2N系列功率晶体管技术参数(精)
2N3500、2N3501NPN晶体管产品规格书
2N3500、2N3501 GENERAL PURPOSENPN NPN TRANSISTOR
2N3500、2N3501 通用低功耗 NPN 晶体三极管
极限参数(Tamb=25℃):
参数名称
集电极-基极击穿电压 集电极-发射极击穿电压 发射极-基极击穿电压 集电极电流 耗散功率
-
NF2
VCE=10V,IC=0.5mA,f=10kHz,Rg=1kΩ
16 -
6
开启时间
Ton
IC=150mA,VEB=5V,
-
115
关闭时间
Toff
IC=150mA, IB1= IB2= -15mA
-
1150
注:本品同 Motorrola、Semicoa、Microsemi 等公司的同型号产品的性能相同。
2N3500:35
2N3501:75
-
-
2N3500:40
2N3500:120
2N3501:100
-
2N3501:300
2N3500:15
2N3501:20
-
-
集电极-发射极饱和压降
VCE(sat)
IC=10mA,IB=1.0mA IC=150mA,IB=15mA
-
-
0.2
0.4
基极-发射极饱和压降
VBE(sat)
IC=10mA,IB=1.0mA IC=150mA,IB=15mA
-
-
0.8
-
-
1.2
输出电容
Cobo
IE=0,VCB=10V,100KHz ≤ f ≤
-
-
2n3866参数
2n3866参数(实用版)目录1.2n3866 概述2.2n3866 的主要参数3.2n3866 参数的详细说明正文2n3866 是一款常见的电子元器件,广泛应用于各种电子设备中。
了解 2n3866 的参数对于选择和使用该元器件至关重要。
下面我们将详细介绍 2n3866 的主要参数及其含义。
首先,我们来了解一下 2n3866 的基本概述。
2n3866 是一种双极型晶体管,具有放大和开关等功能。
它主要由三个区域组成:n 型区、p 型区和 n 型区,其中两个 n 型区之间夹着一个 p 型区。
这种结构使得2n3866 具有很高的电流放大能力和良好的开关特性。
接下来,我们来看一下 2n3866 的主要参数。
在查阅相关资料时,我们通常会看到以下几个参数:1.集电极电流(IC):集电极电流是晶体管工作时流经集电极的电流。
它是晶体管的一个重要参数,决定了晶体管的电流放大能力。
2.集电极 - 发射极电压(VCE):集电极 - 发射极电压是指在晶体管工作时,集电极和发射极之间的电压。
这个参数影响了晶体管的输出特性。
3.发射极电流(IE):发射极电流是指在晶体管工作时流经发射极的电流。
发射极电流与集电极电流之间有一定的关系,通常用来评价晶体管的电流放大能力。
4.功耗(PD):功耗是指晶体管在工作过程中消耗的功率。
功耗与晶体管的电流和电压有关,对晶体管的可靠性和稳定性有重要影响。
在了解了 2n3866 的主要参数后,我们还需要对这些参数进行详细说明,以便更好地理解和应用这款元器件。
以下是 2n3866 参数的详细说明:1.集电极电流(IC):集电极电流是 2n3866 最重要的参数之一。
根据不同的使用场景,我们可以选择具有不同集电极电流的 2n3866。
通常情况下,集电极电流越大,晶体管的电流放大能力越强。
2.集电极 - 发射极电压(VCE):集电极 - 发射极电压决定了晶体管的开关速度。
在实际应用中,我们需要根据电路的要求选择合适的 VCE 值。
2n5401的管脚和参数
2n5401的管脚和参数
2N5401是一种PNP极性的晶体管,它有三个引脚,发射极(E),基极(B)和集电极(C)。
在引脚排列上,通常来说,从正
面看,引脚从左到右的排列顺序是,发射极、基极、集电极。
至于参数,2N5401的典型参数包括最大集电极-发射极电压(VCEO)为150V,最大集电极-基极电压(VCBO)为160V,最大发
射极-基极电压(VEBO)为5V。
最大集电极电流(IC)为600mA,最
大功率(Ptot)为625mW。
此外,它的直流增益(hFE)在100到
250之间。
这些参数对于设计电路和选择适当的工作条件非常重要。
除了这些基本参数之外,还有一些其他的参数,比如最大封装
温度(Tj),最大存储温度(Tstg)等等,这些参数对于在特定环
境条件下的应用也非常重要。
总的来说,了解2N5401的管脚和参数对于工程师在电路设计和
应用中起着至关重要的作用,因为它们直接影响着晶体管的工作性
能和可靠性。
希望这些信息能够帮助你更好地了解2N5401晶体管。
2n5416参数
2n5416参数
2n5416是一款双极型PNP晶体管,通常用于低功耗放大器、开关和线性稳压器等电路中。
它具有高电压容忍度和低噪声特性,适合用于需要高性能的电子设备。
在电子领域中,晶体管是一种重要的电子元件,广泛应用于各种电路中。
2n5416作为一款高性能的PNP晶体管,具有许多优点。
首先,它的封装结构紧凑,体积小巧,适合于空间有限的电路设计。
其次,2n5416具有较高的电压容忍度,能够承受较高的电压,保证电路的稳定性和可靠性。
此外,它还具有低噪声特性,适合用于对信号质量要求较高的电路中。
在低功耗放大器中,2n5416可以发挥其优良的放大特性。
通过合理设计电路,可以实现信号的放大和处理,保证信号的清晰度和稳定性。
在开关电路中,2n5416可以作为开关管使用,控制电路的通断,实现电路的开关功能。
此外,在线性稳压器中,2n5416可以帮助实现电压的稳定输出,保证电路的正常工作。
除了在以上应用中,2n5416还可以用于其他各种电子设备中,如功率放大器、振荡器、脉冲电路等。
由于其高性能和稳定性,2n5416受到广泛关注和应用。
总的来说,2n5416作为一款高性能的双极型PNP晶体管,在各种电子设备中都有着重要的应用。
其小巧的封装、高电压容忍度和低
噪声特性,使其成为电路设计中的重要组成部分。
通过合理选择和设计电路,可以充分发挥2n5416的优良特性,确保电子设备的性能和稳定性。
希望未来能够有更多的电子元件能够像2n5416一样,为电子技术的发展做出贡献。
2n3771 2n3772 高功率npn 硅功率晶体管 数据表.pdf说明书
2N3771, 2N3772High Power NPN Silicon Power TransistorsThese devices are designed for linear amplifiers, series pass regulators, and inductive switching applications.Features•Forward Biased Second Breakdown Current CapabilityI S/b= 3.75 Adc @ V CE = 40 Vdc − 2N3771= 2.5 Adc @ V CE = 60 Vdc − 2N3772•These Devices are Pb−Free and are RoHS Compliant MAXIMUM RATINGS (Note 1)Rating Symbol2N37712N3772Unit Collector−Emitter Voltage V CEO4060Vdc Collector−Emitter Voltage V CEX5080Vdc Collector−Base Voltage V CB50100Vdc Emitter−Base Voltage V EB 5.07.0VdcCollector Current −ContinuousPeak I C30302030AdcBase Current −ContinuousPeak I B7.5155.015AdcT otal Device Dissipation @ T C = 25°C Derate above 25°C P D1500.855WW/°COperating and Storage JunctionTemperature RangeT J, T stg–65 to +200°C THERMAL CHARACTERISTICSCharacteristic Symbol Max Unit Thermal Resistance,Junction−to−Caseq JC 1.17°C/WStresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.1.Indicates JEDEC registered data.20 and 30 AMPEREPOWER TRANSISTORSNPN SILICON40 and 60 VOLTS, 150 WATTSMARKINGDIAGRAMTO−204AA (TO−3)CASE 1−07STYLE 12N377x=Device Codex = 1 or 2G=Pb−Free PackageA=Assembly LocationYY=YearWW=Work WeekMEX=Country of Origin2N377xGAYYWWMEX2N3772G TO−204(Pb−Free)100 Units / Tray Device Package Shipping2N3771G TO−204(Pb−Free)100 Units / Tray ORDERING INFORMATIONELECTRICAL CHARACTERISTICS (T C= 25_C unless otherwise noted)Characteristic Symbol Min Max Unit OFF CHARACTERISTICSCollector−Emitter Sustaining Voltage (Note 2 and 3)2N3771(I C = 0.2 Adc, I B = 0)2N3772V CEO(sus)4060−−VdcCollector−Emitter Sustaining Voltage2N3771(I C = 0.2 Adc, V EB(off) = 1.5 Vdc, R BE = 100 W)2N3772V CEX(sus)5080−−VdcCollector−Emitter Sustaining Voltage2N3771(I C = 0.2 Adc, R BE = 100 W)2N3772V CER(sus)4570−−VdcCollector Cutoff Current (Note 2)(V CE = 30 Vdc, I B = 0)2N3771 (V CE = 50 Vdc, I B = 0)2N3772 (V CE = 25 Vdc, I B = 0)I CEO−−1010mAdcCollector Cutoff Current (Note 2)(V CE = 50 Vdc, V EB(off) = 1.5 Vdc)2N3771 (V CE = 100 Vdc, V EB(off) = 1.5 Vdc)2N3772 (V CE = 45 Vdc, V EB(off) = 1.5 Vdc)2N6257 (V CE = 30 Vdc, V EB(off) = 1.5 Vdc, T C = 150_C)2N37712N3772 (V CE = 45 Vdc, V EB(off) = 1.5 Vdc, T C = 150_C)I CEV−−−−−2.05.04.01010mAdcCollector Cutoff Current (Note 2)(V CB = 50 Vdc, I E = 0)2N3771 (V CB = 100 Vdc, I E = 0)2N3772I CBO−−2.05.0mAdcEmitter Cutoff Current (Note 2)(V BE = 5.0 Vdc, I C = 0)2N3771 (V BE = 7.0 Vdc, I C = 0)2N3772I EBO−−5.05.0mAdcON CHARACTERISTICS (Note 2)DC Current Gain (Note 3)(I C = 15 Adc, V CE = 4.0 Vdc)2N3771(I C = 10 Adc, V CE = 4.0 Vdc)2N3772(I C = 8.0 Adc, V CE = 4.0 Vdc)(I C = 30 Adc, V CE = 4.0 Vdc)2N3771(I C = 20 Adc, V CE = 4.0 Vdc)2N3772h FE15155.05.06060−−−Collector−Emitter Saturation Voltage(I C = 15 Adc, I B = 1.5 Adc)2N3771(I C = 10 Adc, I B = 1.0 Adc)2N3772(I C = 30 Adc, I B = 6.0 Adc)2N3771(I C = 20 Adc, I B = 4.0 Adc)2N3772V CE(sat)−−−−2.01.44.04.0VdcBase−Emitter On Voltage(I C = 15 Adc, V CE = 4.0 Vdc)2N3771(I C = 10 Adc, V CE = 4.0 Vdc)2N3772(I C = 8.0 Adc, V CE = 4.0 Vdc)V BE(on)−−2.72.2Vdc*DYNAMIC CHARACTERISTICS (Note 2)Current−Gain — Bandwidth Product(I C = 1.0 Adc, V CE = 4.0 Vdc, f test = 50 kHz)f T0.2−MHzSmall−Signal Current Gain(I C = 1.0 Adc, V CE = 4.0 Vdc, f = 1.0 kHz)h fe40−−SECOND BREAKDOWNSecond Breakdown Energy with Base Forward Biased, t = 1.0 s (non−repetitive) (V CE = 40 Vdc)2N3771 (V CE = 60 Vdc)2N3772I S/b3.752.5−−Adc2.Indicates JEDEC registered data.3.Pulse Test: 300 m s, Rep. Rate 60 cps.20000255075100125150175200Figure 1. Power DeratingT C , CASE TEMPERATURE (°C)1501005025P D , P O W E R D I S S I P A T I O N (W A T T S )17512575Figure 2. Thermal Response — 2N3771, 2N3772t, TIME (ms)r (t ), E F F E C T I V E T R A N S I E N T T H E R M A L R E S I S T A N C E (N O R M A L I Z E D )40Figure 3. Active −Region Safe Operating Area— 2N3771, 2N3772V CE , COLLECTOR-EMITTER VOLTAGE (VOLTS)3020102.07.0I C , C O L L E C T O R C U R R E N T (A M P )5.03.0There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate I C − V CE limits of the transistor that must be observed for reliable operation: i.e., the transistor must not be subjected to greater dissipation than the curves indicate.Figure 3 is based on JEDEC registered Data. Second breakdown pulse limits are valid for duty cycles to 10%provided T J(pk) < 200_C. T J(pk) may be calculated from the data of Figure 2. Using data of Figure 2 and the pulse power limits of Figure 3, T J(pk) will be found to be less than T J(max)for pulse widths of 1 ms and less. When using ON Semiconductor transistors, it is permissible to increase the pulse power limits until limited by T J(max).Figure 4. Switching Time Test CircuitSCOPEV CC t r , t f ≤ 10 ns DUTY CYCLE = 1.0%D1 MUST BE FAST RECOVERY TYPE, e.g.: 1N5825 USED ABOVE I B ≈ 100 mA MSD6100 USED BELOW I B ≈ 100 mAR B AND R C ARE VARIED TO OBTAIN DESIRED CURRENT LEVELS10Figure 5. Turn −On TimeI C , COLLECTOR CURRENT (AMP)5.02.01.00.50.20.10.010.05t , T I M E ( s )μ0.02V C E , C O L L E C T O R -E M I T T E R V O L T A G E (V O L T S )Figure 6. Turn −Off TimeI C , COLLECTOR CURRENT (AMP)t , T I M E ( s )μ2000Figure 7. CapacitanceV R , REVERSE VOLTAGE (VOLTS)200C , C A P A C I T A N C E (p F )1000700500300500Figure 8. DC Current GainI C , COLLECTOR CURRENT (AMP)5.010********h F E , D C C U R R E N T G A I N3007030107.0Figure 9. Collector Saturation RegionI B , BASE CURRENT (AMP)MECHANICAL CASE OUTLINEPACKAGE DIMENSIONSSCALE 1:1CASE 1−07ISSUE Z DATE 05/18/1988 TO−204 (TO−3)NOTES:1.DIMENSIONING AND TOLERANCING PER ANSIY14.5M, 1982.2.CONTROLLING DIMENSION: INCH.3.ALL RULES AND NOTES ASSOCIATED WITHREFERENCED TO-204AA OUTLINE SHALL APPLY.STYLE 1:PIN 1.BASE2.EMITTER CASE:COLLECTOR STYLE 2:PIN 1.BASE2.COLLECTORCASE:EMITTERSTYLE 3:PIN 1.GATE2.SOURCECASE:DRAINSTYLE 4:PIN 1.GROUND2.INPUTCASE:OUTPUTSTYLE 5:PIN 1.CATHODE2.EXTERNAL TRIP/DELAYCASE:ANODESTYLE 6:PIN 1.GATE2.EMITTER CASE:COLLECTOR STYLE 7:PIN 1.ANODE2.OPENCASE:CATHODESTYLE 8:PIN 1.CATHODE #12.CATHODE #2CASE:ANODESTYLE 9:PIN 1.ANODE #12.ANODE #2CASE:CATHODEDIM MIN MAX MIN MAXMILLIMETERSINCHESA 1.550 REF39.37 REFB--- 1.050---26.67C0.2500.335 6.358.51D0.0380.0430.97 1.09E0.0550.070 1.40 1.77G0.430 BSC10.92 BSCH0.215 BSC 5.46 BSCK0.4400.48011.1812.19L0.665 BSC16.89 BSCN---0.830---21.08Q0.1510.165 3.84 4.19U 1.187 BSC30.15 BSCV0.1310.188 3.33 4.77ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.PUBLICATION ORDERING INFORMATIONTECHNICAL SUPPORTNorth American Technical Support:Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910LITERATURE FULFILLMENT :Email Requests to:*******************onsemi Website: Europe, Middle East and Africa Technical Support:Phone: 00421 33 790 2910For additional information, please contact your local Sales Representative。
2n5302高功率npn硅晶体管说明书
2N5302High−Power NPN Silicon TransistorHigh−power NPN silicon transistors are for use in power amplifier and switching circuits applications.Features•Low Collector−Emitter Saturation V oltage −V CE(sat) = 0.75 Vdc (Max) @ I C = 10 Adc •Pb−Free Package is Available*MAXIMUM RATINGS (Note 1) (T J = 25°C unless otherwise noted)RatingSymbol Value Unit Collector−Emitter Voltage V CEO 60Vdc Collector−Base VoltageV CB 60Vdc Collector Current − Continuous (Note 2)I C 30Adc Base CurrentI B7.5AdcTotal Device Dissipation @ T C = 25_C Derate above 25_CP D 2001.14WW/_C Operating and Storage Junction Temperature RangeT J , T stg–65 to +200_CTHERMAL CHARACTERISTICSCharacteristicSymbol Max Unit Thermal Resistance, Junction−to−Case q JC 0.875_C/W Thermal Resistance, Case−to−Ambientq CA34_C/WStresses exceeding Maximum Ratings may damage the device. MaximumRatings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.1.Indicates JEDEC Registered Data.2.Pulse Test: Pulse Width = 5 m s, Duty Cycle ≤ 10%.2000Figure 1. Power Temperature Derating CurveTEMPERATURE (°C)P D , P O W E R D I S S I P A T I O N (W A T T S )15010050T C 8.006.04.02.0T A *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.Device Package Shipping ORDERING INFORMATION2N5302TO−204100 Units/Tray 2N5302GTO−204(Pb−Free)100 Units/TrayELECTRICAL CHARACTERISTICS (T C = 25_C unless otherwise noted)CharacteristicSymbol Min MaxUnitOFF CHARACTERISTICS (Note 3)Collector−Emitter Sustaining Voltage (Note 4)(I C = 200 mAdc, I B = 0)V CEO(sus)60−VdcCollector Cutoff Current (V CE = 60 Vdc, I B = 0)I CEO − 5.0mAdcCollector Cutoff Current(V CE = 60 Vdc, VEB(off) = 1.5 Vdc)I CEX − 1.0mAdc Collector Cutoff Current(V CE = 60 Vdc, V EB(off) = 1.5 Vdc, T C = 150_C)I CEX−10mAdcCollector Cutoff Current (V CB = 80 Vdc, I E = 0)I CBO − 1.0mAdcEmitter Cutoff Current (V BE = 5.0 Vdc, I C = 0)I EBO −5.0mAdc ON CHARACTERISTICSDC Current Gain (Note 4)*(I C = 1.0 Adc, V CE = 2.0 Vdc)*(I C = 15 Adc, V CE = 2.0 Vdc)(I C = 30 Adc, V CE = 4.0 Vdc)h FE40155.0−60−−*Collector−Emitter Saturation Voltage (Note 4)(I C = 10 Adc, I B = 1.0 Adc)(I C = 20 Adc, I B = 2.0 Adc)2(I C = 30 Adc, I B = 6.0 Adc)V CE(sat)−−−0.752.03.0Vdc*Base Emitter Saturation Voltage (Note 4)(I C = 10 Adc, I B = 1.0 Adc)(I C = 15 Adc, I B = 1.5 Adc)(I C = 20 Adc, I B = 2.0 Adc)V BE(sat)−−− 1.71.82.5Vdc*Base−Emitter On Voltage (Note 4)(I C = 15 Adc, V CE = 2.0 Vdc)(I C = 30 Adc, V CE = 4.0 Vdc)V BE(on)−−1.73.0VdcDYNAMIC CHARACTERISTICS (Note 3)Current−Gain − Bandwidth Product (I C = 1.0 Adc, V CE = 10 Vdc, f = 1.0 MHz)f T2.0−MHz Small−Signal Current Gain (I C = 1.0 Adc, V CE = 10 Vdc, f = 1.0 kHz)h fe40−−SWITCHING CHARACTERISTICS (Note 3)Rise Time (V CC = 30 Vdc, I C = 10 Adc, I B1 = I B2 = 1.0 Adc)t r− 1.0m s Storage Time t s − 2.0m s Fall Timet f−1.0m s3.Indicates JEDEC Registered Data.4.Pulse Width v 300 m s, Duty Cycle v 2.0%.SWITCHING TIME EQUIVALENT TEST CIRCUITSFigure 2. Turn−On time+11 V− 2V TO Figure 3. Turn−Off time+11 V− 9V TO 0BBr (t ), N O R M A L I Z E D E F F E C T I V E T R A N S I E N T T H E R M A L R E S I S T A N C E100Figure 5. Active−Region Safe Operating Area V CE , COLLECTOR−EMITTER VOLTAGE (VOLTS)5020105.02.01.00.50.10.2I C , C O L L E C T O R C U R R E N T (A M P )Figure 6. Capacitance versus VoltageV R , REVERSE VOLTAGE (VOLTS)5.0I C , COLLECTOR CURRENT (AMP)3.02.00.70.50.30.10.050.07t , T I M E ( s )μFigure 7. Turn−On Time 1.00.2I C , COLLECTOR CURRENT (AMP)Figure 8. Turn−Off Time)R B E , E X T E R N A L B A S E −E M I T T E R R E S I S T A N C E (O H M S )300Figure 9. DC Current GainI C , COLLECTOR CURRENT (AMP)10100503020Figure 10. Collector Saturation RegionI B , BASE CURRENT (AMP)20070h F E , D C C U R R E N T G A I N108Figure 11. Effects of Base−Emitter Resistance T J , JUNCTION TEMPERATURE (°C)1061051041031021072.0I C , COLLECTOR CURRENT (AMP)1.60.80.60.40V , V O L T A G E (V O L T S )Figure 12. “On” Voltages1.81.41.21.00.2103− Figure 13. Collector Cut−Off Region V BE , BASE−EMITTER VOLTAGE (VOLTS)10210110010−1, C O L L E C T O R C U R R E N T ( A )μI C 10− 10− Figure 14. Temperature CoefficientsI C , COLLECTOR CURRENT (AMP)MECHANICAL CASE OUTLINEPACKAGE DIMENSIONSSCALE 1:1CASE 1−07ISSUE Z DATE 05/18/1988 TO−204 (TO−3)NOTES:1.DIMENSIONING AND TOLERANCING PER ANSIY14.5M, 1982.2.CONTROLLING DIMENSION: INCH.3.ALL RULES AND NOTES ASSOCIATED WITHREFERENCED TO-204AA OUTLINE SHALL APPLY.STYLE 1:PIN 1.BASE2.EMITTER CASE:COLLECTOR STYLE 2:PIN 1.BASE2.COLLECTORCASE:EMITTERSTYLE 3:PIN 1.GATE2.SOURCECASE:DRAINSTYLE 4:PIN 1.GROUND2.INPUTCASE:OUTPUTSTYLE 5:PIN 1.CATHODE2.EXTERNAL TRIP/DELAYCASE:ANODESTYLE 6:PIN 1.GATE2.EMITTER CASE:COLLECTOR STYLE 7:PIN 1.ANODE2.OPENCASE:CATHODESTYLE 8:PIN 1.CATHODE #12.CATHODE #2CASE:ANODESTYLE 9:PIN 1.ANODE #12.ANODE #2CASE:CATHODEDIM MIN MAX MIN MAXMILLIMETERSINCHESA 1.550 REF39.37 REFB--- 1.050---26.67C0.2500.335 6.358.51D0.0380.0430.97 1.09E0.0550.070 1.40 1.77G0.430 BSC10.92 BSCH0.215 BSC 5.46 BSCK0.4400.48011.1812.19L0.665 BSC16.89 BSCN---0.830---21.08Q0.1510.165 3.84 4.19U 1.187 BSC30.15 BSCV0.1310.188 3.33 4.77ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.PUBLICATION ORDERING INFORMATIONTECHNICAL SUPPORTNorth American Technical Support:Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910LITERATURE FULFILLMENT :Email Requests to:*******************onsemi Website: Europe, Middle East and Africa Technical Support:Phone: 00421 33 790 2910For additional information, please contact your local Sales Representative。
三极管参数型号范文
三极管参数型号范文三极管是一种常用的半导体器件,用于放大电路、开关电路以及作为电子元器件。
它由三个PN结组成,分别称为基极、发射极和集电极。
三极管的性能与参数型号直接相关,包括最大电流、最大电压、最大功率、放大倍数等。
以下是一些常见的三极管参数型号的介绍。
1.2N2222(NPN型)2N2222是一种经典的NPN型晶体管,常用于低功率放大和开关应用。
它的最大电流为600mA,最大电压为30V,具有中等放大倍数。
2.BC548(NPN型)BC548是一种常用的NPN型小功率晶体管,适用于低噪声放大、振荡电路等应用。
它的最大电流为100mA,最大电压为30V,放大倍数较高。
3.BC556(PNP型)BC556是一种常用的PNP型小功率晶体管,适用于低噪声放大、振荡电路等应用。
它的最大电流为100mA,最大电压为65V,放大倍数较高。
4.2N3055(NPN型功放晶体管)2N3055是一种大功率NPN型晶体管,适用于功率放大和开关电路等高功率应用。
它的最大电流为15A,最大电压为60V,可以提供较高的功率放大倍数。
5.TIP41C(NPN型功放晶体管)TIP41C是一种常用的NPN型功放晶体管,适用于中等功率放大和开关电路等应用。
它的最大电流为6A,最大电压为40V,能够提供适度的功率放大倍数。
6.TIP31C(NPN型功放晶体管)TIP31C是一种常用的NPN型功放晶体管,适用于中等功率放大和开关电路等应用。
它的最大电流为3A,最大电压为40V,具有较高的功率放大倍数。
8.BD140(PNP型功放晶体管)BD140是一种PNP型功放晶体管,适用于低功率放大和开关电路等应用。
它的最大电流为1.5A,最大电压为80V,具有中等放大倍数。
除了上述介绍的几种常见的三极管参数型号,还有其他多种型号的三极管可供选择。
不同的型号有不同的特性和应用范围,可以根据具体的电路需求选择合适的型号。
2n6040 2n6042 2n6043 2n6045 塑料中功率互补硅晶体管 数据表 smd to
PNP - 2N6040, 2N6042,NPN - 2N6043, 2N6045 Plastic Medium-Power Complementary Silicon TransistorsPlastic medium−power complementary silicon transistors are designed for general−purpose amplifier and low−speed switching applications.Features•High DC Current Gain − h FE = 2500 (Typ) @ I C = 4.0 Adc •Collector−Emitter Sustaining V oltage − @ 100 mAdc −V CEO(sus) = 60 Vdc (Min) − 2N6040, 2N6043= 100 Vdc (Min) − 2N6042, 2N6045•Low Collector−Emitter Saturation V oltage −V CE(sat) = 2.0 Vdc (Max) @ I C = 4.0 Adc − 2N6043,44= 2.0 Vdc (Max) @ I C = 3.0 Adc − 2N6042, 2N6045•Monolithic Construction with Built−In Base−Emitter Shunt Resistors •EpoxyMeetsUL94V−*********•ESD Ratings:Human Body Model, 3B > 8000 VMachine Model, C > 400 V•These Devices are Pb−Free and are RoHS Compliant*MAXIMUM RATINGS (Note 1)Rating Symbol Value UnitCollector−Emitter Voltage2N60402N60432N60422N6045V CEO60100VdcCollector−Base Voltage2N60402N60432N60422N6045V CB60100VdcEmitter−Base Voltage V EB 5.0VdcCollector Current ContinuousPeak I C8.016AdcBase Current I B120mAdcTotal Power Dissipation @ T C = 25°C Derate above 25°C P D750.60WW/°COperating and Storage JunctionTemperature RangeT J, T stg–65 to +150°CStresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.1.Indicates JEDEC Registered Data.*For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.TO−220CASE 221ASTYLE 1MARKING DIAGRAM2N604x=Device Codex = 0, 2, 3, or 5A= Assembly LocationY= YearWW= Work WeekG= Pb−Free PackageDARLINGTON, 8 AMPERES COMPLEMENTARY SILICON POWER TRANSISTORS60 − 100 VOLTS, 75 WATTSSee detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.ORDERING INFORMATIONTHERMAL CHARACTERISTICSCharacteristic Symbol Max Unit Thermal Resistance, Junction−to−Case q JC 1.67°C/W Thermal Resistance, Junction−to−Ambient q JA57°C/W*ELECTRICAL CHARACTERISTICS (T C = 25°C unless otherwise noted)Characteristic Symbol Min Max Unit OFF CHARACTERISTICSCollector−Emitter Sustaining Voltage(I C = 100 mAdc, I B = 0)2N6040, 2N60432N6042, 2N6045V CEO(sus)60100−−VdcCollector Cutoff Current(V CE = 60 Vdc, I B = 0)2N6040, 2N6043 (V CE = 100 Vdc, I B = 0)2N6042, 2N6045I CEO−−2020m ACollector Cutoff Current(V CE = 60 Vdc, V BE(off) = 1.5 Vdc)2N6040, 2N6043 (V CE = 100 Vdc, V BE(off) = 1.5 Vdc)2N6042, 2N6045 (V CE = 60 Vdc, V BE(off) = 1.5 Vdc, T C = 150°C)2N6040, 2N6043 (V CE = 80 Vdc, V BE(off) = 1.5 Vdc, T C = 150°C)2N6041, 2N6044 (V CE = 100 Vdc, V BE(off) = 1.5 Vdc, T C = 150°C)2N6042, 2N6045I CEX−−−−−2020200200200m ACollector Cutoff Current(V CB = 60 Vdc, I E = 0)2N6040, 2N6043 (V CB = 100 Vdc, I E = 0)2N6042, 2N6045I CBO−−2020m AEmitter Cutoff Current (V BE = 5.0 Vdc, I C = 0)I EBO− 2.0mAdc ON CHARACTERISTICSDC Current Gain(I C = 4.0 Adc, V CE = 4.0 Vdc)2N6040, 2N6043,(I C = 3.0 Adc, V CE = 4.0 Vdc)2N6042, 2N6045(I C = 8.0 Adc, V CE = 4.0 Vdc)All Types h FE1000100010020.00020,000−−Collector−Emitter Saturation Voltage(I C = 4.0 Adc, I B = 16 mAdc)2N6040, 2N6043,(I C = 3.0 Adc, I B = 12 mAdc)2N6042, 2N6045(I C = 8.0 Adc, I B = 80 Adc)All Types V CE(sat)−−−2.02.04.0VdcBase−Emitter Saturation Voltage (I C = 8.0 Adc, I B = 80 mAdc)V BE(sat)− 4.5Vdc Base−Emitter On Voltage (I C = 4.0 Adc, V CE = 4.0 Vdc)V BE(on)− 2.8Vdc DYNAMIC CHARACTERISTICSSmall Signal Current Gain (I C = 3.0 Adc, V CE = 4.0 Vdc, f = 1.0 MHz)|h fe| 4.0−Output Capacitance2N6040/2N6042 (V CB = 10 Vdc, I E = 0, f = 0.1 MHz)2N6043/2N6045C ob−−300200pFSmall−Signal Current Gain (I C = 3.0 Adc, V CE = 4.0 Vdc, f = 1.0 kHz)h fe300−−Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.*Indicates JEDEC Registered Data.800020406080100120160Figure 1. Power DeratingT, TEMPERATURE (°C)P D , P O W E R D I S S I P A T I O N (W A T T S )402060140T C 4.002.01.03.0T A T AT CFigure 2. Switching Times Equivalent Circuit 5.0Figure 3. Switching TimesI C , COLLECTOR CURRENT (AMP)t , T I M E ( s )μ 2.01.00.50.050.30.7V 2V 1t r , t f ≤ 10 nsDUTY CYCLE = 1.0%0V CC - 30 V for t d and t r , D 1 is disconnected and V 2 = 0For NPN test circuit reverse all polarities and D1.R B & R C VARIED TO OBTAIN DESIRED CURRENT LEVELS D 1 1N5825 USED ABOVE I B ≈ MSD6100 USED BELOW I B ≈ 3.00.20.10.07Figure 4. Thermal Responset, TIME OR PULSE WIDTH (ms)1.00.010.50.20.10.050.02r (t ), E F F E C T I V E T R A N S I E N T T H E R M A L R E S I S T A N C E (N O R M A L I Z E D )0.70.30.070.0320Figure 5. Active−Region Safe Operating AreaV CE , COLLECTOR-EMITTER VOLTAGE (VOLTS)105.02.01.00.02I C , C O L L E C T O R C U R R E N T (A M P )0.50.20.050.1There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate I C − V CE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.The data of Figure 5 is based on T J(pk) = 150°C; T C is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided T J(pk)< 150°C. T J(pk) may be calculated from the data in Figure 4.At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.300Figure 6. Small−Signal Current Gain V R , REVERSE VOLTAGE (VOLTS)30C , C A P A C I T A N C E (p F )200705010010,000Figure 7. Capacitancef, FREQUENCY (kHz)10h f e , S M A L L -S I G N A L C U R R E N T G A I N5000300020001000500300200100503020Figure 8. DC Current GainI C , COLLECTOR CURRENT (AMP)h F E , D C C U R R E N T G A I NPNP2N6040, 2N6042NPN2N6043, 2N6045I C , COLLECTOR CURRENT (AMP)h F E , D C C U R R E N T G A I N20,00020010,00070005000300020001000700500300V C E , C O L L E C T O R -E M I T T E R V O L T A G E (V O L T S )V C E , C O L L E C T O R -E M I T T E R V O L T A G E (V O L T S )Figure 9. Collector Saturation Region3.0I B, BASE CURRENT (mA)1.01.82.22.61.4I B , BASE CURRENT (mA)3.0I C , COLLECTOR CURRENT (AMP)2.52.01.51.00.5V , V O L T A G E (V O L T S )I C , COLLECTOR CURRENT (AMP)V , V O L T A G E (V O L T S )Figure 10. “On” VoltagesORDERING INFORMATIONDevicePackage Shipping 2N6040G TO−220(Pb−Free)50 Units / Rail 2N6042G TO−220(Pb−Free)50 Units / Rail 2N6043G TO−220(Pb−Free)50 Units / Rail 2N6045GTO−220(Pb−Free)50 Units / RailTO −220CASE 221A ISSUE AKDATE 13 JAN 2022STYLE 1:PIN 1.BASE2.COLLECTOR3.EMITTER4.COLLECTORSTYLE 2:PIN 1.BASE 2.EMITTER 3.COLLECTOR 4.EMITTERSTYLE 3:PIN 1.CATHODE 2.ANODE 3.GATE 4.ANODESTYLE 4:PIN 1.MAIN TERMINAL 12.MAIN TERMINAL 23.GATE4.MAIN TERMINAL 2STYLE 7:PIN 1.CATHODE 2.ANODE 3.CATHODE 4.ANODE STYLE 10:PIN 1.GATE 2.SOURCE 3.DRAIN 4.SOURCE STYLE 5:PIN 1.GATE 2.DRAIN 3.SOURCE 4.DRAIN STYLE 8:PIN 1.CATHODE 2.ANODE3.EXTERNAL TRIP/DELAY4.ANODESTYLE 6:PIN 1.ANODE 2.CATHODE 3.ANODE 4.CATHODE STYLE 9:PIN 1.GATE2.COLLECTOR3.EMITTER4.COLLECTOR STYLE 11:PIN 1.DRAIN 2.SOURCE 3.GATE 4.SOURCE STYLE 12:PIN 1.MAIN TERMINAL 12.MAIN TERMINAL 23.GATE4.NOT CONNECTEDMECHANICAL CASE OUTLINEPACKAGE DIMENSIONSPUBLICATION ORDERING INFORMATIONTECHNICAL SUPPORTNorth American Technical Support:Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910LITERATURE FULFILLMENT :Email Requests to:*******************onsemi Website: Europe, Middle East and Africa Technical Support:Phone: 00421 33 790 2910For additional information, please contact your local Sales Representative。
2n5457参数
2n5457参数
2N5457是一种N沟道JFET晶体管,具有多种电子参数。
以下是一些关于2N5457晶体管的关键特性:
1.低噪声:典型的噪声水平为7 nV/√Hz,这使得它适合用于需要低噪声性能
的电路。
2.低输入电容:典型的输入电容(Ciss)为6pF,有利于高频应用。
3.RoHS兼容:符合限制使用某些有害物质的RoHS标准。
4.封装类型:提供SMT、TH和裸片封装,适用于不同的装配需求。
5.总设备功耗:在数据手册中通常会指定最大单位功耗,以确保晶体管在安全
的工作范围内。
此外,2N5457 JFET晶体管通常用于音频和一般用途的模拟电路。
由于其耗尽模式(Type A),它在零栅极电压时是开启的,这使得它在不需要偏置电压的情况下,电流可以从漏极流向源极。
为了更全面地了解2N5457的参数和应用,建议查阅具体的数据手册,以获取详细的电气特性、最大额定值、热特性、封装信息等。
这些信息对于设计和实现电路至关重要,可以确保晶体管在预期的应用中正常工作。
2n7000 (n沟道mosfet) 参数
2n7000 (n沟道mosfet) 参数摘要:1.2N7000 MOSFET 的基本参数2.2N7000 MOSFET 的性能特点3.2N7000 MOSFET 的应用领域4.2N7000 MOSFET 的选购建议正文:一、2N7000 MOSFET 的基本参数2N7000 是n 沟道增强型MOSFET(金属- 氧化物- 半导体场效应晶体管)的一种,具有极高的开关速度和低导通电阻。
其基本参数如下:1.型号:2N70002.结构:n 沟道增强型MOSFET3.导通电阻:典型值为70mΩ(最大值为100mΩ)4.断开电压:典型值为0.5V(最大值为1V)5.栅源电压:最大值为20V6.漏源电压:最大值为20V7.源极电流:最大值为1.5A二、2N7000 MOSFET 的性能特点2N7000 MOSFET 具有以下性能特点:1.优秀的导通电阻:2N7000 MOSFET 的导通电阻在典型条件下仅为70mΩ,具有很低的导通电阻,可降低能耗。
2.高开关速度:2N7000 MOSFET 具有很高的开关速度,可实现快速开关,提高电路的工作效率。
3.较低的栅源电压:2N7000 MOSFET 的栅源电压最大值为20V,可降低电路的复杂度。
4.较高的漏源电压:2N7000 MOSFET 的漏源电压最大值为20V,可提高电路的稳定性。
三、2N7000 MOSFET 的应用领域2N7000 MOSFET 广泛应用于各种电子设备和电路,如:1.负荷开关:2N7000 MOSFET 可用于实现负荷开关的功能,可控制电路的通断。
2.脉宽调制:2N7000 MOSFET 可用于实现脉宽调制,可调整信号的脉宽,实现对电路的控制。
3.电源开关:2N7000 MOSFET 可用于实现电源开关的功能,可控制电源的通断。
4.信号处理:2N7000 MOSFET 可用于实现信号处理功能,如信号放大、衰减等。
四、2N7000 MOSFET 的选购建议在选择2N7000 MOSFET 时,应注意以下几点:1.选择正规厂家生产的产品,保证产品的质量和性能。
2n4211三极管参数
2n4211三极管参数
2N4211是一种常见的NPN型三极管,其性能参数如下:
1.最大耐压和耐电流:2N4211的集电极耐压为100V,集电极最大电流为1A,这意味着它可以在较高的电压和电流下工作。
2.放大系数:2N4211的直流放大系数(也称为β或hfe)通常在50到150之间。
放大系数用于描述输入信号和输出信号之间的比例关系,较高的放大系数表示三极管可以放大输入信号更大。
3.饱和电压和饱和电流:2N4211的饱和电压约为0.4V,饱和电流约为0.8A。
饱和电压是指当三极管处于饱和状态时,基极和发射极之间的电压差,饱和电流是指当三极管处于饱和状态时,集电极最大电流。
4.频带宽度:2N4211的频带宽度通常在30MHz到150MHz之间。
频带宽度用于描述三极管的工作频率范围,较高的频带宽度表示它可以处理更高频率的信号。
5.温度特性:2N4211具有良好的温度特性,工作温度范围通常为-65°C到+150°C。
这使得它在各种环境条件下都可以可靠地工作。
6.封装类型:2N4211通常用TO-39封装。
TO-39封装是一种金属外壳封装,可以提供良好的散热性能和机械强度。
总结:2N4211是一种常见的NPN型三极管,具有较高的耐压和耐电流能力,适合在较高的电压和电流下工作。
它具有良好的温度特性和一定的放大能力,适用于各种电子电路中的放大和开关应用。
2n3903三极管的be电压
2n3903三极管的be电压2N3903三极管的BE电压一、引言2N3903是一种常用的通用型NPN小功率晶体管,广泛应用于各种电子电路中。
该晶体管的BE电压是其关键参数之一,决定了其正常工作状态以及电路表现。
本文将详细介绍2N3903三极管的BE电压,并一步一步回答相关问题。
二、2N3903晶体管的基本参数在深入讨论2N3903的BE电压之前,我们首先来了解一些该晶体管的基本参数。
2N3903的结构包含三个引脚,分别是基极(B),发射极(E)和集电极(C)。
它的最大集电极电流(IC)为200 mA,最大集电极电压(VCE)为40 V,最大功耗为625 mW。
三、BE电压的定义BE电压是指基极与发射极之间的电压。
在2N3903的工作中,当基极与发射极之间的电压达到一定值时,就会产生一个极其重要的现象,即晶体管的放大特性开始显现。
因此,了解2N3903的BE电压对于正确使用和设计相应电路至关重要。
四、2N3903 BE电压的典型值根据2N3903的数据手册,其BE电压的典型值为0.7 V。
这个数值是在25C温度下典型测试条件下获得的。
然而,需要注意的是,实际情况可能会有些偏差,因为BE电压受到多种因素的影响,例如温度、电流、电压等。
五、BE电压的影响因素1. 温度:2N3903的BE电压与温度之间存在一定的关联。
通常情况下,随着温度的升高,BE电压也会相应地略微增加。
这是由于晶体管内部的温度效应导致。
2. 电流:BE电压还与晶体管的电流有关。
当电流增大时,BE电压通常会减小。
但当电流超过一定值时,BE电压将趋于稳定,并且对进一步增加的电流不敏感。
3. 电压:2N3903的BE电压也受到外部电压的影响。
如果发射极电压过高,BE电压可能会有所增加,反之亦然。
六、如何测量BE电压测量2N3903的BE电压并不困难,只需按照以下步骤进行操作:1. 将万用表的电压档位调至直流电压模式,并选择合适的电压范围。
2N系列功率晶体管技术参数精
2N 系列功率晶体管技术参数2N1304 GE-N 25V 0.3A 0.15W 10MHz 2N1305 GE-P 30V 0.3A 0.15W 5MHz 2N1307 GE-P 30V 0.3A 0.15W B>60 2N1613 SI-N 75V 1A 0.8W 60MHz 2N1711 SI-N 75V 1A 0.8W 70MHz 2N109 GE-P 35V 0.15A 0.165W2N1893 SI-N 120V 0.5A 0.8W2N2102 SI-N 120V 1A 1W<120MH z2N2148 GE-P 60V 5A 12.5W2N2165 SI-P 30V 50mA 0.15W 18MHz 2N2166 SI-P 15V 50mA 0.15W 10MHz 2N2219A SI-N 40V 0.8A 0.8W 250MHz 2N2222A SI-N 40V 0.8A 0.5W 300MHz 2N2223 2xSI-N 100V 0.5A 0.6W >502N2223A 2xSI-N 100V 0.5A 0.6W >502N2243A SI-N 120V 1A 0.8W 50MHz 2N2369A SI-N 40V 0.2A .36W 12/18ns 2N2857 SI-N 30V 40mA 0.2W >1GHz 2N2894 SI-P 12V 0.2A 1.2W 60/90ns 2N2905A SI-P 60V 0.6A 0.6W 45/100 2N2906A SI-P 60V 0.6A 0.4W 45/1002N2907A SI-P 60V 0.6A 0.4W 45/100 2N2917 SI-N 45V 0.03A >60Mz2N2926 SI-N 25V 0.1A 0.2W 300MHz 2N2955 GE-P 40V 0.1A 0.15W 200MHz 2N3019 SI-N 140V 1A 0.8W 100MHz 2N3053 SI-N 60V 0.7A 5W 100MHz 2N3054 SI-N 90V 4A 25W 3MHz 2N3055 SI-N 100V 15A 115W 800kHz 2N3055 SI-N 100V 15A 115W 800kHz 2N3055H SI-N 100V 15A 115W 800kHz 2N3251 SI-P 50V 0.2A 0.36W2N3375 SI-N 40V 0.5A 11.6W 500MHz 2N3439 SI-N 450V 1A 10W 15MHz 2N3440 SI-N 300V 1A 10W 15MHz 2N3441 SI-N 160V 3A 25W POWER 2N3442 SI-N 160V 10A 117W 0.8MHz2N3495 SI-P 120V 0.1A 0.6W>150MH z2N3502 SI-P 45V 0.6A 0.7W 200MHz2N3553 SI-N 65V 0.35A 7W 500MHz 2N3571 SI-N 30V 0.05A 0.2W 1.4GHz 2N3583 SI-N 250/175V 2A 35W >10MHz 2N3632 SI-N 40V 0.25A 23W 400MHz 2N3646 SI-N 40V 0.2A 0.2W2N3700 SI-N 140V 1A 0.5W 200MHz 2N3707 SI-N 30V 0.03A 0.36W 100MHz2N3708 SI-N 30V 0.03A 0.36W 80MHz 2N3716 SI-N 100V 10A 150W 4MHz2N3725 SI-N 80V 0.5A 1W 35/60ns 2N3740 SI-P 60V 4A 25W >4MHz 2N3741 SI-N 80V 4A 25W >4MHz2N3742 SI-N 300V 0.05A 1W>30MH z2N3767 SI-N 100V 4A 20W>10MH z2N3771 SI-N 50V 30A 150W POWER 2N3772 SI-N 100V 20A 150W POWER 2N3773 SI-N 160V 16A 150W POWER 2N3792 SI-P 80V 10A 150W 4MHz 2N3819 N-FET 25V 20mA 0.36W2N3820 P-FET 20V 15mA 0.36W2N3821 N-FET 50V 2.5mA 0.3W2N3824 N-FET 50V 10mA 0.3W <250E 2N3866 SI-N 55V 0.4A 1W 175MHz 2N3904 SI-N 60V 0.2A .35W 300MHz 2N3906 SI-P 40V 0.2A .35W 250MHz 2N3909 P-FET 20V 10MA 0.3W2N3958 N-FET 50V 5mA 0.25W2N3963 SI-P 80V 0.2A 0.36W>40MH z2N3972 N-FET 40V 50mA 1.8W2N4001 SI-N 100V 1A 15W 40MHz 2N4033 SI-P 80V 1A 0.8W 150MHz 2N4036 SI-P 90V 1A 1W 60MHz2N409 GE-P 13V 15mA 80mW 6.8MHz 2N4126 SI-P 25V 200mA HF2N4220 N-FET 30V 0.2A2N4236 SI-P 80V 3A 1W >3MHz 2N427 GE-P 30V 0.4A 0.15W B>402N428 GE-P 30V 0.4A 0.15W B>602N4286 SI-N 30V 0.05A 0.25W2N4287 SI-N 45V 0.1A 0.25W 40MHz 2N4291 SI-P 40V 0.2A 0.25W 150MH 2N4302 N-FET 30V 0.5mA 0.3W2N4347 SI-N 140V 5A 100W 0.8MHz 2N4348 SI-N 140V 10A 120W >0.2MHz 2N4351 N-FET 30V 30mA 0.3W 140KHz 2N4391 N-FET 40V 50mA 30E Up<10V 2N4392 N-FET 40V 25mA 60E Up<5V 2N4393 N-FET 40V 5mA 100E Up<3V 2N4401 SI-N 60V 0.6A 200MHz2N4403 SI-P 40V 0.6A 200MHz2N4416 N-FET 30V 15mA VHF/UHF2N4420 SI-N 40V 0.2A 0.36W2N4427 SI-N 40V 0.4A 1W 175MHz 2N4906 SI-P 80V 5A 87.5W >4MHz 2N4920 SI-P 80V 1A 30W2N4923 SI-N 80V 1A 30W2N5038 SI-N 150V 20A 140W 0.5us2N5090 SI-N 55V 0.4A 4W 5mA2N5109 SI-N 40V 0.5A 2.5W 1.5GHz2N5116 P-FET 30V 5mA 150E Up<4V2N5154 SI-N 100V 2A 10W2N5179 SI-N 20V 50mA 0.2W >1GHz2N5192 SI-N 80V 4A 40W 2MHz2N5240 SI-N 375V 5A 100W >2MHz2N5298 SI-N 80V 4A 36W >0.8MHz 2N5308 N-DARL 40V 0.3A 0.4W B>7K2N5320 SI-N 100V 2A 10W AFSWITCH 2N5322 SI-P 100V 2A 10W AFSWITCH 2N5401 SI-P 160V 0.6A 0.31W2N5416 SI-P 350V 1A 10W 15MHz2N5433 N-FET 25V 0.4A 0.3W 7E2N5457 N-FET 25V 1mA Up<6V2N5458 N-FET 25V 2.9mA UNI2N5460 P-FET 40V 5mA Up<6V GEN.P2N5461 P-FET 40V 9mA 0.31W2N5462 P-FET 40V 16mA Up<9V GEN2N5484 N-FET 25V 5mA 0.31W2N5485 P-FET 25V 4mA Up<4V2N5551 SI-N 180V 0.6A 0.31W VID2N5589 SI-N 36V 0.6A 3W 175MHz 2N5639 N-FET 30V 10mA 310mW2N5672 SI-N 150V 30A 140W 0.5us2N5680 SI-P 120V 1A 1W2N5682 SI-N 120V 1A 1W >30MHz2N5684 SI-P 80V 50A 200W2N5686 SI-N 80V 50A 300W >2MHz2N5770 SI-N 30V 0.05A 0.7W >900MHz2N5771 SI-P 15V 50mA 625mW >850MHz2N5876 SI-P 80V 10A 150W >4MHz2N5878 SI-N 80V 10A 150W >4MHz2N5879 SI-N 60V 10A 150W >4MHz2N5884 SI-P 80V 25A 200W AFPOWSW2N5886 SI-N 80V 25A 200W >4MHz2N6031 SI-P 140V 16A 200W 1MHz2N6050 P-DARL+D 60V 12A 100W2N6059 SI-N 100V 12A 150W2N6083 SI-N 36V 5A PQ=30W 175MHz2N6098 SI-N 70V 10A 75W AFPOWSWITCH 2N6099 SI-N 70V 10A 75W AFPOWSWITCh 2N6109 SI-P 60V 7A 40W 10MHz2N6124 SI-P 45V 4A 40W2N6211 SI-P 275V 2A 20W 20MHz2N6213 SI-P 400V 2A 35W >20MHz2N6248 SI-P 110V 15A 125W >6MHz2N6284 N-DARL 100V 20A 160W B>752N6287 P-DARL 100V 20A 160W2N6292 SI-N 80V 7A 40W2N6356 N-DARL 50V 20A 150W B>1502N6422 SI-P 500V 2A 35W >10MHz2N6427 N-DARL 40V 0.5A 0.625W2N6476 SI-P 130V 4A 16W 5MHz2N6488 SI-N 90V 15A 75W2N6491 SI-P 90V 15A 30W2N6517 SI-N 350V 0.5A 0.625W >402N6520 SI-P 350V 0.5A 0.625W >402N6547 SI-N 850/400V 15A 175W2N6556 SI-P 100V 1A 10W >75MHz2N6609 SI-P 160V 16A 150W 2MHz2N6660 N-FET 60V 2A 6.25W 3E2N6661 N-FET 90V 2A 6.2W 4E2N6675 SI-N 400V 15A2N6678 SI-N 400V 15A2N6716 SI-N 60V 2A 2W 50MHz2N6718 SI-N 100V 2A 2W 50MHz2N6725 N-DARL 60V 2A 1W B>15K2N6728 SI-P 60V 2A 2W >50MHz2N697 SI-N 60V 1A 0.6W <50MHz2N7002 N-FET 60V 0.115A 0.2W 7000002N914 SI-N 40V 0.5A <40/40NS SW2N918 SI-N 30V 50mA 0.2W 600MHz。
2n5416参数
2N5416参数详解1. 引言2N5416是一款具有丰富特性的双极性PNP型晶体管。
它广泛用于各种电子设备和电路中,包括放大器、开关、电压调节器等。
本文将对2N5416的参数进行详细的解释和说明,帮助读者更好地了解和应用该器件。
2. 2N5416参数2N5416的参数包括静态参数和动态参数,下面将分别对这些参数进行介绍。
2.1 静态参数静态参数是指在外部电路无变化时,晶体管的性能和特性。
以下是2N5416的静态参数:2.1.1 输入特性•VBE:基极-发射极电压,通常为-6V至-8V。
•IB:基极电流,典型值为50 mA。
•hFE:直流电流放大因子,通常在60至120之间。
2.1.2 输出特性•IC:集电极电流,常见值为-0.5A至-1A。
•VCE:集电极-发射极电压,典型为-8V至-12V。
•hOE:输出电导,一般为10至30μmho。
2.1.3 动态特性•Cob:输出电容,通常为15至40 pF。
•Cib:输入电容,一般约为5至10pF。
•Cob:反转电容,典型值为5至15 pF。
2.2 动态参数动态参数是指在外部电路有变化时,晶体管的响应和特性。
以下是2N5416的动态参数:2.2.1 频率响应•fT:过渡频率,典型值为60 MHz。
此参数描述了晶体管的响应速度和高频特性。
2.2.2 噪声特性•NF:噪声系数,通常在2至4 dB之间。
此参数表示晶体管的信噪比特性。
2.2.3 耐压特性•BVCEO:集电极-发射极最大导通电压,典型值为-60V至-80V。
此参数表示晶体管的耐压特性。
3. 应用示例2N5416由于其丰富的特性,可以广泛应用于多种电子设备和电路中。
下面是一个示例应用电路,以展示2N5416的用途。
电路说明:输入信号经过C1和R1耦合到晶体管的基极,晶体管放大器将输入信号放大并输出到RL。
通过调整R2和R3的值,可以控制放大器的增益。
C2用于耦合输出信号。
4. 总结本文对2N5416晶体管的参数进行了详细解释和说明。
2n3866参数
2n3866参数【最新版】目录1.引言2.2n3866 的定义与特点3.2n3866 的参数详解4.2n3866 参数的应用实例5.结论正文【引言】在现代科技领域,集成电路的研发与应用已经渗透到了各个行业。
其中,2n3866 作为一种常见的集成电路,以其稳定的性能和优异的参数特性,被广泛应用于各种电子设备中。
本文将对 2n3866 的参数进行详细解读,并介绍其在实际应用中的实例。
【2n3866 的定义与特点】2n3866 是一款双极型晶体管,由台湾的德州仪器(TI)公司生产。
它具有体积小、性能稳定、输出功率大等特点,在电子设备中具有广泛的应用前景。
【2n3866 的参数详解】2n3866 的参数主要包括以下几个方面:1.型号:2n38662.类型:双极型晶体管3.结构:NPN 型4.额定电流(IB):50mA5.直流电流增益(hfe):40-2506.集电极 - 发射极电压(VCE):25-45V7.集电极 - 基极电压(VCB):15-30V8.发射极 - 基极电压(VBE):0.7V9.工作温度:-40℃至 +125℃【2n3866 参数的应用实例】2n3866 参数在实际应用中具有广泛的应用,下面举几个实例:1.电子放大器:2n3866 晶体管可作为电子放大器中的关键元件,用于信号放大。
其具有较高的电流增益,可实现较大的信号放大。
2.振荡电路:2n3866 晶体管可用于构成振荡电路,例如在锁相环、频率合成器等电路中。
其稳定的工作性能可确保振荡电路的稳定性。
3.开关电路:2n3866 晶体管的高输出功率特性使其在开关电路中具有很好的应用。
例如,可应用于电源开关、信号开关等电路。
【结论】综上所述,2n3866 作为一种常见的双极型晶体管,具有广泛的应用前景。