第9章 一元一次不等式与不等式组分4个考点精选67题)

合集下载

一元一次不等式知识点及典型例题

一元一次不等式知识点及典型例题

例 2 用>”或<”填空,并说明理由
如果 a<b 则 1)a-2( )b-2
2)-
a 2
-
b 2
例 3 把下列不等式变成 x>a x<a 的形式。
3)-3a-5( )-3b-5
X+4>7
5x<1+4x
-
4 5
x>-1
2x+5<4x-2
例 4 已知实数 a/b/c/在数轴上的对应点如图,则下列式子正确的是( )
答案:C 把不等式组
的解集表示在数轴上,正确的为图 3 中的( )
不等式组
的解集在数轴上可表示为( )
A 答案:D
B
C
D
实数 在数轴上对应的点如图所示,则 , , 的大小关系正确的是( )
A.
B.
C.
D.
答案:B

表示三种不同的物体,现放在天平上比较两次,情况如图所示,那么
这三种物体按质量从大到小的顺序排列应为( )
解:解不等式(1),得 原不等式组的解是
. 解不等式(2),得


(1)方程
的解为
(2)解不等式
≥9;
(3)若
≤a 对任意的 x 都成立,求 a 的取值范围
解:(1)1 或 . (2) 和 的距离为 7,
因此,满足不等式的解对应的点 3 与 的两侧.
当 在 3 的右边时,如图(2), 易知

解不等式组
宿州市第二初级中学 陆连荣
6、不等式与不等式组
一元一次不等式
不等式:①用符号〉,=,〈号连接的式子叫不等式。②不等式的两边都加上或减去同一个

七年级数学第九章《不等式(组)-复习训练》知识梳理、考点精讲精练、课堂小测、课后作业第23讲(有答案)

七年级数学第九章《不等式(组)-复习训练》知识梳理、考点精讲精练、课堂小测、课后作业第23讲(有答案)

第23讲 不等式(组)-复习训练⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧与实际问题组一元一次不等式法一元一次不等式组的解不等式组一元一次不等式组性质性质性质不等式的性质一元一次不等式不等式的解集不等式的解不等式不等式相关概念不等式与不等式组)(3211、用“<”或“>”号表示大小关系的式子叫做不等式。

2、不等式的符号统称不等号,有“>” “<” “≠”. 其中“≤” “≥”,也是不等号.其中,“≤”表示,不大于、不超过,“≥”表示不小于、不低于。

3、使不等式成立的未知数的值叫做不等式的解。

4、一个含有未知数的不等式的所有的解,组成这个不等式的解集。

5、解与解集的关系:不等式的解集包括不等式全体的解;解集中的任何一个数都是不等式的解。

6、用数轴表示解集:在数轴上标出某一区间,其中的点对应的数值都是不等式的解。

①方向线向左表示小于,方向线向右表示大于;②空心圆圈表示不包括; ③实心圆圈表示包括。

7、用数轴表示解集的步骤:①画数轴;②找点;③定向;④画线。

8、求不等式的解集的过程叫做解不等式。

9、含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。

1、不等式的性质1 不等式两边同时加(或减)同一个数(或式子),不等号的方向不变。

如果a >b ,那么a±c >b±c 。

不等式的性质2 不等式两边同乘(或除以)同一个正数,不等号的方向不变。

如果a >b,c >0,那么ac >bc (或c a >cb )。

不等式的性质3 不等式两边同乘(或除以)同一个负数,不等号的方向改。

如果a>b,c <0,那么ac <bc (或c a <cb )。

2、解未知数为x 的不等式,就是要使不等式逐步化为x >a 或x <a 的形式。

3、解不等式时也可以“移项”,即把不等式一边的某项变号后移到另一边,而不改变不等号的方向。

4、解不等式时要注意未知数系数的正负,以决定是否改变不等号的方向。

一元一次不等式知识点总结

一元一次不等式知识点总结

一元一次不等式(组 )考点一、不等式的概念(3分)1、不等式:用不等号表示不等关系的式子,叫做不等式。

2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。

3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。

4、求不等式的解集的过程,叫做解不等式。

5、用数轴表示不等式的方法考点二、不等式基本性质(3~5分)1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。

2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。

3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。

4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。

②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;考点三、一元一次不等式(6--8分)1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。

2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1考点四、一元一次不等式组(8分)1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。

2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。

3、求不等式组的解集的过程,叫做解不等式组。

4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。

5、一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。

6、不等式与不等式组不等式:①用符号〉,=,〈号连接的式子叫不等式。

人教版七年级数学下第九章 一元一次不等式归类总结

人教版七年级数学下第九章 一元一次不等式归类总结

流 第九章 一元一次不等式【基础知识梳理】一、 一元一次不等式1.不等式的基本性质:(1)不等式的性质1:不等式的两边加上(或减去)同一个数(或式子),不等号的方向不变,用式子表示:如果a>b ,那么a ±c>b ±c.(2)不等式的性质2:不等式的两边乘以(或除以)同一正数,不等号的方向不变,用式子表示:如果a>b ,c>0,那么ac>bc 或a c >b c. (3)不等式的性质3:不等式两边乘以(或除以)同一个负数,不等号的方向① ,用式子表示:a>b ,c<0,那么,ac ② bc 或a c ③b c. 2.解一元一次不等式的一般步骤:去分母,去括号,移项,合并 ④ ,把系数化为1.3.不等式解集及其数轴表示法⑴ 不等式表示:一般地,一个含有未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式来表示.如:不等式x-2≤6的解集为x ≤8.(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式有无限个解.如:注意:表示4的点上画空心圆圈,表示不包括这一点.温馨提示:不等式的性质是解不等式的重要依据.在解不等式时,值得注意的是在不等式的两边除以一个负数时,不等号的方向一定要改变.二、一元一次不等式组一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集;求不等式组解集的过程,叫做解不等式组.⑴ 温馨提示:求几个一元一次不等式组的解集的公共部分,通常是利用数轴来确定.公共部分是指数轴上被两条不等式解集的区域都覆盖住的部分.⑵ 求解不等式组的关键是求一元一次不等式的解集.由于一元一次不等式都可转化为x >a 或x <a 的最简形式,因此只要分为两种情形讨论其解集即可(不妨设a>b):① 当不等号的方向一致时(称同向不等式),即:流对这类不等式组可按“同大取大;同小取小”的法则,即取公共部分为它的解(如图1).图1 图2所以在图1中,不等式组的解集为x>a, 在图2中,不等式组的解集为⑤.②当不等号的方向相反时(称异向不等式),即:则若未知数的取值比大数小,比小数大时,不等式组的解集在两数之间,取公共部分(如图3);图3所以在图3中,不等式组的解集为⑥.若未知数的取值比大数还大,比小数还小,不等式组的解集是空集,即没有公共部分(如图4).图4所以在图3中,不等式组的解集为空集,即无解.上述不等式组的解集用一句顺口溜表示为” 同大取大, 同小取小,小大大小中间找, 大大小小解不了(答:无解).三、不等式(组)的应用1.列不等式解应用题的基本步骤:①审题;②设未知数;③列不等式;④解不等式;⑤检验并写出答案.2.列不等式组解决实际问题与列一次方程组解决实际问题的步骤大致相同,不同的是前者寻找不等量关系,后者建立的是等量关系,并且解不等式组所得的结果通常为一解集,需从解集中找出符合题意的答案.流【考点例析】一、不等式的基本性质例1、若a<b<0,则下列式子:①a+1<b+1; ②a b >1;③a+b<ab ;④1a <1b 中,正确的有( )A .1个B .2个C .3个D .4个分析与解:本题就是不等式性质的应用.对于①是在不等式两边都加上1,根据不等式性质1,该不等式成立;对于②是在不等式两边同时除以b,因为b 是负数, 根据不等式的基本性质,同乘同除一个负数时,不等号的方向要改变,所以②也正确;对于③,因为a<b<0,所以a+b<0,ab>0,所以③正确;对于④是在不等式的两边同乘以1ab >0,可得1a >1b ,故④不正确,故选C. 点拨:不等式的基本性质是不等式的核心,特别要注意不等式的性质3的利用,不等号的方向要改变.二、不等式解的表示方法例2. 解集在数轴上表示为如图5所示的不等式组是( )A .32x x >-⎧⎨⎩≥B .32x x <-⎧⎨⎩≤C .32x x <-⎧⎨⎩≥D .32x x >-⎧⎨⎩≤ 分析与解:不等式(组)的解集在数轴上表示的形状是一条射线,小于向左画,大于向右画,无等号的画空心圆圈,有等号的画实心圆点,因此判断不等式的解集为.32x x >-⎧⎨⎩≤,故选D.点拨:利用数轴表示不等式(组)的解,关键要熟知不等号的表示方法.尤其是空心和实心的区别.三、不等式(组)解法步骤例3. 解不等式组,并把它的解集表示在数轴上:23-图5流 3(1)7251.3x x x x --⎧⎪⎨--<⎪⎩≤, ① ②分析与解:解不等式①,得2x -≥;解不等式②,得12x <-.在同一条数轴上表示不等式①②的解集,如图: 或者根据“同大取大;同小取小;小大大小中间找,大大小小解不了”的原则,可以得到:原不等式组的解集是122x -<-≤. 点拨:会解不等式(组)是一个基本要求,关键是利用好不等式的基本性质,同时要注意解的范围的确定方法.四、不等式(或组)的整数解问题例4. 解不等式组 ⎪⎩⎪⎨⎧->--≤-4315221x x x x 并求其整数解的和.分析:欲求整数解的和,就要求出它的整数解,而要求出整数解,就要先求出不等式组的解集,然后根据解集求出符合条件的整数解.解:解①,得23->x ;解②,得x ≤4,故不等式组的解是x <-23≤,4故它的 整数解是-1,0,1,2,3,4,从而整数解的和是-1+0+1+2+3+4=9.点拨:解这类问题的一般步骤为:①求出一元一次不等式(组)的解集;②找出适合解集范围内的特殊解,如整数解、自然数解等.就本题而言,求出整数解后不要忘了求整数解的和.五、不等式式(或组)中待定字母范围的确定例5. (1)若不等式组2123x a x b -<⎧⎨->⎩的解集为—1<x<1,则(a+1)(b —1)的值是__________;2-1-01流 (2)若不等式3x-a ≤0的正整数解为1、2、3,则a 的取值范围是__________.分析:(1)先求出不等式组的解集,再与已知解集对照比较,确定a 、b 的值;(2)先求出不等式的解集,再利用数轴确定a 的取值范围. 解:(1)解原不等式组中的各个不等式得:1232a x x b+⎧<⎪⎨⎪>+⎩依题意知,解集为3+2b<x<a+12,又∵不等式组的解集为-1<x<1.∴ 112321a b +⎧=⎪⎨⎪+=-⎩(1)(2)由(1)得:a+1=2,由(2)得:b=—2,则b —1=—3,∴(a+1)(b —1)=2×(-3)=-6;(2)不等式的解集为x ≤a 3,如右图所示,解集为x ≤3到x<4范围内时,满足原不等式的正整数解恰好为1,2,3.故有:3≤a 3<4,解得9≤a<12.所以a 的取值范围是9≤a<12.点拨:确定不等式组中的字母的取值范围,主要有三种方法:(1)运用不等式的解集确定 ;(2)从反面求解确定;(3)借助数轴来确定。

精选七年级数学下册第九章《不等式与不等式组》单元综合练习题(含答案解析)

精选七年级数学下册第九章《不等式与不等式组》单元综合练习题(含答案解析)

人教版七年级数学下册第九章不等式与不等式组检测题 (word 版,含答案)人教版七年级数学下册第九章 不等式与不等式组单元测试题题一、选择题1.下列说法不一定成立的是( )A. 若a>b ,则a +c>b +cB. 若a +c>b +c ,则a>bC. 若a>b ,则ac 2>bc 2D. 若ac 2>bc 2,则a>b2.如图是关于x 的不等式2x -a ≤-1的解集,则a 的取值是( )A. a ≤-1B. a ≤-2C. a =-1D. a =-2 3.下列解不等式2+x 3>2x -15的过程中,出现错误的一步是( ) ①去分母,得5(x +2)>3(2x -1); ②去括号,得5x +10>6x -3; ③移项,得5x -6x >-10-3;④合并同类项、系数化为1,得x >13.A. ①B. ②C. ③D. ④ 4.不等式组的解集表示在数轴上正确的是( )5.在关于x ,y 的方程组中,未知数满足x ≥0,y >0,那么m 的取值范围在数轴上应表示为( )6.若不等式组2x -1>3(x -1),x<m 的解集是x <2,则m 的取值范围是( ) A. m =2 B. m >2 C. m <2 D. m ≥2 7.如果关于x 的不等式组无解,那么m 的取值范围为( )A. m ≤-1B. m <-1C. -1<m ≤0D. -1≤m <0 8.若关于x 的不等式组的解集中至少有5个整数解,则正数a 的最小值是( )A. 3B. 2C. 1D. 239.“一方有难,八方支援”,雅安芦山4•20地震后,某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为( ) A. 60 B. 70 C. 80 D. 90 10.某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计).某人打车从甲地到乙地经过的路程是x 千米,出租车费为21元,那么x 的最大值是( ) A. 11 B. 8 C. 7 D. 5 二、填空题。

第9章 一元一次不等式(不等式组)测试题 2022--2023学年人教版七年级数学下册

第9章  一元一次不等式(不等式组)测试题  2022--2023学年人教版七年级数学下册

一元一次不等式(不等式组)测试题一、选择题(共30分,每题3分)1.若关于x 的不等式2﹣m ﹣x >0的正整数解共有3个,则m 的取值范围是( ) A .﹣1≤m <0B .﹣1<m ≤0C .﹣2≤m <﹣1D .﹣2<m ≤﹣12.已知关于x ,y 的方程组343x y ax y a +=-⎧⎨-=⎩,其中﹣3≤a ≤1,下列结论:①当a =﹣2时,x ,y的值互为相反数;②51x y =⎧⎨=-⎩是方程组的解;③当a =﹣1时,方程组的解也是方程x +y =1的解;④若1≤y ≤4,则﹣3≤a ≤0.其中正确的个数是( ) A .1个B .2个C .3个D .4个3.在4,3,2,1,0,32-,103-中,能使不等式3x ﹣2>2x 成立的数有( ) A .1个 B .2个C .3个D .4个4.若m <n ,则下列不等式错误的是( )A .m ﹣6<n ﹣6B .6m <6nC .66m n> D .﹣6m >﹣6n5.已知a <b ,那么下列正确的是( ) A .ac 2<bc 2B .﹣a <﹣bC .2﹣a >2﹣bD .5a <2b6.下列式子是一元一次不等式的是( )A .x +y <0B .x 2>0C .32xx >+ D .10x< 7.x 是不大于5的数,则下列表示正确的是( ) A .x >5B .x ≥5C .x <5D .x ≤58.已知m >n ,则下列不等式中一定成立的是( ) A .m >n +1B .﹣4m >﹣4nC .m +1>n +2D .m ﹣1>n ﹣2A.a-2>b+2B.85a b< C.ac<bc D.-a+3<-b+3 9.若a<0,下列式子不成立的是 ( )A.-a+2<3-aB.a+2<a+3C.-2a <-3aD.2a>3a 10.不等式2+x <6的正整数解有( )A .1个B .2个C .3 个D .4个二、填空题(共30分,每题3分)11.若关于x 的不等式2x +1<x +a 的最大整数解为1,则a 的取值范围是 .12.用不等式表示:“x 的2倍与1的差小于3”是 .13.若不等式组213x ax >⎧⎨+<⎩的解集中共有3个整数解,则a 的取值范围是 .14.“x 的2倍与y 的和不大于2”用不等式可表示为 .15.若x 是非正数,则x 0.(填不等号)16.若关于x 、y 的二元一次方程组22x y mx y -=⎧⎨+=-⎩的解满足x ﹣y ≤0,则m 的取值范围是 .17.若关于x 的不等式x ﹣m <0有三个正整数解,则m 的取值范围是 .18.关于x 的不等式组0321x a x ->⎧⎨->-⎩整数解有2个,则a 的取值范围是 .19.关于x 的方程3x+2m=x-5的解为正数,则m 的取值范围是 . 20.关于x 的方程kx+15=6x+13的解为负数,则k 的取值范围是 . 三、解答题1.解列不等式,并把解集在数轴上表示出来。

人教版七年级数学下册第9章。一元一次不等式组 知识点专题复习讲义

人教版七年级数学下册第9章。一元一次不等式组 知识点专题复习讲义

人教版七年级数学下册第9章。

一元一次不等式组知识点专题复习讲义一元一次不等式组知识点专题复讲义一、知识梳理1.知识结构图概念基本性质不等式的解法不等式的定义不等式的解集一元一次不等式的解法实际应用一元一次不等式组的解法二、知识点回顾1.不等式不等式是由不等号连接起来的式子。

常见的不等号有五种:“≠”、“>”、“<”、“≥”、“≤”。

2.不等式的解与解集不等式的解是使不等式成立的未知数的值。

不等式的解集是一个含有未知数的不等式的解的全体。

解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。

解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。

3.不等式的基本性质1) 不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。

2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

4.一元一次不等式一元一次不等式只含有一个未知数,且未知数的次数是1.系数不等于的不等式叫做一元一次不等式。

其标准形式为:ax+b<或ax+b≤,ax+b>或ax+b≥0(a≠0)。

5.解一元一次不等式的一般步骤1) 去分母;2) 去括号;3) 移项;4) 合并同类项;5) 化系数为1.删除格式错误的段落。

对于每段话,进行小幅度的改写,使其更加通顺易懂。

解一元一次不等式和解一元一次方程类似。

不同的是,一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变。

这是解不等式时最容易出错的地方。

例如,解不等式:-2/3x-1≤1/3解:去分母,得(3x-1)-2(3x-1)≤2(不要漏乘!每一项都得乘)去括号,得3x-3-6x+2≤2(注意符号,不要漏乘!)移项,得3x-6x≤2+3-1(移项要变号)合并同类项,得-3x≤4(计算要正确)系数化为1,得x≥-4/3(同除负,不等号方向要改变,分子分母别颠倒了)一元一次不等式组是含有相同未知数的几个一元一次不等式所组成的不等式组。

人教版数学七年级下册知识重点与单元测-第九章9-3实际问题与一元一次不等式(基础巩固)

人教版数学七年级下册知识重点与单元测-第九章9-3实际问题与一元一次不等式(基础巩固)

第九章 不等式与不等式(组)9.3 实际问题与一元一次不等式(基础巩固)【要点梳理】知识点一、常见的一些等量关系1.行程问题:路程=速度×时间2.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量3.利润问题:商品利润=商品售价-商品进价,=100%⨯利润利润率进价4.和差倍分问题:增长量=原有量×增长率5.银行存贷款问题:本息和=本金+利息,利息=本金×利率6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+. 要点二、列不等式解决实际问题列一元一次不等式解应用题与列一元一次方程解应用题类似,通常也需要经过以下几个步骤:(1)审:认真审题,分清已知量、未知量及其关系,找出题中不等关系要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“至少”、“不超过”、“超过”等;(2)设:设出适当的未知数;(3)列:根据题中的不等关系,列出不等式;(4)解:解所列的不等式;(5)答:写出答案,并检验是否符合题意.要点诠释:(1)列不等式的关键在于确定不等关系;(2)求得不等关系的解集后,应根据题意,把实际问题的解求出来;(3)构建不等关系解应用题的流程如图所示.(4)用不等式解决应用问题,有一点要特别注意:在设未知数时,表示不等关系的文字如“至少”不能出现,即应给出肯定的未知数的设法,然后在最后写答案时,应把表示不等关系的文字补上.如:若“设还需要B型车x辆”,而在答中应为“至少需要11辆 B型车”.这一点应十分注意.【典型例题】类型一、行程问题例1.爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外(包括100m)的安全地区,导火索至少需要多长?【思路点拨】设导火索要xcm长,根据导火索燃烧的速度为0.8cm/s,人跑开的速度是5m/s,为了使点导火索的战士在爆破时能跑到离爆破点100m的安全地区,可列不等式求解.【答案与解析】x≥解得:16答:导火索至少要16cm长.【总结升华】本题考查一元一次不等式在实际问题中的应用,关键是以100m的安全距离作为不等量关系列不等式求解.类型二、工程问题例2.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成,则以后平均每天至少要完成多少土方?【思路点拨】假设以后几天平均每天完成x土方,一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,那么该土方工程还剩300-60=240土方,现在要比原计【答案与解析】解得:x≥80答:现在要比原计划至少提前两天完成任务,以后几天平均每天至少要完成80土方.【总结升华】解本类工程问题,主要是找准正确的工程不等式,如本题,以天数作为基准列不等式.举一反三:【变式】某人计划20天内至少加工400个零件,前5天平均每天加工了33个零件,此后,该工人平均每天至少需加工多少个零件,才能在规定的时间内完成任务?【答案】解:设以后平均每天加工x 个零件,由题意的:5×33+(20﹣5)x≥400, 解得:x≥2153. ∵x 为正整数,∴x 取16.答:该工人以后平均每天至少加工16个零件.类型三、利润问题例3.水果店进了某种水果1t ,进价是7元/kg .售价定为10元/kg ,销售一半以后,为了尽快售完,准备打折出售.如果要使总利润不低于2000元,那么余下的水果至少可以按原定价的几折出售?【答案与解析】解:设余下的水果可以按原定价的x 折出售,根据题意得:1t =1000kg10001000(107)(107)20001022x ⨯-⨯+-⨯≥ 解得:8x ≥答:余下的水果至少可以按原定价的8折出售.【总结升华】本题考查一元一次不等式的应用,关键以利润作为不等量关系列不等式. 举一反三:【变式】某商品的进价为1000元,售价为2000元,由于销售状况不好,商店决定打折【答案】六.类型四、方案选择例4.某体育用品专卖店销售7个篮球和9个排球的总利润为355元,销售10个篮球和20个排球的总利润为650元.(1)求每个篮球和每个排球的销售利润;(2)已知每个篮球的进价为200元,每个排球的进价为160元,若该专卖店计划用不超过17400元购进篮球和排球共100个,且要求篮球数量不少于排球数量的一半,请你为专卖店设计符合要求的进货方案.【思路点拨】(1)设每个篮球和每个排球的销售利润分别为x元,y元,根据题意得到方程组;即可解得结果;(2)设购进篮球m个,排球(100﹣m)个,根据题意得不等式组即可得到结果.【答案与解析】解:(1)设每个篮球和每个排球的销售利润分别为x元,y元,根据题意得:,解得:,答:每个篮球和每个排球的销售利润分别为25元,20元;(2)设购进篮球m个,排球(100﹣m)个,根据题意得:,解得:≤m≤35,∴m=34或m=35,∴购进篮球34个排球66个,或购进篮球35个排球65个两种购买方案.【总结升华】本题考查了一元一次不等式的应用,二元一次方程组的应用,找准数量关系是解题的关键.【巩固练习】一、选择题1.某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400米以外的安全区域.甲工人在转移过程中,前40米只能步行,之后骑自行车.已知导火线燃烧的速度为0.01米/秒,步行的速度为1米/秒,骑车的速度为4米/秒.为了确保甲工人的安全,则导火线的长要大于( )米.A .1B .1.2C .1.3D .1.52. 哥哥今年5岁,弟弟今年3岁,以下说法正确的为( )A .比弟弟大的人一定比哥哥大B .比哥哥小的人一定比弟弟小C .比哥哥大的人可能比弟弟小D .比弟弟小的人绝不会比哥哥大3.小红和爸爸、妈妈三人玩跷跷板,三人的体重一共为150kg ,爸爸坐在跷跷板的一端,体重只有妈妈一半的小红和妈妈坐在跷跷板的另一端,这时爸爸那一端仍然着地,小红的体重应小于( )A .49kgB .50kgC .24kgD .25kg4.某商品进价为800元,售价为1200元,由于受市场供求关系的影响,现准备打折销售,但要求利润率100%-⎛⎫=⨯ ⎪⎝⎭售价进价利润率进价不低于5%,则至少可打( ) A .六折 B .七折 C .八折 D .九折5.设“●”“▲”“■”表示三种不同的物体,现用天平称了两次,结果如图所示,那么这三种物体的质量按从大到小的顺序排列应为( )A . ■、●、▲B . ■、▲、●C . ▲、●、■D . ▲、■、●6.现有若干本连环画册分给小朋友,如果每人分8本,那么不够分,现在每人分7本,还多10本,则小朋友人数最少有 ( )A.7人B. 8人C. 10人D.11人二、填空题7.当x_______时,代数式-3x+5的值是正数;当x_______时,它的值不大于4;当x______时,它的值不小于2.8.一家商店计划出售60件衬衫,要使销售总额不低于5100元,则每件衬衫的售价至少应为_______元.9.有10名菜农,每名可种茄子3亩或辣椒2亩,已知茄子每亩的收入是0.5万元,辣椒每亩的收入是0.8万元,要使总收入不低于15.6万元,则最多只能安排________名菜农种茄子.10.用一根长不足160 cm的铁丝围成一个宽是x cm,长是宽的2倍的长方形,则可列不等式_______.11.某种品牌的电脑的进价为5000元,按物价局定价的9折销售时,利润不低于700元,则此电脑的定价最少为___________元.12.一个工程队规定在6天内完成300千米的修路工程,第一天完成了60千米,现在接到任务要比原计划至少提前2填完成任务,以后几天平均每天至少完成千米.三、解答题13.某工人计划在15天里加工408个零件,前三天每天加工24个,问以后每天至少加工多少个零件才能在规定时间内超额完成任务?14.某种飞机进行飞行训练,飞出去的速度为1200km/h,飞回机场的速度为1500km/h,飞机油箱中的燃油只能保持2.5h的飞行,则飞机最多飞出多少千米就应返回?(结果精确到10km)15.某商店在一次促销活动中规定:消费者消费满200元或超过200元就可享受打折优惠.一名同学为班级买奖品,准备买6本影集和若干支钢笔.已知影集每本15元,钢笔每支8元,问他至少买多少支钢笔才能打折?16.沃尔玛超市销售每台进价为320元和250元的A、B两种型号的电器,下表是两天的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电器的销售单价;(2)若超市准备用不多于8200元的金额再采购这两种型号的电器共30台,求A种型号的电器最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电器能否实现利润至少为2100元的目标?请给出相应的采购方案;若不能,请说明理由.答案与解析一、选择题1. 【答案】C;【解析】解:设导火线的长度为x米,由题意得,>+,解得:x >1.3.故选C .2. 【答案】D ;3. 【答案】D ;【解析】解:设小红的体重为xkg ,由题意可得: 2150(2)x x x x +<-+,解得:25x <.4. 【答案】B ;【解析】解:设打x 折,由题意得:1200800105%800x ⨯-≥,解得x ≥7,所以至少应打7折.5. 【答案】B ; 【解析】由图可得: 2■>■+▲ ①,●+▲=3● ②,由①②得■>▲,2●=▲,所以可得:■>▲>●.6. 【答案】D ;【解析】设小朋友人数为x 人,可得:8710x x >+,解得:10x >,所以小朋友至少为11人.二、填空题7.【答案】53<,≥13,≤1; 【解析】 由5350,3x x -+><得;由35x -+≤4得x ≥13;由35x -+≥2得x ≤1. 8.【答案】85;【解析】设售价为x 元,则60x ≥5100得x ≥85.9.【答案】4;【解析】设最多只能安排x 名菜农种茄子,则有(10-x)人种辣椒,那么种茄子的收入为3×0.5x 万元,种辣椒的收入为2×0.8×(10-x)万元,那么总收入为3×0.5x+2×0.8(10-x)万元.根据题意:3×0.5x+2×0.8(10-x)≥15.6,解得x ≤4,故最多安排4名菜农种茄子10.【答案】x+2x <80;11.【答案】6334;【解析】设定价为x 元,则0.95000x -≥700,解得x ≥163333. 12.【答案】80;【解析】解:设以后几天平均每天完成x 千米,由题意得: 60+(6﹣1﹣2)x≥300,解得:x≥80,故以后几天平均每天至少完成80千米,故答案为:80.三、解答题13.【解析】解:设三天后每天加工x 个零件,根据题意得:24×3+(15-3)x >408,解得 x >28.因为x 为正整数,所以以后每天加工的零件数至少为29个.14.【解析】解:设飞机最多飞出x 千米就应返回,则:2.512001500x x +<. 解得x <216663. ∴x 取1660.∴飞机最多飞出1660千米就应返回.15.【解析】解:设该同学买x 支钢笔,根据题题意,得:15×6+8x ≥200,解得 x ≥3134.故该同学至少要买14支钢笔才能打折.16.【解析】解:(1)设A 、B 两种型号电器的销售单价分别为x 元和y 元,由题意,得:2x+3y=1700,3x+y=1500,解得x=400元,y=300元,∴A、B两种型号电器的销售单价分别为400元和300元;(2)设采购A种型号电器a台,则采购B种型号电器(30﹣a)台,依题意,得320a+250(30﹣a)≤8200,解得a≤10,a取最大值为10,∴超市最多采购A种型号电器10台时,采购金额不多于8200元;(3)依题意,得(400﹣320)a+(300﹣250)(30﹣a)≥2100,解得a≥20,∵a的最大值为10,∴在(2)的条件下超市不能实现利润至少为2100元的目标.。

人教版七年级数学下册第九章不等式与不等式组知识点及题型总结讲义

人教版七年级数学下册第九章不等式与不等式组知识点及题型总结讲义

一元一次不等式与一元一次不等式组一、不等式考点一、不等式的概念不等式:用不等号表示不等关系的式子,叫做不等式。

不等号包括.题型一会判断不等式下列代数式属于不等式的有 .22①-X > 5 ② 2x-y V 0 ③2 5 3 ④-3 V 0 ⑤ x=3 ⑥ x xy y⑦x工5⑧ x2-3x 2>0 ⑨ x y 0题型二会列不等式根据下列要求列出不等式①.a是非负数可表示为 .―②.m的5倍不大于3可表示为③.x与17的和比它的2倍小可表示为.④.x和y的差是正数可表示为3⑤.x的-与12的差最少是6可表示为.5考点二、不等式基本性质1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。

2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。

逆定理:不等式两边都乘以(或除以)同一个数,若不等号的方向不变,则这个数是正数基本训练:若a>b, ac>be,则c 0.3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。

逆定理:不等式两边都乘以(或除以)同一个数,若不等号的方向改变,则这个数是负数。

基本训练:若a>b, ae V be,贝U e 0.4、如果不等式两边同乘以0,那么不等号变成等号,不等式变成等式。

练习:1、指出下列各题中不等式的变形依据①.由3a>2得a> 3理由: _________________________________ _______________________________a>-7 理由:5③ .由-5a<1得a>④ .由4a>3a+1得a>1理由:-) C. x+3 > y+3 D.-3x > -3y))))()式的解。

练习:1、判断下列说法正确的是( )A. x=2是不等式x+3v 2的解B.x =3是不等式3x v 7的解。

C.不等式3x v 7的解是x v 2D.x=3是不等式3x> 9的解2.下列说法错误的是( )A.不等式x v 2的正整数解只有一个B. -2是不等式2x-1 v 0的一个解C.不等式-3x > 9的解集是x >-3D.不等式x v 10的整数解有无数个不等式的解集:对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。

(完整版)一元一次不等式(组)知识点总结

(完整版)一元一次不等式(组)知识点总结



答案:
12. ( 2008 年 上 海 市 ) 不 等 式


的解集 的解集
答案:
13. (2008 湖北 天门 ) 已知不等式组 集为- 1< x< 2,则 (m+ n)2008=__________. 答案: 1
三、简答题 1. ( 2008淅江金华) 解不等式 :5x-3<1-3x
解: 5x+3x<1+3 8x<4


的解 集
答案: 8.( 2008 山东泰安)不等式组
的解集为
答案:
9.( 2008 年江苏省连云港市) 不等式组
集是

答案:
的解
10 . (2008 湖 北 咸 宁 ) 直 线
与直 线
在同一平面直角坐标系中的图象如图所
示,则 关于
的不等 式
的解集为

答案:
<-1
11 .( 08 厦 门 市 ) 不 等 式 组
在数轴上表示正确的是(

的解集
答案: A
6. (2008 年 天 津 市 ) 若
,则估计
的值所在的范围是(

A.
B.
C.
D. 答案: B
7.( 2008 年四川巴中市) 点
在第二象限,则
的取值范围是( ) A.
B.
C.
D. 答案: C
8. (2008 年成都市 ) 在函数 y=
的取值范围是 ( );
D .无解
29 .不等式组 ()
的解集在数轴上可表示为
A 答案: D
B
C
D
30. ( 2008 湖北武汉) 不等式

一元一次不等式(组)知识总结及经典例题分析

一元一次不等式(组)知识总结及经典例题分析

二、一元一次不等式的解法:解一元一次不等式,要根据不等式的性质,将不等式逐步化为x a <(x a >或 )x a x a ³£或或的形式,其一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。

说明:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以或除以))同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例如:131321£---x x 解不等式: 解:去分母,得解:去分母,得 6)13(2)13£---x x ((不要漏乘!每一项都得乘) 去括号,得去括号,得去括号,得 62633£+--x x (注意符号,不要漏乘!)移移 项,得项,得项,得 23663-+£-x x (移项,每一项要变号;但符号不改变) 合并同类项,得合并同类项,得合并同类项,得 73£-x (计算要正确)系数化为系数化为1, 得 37-³x (同除负,不等号方向要改变,分子分母别颠倒了)三、一元一次不等式组含有同一个未知数的含有同一个未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。

一元一次不等式所组成的不等式组,叫做一元一次不等式组。

说明:判断一个不等式组是一元一次不等式组需满足两个条件:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、个、33个、个、44个或更多.个或更多.四、一元一次不等式组的解集一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组的解集通常利用数轴来确定.一元一次不等式组的解集通常利用数轴来确定.五、不等式组解集的确定方法,可以归纳为以下四种类型(b a <) a a a a x <ax >a x ≤a x ≥a 一元一次不等式和不等式组【知识要点】一、一元一次不等式1. 一元一次不等式定义:含有一个未知数,并且未知数的最高次数是1的不等式叫做一元一次不等式。

七年级数学下册第9章不等式与不等式组9.2.2再探实际问题与一元一次不等式的应用(图文详解)

七年级数学下册第9章不等式与不等式组9.2.2再探实际问题与一元一次不等式的应用(图文详解)

并,系数化为1。
解:去分母,得 去括号,得 移项,得 合并,得
2(2x+1) ≤6+9(x-1)
4x+2 ≤6+9x49x-9x ≤6-9-2
-5x ≤-5
系数化为1,得 x ≥1
七年级数学第9章不等式与不等式组 将不等式的解集在轴上表示为:
01
x
归纳:
解一元一次不等式的一般步骤: 去分母
去括号 移项 合并
当Y1 > Y2 即100+0.9(X-100) > 50+0.95(X-50) 时,X < 150
议一
故宫博议物院门票是每位10元,20人以上(含20人)的
团体票8折优惠.现有18位同学结伴去博物院,当领队小 华准备好了零钱到售票处买18张票时,李明喊住了他: “买20张吧!”小华困惑了:18人买20张不是浪费吗? 你认为呢?为什么? 此外,不足20人时,多少人买20张的团体票比普通票便宜?
在甲店累计购买100元商品后,再购买的商品按原价的 90%收费;在乙 店累计购买50元商品后,再购买的商品按 原价的95%收费,顾客怎样选择商店购物能获得最大优惠。
(3) 如果累计购物超过100元,那么在甲店花费一定少吗?
解:设累计购物X元(X>100)
在甲店购物花费:Y1 = 100+0.9(X-100) 在乙店购物花费:Y2 = 50+0.95(X-50)
购物花费小;累计购物150元时,在两店购物花费一样; 累计购物超过150元时,在甲店购物花费小.
甲、乙两商店以同样的价格出售同样的商品,并且 又各自推出不同的优惠方案:
在甲店累计购买100元商品后,再购买的商品按原价的90%收费; 在乙 店累计购买50元商品后,再购买的商品按原价的95%收费, 顾客怎样选择商店购物能获得最大优惠。

人教版数学七年级下册知识重点与单元测-第九章9-4一元一次不等式组(能力提升)

人教版数学七年级下册知识重点与单元测-第九章9-4一元一次不等式组(能力提升)

第九章不等式与不等式(组)9.4 一元一次不等式组(能力提升)【要点梳理】知识点一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如2562010xx->⎧⎨-<⎩,7021163159xxx->⎧⎪+>⎨⎪+<⎩等都是一元一次不等式组.要点诠释:(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.要点二、解一元一次不等式组1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.要点诠释:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.要点三、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.要点诠释:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取非负整数.【典型例题】类型一、不等式组的概念例1.解不等式组3(2)4 121.3x xxx--≤-⎧⎪+⎨>-⎪⎩【思路点拨】按照解不等式组的基本步骤进行求解就可以了.【答案与解析】解:解不等式①,得x≥1解不等式②,得x<4所以,不等式组的解集是1≤x<4.【总结升华】求出不等式①、②的解集后,应取其公共部分作为不等式组的解集.举一反三:【变式】解不等式组3(2)423x xa xx--<⎧⎪+⎨≥⎪⎩无解.则a的取值范围是 ( )A.a<1 B.a≤l C.a>1 D.a≥1 【答案】B例2. 不等式组3(2)5(4) 2 (1)562(2)1, (2)32211 (3)23x xxxx x⎧⎪++-<⎪+⎪+≥+⎨⎪++⎪-≤⎪⎩是否存在整数解?如果存在请求出它的解;如果不存在要说明理由.【思路点拨】解这类问题的第一步是分别求出各个不等式的解集;第二步借助数轴以确定不等式组的公共解集;最后看公共解集中是否存在整数解.【答案与解析】解:解不等式(1),得:x<2;解不等式(2),得:x≥-3;解不等式(3),得:x≥-2;在数轴上分别表示不等式(1)、(2)、(3)的解集:∴原不等式组的解集为:-2≤x<2.∴原不等式组的整数解为:-2、-1、0、1.【总结升华】求不等式组的解集就是求不等式组中所有不等式解集的公共部分.对于三个以上的不等式有时不容易得到公共解集,于是常常借助数轴的直观性,这样较容易确定其解集.在数轴上表示点的位置,要注意空心圈与实心圆点的不同用法.举一反三:【变式】解不等式组,并写出它的所有非负整数解.【答案】解:,由①得:x≥﹣2;由②得:x <,∴不等式组的解集为﹣2≤x<,则不等式组的所有非负整数解为:0,1,2,3.例3.试确定实数a的取值范围.使不等式组123544(1)33x xax x a+⎧+>⎪⎪⎨+⎪+>++⎪⎩恰好有两个整数解.【思路点拨】先确定其解集,再判断出整数解,最后利用数轴确定a的范围.【答案与解析】解:由不等式123x x++>,去分母得3x+2(x+1)>0,去括号,合并同类项,系数化为1后得x>25 -.由不等式544(1)33ax x a++>++去分母得3x+5a+4>4x+4+3a,可解得x<2a.所以原不等式组的解集为225x a-<<,因为该不等式组恰有两个整数解:0和l,故有:1<2a≤2,所以:12a<≤1.【总结升华】此题考查的是一元一次不等式组的解法,得出x的整数解,再根据x的取值范围求出a的值即可.举一反三:【变式】.已知a是自然数,关于x的不等式组≥⎧⎨⎩3x-4a,x-2>0的解集是x>2,求a的值.【答案】解:解第一个不等式,得解集43ax+≥,解第二个不等式,得解集2x>,∵不等式组的解集为x>2,∴423a+≤,即2a≤,又a为自然数,∴0a=或1或2.类型二、解特殊的一元一次不等式组例4.求不等式(2x﹣1)(x+3)>0的解集.解:根据“同号两数相乘,积为正”可得:①或②.解①得x>;解②得x<﹣3.∴不等式的解集为x>或x<﹣3.请你仿照上述方法解决下列问题:(1)求不等式(2x﹣3)(x+1)<0的解集.(2)求不等式≥0的解集.【答案与解析】解:(1)根据“异号两数相乘,积为负”可得①或②,解①得不等式组无解;解②得,﹣1<x<;(2)根据“同号两数相乘,积为正”可得①,②,解①得,x≥3,解②得,x<﹣2,故不等式组的解集为:x≥3或x<﹣2.【总结升华】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.类型三、一元一次不等式组的应用例5.某校初三年级春游,现有36座和42座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;已知36座客车每辆租金400元,42座客车每辆租金440元.(1)该校初三年级共有多少人参加春游?(2)请你帮该校设计一种最省钱的租车方案.【思路点拨】本题的关键语句是:“若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人”.理解这句话,有两层不等关系.(1)租用36座客车x辆的座位数小于租用42座客车(x-1)辆的座位数.(2)租用36座客车x辆的座位数大于租用42座客车(x-2)辆的座位数+30.【答案与解析】解:(1)设租36座的车x辆.据题意得:3642(1)3642(2)30x xx x<-⎧⎨>-+⎩,解得:79 xx>⎧⎨<⎩.由题意x应取8,则春游人数为:36×8=288(人).(2)方案①:租36座车8辆的费用:8×400=3200(元),方案②:租42座车7辆的费用:7×440=3080(元),方案③:因为42×6+36×1=288,所以租42座车6辆和36座车1辆的总费用:6×440+1×400=3040(元) .所以方案③:租42座车6辆和36座车1辆最省钱.【总结升华】本例不等关系相对隐蔽,需要在审题过程中加以挖掘.举一反三:【变式1】“向阳”中学某班计划用勤工俭学收入的66元,同时购买单价分别为3元、2元、1元的甲乙丙三种纪念品,奖励参加校“艺术节”活动的同学.已知购买的乙种纪念品比购买的甲种纪念品多2件,而购买的甲种纪念品不少于10件,且购买甲种纪念品费用不超过总费用的一半,若购买的甲、乙、丙三种纪念品恰好用了66元钱,问可有几种购买方案,每种方案中购买甲乙丙三种纪念品各多少件?【答案】解:设购买的甲、乙、丙三种纪念品件数分别为x 、y 、z ,由题意得:⎩⎨⎧+==++26623x y z y x 且⎪⎩⎪⎨⎧≤≥266310x x 由方程组得:⎩⎨⎧-=+=xz x y 5622解不等式组得:10≤x ≤11∵x 为整数,∴x =10或x =11当x =10时,y =12,z =12当x =11时,y =13,z =7∴可有两种方案购买.【变式2】5.12四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作. 拟派30名医护人员,携带20件行李(药品、器械),租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.(1) 设租用甲种汽车x 辆,请你设计所有可能的租车方案;(2) 若甲、乙汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.【答案】 解:(1)设租用甲种汽车x 辆,则租用乙种汽车(8)x -,则:42(8)3038(8)20x x x x +-≥⎧⎨+-≥⎩,解得:4 785x≤≤,∵x应为整数,∴7x=或8,∴有两种租车方案,分别为:方案1:租甲种汽车7辆,乙种汽车1辆;方案2:租甲种汽车8辆,乙种汽车0辆.(2)租车费用分别为:方案1: 8000×7+6000×1=62000(元);方案2:8000×:8=64000(元).∴方案1花费最低,所以选择方案1.【巩固练习】一、选择题1.关于x的不等式组的解集为x<3,那么m的取值范围为()A.m=3 B.m>3 C.m<3 D.m≥32.若不等式组530xx m-≥⎧⎨-≥⎩有实数解.则实数m的取值范围是 ( )A.53m≤ B.53m< C.53m> D.53m≥3.若关于x的不等式组3(2)432x xx a x--<⎧⎨-<⎩无解,则a的取值范围是 ( )A.a<1 B.a≤l C.1 D.a≥14.关于x的不等式721x mx-<⎧⎨-≤⎩的整数解共有4个,则m的取值范围是 ( )A.6<m<7 B.6≤m<7 C.6≤m≤7 D.6<m≤75.某班有学生48人,每人都会下象棋或者围棋,且会下象棋的人数比会下围棋的人数的2倍少3人,两种棋都会下的至多9人,但不少于5人,则会下围棋的人有()A.20人 B.19人 C.11人或13人 D.20人或19人6.某城市的一种出租车起步价是7元(即在3km以内的都付7元车费),超过3km后,每增加1km加价1.2元(不足1km按1km计算),现某人付了14.2元车费,求这人乘的最大路程是()A.10km B.9 km C.8km D.7 km二、填空题7.已知24221x y k x y k +=⎧⎨+=+⎩,且10x y -<-<,则k 的取值范围是________.8.如果不等式组无解,则a 的取值范围是 .9.如果不等式组2223x a x b ⎧+≥⎪⎨⎪-<⎩的解集是0≤x <1,那么a+b 的值为_______.10.将一筐橘子分给几个儿童,若每人分4个,则剩下9个橘子;若每人分6个,则最后一个孩子分得的橘子将少于3个,则共有_______个儿童,_______个橘子.11.对于整数a 、b 、c 、d ,规定符号a b ac bd d c =-.已知,则b+d 的值是________.12. 在△ABC 中,三边为a 、b 、c ,(1)如果3a x =,4b x =,28c =,那么x 的取值范围是 ;(2)已知△ABC 的周长是12,若b 是最大边,则b 的取值范围是 ;(3)=--++-----++c a b b a c a c b c b a .三、解答题13.解下列不等式组.(1) 231313(1)6x x x x-⎧+<-⎪⎨⎪-+≥-⎩(2)2121x >-(3)210 310 320xxx-≥⎧⎪+>⎨⎪-<⎩(4)2153x-+≤14.已知:关于x,y的方程组27243x y ax y a+=+⎧⎨-=-⎩的解是正数,且x的值小于y的值.(1)求a的范围;(2)化简|8a+11|-|10a+1|.15.某体育馆计划从一家体育用品商店一次性购买若干个气排球和篮球(每个气排球的价格都相同,每个篮球的价格都相同).经洽谈,购买1个气排球和2个篮球共需210元;购买2个气排球和3个篮球共需340元.(1)每个气排球和每个篮球的价格各是多少元?(2)该体育馆决定从这家体育用品商店一次性购买气排球和篮球共50个,总费用不超过3200元,且购买气排球的个数少于30个,应选择哪种购买方案可使总费用最低?最低费用是多少元?答案与解析一、选择题1. 【答案】D;【解析】解:不等式组变形得:,由不等式组的解集为x<3,得到m的范围为m≥3,故选D.2. 【答案】A;【解析】原不等式组可化为53xx m⎧≤⎪⎨⎪≥⎩而不等式组有解,根据不等式组解集的确定方法“大小小大中间找”可知m≤53.3. 【答案】B;【解析】原不等式组可化为1,.xx a>⎧⎨<⎩根据不等式组解集的确定方法“大大小小没解了”可知a≤1.4. 【答案】D;【解析】解得原不等式组的解集为:3≤x<m,表示在数轴上如下图,由图可得:6<m≤7.5. 【答案】D;6. 【答案】B;【解析】设这人乘的路程为xkm,则13<7+1.2(x-3)≤14.2,解得8<x≤9.二、填空题7. 【答案】12<k<1;【解析】解出方程组,得到x,y 分别与k的关系,然后再代入不等式求解即可.8. 【答案】a≤1;【解析】解:解不等式x﹣1>0,得x>1,解不等式x﹣a<0,x<a.∵不等式组无解,∴a≤1.9.【答案】1;【解析】由不等式22x a +≥解得x ≥4—2a .由不等式2x-b <3,解得32b x +<. ∵ 0≤x <1,∴ 4-2a =0,且312b +=,∴ a =2,b =-1.∴ a+b =1. 10.【答案】7, 37;【解析】设有x 个儿童,则有0<(4x+9)-6(x-1)<3.11.【答案】3或-3 ;【解析】根据新规定的运算可知bd =2,所以b 、d 的值有四种情况:①b =2,d =1;②b =1,d =2;③b =-2,d =-1;④b =-1,d =-2.所以b+d 的值是3或-3.12.【答案】(1) 4<x <28 (2)4<b <6 (3)2a ;【解析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边.三、解答题13.【解析】解:(1)解不等式组231313(1)6x x x x -⎧+<-⎪⎨⎪-+≥-⎩①②解不等式①,得x >5,解不等式②,得x ≤-4.因此,原不等式组无解.(2)把不等式121x x >-进行整理,得1021x x ->-,即1021x x ->-, 则有①10210x x ->⎧⎨->⎩或②10210x x -<⎧⎨-<⎩解不等式组①得112x <<;解不等式组②知其无解, 故原不等式的解集为112x <<. (3)解不等式组210310320x x x -≥⎧⎪+>⎨⎪-<⎩①②③ 解①得:12x ≥, 解②得:13x >-, 解③得:23x <,将三个解集表示在数轴上可得公共部分为:12≤x <23 所以不等式组的解集为:12≤x <23 (4) 原不等式等价于不等式组:21532153x x -+⎧≤⎪⎪⎨-+⎪≥-⎪⎩①② 解①得:7x ≥-,解②得:8x ≤,所以不等式组的解集为:78x -≤≤14.【解析】解:(1)解方程组27243x y a x y a +=+⎧⎨-=-⎩,得81131023a x a y +⎧=⎪⎪⎨-⎪=⎪⎩根据题意,得811031020381110233a a a a +⎧>⎪⎪-⎪>⎨⎪+-⎪<⎪⎩①②③ 解不等式①得118a >-.解不等式②得a <5,解不等式③得110a <-,①②③的解集在数轴上表示如图.∴ 上面的不等式组的解集是111810a -<<-. (2)∵ 111810a -<<-. ∴ 8a +11>0,10a +1<0. ∴ |8a +11|-|10a +1|=8a +11-[-(10a +1)]=8a +11+10a +1=18a +12.15.【解析】解:(1)设每个气排球的价格是x 元,每个篮球的价格是y 元.根据题意得:解得:所以每个气排球的价格是50元,每个篮球的价格是80元.(2)设购买气排球x个,则购买篮球(50﹣x)个.根据题意得:50x+80(50﹣x)≤3200解得x≥26,又∵排球的个数小于30个,∴排球的个数可以为27,28,29,∵排球比较便宜,则购买排球越多,总费用越低,∴当购买排球29个,篮球21个时,费用最低.29×50+21×80=1450+1680=3130元.。

(完整)【教育资料】新人教版七年级下册第9章一元一次不等式知识点总结及练习题无答案学习精品,推荐文档

(完整)【教育资料】新人教版七年级下册第9章一元一次不等式知识点总结及练习题无答案学习精品,推荐文档

去分母时,每一项都要乘同一个数,尤其不要漏乘常数项;②移项时不要忘记变号;③去括号时,若括号前面是负号,括号里的
每一项都要变号;④在不等式两边都乘(或除以)同一个负数时,不等号的方向要改变。
3.不等式的解集在数轴上表示:
在数轴上可以直观地把不等式的解集表示出来,能形象地说明不等式有无限多个解,它对以后正确确定一元一次不等式组的
若不成立,则就不是不等式的解。
3、解一元一次不等式是一个有目的、有根据、有步骤的不等式变形,最终目的是将原不等式变为

的形式,
其一般步骤是:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)化未知数的系数为 1。这五个步骤根据具体
题目,适当选用,合理安排顺序。但要注意,去分母或化未知数的系数为 1 时,在不等式两边同乘以(或除以)同一个非零数时,
教育资源
教育资源
(2)一元一次不等式和一元一次方程可以对比理解。
相同点:二者都是只含有一个未知数,未知数的最高次数都是 1,左右两边都是整式;不同点:一元一次不等式表示不
等关系(用“>”、“<”、“≥”、“≤”连接),一元一次方程表示相等关系(用“=”连接)。
知识点四:一元一次不等式的解法
1.解不等式:求不等式解的过程叫做解不等式。2.一元一次不等式的解法:与一元一次方程的解法类似,其根据是不等式的基本
性质,解一元一次不等式的一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为 1.
要点诠释:(1)在解一元一次不等式时,每个步骤并不一定都要用到,可根据具体问题灵活运用(2)解不等式应注意:①
解集有很大帮助。
要点诠释:在用数轴表示不等式的解集时,要确定边界和方向:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(最新最全)2012年全国各地中考数学解析汇编(按章节考点整理) 第九章 一元一次不等式与不等式组(分4个考点精选67题)9.1 解一元一次不等式1.(2012广州市,8, 3分)已知a >b,c 为任意实数,则下列不等式中总是成立的是( ) A. a+c <b+c B. a -c >b -c C. ac <bc D. ac >bc【解析】运用不等式的3个性质进行推理,A 、B 答案是不等式性质1的运用; C 、D 答案均是不等式性质2、3 的错误运用.【答案】根据不等式的性质1可知A 错误,B 是正确的,由不等式的性质2、3可知CD 不等号的方向要根据c 的符号确定,是错误的。

选B。

【点评】这类习题较为常规,不等式的性质1和2一般不会出现错误的运用,运用性质3务必注意不等号要改变方向.易错点:运用不等式的性质学生错误存在于忘记改变不等号的方向. 2.(2012广州市,12, 3分)不等式x -1≤10的解集是 。

【解析】根据不等式的性质1可直接求解。

【答案】x≤11。

【点评】本题主要查不等式的解法。

3.(2012四川省南充市,11,4分) 不等式x+2>6的解集为_________________. 【解析】移项解得x>4. 【答案】x>4【点评】将不等式中各项从一边移到另一边时要注意变号。

4.(2012浙江省衢州,11,4分)不等式2x -1>12x 的解是 .【解析】利用不等式的基本性质,将不等式移项得2x -12x >1,合并同类项得32x >1,系数化为1即可得解集. 【答案】x >23【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变. 5.(2012连云港,19,3分)解不等式32x -1>2x,并把解集在数轴上表示出来。

10-1-2【解析】本题可先将方程移项,进行化简,最后得出x 的取值,然后在数轴上表示出来【答案】解:32x -2x >1, 12x >1,∴x <-2, 表示在数轴上为:10-1-2【点评】本题考查了解简单不等式的能力,解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.6. (2012四川攀枝花,3,3分)下列说法中,错误..的是( ) A. 不等式2<x 的正整数解中有一个 B. 2-是不等式012<-x 的一个解C. 不等式93>-x 的解集是3->xD. 不等式10<x 的整数解有无数个【解析】解不等式、整数解。

不等式2<x 的正整数解为x=1;012<-x 的一个解为x<12,–2在这个解集中;x <10的整数解有无数个,包括无数个负整数解、零和1到9这9个正整数解。

【答案】C【点评】解不等式时,不等号的两边同时乘以或除以一个负数,不等号的方向要改变。

正整数包括1,2,3,……;整数包括正整数、零和负整数。

7. (2012浙江省嘉兴市,18,8分)解不等式2(x-1)-3<1,并把它的解在数轴上表示出来.321-1-2-3【解析】根据题意,先解一元一次不等式,然后将不等式的解表示在数轴上. 【答案】2x -2-3<1,得x <3,图略.【点评】基础题.主要考查一元一次不等式的解法.在数轴上表示不等式的解时要注意两点:一是方向;二是空圈与实点的区别.8.(2012贵州六盘水,3,3分)已知不等式10x -≥,此不等式的解集在数轴上表示为( ▲ )分析:根据在数轴上表示不等式解集的方法表示出不等式的解集x≤2,再得出符合条件的选项即可. 解答:解:不等式的解集10x -≥在数轴上表示为:故选C .点评:本题考查的是在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.9.(2012广东汕头,10,4分)不等式3x ﹣9>0的解集是 x >3 . 分析: 先移项,再将x 的系数化为1即可. 解答: 解:移项得,3x >9,系数化为1得,x >3. 故答案为:x >3.点评: 本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键. 10. (2012年吉林省, 8,3分)不等式2x-1>x 的解集为__________.【解析】利用不等式的基本性质,将不等式移项再合并同类项即可求得不等式的解集. 【答案】2x-1>x2x-x>1x>1故答案为:x>1.【点评】本题考查的是解一元一次不等式,熟知解一元一次不等式的步骤是解答此题的关键. 11.(2012广安,13,3分)不等式2x+9≥3(x+2)的正整数解是_________________.【解析】确定一元一次不等式的正整数解问题,先解不等式,在结合正整数这一条件,对范围进行界定,找出正整数解的个数【答案】2x+9≥3(x+2),即是2x +9≥3x +6,解得:x≤3,由于x 是正整数,因此只有正整数1,2,3符合条件【点评】确定不等式以及不等式组的正整数解问题,一般是结合不等式的解集,以及正整数 概念缩小范围,找出正整数解或者是确定正整数解的个数.12. (2012湖北武汉,3,3分)在数轴上表示不等式x-1<0的解集,正确的是【 】A .B .C .D .【解析】首先解出不等式x-1<0得x <1,不含等号,空心点;小于,开口向左,选B 【答案】B .【点评】本题在于考察解不等式以及用数轴表示不等式的解集,用数轴表示不等式的解集,关键在于区分实心点与空心点以及开口方向,含等号的用实心点,不含等号用空心点,开口方向与不等号开口方向一致,难度低.13.(2012广东肇庆,16,6)解不等式:04)3(2>-+x ,并把解集在下列的数轴上(如图4)表示出来.【解析】在数轴上表示不等式的解集时要注意空心圈实心点的区别. 【答案】解:0462>-+x (1分)22->x (3分) 1->x (4分)解集在数轴上表示出来为如图所示 (6分)【点评】本题考查一元一次不等式的解法,难度较小.14.(2012呼和浩特,18,6分)(1)解不等式:5(x –2)+8<6(x –1)+7 (2)若(1)中的不等式的最小整数解是方程2x –ax=3的解,求a 的值. 【解析】根据不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变。

(2)中根据(1)中的解集,得到最小整数解,并代入到方程中,解a 的值。

【答案】(1) 5(x –2)+8<6(x –1)+7 5x –10+8<6x –7+70 1 2-1-2 ○0 1 2-1-2图45x –2<6x+1 –x<3 x>–3(2) 由(1)得,最小整数解为x= –2 ∴2×(–2)–a×(–2)=3∴72a =【点评】本题考查了解不等式的方法,一定要注意符号的变化,和不等号的变化情况。

根据得出的解集得出最小整数解,并把最小整数解代入到方程中解方程求a 的值。

15. (2012贵州贵阳,11,4分)不等式x-2≤0的解集是 . 【解析】解不等式即得x≤2 【答案】x≤2【点评】本题考查解一元一次不等式,关键是移项,属于容易题.9.2 一元一次不等式的应用1.(2012浙江省湖州市,23,10分)为了进一步建设秀美、宜居的生态环境,某村欲购买甲、乙、丙三种树美化村庄,已知甲、乙、丙三种树每棵的价格之比是2:2:3,甲种树每棵200元,现计划用210000元,购买这三种树共1000棵,(1)求乙、丙两种树每棵个多少元?(2)若购买甲种树的棵树是乙种树的2倍,且恰好用完计划资金,求三种树各购买多少棵?(3)若又增加了10120元的购树款,在购买总棵树不变的情况下,求丙种树最多可以购买多少棵? 【解析】(1)根据甲、乙、丙三种树每棵的价格之比是2:2:3,甲种树每棵200元,可求得乙、丙两种树的价格;(2)根据购买三种树的总费用为210000元,列方程求解;(3)根据购买三种树的总费用不大于(210000+10120)元,列不等式求解; 【答案】(1)∵甲、乙、丙三种树每棵的价格之比是2:2:3,甲种树每棵200元,∴乙种树每棵的价格200元,丙种树每棵的价格200×23=300元;(2)设购买乙种树x 棵,则购买甲种树2x 棵,购买丙种树(1000-3x )棵,∴200×2x+200×x+300(1000-3x)=210000.解得x=300,∴购买甲种树600棵, 购买乙种树300棵,购买丙种树100棵;(3)设若购买丙种树y 棵,则购买甲、乙两种树共(1000-y )棵,∴200(1000-y )+300y≤210000+10120,解得y≤201.2,∵y 为正整数,∴y=201. ∴丙种树最多可以购买201棵.【点评】本题考查的是一元一次方程和一元一次不等式的应用,根据题意: (1)购买三种树的总费用为210000元,列出一元一次方程;(2)购买三种树的总费用不大于(210000+10120)元,列出一元一次不等式求解,是解答此题的关键.2. (2012陕西 14,3分)小宏准备用50元钱买甲、乙两种饮料共10瓶.已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买瓶甲饮料.【解析】设小宏能买x 瓶甲饮料,则买乙饮料()10-x 瓶.根据题意,得:()7+410-50x x ≤解得133x ≤所以小宏最多能买3瓶甲饮料. 【答案】3【点评】本题主要考查不等式(组)的应用.难度中等.‘3. (2012·湖北省恩施市,题号11 分值 3)某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其他费用,如果超市想要至少获得20%的利润,那么这种水果在进价的基础上至少提高( )A .40%B .33.4%C .33.3%D .30% 【解析】根据关系式:售价≥进价×(1+20%)进行计算.设超市购进大樱桃P 千克,每千克Q 元,售价应提高x%,则有P (1-10%)•Q (1+x%)≥PQ (1+20%),即(1-10%)(1+x%)≥1+20%,∴x%≥33.3%.【答案】C【点评】本题采用了多元设法来解决问题,我们通常在解决实际问题的时候,通常可以借助多个参数参与到列式中来,这些参数只起到“辅助”作用,通常可以根据等式的性质约掉。

相关文档
最新文档