所以∠PBA =30°.在△PBA 中,由余弦定理得PA 2=11732cos 30424+-︒=.故PA =2. (2)设∠PBA =α,由已知得PB =sin α.在△PBA sin sin(30)αα=︒-,α=4sin α.所以tan αtan ∠PBA . 18.(1)证明:取AB 的中点O ,连结OC ,OA 1,A 1B . 因为CA =CB ,所以OC ⊥AB .由于AB =AA 1,∠BAA 1=60°, 故△AA 1B 为等边三角形, 所以OA 1⊥AB .因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C . 又A 1C ⊂平面OA 1C ,故AB ⊥A 1C . (2)解:由(1)知OC ⊥AB ,OA 1⊥AB . 又平面ABC ⊥平面AA 1B 1B ,交线为AB ,所以OC ⊥平面AA 1B 1B , 故OA ,OA 1,OC 两两相互垂直. 以O 为坐标原点,OA uu u r的方向为x 轴的正方向,|OA uu u r|为单位长,建立如图所示的空间直角坐标系O -xyz .由题设知A (1,0,0),A 1(00),C (0,0),B (-1,0,0).则BC uuu r =(1,0,1BB u u u r =1AA u u u r =(-1,0),1AC u u u r=(0,). 设n =(x ,y ,z )是平面BB 1C 1C 的法向量,则10,0,BC BB ⎧⋅=⎪⎨⋅=⎪⎩u u u ru u u r n n即0,0.x x ⎧=⎪⎨-+=⎪⎩可取n =,1,-1). 故cos 〈n ,1AC u u u r 〉=11A CA C⋅u u u ru u u r n n=5-. 所以A 1C 与平面BB 1C 1C所成角的正弦值为5. 19.解:(1)设第一次取出的4件产品中恰有3件优质品为事件A 1,第一次取出的4件产品全是优质品为事件A 2,第二次取出的4件产品都是优质品为事件B 1,第二次取出的1件产品是优质品为事件B 2,这批产品通过检验为事件A ,依题意有A =(A 1B 1)∪(A 2B 2),且A 1B 1与A 2B 2互斥,所以P (A )=P (A 1B 1)+P (A 2B 2)=P (A 1)P (B 1|A 1)+P (A 2)P (B 2|A 2) =41113161616264⨯+⨯=. (2)X 可能的取值为400,500,800,并且P (X =400)=41111161616--=,P (X =500)=116,P (X =800)=14.所以X 的分布列为EX =1111400+500+80016164⨯⨯⨯=506.25. 20.解:由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P (x ,y ),半径为R . (1)因为圆P 与圆M 外切并且与圆N 内切, 所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2,短半轴(左顶点除外),其方程为22=143x y +(x ≠-2).(2)对于曲线C 上任意一点P (x ,y ),由于|PM|-|PN |=2R -2≤2, 所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2. 所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4. 若l 的倾斜角为90°,则l 与y 轴重合,可得|AB |=若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q ,则1||||QP RQM r =,可求得Q (-4,0),所以可设l :y =k (x +4). 由l与圆M,解得k =4±. 当k =4时,将4y x =代入22=143x y +, 并整理得7x 2+8x -8=0,解得x 1,2.所以|AB |2118|7x x -=.当4k =-时,由图形的对称性可知|AB |=187. 综上,|AB |=|AB |=187. 21.解:(1)由已知得f (0)=2,g (0)=2,f ′(0)=4,g ′(0)=4. 而f ′(x )=2x +a ,g ′(x )=e x (cx +d +c ), 故b =2,d =2,a =4,d +c =4. 从而a =4,b =2,c =2,d =2.(2)由(1)知,f (x )=x 2+4x +2,g (x )=2e x (x +1). 设函数F (x )=kg (x )-f (x )=2k e x (x +1)-x 2-4x -2, 则F ′(x )=2k e x (x +2)-2x -4=2(x +2)(k e x -1). 由题设可得F (0)≥0,即k ≥1. 令F ′(x )=0得x 1=-ln k ,x 2=-2.①若1≤k <e 2,则-2<x 1≤0.从而当x ∈(-2,x 1)时,F ′(x )<0;当x ∈(x 1,+∞)时,F ′(x )>0.即F (x )在(-2,x 1)单调递减,在(x 1,+∞)单调递增.故F (x )在[-2,+∞)的最小值为F (x 1). 而F (x 1)=2x 1+2-21x -4x 1-2=-x 1(x 1+2)≥0. 故当x ≥-2时,F (x )≥0,即f (x )≤kg (x )恒成立. ②若k =e 2,则F ′(x )=2e 2(x +2)(e x -e -2).从而当x >-2时,F ′(x )>0,即F (x )在(-2,+∞)单调递增.而F(-2)=0,故当x≥-2时,F(x)≥0,即f(x)≤kg(x)恒成立.③若k>e2,则F(-2)=-2k e-2+2=-2e-2(k-e2)<0.从而当x≥-2时,f(x)≤kg(x)不可能恒成立.综上,k的取值范围是[1,e2].请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.22.(1)证明:连结DE,交BC于点G.由弦切角定理得,∠ABE=∠BCE.而∠ABE=∠CBE,故∠CBE=∠BCE,BE=CE.又因为DB⊥BE,所以DE为直径,∠DCE=90°,由勾股定理可得DB=DC.(2)解:由(1)知,∠CDE=∠BDE,DB=DC,故DG是BC的中垂线,所以BG设DE的中点为O,连结BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°,所以CF⊥BF,故Rt△BCF外接圆的半径等于2.23.解:(1)将45cos,55sinx ty t=+⎧⎨=+⎩消去参数t,化为普通方程(x-4)2+(y-5)2=25,即C1:x2+y2-8x-10y+16=0.将cos ,sin x y ρθρθ=⎧⎨=⎩代入x 2+y 2-8x -10y +16=0得ρ2-8ρcos θ-10ρsin θ+16=0.所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0.(2)C 2的普通方程为x 2+y 2-2y =0.由2222810160,20x y x y x y y ⎧+--+=⎨+-=⎩ 解得1,1x y =⎧⎨=⎩或0,2.x y =⎧⎨=⎩ 所以C 1与C 2交点的极坐标分别为π4⎫⎪⎭,π2,2⎛⎫ ⎪⎝⎭. 24.解:(1)当a =-2时,不等式f (x )<g (x )化为|2x -1|+|2x -2|-x -3<0. 设函数y =|2x -1|+|2x -2|-x -3,则y =15,,212,1,236, 1.x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩其图像如图所示.从图像可知,当且仅当x ∈(0,2)时,y <0. 所以原不等式的解集是{x |0<x <2}.(2)当x ∈1,22a ⎡⎫-⎪⎢⎣⎭时,f (x )=1+a .不等式f (x )≤g (x )化为1+a ≤x +3.所以x ≥a -2对x ∈1,22a ⎡⎫-⎪⎢⎣⎭都成立.故2a-≥a -2,即43a ≤.从而a 的取值范围是41,3⎛⎤- ⎥⎝⎦.2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国新课标卷II)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅱ,理1)已知集合M ={x |(x -1)2<4,x ∈R },N ={-1,0,1,2,3},则M ∩N =( ).A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3}2.(2013课标全国Ⅱ,理2)设复数z 满足(1-i)z =2i ,则z =( ).A .-1+iB .-1-IC .1+iD .1-i 3.(2013课标全国Ⅱ,理3)等比数列{a n }的前n 项和为S n .已知S 3=a 2+10a 1,a 5=9,则a 1=( ).A .13B .13-C .19D .19-4.(2013课标全国Ⅱ,理4)已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l α,l β,则( ).A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l5.(2013课标全国Ⅱ,理5)已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a=( ).A.-4 B.-3 C.-2 D.-16.(2013课标全国Ⅱ,理6)执行下面的程序框图,如果输入的N=10,那么输出的S=( ).A.111 1+2310+++LB.111 1+2!3!10!+++LC.111 1+2311+++LD.111 1+2!3!11!+++L7.(2013课标全国Ⅱ,理7)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为( ).8.(2013课标全国Ⅱ,理8)设a=log36,b=log510,c=log714,则( ).A.c>b>a B.b>c>a C.a>c>b D.a>b>c9.(2013课标全国Ⅱ,理9)已知a>0,x,y满足约束条件1,3,3.xx yy a x≥⎧⎪+≤⎨⎪≥(-)⎩若z=2x+y的最小值为1,则a=( ).A.14 B.12 C.1 D.210.(2013课标全国Ⅱ,理10)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是( ).A.∃x0∈R,f(x0)=0B.函数y=f(x)的图像是中心对称图形C .若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减D .若x0是f(x)的极值点,则f′(x0)=011.(2013课标全国Ⅱ,理11)设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF |=5,若以MF 为直径的圆过点(0,2),则C 的方程为( ).A .y2=4x 或y2=8xB .y2=2x 或y2=8xC .y2=4x 或y2=16xD .y2=2x 或y2=16x12.(2013课标全国Ⅱ,理12)已知点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( ).A .(0,1) B.1122⎛⎫- ⎪ ⎪⎝⎭C.11,23⎛⎤- ⎥ ⎝⎦ D .11,32⎡⎫⎪⎢⎣⎭第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答。

2013年新课标高考数学考纲解读

2013年新课标高考数学考纲解读

2013年高考数学考试大纲权威解读适用于:河南,黑龙江,吉林,陕西,宁夏,海南,内蒙古2013年全国新课标数学学科《考试大纲》和《考试说明》文理科和2012年对比,在内容、能力要求、时间、分值(含选修比例)、题型题量等几个方面都没有发生变化。

注重对数学思想与方法的考查,体现数学的基础、应用和工具性的学科特色,多视角、多维度、多层次地考查数学思维品质和思维能力,考查考生对数学本质的理解,考查考生的数学素养和学习潜能。

新课标考试说明与去年的考试说明比较,可以看出:依然是对如下知识和能力的考查1.坚持对五种能力的考查:(1)空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质.这一能力的考查在试卷中主要以立体几何中的三视图得以体现,且难度有逐年递增的趋势。

(2)抽象概括能力:对具体的、生动的实例,在抽象概括的过程中,发现研究对象的本质;从给定的大量信息材料中,概括出一些结论,并能应用于解决问题或作出新的判断.(3)推理论证能力:根据已知的事实和已获得的正确数学命题,论证某一数学命题真实性的初步的推理能力.推理包括合情推理和演绎推理,论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法.一般运用合情推理进行猜想,再运用演绎推理进行证明.(4)运算求解能力:会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算.(5)数据处理能力:会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息,并作出判断.数据处理能力主要依据统计或统计案例中的方法对数据进行整理、分析,并解决给定的实际问题.2.两个意识的考查:(1)应用意识:能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题,建立数学模型;应用相关的数学方法解决问题并加以验证,并能用数学语言正确地表达和说明.应用的主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决.(2)创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强.3.2013年高考数学主客观题考试特点:理科必考知识点(即近三年高考每年都考的知识点,主要针对客观题):复数、常用逻辑用语、程序框图、三视图、球的组合体、概率、函数与导数、圆锥曲线、三角函数等。

规律探索专题

规律探索专题

规律探索专题2013-1-31规律探索的基础一些有趣的数列三角形数古希腊科学家把数1,3,6,10,15,21……这些数量的,都可以排成三角形,像这样的数称为三角形数。

它有一定的规律性,排列如下,像上面的1、3、6、10、15这些能够表示成三角形的形状的总数量的数,叫做三角形数。

正方形数1、4、16┅这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.谢宾斯基(Sierpinski)三角形在下图四个三角形中,着色三角形的个数依次构成一个数列的前4项,着色三角形的个数依次为1,3,9,27.则数列前4项都是3的指数幂,指数为序号减1。

通项公式是:An=3的n-1次方斐波那契数列有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。

随着数列项数的增加,前一项与后一项之比越来越逼近黄金分割的数值0.6180339887……斐波那契数列在自然界中的出现是如此地频繁,人们深信这不是偶然的。

(1)细察下列各种花,它们的花瓣的数目具有斐波那契数:延龄草、野玫瑰、南美血根草、大波斯菊、金凤花、耧斗菜、百合花、蝴蝶花。

(2)细察以下花的类似花瓣部分,它们也具有斐波那契数:紫宛、大波斯菊、雏菊。

斐波那契数经常与花瓣的数目相结合:3………………………百合和蝴蝶花5………………………蓝花耧斗菜、金凤花、飞燕草8………………………翠雀花13………………………金盏草21………………………紫宛34,55,84……………雏菊通项公式写出下面数列的通项1,2,3,4,5,6,。

2,4,6,8,10,12,。

1,3,5,7,9,。

3,5,7,9,11,。

-1,1,3,5,。

2,4,8,16,。

1,2,4,8,16,。

1,3,7,15,。

5,7,11,19,。

1,-1,1,-1,1,-1,。

1,-2,3,-4,5,-6,。

4,7,10,13,16,19,。

1,4,7,10,13,16,。

2013年高考数学全国卷1(完整试题 答案 解析)

2013年高考数学全国卷1(完整试题 答案 解析)

绝密★启用前2013年普通高等学校招生全国统一考试(全国卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页.考试时间120分钟.满分150分. 答题前,考生务必用0.5毫米的黑色签字笔将自己的姓名、座号、考号填写在第Ⅰ卷答题卡和第Ⅱ卷答题纸规定的位置. 参考公式:样本数据n x x x ,,21的标准差nx x x x x x s n 22221)()()(-++-+-=其中x 为样本平均数球的面积公式24R S π=第Ⅰ卷(选择题 共60分)注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上. 2.第Ⅰ卷只有选择题一道大题.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数i i++121(i 是虚数单位)的虚部是 A .23 B .21 C .3 D .12.已知R 是实数集,{}11,12+-==⎭⎬⎫⎩⎨⎧<=x y y N x x M,则=M C N R A .)2,1(B .[]2,0C .∅D .[]2,13.现有10个数,其平均数是4,且这10个数的平方和是200,那么这个数组的标准差是 A .1 B .2 C .3 D .44.设n S 为等比数列{}n a 的前n 项和,0852=-a a ,则=24S S A .5 B .8 C .8- D .15 5.已知函数)62sin()(π-=x x f ,若存在),0(π∈a ,使得)()(a x f a x f -=+恒成立,则a 的值是 A .6π B .3π C .4π D .2π 6.已知m 、n 表示直线,γβα,,表示平面,给出下列四个命题,其中真命题为(1)βααβα⊥⊥⊂=则,,,m n n m (2)m n n m ⊥==⊥则,,,γβγαβα(3),,βα⊥⊥m m则α∥β(4)βαβα⊥⊥⊥⊥则,,,n m n mA .(1)、(2)B .(3)、(4)C .(2)、(3)D .(2)、(4)7.已知平面上不共线的四点C B A O ,,,,若||,23BC -=等于A .1B .2C .3D .4 8.已知三角形ABC ∆的三边长成公差为2的等差数列,且最大角的正弦值为23,则这个三角形的周长是 A .18 B .21 C .24 D .15 9.函数xx x f 1lg )(-=的零点所在的区间是 A .(]1,0 B .(]10,1 C .(]100,10 D .),100(+∞10.过直线y x =上一点P 引圆22670x y x +-+=的切线,则切线长的最小值为A .22 B .223 C .210 D .211.已知函数b ax x x f 2)(2-+=.若b a ,都是区间[]4,0内的数,则使0)1(>f 成立的概率是A .43 B .41 C .83D .85 12.已知双曲线的标准方程为116922=-y x ,F 为其右焦点,21,A A 是实轴的两端点,设P 为双曲线上不同于21,A A 的任意一点,直线P A P A 21,与直线a x =分别交于两点N M ,,若0=⋅,则a 的值为 A .916 B .59 C .925 D .516 第Ⅱ卷(非选择题 共90分)题图第13注意事项:1. 请用0.5毫米的黑色签字笔将每题的答案填写在第Ⅱ卷答题纸的指定位置.书写的答案如需改动,要先划掉原来的答案,然后再写上新答案.2. 不在指定答题位置答题或超出答题区域书写的答案无效.在试题卷上答题无效. 3. 第Ⅱ卷共包括填空题和解答题两道大题. 二、填空题:本大题共4小题,每小题4分,共16分. 13.如图所示的程序框图输出的结果为__________.14. 若一个底面是正三角形的三棱柱的正视图如下图所示,其顶点都在一个球面上,则该球的表面积为__________.15.地震的震级R 与地震释放的能量E 的关系为)4.11(lg 32-=E R .2011年3月11日,日本东海岸发生了9.0级特大地震,2008年中国汶川的地震级别为8.0级,那么2011年地震的能量是2008年地震能量的倍.16.给出下列命题: ①已知,,a b m 都是正数,且bab a >++11,则a b <; ②已知()f x '是()f x 的导函数,若,()0x R f x '∀∈≥,则(1)(2)f f <一定成立;③命题“x R ∃∈,使得2210x x -+<”的否定是真命题;④“1,1≤≤y x且”是“2≤+y x ”的充要条件.其中正确命题的序号是 .(把你认为正确命题的序号都填上)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知向量),2cos 2sin 3()2cos ,1(y xx b x a +==→→与共线,且有函数)(x f y =.(Ⅰ)若1)(=x f ,求)232cos(x -π的值;(Ⅱ)在ABC ∆中,角C B A ,,,的对边分别是c b a ,,,且满足b c C a 2cos 2=+,求函数)(B f 的第14题图取值范围.18.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,公差,50,053=+≠S Sd 且1341,,a a a 成等比数列.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设⎭⎬⎫⎩⎨⎧n n a b 是首项为1,公比为3的等比数列,求数列{}n b 的前n 项和n T .19.(本小题满分12分)已知四棱锥BCDEA -,其中1====BE AC BC AB ,2=CD ,ABC CD 面⊥,BE ∥CD ,F为AD 的中点.(Ⅰ)求证:EF ∥面ABC;(Ⅱ)求证:面ACD ADE 面⊥; (III )求四棱锥BCDEA -的体积.20.(本小题满分12分)在某种产品表面进行腐蚀性检验,得到腐蚀深度y 与腐蚀时间x 之间对应的一组数据:现确定的研究方案是:先从这6组数据中选取2组,用剩下的4组数据求线性回归方程,再对被选取的ABCDEF2组数据进行检验.(Ⅰ)求选取的2组数据恰好不相邻的概率;(Ⅱ)若选取的是第2组和第5组数据,根据其它4组数据,求得y关于x 的线性回归方程26139134ˆ+=x y,规定由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2微米,则认为得到的线性回归方程是可靠的,判断该线性回归方程是否可靠.21.(本小题满分12分)已知函数1)(2++=x bax x f 在点))1(,1(--f 的切线方程为03=++y x .(Ⅰ)求函数()f x 的解析式;(Ⅱ)设x x g ln )(=,求证:)()(x f x g ≥在),1[+∞∈x 上恒成立.22.(本小题满分14分) 实轴长为34的椭圆的中心在原点,其焦点1,2,F F 在x 轴上.抛物线的顶点在原点O ,对称轴为y 轴,两曲线在第一象限内相交于点A ,且12AF AF ⊥,△12AF F 的面积为3.(Ⅰ)求椭圆和抛物线的标准方程;(Ⅱ)过点A 作直线l 分别与抛物线和椭圆交于CB ,,若AB AC 2=,求直线l 的斜率k .参考答案及评分标准一. 选择题(本大题共12小题,每小题5分,共60分.)B D B A D B B D BC C B二. 填空题(本大题共4小题,每小题4分,共16分.)13.2 14.π31915.231016. ①③三.解答题17.(本小题满分12分) 解:(Ⅰ)∵→a 与→b 共线∴yxx x 2cos 2cos2sin 31=+21)6sin()cos 1(21sin 232cos 2cos 2sin 32++=++=+=πx x x x x x y …………3分∴121)6sin()(=++=πx x f ,即21)6si n (=+πx …………………………………………4分211)6(sin 21)3(cos 2)3(2cos )232cos(22-=-+=--=-=-ππππx x x x …………………………………………6分 (Ⅱ)已知b c C a 2cos 2=+由正弦定理得:CA C A C C A C ABC C A sin cos 2cos sin 2sin cos sin 2)sin(2sin 2sin cos sin 2+=++==+∴21cos=A ,∴在ABC ∆中 ∠3π=A …………………………………………8分21)6sin()(++=πB B f∵∠3π=A ∴320π<<B ,6566πππ<+<B (10)分∴1)6sin(21≤+<πB ,23)(1≤<B f ∴函数)(B f 的取值范围为]23,1( …………………………………………12分18.(本小题满分12分) 解:(Ⅰ)依题意得⎪⎩⎪⎨⎧+=+=⨯++⨯+)12()3(5025452233112111d a a d a d a d a …………………………………………2分 解得⎩⎨⎧==231d a , …………………………………………4分1212)1(23)1(1+=+=-+=-+=∴n a n n d n a a n n 即,.……………………………6分(Ⅱ)13-=n nna b ,113)12(3--⋅+=⋅=n n n n n a b …………………………………………7分123)12(37353-⋅+++⋅+⋅+=n n n Tn n n n n T 3)12(3)12(3735333132⋅++⋅-++⋅+⋅+⋅=- ……………………9分n n n n T 3)12(3232323212+-⋅++⋅+⋅+=--nnn n n 323)12(31)31(3231⋅-=+---⋅+=- ∴n n n T 3⋅= …………………………………………12分19.(本小题满分12分)解:(Ⅰ)取AC 中点G,连结FG 、BG , ∵F,G 分别是AD,AC 的中点 ∴FG ∥CD,且FG=21DC=1 .∵BE ∥CD ∴FG 与BE 平行且相等∴EF ∥BG . ……………………………2分ABC BG ABC EF 面面⊂⊄,∴EF ∥面ABC……………………………4分ABCDEF G(Ⅱ)∵△ABC 为等边三角形 ∴BG ⊥AC 又∵DC ⊥面ABC,BG ⊂面ABC ∴DC ⊥BG ∴BG 垂直于面ADC 的两条相交直线AC,DC ,∴BG ⊥面ADC . …………………………………………6分 ∵EF ∥BG ∴E F ⊥面ADC∵EF ⊂面ADE ,∴面ADE ⊥面ADC . …………………………………………8分 (Ⅲ)连结EC,该四棱锥分为两个三棱锥E -ABC 和E -ADC .43631232313114331=+=⨯⨯+⨯⨯=+=---ACD E ABC E BCDE A V V V .………………………12分另法:取BC 的中点为O ,连结AO ,则BCAO ⊥,又⊥CD 平面ABC,∴C CD BC AO CD =⊥ , , ∴⊥AO 平面B C D E ,∴AO为BCDEA V -的高,43232331,2321)21(,23=⨯⨯=∴=⨯+==-BCD EA B CD EV S AO . 20.(本小题满分12分)解:(Ⅰ)设6组数据的编号分别为1,2,3,4,5,6.设抽到不相邻的两组数据为事件A ,从6组数据中选取2组数据共有15种情况:(1,2)(1,3)(1,4)(1,5)(1,6)(2,3)(2,4)(2,5)(2,6)(3,4)(3,5)(3,6)(4,5)(4,6)(5,6),其中事件A 包含的基本事件有10种. …………………………………………3分所以321510)(==A P .所以选取的2组数据恰好不相邻的概率是32. ………………………6分(Ⅱ) 当10=x时,;2|1026219|,262192613910134ˆ<-=+⨯=y……………………………………9分 当30=x时,;2|1626379|,263792613930134ˆ<-=+⨯=y所以,该研究所得到的回归方程是可靠的. …………………………………………12分 21.(本小题满分12分) 解:(Ⅰ)将1-=x代入切线方程得2-=y∴211)1(-=+-=-ab f ,化简得4-=-a b . …………………………………………2分222)1(2)()1()(x xb ax x a x f +⋅+-+=' 12424)(22)1(-===-+=-'bb a b a f . …………………………………………4分 解得:2,2-==b a∴122)(2+-=x x x f . …………………………………………6分(Ⅱ)由已知得122ln 2+-≥x x x 在),1[+∞上恒成立化简得22ln )1(2-≥+x x x即022ln ln 2≥+-+x x x x在),1[+∞上恒成立 . …………………………………………8分 设22ln ln )(2+-+=x x x x x h ,21ln 2)(-++='xx x x x h ∵1≥x∴21,0ln 2≥+≥xx x x ,即0)(≥'x h . …………………………………………10分∴)(x h 在),1[+∞上单调递增,0)1()(=≥h x h∴)()(x f x g ≥在),1[+∞∈x 上恒成立 . …………………………………………12分22.(本小题满分14分)解(1)设椭圆方程为22221(0)x y a b a b+=>>,12,AF m AF n ==由题意知⎪⎪⎩⎪⎪⎨⎧==+=+6344222m n n m c n m …………………………………………2分解得92=c,∴39122=-=b .∴椭圆的方程为131222=+y x …………………………………………4分 ∵3=⨯c y A ,∴1=A y ,代入椭圆的方程得22=A x ,将点A 坐标代入得抛物线方程为y x 82=. …………………………………………6分(2)设直线l 的方程为)22(1-=-x k y ,),(),,(2211y x C y x B由AB AC 2= 得)22(22212-=-x x ,化简得22221=-x x …………………………………………8分联立直线与抛物线的方程⎪⎩⎪⎨⎧=-=-yx x k y 8)22(12,得0821682=-+-k kx x∴k x 8221=+① …………………………………………10分联立直线与椭圆的方程⎪⎩⎪⎨⎧=+-=-124)22(122y x x k y得0821632)2168()41(2222=--+-++k k x k k x k∴22241821622k kk x +-=+② …………………………………………12分∴2222418216)228(222221=++---=-k kk k x x整理得:0)4121)(2416(2=+--kkk∴42=k ,所以直线l 的斜率为42 . …………………………………………14分。

近6年来高考数列题分析(以全国卷课标Ⅰ为例)

近6年来高考数列题分析(以全国卷课标Ⅰ为例)

近5年来高考数列题分析(以全国卷课标Ⅰ为例)单的裂项相消法和错位相减法求解数列求和即可。

纵观全国新课标Ⅰ卷、Ⅱ卷的数列试题,我们却发现,新课标卷的数列题更加注重基础,强调双基,讲究解题的通性通法。

尤其在选择、填空更加突出,常常以“找常数”、“找邻居”、“找配对”、“构函数”作为数列问题一大亮点.从2011年至2015年,全国新课标Ⅰ卷理科试题共考查了8道数列题,其中6道都是标准的等差或等比数列,主要考查等差或等比数列的定义、性质、通项、前n项和、某一项的值或某几项的和以及证明等差或等比数列等基础知识。

而文科试题共考查了9道数列题,其中7道也都是标准的等差或等比数列,主要考查数列的性质、求通项、求和、求数列有关基本量以及证明等差或等比数列等基础知识。

1.从试题命制角度看,重视对基础知识、基本技能和基本数学思想方法的考查。

2.从课程标准角度看,要求学生“探索并掌握等差数列、等比数列的通项公式与前n 项和的公式,能在具体问题情境中,发现数列的等差关系或等比关系,并能用有关知识解决相应的问题”。

3.从文理试卷角度看,尊重差异,文理有别,体现了《普通高中数学课程标准(实验)》的基本理念之一“不同的学生在数学上得到不同的发展”。

以全国新课标Ⅰ卷为例,近五年理科的数列试题难度整体上要比文科的难度大一些。

如2012年文科第12题“数列 满足 ,求的前60项和”是一道选择题,但在理科试卷里这道题就命成了一道填空题,对考生的要求自然提高了。

具体来看,全国新课标卷的数列试题呈现以下特点:●小题主要考查等差、等比数列的基本概念和性质以及它们的交叉运用,突出了“小、巧、活”的特点,难度多属中等偏易。

●大题则以数列为引线,与函数、方程、不等式、几何、导数、向量等知识编织综合性强,内涵丰富的能力型试题,考查综合素质,难度多属中等以上,有时甚至是压轴题,难度较大。

(一)全国新课标卷对数列基本知识的考查侧重点1.考查数列的基本运算,主要涉及等差、等比数列的通项公式与前项和公式。

三角形数列的规律

三角形数列的规律

三角形数列的规律
三角形数列是一种常见的数列,它的规律是每一项都是前一项加上当前项的位置编号。

例如,第一项为1,第二项为3(1+2),第三项为6(1+2+3),第四项为10(1+2+3+4),以此类推。

三角形数列有很多有趣的性质。

首先,我们可以把它们画成一个三角形,每行代表一个数列。

第n行有n个数字,最后一项是第n项。

其次,我们可以用一个简单的公式来计算第n项:Tn = n(n+1)/2。

这个公式可以用来验证我们的计算是否正确,也可以用来计算很大的三角形数列。

最后,三角形数列还有一些有趣的应用,比如在组合数学中,它们可以表示从n个不同的元素中取k个元素的组合数,也可以用来解决一些概率问题。

总之,三角形数列是一种简单但有趣的数列,它的规律和性质可以用来深入理解数学中的一些基本概念,也可以用来解决一些实际问题。

- 1 -。

解三角形,数列(PPT)5-5

解三角形,数列(PPT)5-5

1.3 实习作业
•基本要求:根据实际条件,利用本章知识
做一个有关测量的实习作业。
•发展要求:条件允许的情况下,可多做几
个实习作业以培养学生应用知识解决实际 问题的能力。。②检查:行李须经~,方可托运。 【查缴】动检查并收缴:~非法出版物。 【查截】动检查并截获:~多名偷渡人员。 【查禁】动检查 禁止:~|~黄色书刊。 【查究】动调查追究:对事故责任人必须认真~,严肃处理。 【查勘】动调查探测:~矿产资源。 【查看】动检查、观察(事物 的情况):~灾情|亲自到现场~。 【查考】动调查研究,弄清事实:作者的生卒年月已无从~。 【查控】动侦查并控制;检查并控制:对嫌犯可能藏身的 场所进行严密~。 【查扣】动检查并扣留:~假货。 【查明】动调查清楚:~原因。 【查铺】∥动(干部)到集体宿舍检查睡眠情况。 【查哨】∥动检查 哨兵执行任务的情况。也说查岗。 【查实】动查证核实:案情已~。 【查收】动检查后收下(多用于书信):寄去词典一部,请~。 【查私】ī动查验走私 物品;缉查走私分子。 【查问】动①调查询问:~电话号码。②检查盘问:~过往行人。 【查寻】动查找:邮局办理挂号邮件的~业务|~失散多年的亲人。 【查巡】动巡查。 【查询】动查问?。 【查验】动检; https:// 森林舞会;查验看:~证件。 【查夜】∥动夜间巡查。 【查阅】动 (把书刊、文件等)找出来阅读有关的部分:~档案材料。 【查账】∥动检查账目:年终~。 【查找】动查;寻找:~资料|~失主|~原因。 【查照】动 旧时公文用语,叫对方注意文件内容,或按照文件内容(办事):即希~|希~办理。 【查证】动调查证明:~属实|犯罪事实已~清楚。 【搽】动用粉末、 油类等涂(在脸上或手上等):~粉|~碘酒|~护手霜。 【嵖】嵖岈(),山名,在河南。 【猹】名野兽,像獾,喜欢吃瓜(见于鲁迅小说《故乡》)。 【楂】(~儿)①名短而硬的头发或胡子(多指剪落的、剪而未尽的或刚长出来的)。②同“茬”。 【槎】〈书〉木筏:乘~|浮~。 【槎】同“茬”。 【詧】〈书〉同“察”。 【碴口】名东西断或破的地方:电线断了,看~像是刀割的。 【碴儿】名①小碎块:冰~|玻璃~。②器物上的破口:碰到碗~上, 拉()破了手。③嫌隙;引起双方争执的事由:找~|过去他们俩有~,现在好了。 【察】①仔细看;调查:观~|考~|~其言,观其行。②()名姓。 【察察为明】形容专在细枝末节上显示精明。 【察访】动通过观察和访问进行调查:~民情|暗中~。 【察觉】动发觉;看出来:我~他的举动有点儿异 样|心事被人~。 【察看】动为了解情况而细看:~风向|~动静。 【察言观色】观察言语脸色来揣摩对方的心意。 【察验】

SXC120高考数学必修_数列中的三角形问题

SXC120高考数学必修_数列中的三角形问题

数列中的三角形问题三角形作为最基本的几何图形之一,一直活跃在中学数学的各个知识板块中,在数列中有不少以三角形为背景的试题,本文举例探讨数列中的三角形问题。

一、数列中的等边三角形问题例1. 如图,在边长为l 的等边△ABC 中,圆O 1为△ABC 的内切圆,圆O 2与圆O 1外切,且与AB ,BC 相切,…,圆O n +1与圆O n 外切,且与AB 、BC 相切,如此无限继续下去.记圆O n 的面积为a n (n ∈N *). (Ⅰ)证明{a n }是等比数列; (Ⅱ)求∞→n lim (a 1+a 2+…+a n )的值. 思路点拨:利用两圆相切和三角函数的有关知识,得到两圆半径r n 、r n -1之间的关系:r n =31r n -1(n ≥2),由半径之比得到面积之比,使问题或解。

证明:(Ⅰ)证明:记r n 为圆O n 的半径,则r 1=2l tan30°=l 63. nn n n r r r r +---11=sin30°=21,所以r n =31r n -1(n ≥2), 于是a 1=πr 12=91)(,122112==--n n n nr r a a l π. 故{a n }成等比数列. (Ⅱ)解:因为a n =(91)n -1a 1(n ∈N *),所以∞→n lim (a 1+a 2+…+a n )=32391121l a π=-. 解后反思:本题主要考查数列、数列极限、平面几何、三角函数等基本知识,考查逻辑思维能力与解决问题的能力.练习1. 下列四个图形中,着色三角形的个数依次构成一个数列的前4项,则这个数列的一个通项公式为( )A.a n =3n-1B. a n =3nC. a n =3n -2nD. a n =3n-1 +2n-3答案:选A.练习2.用火柴棒按下图的方法搭三角形:按图示的规律搭下去,则所用火柴棒数a n 与所搭三角形的个数n 之间的关系式可以是 . 答案:填a n =2n+1.二、数列中的等腰三角形问题例2. 在XOY 平面上有一点列P 1(a 1,b 1),P 2(a 2,b 2),…,P n (a n ,b n ),…,对每个自然数n ,点P n 位于函数y =2000(10a )x (0<a <10)的图象上,且点P n 、点(n ,0)与点(n +1,0)构成一个以P n 为顶点的等腰三角形.例1题图(Ⅰ)求点P n 的纵坐标b n 的表达式;(Ⅱ)若对每个自然数n ,以b n ,b n +1,b n +2为边长能构成一个三角形,求a 的取值范围;(Ⅲ)设B n =b 1,b 2…b n (n ∈N ).若a 取(Ⅱ)中确定的范围内的最小整数,求数列{B n }的最大项的项数. 思路点拨: 点P n 、点(n ,0)与点(n +1,0)构成一个以P n 为顶点的等腰三角形.可等价转化为a n =2)1(++n n ,然后不难求得b n ,第(2)问利用构成三角形的充要条件得到b n +2+b n +1>b n ,解得a 的取值范围。

2013年全国统一高考数学试卷(理科)(大纲版)

2013年全国统一高考数学试卷(理科)(大纲版)

.2013 年全国一致高考数学试卷(理科)(纲领版)一、选择题:本大题共12 小题,每题 5 分 .在每题给出的四个选项中,只有一项为哪一项切合题目要求的 .1.(5 分)设会合 A={ 1,2,3} ,B={ 4,5} ,M={ x| x=a+b,a∈A,b∈B} ,则 M中元素的个数为()A.3 B.4C.5 D.62.(5 分)=()A.﹣ 8 B.8C.﹣ 8i D.8i3.(5 分)已知向量=(λ+1, 1), =(λ+2,2),若(+ )⊥(﹣),则λ=()A.﹣ 4 B.﹣ 3 C.﹣ 2 D.﹣ 14.(5 分)已知函数 f( x)的定义域为(﹣ 1,0),则函数 f(2x+1)的定义域为()A.(﹣1,1)B.C.(﹣ 1,0)D.5.(5 分)函数 f( x)=log2(1+)(x>0)的反函数 f ﹣ 1)( x) =(A.B.C.2x﹣ 1( x∈R) D. 2x﹣1(x>0).(分)已知数列{ a n } 知足 3a++a ,﹣,则{ a n} 的前 10 项和等于()6 5n 1n=0 a2=A.﹣ 6( 1﹣ 3﹣ 10﹣10﹣ 10) B.C.3(1﹣3 )D.3(1+3)7.(5 分)(1+x)3(1+y)4的睁开式中 x2y2的系数是()A.5 B.8 C.12 D.188.(5 分)椭圆 C:的左、右极点分别为A1、A2,点 P 在 C 上且直线PA2斜率的取值范围是 [ ﹣ 2,﹣ 1] ,那么直线 PA1斜率的取值范围是()A.B.C.D.9.(5 分)若函数(fx)=x2+ax+是增函数,则a的取值范围是()A.[ ﹣1,0]B.[ ﹣1,+∞)C.[ 0,3]D.[ 3,+∞)10.( 5 分)已知正四棱柱ABCD﹣A1B1C1D1中, AA1=2AB,则 CD 与平面 BDC1所成角的正弦值等于()A.B.C.D.11.( 5 分)已知抛物线 C:y2=8x 的焦点为 F,点 M(﹣ 2,2),过点 F 且斜率为k 的直线与 C 交于 A,B 两点,若,则k=()A.B.C.D.212.( 5 分)已知函数 f( x)=cosxsin2x,以下结论中不正确的选项是()A.y=f(x)的图象对于(π,0)中心对称B.C.D.f(x)既是奇函数,又是周期函数二、填空题:本大题共 4 小题,每题 5 分.13.(5 分)已知α是第三象限角, sin α=﹣,则 cot α=.14(.5 分)6 个人排成一行,此中甲、乙两人不相邻的不一样排法共有种.(用数字作答)15.(5 分)记不等式组所表示的平面地区为D.若直线 y=a(x+1)与D 有公共点,则 a 的取值范围是.16.(5 分)已知圆 O 和圆 K 是球 O 的大圆和小圆,其公共弦长等于球 O 的半径,,则球 O 的表面积等于.三、解答题:解答应写出文字说明、证明过程或演算步骤..(10分)等差数列n } 的前 n 项和为 S n.已知 S322,且 S1,S2, S4成等比17{ a=a数列,求 { a n} 的通项式.18.(12 分)设△ ABC的内角 A,B,C 的内角对边分别为a,b,c,知足(a+b+c)(a﹣ b+c) =ac.(Ⅰ)求 B.(Ⅱ)若 sinAsinC=,求C.19.( 12 分)如图,四棱锥P﹣ABCD中,∠ ABC=∠BAD=90°,BC=2AD,△ PAB与△PAD都是等边三角形.(Ⅰ)证明:PB⊥CD;(Ⅱ)求二面角 A﹣ PD﹣ C 的大小.20.(12 分)甲、乙、丙三人进行羽毛球练习赛,此中两人竞赛,另一人当裁判,每局竞赛结束时,负的一方在下一局当裁判,设各局中两方获胜的概率均为,各局竞赛的结果都互相独立,第 1 局甲当裁判.(Ⅰ)求第 4 局甲当裁判的概率;(Ⅱ) X 表示前 4 局中乙当裁判的次数,求X 的数学希望.21.( 12 分)已知双曲线C:=1(a>0,b> 0)的左、右焦点分别为F1,F2,离心率为 3,直线 y=2 与 C 的两个交点间的距离为.( I)求 a, b;( II)设过 F2的直线 l 与 C 的左、右两支分别订交于 A、B 两点,且 | AF1| =| BF1| ,证明: | AF2| 、 | AB| 、 | BF2| 成等比数列.22.( 12 分)已知函数.( I)若 x≥ 0 时, f (x)≤ 0,求λ的最小值;( II)设数列 { a n} 的通项 a n=1+.2013 年全国一致高考数学试卷(理科)(纲领版)参照答案与试题分析一、选择题:本大题共12 小题,每题 5 分 .在每题给出的四个选项中,只有一项为哪一项切合题目要求的 .1.(5 分)设会合 A={ 1,2,3} ,B={ 4,5} ,M={ x| x=a+b,a∈A,b∈B} ,则 M中元素的个数为()A.3B.4C.5D.6【剖析】利用已知条件,直接求出a+b,利用会合元素互异求出M 中元素的个数即可.3页所以 a+b 的值可能为: 1+4=5、1+5=6、2+4=6、2+5=7、3+4=7、 3+5=8,所以 M 中元素只有: 5, 6,7,8.共 4 个.应选: B.【评论】本题观察会合中元素个数的最值,会合中元素的互异性的应用,观察计算能力.2.(5 分)=()A.﹣ 8 B.8C.﹣ 8i D.8i【剖析】复数分子、分母同乘﹣ 8,利用 1 的立方虚根的性质(),化简即可.【解答】解:应选: A.【评论】复数代数形式的运算,是基础题.3.(5 分)已知向量=(λ+1, 1), =(λ+2,2),若(+ )⊥(﹣),则λ=()A.﹣ 4 B.﹣ 3 C.﹣ 2 D.﹣ 1【剖析】利用向量的运算法例、向量垂直与数目积的关系即可得出.【解答】解:∵,.∴=(2λ+3,3),.∵,∴=0,∴﹣( 2λ+3)﹣ 3=0,解得λ=﹣3.应选: B.【评论】娴熟掌握向量的运算法例、向量垂直与数目积的关系是解题的重点.4.(5 分)已知函数 f( x)的定义域为(﹣ 1,0),则函数 f(2x+1)的定义域为()A.(﹣1,1) B.C.(﹣ 1,0) D.【剖析】原函数的定义域,即为2x+1 的范围,解不等式组即可得解.【解答】解:∵原函数的定义域为(﹣1,0),∴﹣ 1<2x+1< 0,解得﹣ 1< x<﹣.∴则函数 f( 2x+1)的定义域为.应选: B.【评论】观察复合函数的定义域的求法,注意变量范围的转变,属简单题.5.(5 分)函数 f( x)=log2(1+)(x>0)的反函数 f ﹣ 1)( x) =(A.B.C.2x﹣ 1( x∈R) D. 2x﹣1(x>0)【剖析】把 y 看作常数,求出 x:x=,x,y 交换,获得 y=log2(1+)的反函数.注意反函数的定义域.【解答】解:设 y=log2(1+),把 y 看作常数,求出 x:1+ =2y, x=,此中y>0,x,y 交换,获得 y=log2( 1+)的反函数:y=,应选: A.【评论】本题观察对数函数的反函数的求法,解题时要仔细审题,注意对数式和指数式的互相转变..(分)已知数列n}知足3a n+1+a n,2﹣,则n }的前10项和等于()6 5{ a=0 a ={ aA.﹣ 6( 1﹣ 3﹣ 10﹣10﹣10) B.C.3(1﹣3 )D.3(1+3)【剖析】由已知可知,数列 { a n } 是以﹣为公比的等比数列,联合已知可求 a1,而后辈入等比数列的乞降公式可求【解答】解:∵ 3a n+1+a n=0∴∴数列 { a n} 是以﹣为公比的等比数列∵∴a1=4由等比数列的乞降公式可得, S10==3(1﹣3﹣ 10)应选: C.【评论】本题主要观察了等比数列的通项公式及乞降公式的简单应用,属于基础试题34 2 27.(5 分)(1+x)(1+y)的睁开式中 x y 的系数是()【剖析】由题意知利用二项睁开式的通项公式写出睁开式的通项,令x的指数为2,写出出睁开式中x2的系数,第二个因式y2的系数,即可获得结果.令 r=2 获得睁开式中 x2的系数是 C32 =3,( 1+y)4的睁开式的通项为 T r+1=C4r y r令r=2 获得睁开式中 y2的系数是 C42=6,( 1+x)3( 1+y)4的睁开式中 x2y2的系数是: 3×6=18,应选: D.【评论】本题观察利用二项睁开式的通项公式解决二项睁开式的特定项问题,本题解题的重点是写出二项式的睁开式,全部的这种问题都是利用通项来解决的.8.(5 分)椭圆 C:的左、右极点分别为A1、A2,点 P 在 C 上且直线PA2斜率的取值范围是 [ ﹣ 2,﹣ 1] ,那么直线 PA1斜率的取值范围是()A.B.C.D.【剖析】由椭圆 C:可知其左极点A1(﹣ 2,0),右极点 A2(2,0).设P( x0, y0)(x0≠± 2),代入椭圆方程可得.利用斜率计算公式可得,再利用已知给出的的范围即可解出.【解答】解:由椭圆 C:可知其左极点A1(﹣2,0),右极点A2(2,0).设 P(x0,y0)(x0≠± 2),则,得.∵=,=,∴==,∵,∴,解得.应选: B.【评论】娴熟掌握椭圆的标准方程及其性质、斜率的计算公式、不等式的性质等是解题的重点.9.(5 分)若函数(fx)=x2+ax+是增函数,则 a 的取值范围是()A.[ ﹣1,0]B.[ ﹣1,+∞)C.[ 0,3]D.[ 3, +∞)【剖析】由函数在(,+∞)上是增函数,可得≥ 0 在(,+∞)上恒成立,从而可转变为 a≥﹣2x 在(,+∞)上恒成立,结构函数求出﹣2x 在(, +∞)上的最值,可得 a 的取值范围.【解答】解:∵在(,+∞)上是增函数,故≥ 0 在(, +∞)上恒成立,即 a≥ ﹣2x 在(, +∞)上恒成立,令h(x) = ﹣ 2x,则 h′(x)=﹣﹣2,当 x∈(,+∞)时,h′(x)<0,则h(x)为减函数.∴h( x)< h()=3∴a≥ 3.应选: D.【评论】本题观察的知识点是利用导数研究函数的单一性,恒成立问题,是导数的综合应用,难度中档.10.( 5 分)已知正四棱柱ABCD﹣A1B1C1D1中, AA1=2AB,则 CD 与平面 BDC1所成角的正弦值等于()A.B.C.D.【剖析】设 AB=1,则 AA1,分别以的方向为x 轴、y轴、z=2轴的正方向成立空间直角坐标系,设=(x,y,z)为平面 BDC 的一个法向量,1CD与平面 BDC1所成角为θ,则 sin θ=|| ,在空间坐标系下求出向量坐标,代入计算即可.【解答】解:设 AB=1,则 AA1=2,分别以的方向为x轴、y 轴、 z 轴的正方向成立空间直角坐标系,以以下图所示:则 D(0,0,2),C1(1,0,0),B(1,1,2),C(1,0,2),=(1,1,0),=(1,0,﹣ 2),=(1,0,0),设 =(x,y,z)为平面 BDC1的一个法向量,则,即,取=( 2,﹣ 2,1),设 CD与平面 BDC 所成角为θ,则 sin θ=|| =,1应选: A.【评论】本题观察直线与平面所成的角,观察空间向量的运算及应用,正确理解线面角与直线方向向量、平面法向量夹角关系是解决问题的重点.11.( 5 分)已知抛物线 C:y2=8x 的焦点为 F,点 M(﹣ 2,2),过点 F 且斜率为k 的直线与 C 交于 A,B 两点,若,则k=()A.B.C.D.2【剖析】斜率 k 存在,设直线 AB 为 y=k(x﹣ 2),代入抛物线方程,利用=(x1+2,y1﹣ 2) ?( x2+2,y2﹣ 2)=0,即可求出 k 的值.【解答】解:由抛物线 C: y2=8x 得焦点( 2,0),由题意可知:斜率 k 存在,设直线 AB 为 y=k(x﹣ 2),代入抛物线方程,获得 k2x2﹣( 4k2+8) x+4k2=0,△> 0,设 A(x1,y1),B(x2, y2).∴ x1+x2=4+ ,x1x2=4.∴y1+y2= ,y1y2=﹣16,又=0,∴=(x1+2,y1﹣2)?(x2+2,y2﹣2)==0∴k=2.应选: D.【评论】本题观察直线与抛物线的地点关系,观察向量的数目积公式,观察学生的计算能力,属于中档题.12.( 5 分)已知函数 f( x)=cosxsin2x,以下结论中不正确的选项是()A.y=f(x)的图象对于(π,0)中心对称B.C.D.f(x)既是奇函数,又是周期函数【剖析】依据函数图象对于某点中心对称或对于某条直线对称的公式,对A、B 两项加以考证,可得它们都正确.依据二倍角的正弦公式和同角三角函数的关系化简,得 f( x)=2sinx(1﹣sin2),再换元:令,获得对于t 的三次函数,x t=sinx利用导数研究此函数的单一性可得f( x)的最大值为,故 C 不正确;依据函数周期性和奇偶性的定义加以考证,可得 D 项正确.由此可得本题的答案.【解答】解:对于 A,因为 f (π+x)=cos(π+x)sin(2π+2x)=﹣cosxsin2x,f(π﹣x)=cos(π﹣ x) sin(2π﹣2x) =cosxsin2x,所以 f(π+x) +f (π﹣x) =0,可得 y=f(x)的图象对于(π,0)中心对称,故 A 正确;对于 B,因为 f (+x)=cos(+x)sin(π+2x)=﹣sinx(﹣ sin2x) =sinxsin2x,f(﹣x)=cos(﹣ x)sin(π﹣2x)=sinxsin2x,所以 f(+x)=f(﹣ x),可得 y=f(x)的图象对于直线 x=对称,故 B 正确;2(﹣2),对于 C,化简得 f(x)=cosxsin2x=2cosxsinx=2sinx 1sin x令 t=sinx,f (x)=g( t)=2t(1﹣t 2),﹣ 1≤ t≤1,∵ g( t)=2t(1﹣t 2)的导数 g'(t ) =2﹣6t2(=2 1+ t)(1﹣t)∴当 t ∈(﹣ 1,﹣)时或 t∈(,1)时 g'( t)<0,函数 g(t )为减函数;当 t∈(﹣,)时 g'( t)> 0,函数 g(t )为增函数.所以函数 g( t )的最大值为 t=﹣1时或 t=时的函数值,联合 g(﹣ 1)=0<g()=,可得 g( t)的最大值为.由此可得 f( x)的最大值为而不是,故 C 不正确;对于 D,因为 f (﹣ x)=cos(﹣ x)sin(﹣ 2x)=﹣ cosxsin2x=﹣ f(x),所以 f (x)是奇函数.因为 f (2π+x)=cos( 2π+x)sin(4π+2x)=cosxsin2x=f(x),所以 2π为函数的一个周期,得 f (x)为周期函数.可得 f( x)既是奇函数,又是周期函数,得 D 正确.综上所述,只有 C 项不正确.应选: C.【评论】本题给出三角函数式,研究函数的奇偶性、单一性和周期性.侧重观察了三角恒等变换公式、利用导数研究函数的单一性和函数图象的对称性等知识,属于中档题.二、填空题:本大题共 4 小题,每题 5 分.13.( 5 分)已知α是第三象限角, sin α=﹣,则 cot α=2.【剖析】依据α是第三象限的角,获得cosα小于 0,而后由 sin α的值,利用同角三角函数间的基本关系求出cosα的值,从而求出cot α的值.【解答】解:由α是第三象限的角,获得cosα<0,又 sin α=﹣,所以 cosα=﹣=﹣则 cot α==2故答案为: 2【评论】本题观察学生灵巧运用同角三角函数间的基本关系化简求值,是一道基础题.学生做题时注意α的范围.14(.5 分)6 个人排成一行,此中甲、乙两人不相邻的不一样排法共有480种.(用数字作答)【剖析】摆列好甲、乙两人外的 4 人,而后把甲、乙两人插入 4 个人的 5 个空位中即可.【解答】解: 6 个人排成一行,此中甲、乙两人不相邻的不一样排法:摆列好甲、乙两人外的 4 人,有中方法,而后把甲、乙两人插入 4 个人的 5 个空位,有种方法,所以共有:=480.故答案为: 480.【评论】本题观察了乘法原理,以及摆列的简单应用,插空法解答不相邻问题.15.( 5 分)记不等式组所表示的平面地区为D.若直线 y=a(x+1)与D 有公共点,则 a 的取值范围是[,4].【剖析】本题观察的知识点是简单线性规划的应用,我们要先画出知足拘束条件的平面地区,而后剖析平面地区里各个角点,而后将其代入y=a(x+1)中,求出 y=a(x+1)对应的 a 的端点值即可..【解答】解:知足拘束条件的平面地区如图示:因为 y=a(x+1)过定点(﹣ 1,0).所以当 y=a( x+1)过点 B(0,4)时,获得 a=4,当 y=a(x+1)过点 A(1,1)时,对应 a= .又因为直线 y=a(x+1)与平面地区 D 有公共点.所以≤a≤4.故答案为: [,4]【评论】在解决线性规划的小题时,我们常用“角点法”,其步骤为:①由拘束条件画出可行域 ? ②求出可行域各个角点的坐标 ? ③将坐标逐个代入目标函数 ? ④考证,求出最优解.16.(5 分)已知圆 O 和圆 K 是球 O 的大圆和小圆,其公共弦长等于球O 的半径,,则球 O 的表面积等于16π .【剖析】正确作出图形,利用勾股定理,成立方程,即可求得结论.【解答】解:以下图,设球O 的半径为 r,AB 是公共弦,∠ OCK是面面角依据题意得 OC=,CK=在△ OCK中, OC2=OK2+CK2,即∴r2=42∴球 O 的表面积等于4πr=16π故答案为 16π【评论】本题观察球的表面积,观察学生剖析解决问题的能力,属于中档题.三、解答题:解答应写出文字说明、证明过程或演算步骤..(10分)等差数列{ a n} 的前 n 项和为 S n.已知 S3 22,且 S1,S2, S4成等比17=a数列,求 { a n} 的通项式.【剖析】由,联合等差数列的乞降公式可求 a2,而后由,结合等差数列的乞降公式从而可求公差d,即可求解通项公式【解答】解:设数列的公差为 d由得, 3∴a2=0 或 a2=3由题意可得,∴若 a2=0,则可得 d2=﹣2d2即 d=0 不切合题意若a2=3,则可得( 6﹣d)2=(3﹣d)(12+2d)解可得 d=0 或 d=2∴a n=3 或 a n=2n﹣1【评论】本题主要观察了等差数列的通项公式及乞降公式的应用,等比数列的性质的简单应用,属于基础试题18.(12 分)设△ ABC的内角 A,B,C 的内角对边分别为a,b,c,知足(a+b+c)(a﹣ b+c) =ac.(Ⅰ)求 B.(Ⅱ)若 sinAsinC=,求C.【剖析】(I)已知等式左侧利用多项式乘多项式法例计算,整理后获得关系式,利用余弦定理表示出cosB,将关系式代入求出cosB 的值,由 B 为三角形的内角,利用特别角的三角函数值即可求出 B 的度数;(II)由( I)获得 A+C 的度数,利用两角和与差的余弦函数公式化简 cos( A﹣ C),变形后将 cos(A+C)及 2sinAsinC 的值代入求出 cos(A﹣C)的值,利用特别角的三角函数值求出 A﹣C 的值,与 A+C 的值联立刻可求出 C 的度数.【解答】解:(I)∵( a+b+c)(a﹣b+c)=(a+c)2﹣b2=ac,∴a2+c2﹣ b2=﹣ ac,∴ cosB==﹣,又 B 为三角形的内角,则 B=120°;( II)由( I)得: A+C=60°,∵ sinAsinC=,cos(A+C)=,∴cos( A ﹣ C) =cosAcosC+sinAsinC=cosAcosC﹣ sinAsinC+2sinAsinC=cos( A+C)+2sinAsinC= +2×=,∴A﹣ C=30°或 A﹣ C=﹣30°,则 C=15°或 C=45°.【评论】本题观察了余弦定理,两角和与差的余弦函数公式,以及特别角的三角函数值,娴熟掌握余弦定理是解本题的重点.19.( 12 分)如图,四棱锥P﹣ABCD中,∠ ABC=∠BAD=90°,BC=2AD,△ PAB与△PAD都是等边三角形.(Ⅰ)证明:PB⊥CD;(Ⅱ)求二面角 A﹣ PD﹣ C 的大小.【剖析】(I)取 BC的中点 E,连结 DE,过点 P 作 PO⊥平面 ABCD于 O,连结 OA、OB、OD、OE.可证出四边形 ABED是正方形,且 O 为正方形 ABED的中心.所以OE⊥ OB,联合三垂线定理,证出 OE⊥ PB,而 OE是△ BCD的中位线,可得 OE ∥CD,所以 PB⊥CD;( II)由( I)的结论,证出 CD⊥平面 PBD,从而获得 CD⊥ PD.取 PD 的中点 F,PC 的中点 G,连结 FG,可得 FG∥CD,所以 FG⊥ PD.连结 AF,可得 AF⊥PD,所以∠AFG 为二面角 A﹣ PD﹣C 的平面角,连结 AG、EG,则 EG∥PB,可得 EG⊥OE.设 AB=2,可求出 AE、EG、AG、AF 和 FG的长,最后在△ AFG中利用余弦定理,算出∠ AFG=π﹣arccos ,即得二面角 A﹣ PD﹣C 的平面角大小.【解答】解:(I)取 BC的中点 E,连结 DE,可得四边形 ABED是正方形过点 P 作 PO⊥平面 ABCD,垂足为 O,连结 OA、OB、OD、OE∵△ PAB与△ PAD都是等边三角形,∴ PA=PB=PD,可得OA=OB=OD 所以, O 是正方形 ABED的对角线的交点,可得OE⊥OB∵ PO⊥平面 ABCD,得直线 OB 是直线 PB 在内的射影,∴ OE⊥PB∵△ BCD中, E、O 分别为 BC、BD 的中点,∴ OE∥CD,可得 PB⊥CD;(II)由( I)知 CD⊥PO,CD⊥PB∵PO、PB是平面 PBD内的订交直线,∴ CD⊥平面 PBD∵PD? 平面 PBD,∴ CD⊥PD14页连结 AF,由△ PAD是等边三角形可得 AF⊥ PD,∴∠ AFG为二面角 A﹣PD﹣C 的平面角连结 AG、EG,则 EG∥PB∵PB⊥OE,∴ EG⊥OE,设 AB=2,则 AE=2,EG= PB=1,故AG==3在△ AFG中, FG= CD=,AF=,AG=3∴ cos∠ AFG==﹣,得∠ AFG=π﹣arccos,即二面角 A﹣PD﹣ C 的平面角大小是π﹣arccos.【评论】本题给出特别的四棱锥,求证直线与直线垂直并求二面角平面角的大小,侧重观察了线面垂直的判断与性质、三垂线定理和运用余弦定理求二面的大小等知识,属于中档题.20.(12 分)甲、乙、丙三人进行羽毛球练习赛,此中两人竞赛,另一人当裁判,每局竞赛结束时,负的一方在下一局当裁判,设各局中两方获胜的概率均为,各局竞赛的结果都互相独立,第 1 局甲当裁判.(Ⅰ)求第 4 局甲当裁判的概率;(Ⅱ) X 表示前 4 局中乙当裁判的次数,求X 的数学希望.【剖析】(I)令 A1表示第 2 局结果为甲获胜, A2表示第 3 局甲参加竞赛时,结果为甲负, A 表示第 4 局甲当裁判,剖析其可能状况,每局竞赛的结果互相独立且互斥,利用独立事件、互斥事件的概率求解即可.(II)X 的全部可能值为 0,1,2.分别求出 X 取每一个值的概率,列出散布列后求出希望值即可.【解答】解:( I)令 A1表示第 2 局结果为甲获胜. A2表示第 3 局甲参加竞赛时,结果为甲负. A 表示第 4 局甲当裁判.则 A=A1?A2,P( A) =P(A1?A2)=P(A1)P(A2)= ;(Ⅱ)X 的全部可能值为0,1,2.令A3表示第3 局乙和丙竞赛时,结果为乙胜. B1表示第 1 局结果为乙获胜, B2表示第 2 局乙和甲竞赛时,结果为乙胜, B3表示第 3 局乙参加竞赛时,结果为乙负,则 P(X=0)=P(B1B2)=P( B1)P(B2) P()= .P(X=2) =P(B3)=P()P(B3)=.P(X=1) =1﹣P(X=0)﹣ P(X=2)=.从而 EX=0×+1×+2×=.【评论】本题观察互斥、独立事件的概率,失散型随机变量的散布列和希望等知识,同时观察利用概率知识解决问题的能力.21.( 12 分)已知双曲线C:=1(a>0,b> 0)的左、右焦点分别为F1,F2,离心率为 3,直线 y=2 与 C 的两个交点间的距离为.( I)求 a, b;( II)设过 F2的直线 l 与 C 的左、右两支分别订交于A、B 两点,且 | AF1| =| BF1| ,证明: | AF2| 、 | AB| 、 | BF2| 成等比数列.【剖析】(I)由题设,可由离心率为 3 获得参数 a,b 的关系,将双曲线的方程用参数 a 表示出来,再由直线成立方程求出参数 a 即可获得双曲线的方程;( II)由( I)的方程求出两焦点坐标,设出直线l 的方程设 A(x1,y1),B(x2,y2),将其与双曲线C 的方程联立,得出x1+x2=,,再利用| AF1| =| BF1| 成立对于 A, B 坐标的方程,得出两点横坐标的关系,由此方程求出 k 的值,得出直线的方程,从而可求得:| AF2| 、| AB| 、| BF2| ,再利用等比数列的性质进行判断即可证明出结论.【解答】解:(I)由题设知=3,即=9,故 b2=8a2所以 C 的方程为 8x2﹣y2=8a2将 y=2 代入上式,并求得x=±,由题设知, 2=,解得a2=1( II)由( I)知, F1(﹣ 3,0), F2(3,0),C 的方程为 8x2﹣y2=8①由题意,可设 l 的方程为 y=k(x﹣3),| k| <2 代入①并化简得( k2﹣8)x2﹣6k2x+9k2+8=0设 A(x1,y1),B(x2, y2),则 x1≤﹣ 1, x2≥1,x1+x2=,,于是| AF1| ==﹣( 3x1+1),| BF1| ==3x2+1,| AF1| =| BF1| 得﹣( 3x1 +1)=3x2 +1,即故=,解得,从而=﹣因为 | AF2| ==1﹣3x1,| BF2| ==3x2﹣1,故 | AB| =| AF2 | ﹣ | BF2| =2﹣3(x1+x2)=4, | AF2|| BF2| =3( x1+x2)﹣ 9x1x2﹣1=16因此 | AF2|| BF2| =| AB| 2,所以 | AF2| 、| AB| 、| BF2| 成等比数列【评论】本题观察直线与圆锥曲线的综合关系,观察了运算能力,题设条件的转化能力,方程的思想运用,此类题综合性强,但解答过程有其固有规律,一般需要把直线与曲线联立利用根系关系,解答中要注意提炼此类题解答过程中的共性,给予后解答此类题供给借鉴.22.( 12 分)已知函数.( I)若 x≥ 0 时, f (x)≤ 0,求λ的最小值;( II)设数列 { a n} 的通项 a n.=1+【剖析】(I)因为已知函数的最大值是0,故可先求出函数的导数,研究其单一性,确立出函数的最大值,利用最大值小于等于 0 求出参数λ的取值范围,即可求得其最小值;( II)依据( I)的证明,可取λ=,因为 x> 0 时,(fx)<0 得出,观察,若取 x= ,可得出,以此依照,利用放法,即可获得【解答】解:(I)由已知, f(0)=0,f (′x)==,∴f (′ 0) =0欲使 x≥0 ,f(x)≤0 恒成立, f(x)在( 0,+∞)上必减函数,即在( 0,+∞)上 f ′(x)<0 恒成立,当λ≤0 , f ′( x)> 0 在( 0,+∞)上恒成立,增函数,故不合意,若 0<λ<,由f′(x)>0解得x<,当0<x<,f′(x)>0,所以当 0< x<,f(x)>0,此不合意,若λ≥,当 x>0 , f (′ x)< 0 恒成立,此 f( x)在( 0,+∞)上必减函数,所以当 x >0 , f( x)< 0恒成立,上,切合意的λ的取范是λ≥,即λ的最小(II)令λ=,由( I)知,当 x>0 , f(x)< 0,即取 x= ,于是 a2n a n+ =++⋯+ +====>=ln2n lnn=ln2所以【点】本考了数列中明不等式的方法及数求最的一般方法,解的.重点是充足利用已有的结论再联合放缩法,本题观察了推理判断的能力及转变化归的思想,有必定的难度19页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档